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Abstract: Drought poses a significant environmental risk and can deeply affect the growth of grasslands. How-
ever, there is still uncertainty regarding the precise impact of varying levels of drought on grassland growth. 
To address this gap, we utilized several key indicators, including the Normalized Difference Vegetation Index 
(NDVI), Enhanced Vegetation Index (EVI), the Global Orbiting Carbon Observatory-2 based Solar-induced 
Chlorophyll Fluorescence (GOSIF), and the Gross Primary Productivity (GPP), in conjunction with drought 
indices (the Standardized Precipitation Evapotranspiration Index (SPEI) and the soil moisture (SM). Our study 
aimed to comprehensively assess the consistency of spatio-temporal patterns in grassland vegetation and its 
responsiveness to different drought levels in the Inner Mongolia region from 2002 to 2020. Results indicated 
that NDVI, EVI, GOSIF, and GPP in grassland vegetation across Inner Mongolia exhibited significant increas-
ing trends from 2002 to 2020. Specifically, NDVI, EVI, GOSIF, and GPP all displayed consistent spatial patterns, 
with 25.83%, 21.18%, 22.65% and 48.13% of the grassland area showing significant increases, respectively. 
Drought events, as described by SPEI and SM, in June 2007 to September 2007 and June 2017 to July 2017, were 
selected to evaluated the response of grassland vegetation to drought. The drought events of 2007 and 2017 
resulted in reductions in NDVI, EVI, GOSIF, and GPP relative to multi-year average (2002-2020). GOSIF exhib-
ited a more intense response to drought, suggesting that GOSIF may reflect the inhibition of water stress on 
grassland photosynthesis better than NDVI and EVI during drought in 2007 and 2017. The reductions in NDVI, 
EVI, GOSIF and GPP in grassland increased significantly across different drought-levels, with the sharpest 
reductions observed during extreme drought. Under the severe and extreme drought events, the most substan-
tial reductions in NDVI, EVI, GOSIF, and GPP were observed in the temperate steppe (TS). Moreover, the 
effects of different drought severity levels within the same grassland type varied, with the most significant 
reductions in NDVI, EVI, GOSIF and GPP observed during extreme drought. Our results provide new per-
spectives for developing and implementing effective strategies to address grassland carbon cycling manage-
ment and climate change in Inner Mongolia. 

Keywords: vegetation indexes; GOSIF; GPP; drought events; Inner Mongolia grassland 
 

1. Introduction 

Drought is a common hydrometeorological phenomenon and a significant environmental risk 
that increases vegetation mortality and reduces vegetation productivity [1–4]. For the past several 
decades, the frequency and severity of drought events have shown a rapidly increasing trend with 
temperature rising [5–7]. Earth system models also project a vast expansion of regions often affected 
by extreme and severe droughts in the coming decades [8,9]. Grassland areas cover approximately 
25% of the Earth's land surface, yet they store approximately 34% of global terrestrial carbon storage 
[10–12]. Grasslands are among the most fragile ecosystems and are highly susceptible to droughts 
[10,11]. Recently, some research have indicated that drought is recognized as the key forcing on grass-
land ecosystem dynamics [10,11,13]. Therefore, it is important to study the response of grassland 
vegetation growth to drought under the background of global warming. 
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Remote sensing observations have proven to be invaluable in monitoring drought characteristics 
and quantifying its impact on grasslands over varying time intervals and spatial scales [14,15]. Re-
cently, remote sensing approaches have developed and widely applied vegetation indices (e.g.; the 
Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), Near-Infra-
red Reflectance of Vegetation (NIRv)) and drought indices (e.g.; the Temperature-Vegetation Dryness 
Index (TVDI), the Soil Water Deficit Index (SWDI), the Standardized Precipitation Evapotranspira-
tion Index (SPEI), etc.) to assess the effects of drought events on grassland ecosystems [3,16]. Tradi-
tionally used vegetation indices (such as NDVI, EVI and NIRv) do not directly reflect changes in 
actual photosynthesis in grassland ecosystems when water stress occurs [11,17,18]. Some studies have 
also used Solar-induced Chlorophyll Fluorescence (SIF) to monitor vegetation response to drought 
events at different spatial and temporal scales [11,16,19,20]. Unlike traditional vegetation indices, SIF 
is directly related to the actual photosynthetic function of plants and can reveal rapid changes in 
water stress within the vegetation canopy [21,22]. However, the degree of change in photosynthesis 
or productivity is highly sensitive to different drought-levels [10,23]. Generally, extreme and severe 
drought events can result in additional reductions in grassland photosynthesis or productivity due 
to increased mortality and physiological function recession [23]. Previous studies have primarily fo-
cused on the effect of specific drought levels on grassland, leaving the response of grassland ecosys-
tems to different intensities of drought largely unexplored. Moreover, different types of grassland 
ecosystems exhibit varying responses to droughts. Therefore, a more precise investigation into the 
spatiotemporal evolution patterns of grassland ecosystems and their response to different drought-
levels is warranted. 

Inner Mongolia is highly responsive to global climate change, with more than 74% of its area 
covered by various types of grasslands [24,25]. This region has experienced increased temperatures, 
reduced precipitation, and more frequent droughts over the past few decades [25]. Understanding 
the spatial and temporal patterns of grassland NDVI, EVI, GOSIF, and GPP and their responses to 
different drought-levels in Inner Mongolia is of great significance for enhancing ecological security 
in Northern China [25]. The primary objective of this study was to quantify the spatiotemporal vari-
ation in the characteristics of grassland ecosystems and their response to different intensities of 
drought in Inner Mongolia over the past two decades (2002-2020) using NDVI, EVI, GOSIF, GPP, 
SPEI and soil moisture (SM) data. Additionally, we assessed variation in NDVI, EVI, GOSIF, and GPP 
losses in different grassland types under the same drought severity levels. This study aimed to an-
swer the following questions: (1) What are spatial and temporal patterns in the characterization of 
Inner Mongolia grasslands, such as NDVI, EVI, GOSIF and GPP? (2) To what extent do typical 
drought events influence grassland ecosystems in Inner Mongolia? (3) How do NDVI, EVI, GOSIF, 
and GPP reductions vary in different grassland biomes under different drought levels? Our results 
provide a more robust and less the uncertain understanding by applying a single data source and 
scientific basis to examine grassland ecosystems’ responses to droughts at various levels. 

2. Materials and Methods 

2.1. Study area 

The Inner Mongolia, situated between 37◦ 24′N to 53◦ 23′N and 97◦ 12′E to 126◦ 04′E, is located in 
northern China and covers an expansive area of approximately 118.3×104 km2. The topography is 
characterized as long and narrow, with elevations decreasing from the southwest to the northeast 
(Figure 1). Influenced significantly by the Asia monsoon, Inner Mongolia is a typical temperate con-
tinental monsoon climate. Consequently, the mean annual rainfall varies from 50 to 550 mm and 
diminishes from the northeast to the southwest [24,26,27]. The annual mean temperature typically 
falls within the range of -4~10℃, and progressively increases from the northeast to the southwest [25–
28]. Grasslands dominate the Inner Mongolia landscape, constituting the primary vegetation types 
and covering approximately 74% of the entire region. Nevertheless, due to the temporal variability 
of precipitation and the effects of global warming, Inner Mongolia has experienced a heightened fre-
quency droughts over the past decades [13,29].  
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Figure 1. Spatial pattern of grassland types (a) and climate class (b) in Inner Mongolia Autonomous 
Region of China. 

2.2. Data sources and preprocessing 

2.2.1. MODIS products 

In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) products, specifically 
NDVI, EVI, and GPP were used to monitor the vegetation because of their high-quality data sources 
(https://e4ftl01.cr.usgs.gov/). NDVI and EVI obtained used with a1-month temporal resolution and a 
0.05°spatial resolution of from the MOD13C2 product. To mitigate the impact of aerosol and atmos-
pheric and molecular scattering, the maximum value composite (MVC) method was used to generate 
yearly NDVI and EVI datasets [30]. GPP data were sourced from the MOD17A2H product, featuring 
a temporal resolution of 8-day and a spatial resolution of 500 m. The monthly and yearly GPP data 
to achieve spatial resolution of 0.05°, starting from 8-day data were synthesized and resampled [31]. 
The period from 2002 to 2020 was considered in this study. 

2.2.2. GOSIF data 

A global Orbiting Carbon Observatory-2 (OCO-2) Solar-induced chlorophyll fluorescence (SIF) 
dataset, known as GOSIF measured in W·m-2·μm-1·sr-1, covering the period from January 2002 to De-
cember 2020 were retrieved from the following website:  http://data.globalecol-
ogy.unh.edu/data/GOSIF_v2/. GOSIF was developed by integrating discrete OCO-2 SIF soundings, 
remote sensing data from MODIS, and meteorological reanalysis data [32]. It offers global coverage 
with high spatial and temporal resolutions (0.05°and 8 days). GOSIF has gained widespread use in 
assessing terrestrial photosynthesis and studying vegetation responses to drought under the back-
ground of global climate change [32–34]. In this study, monthly and yearly GOSIF data was used to 
evaluate its effectiveness in tracking vegetation changes and monitoring drought conditions. 

2.2.3. SPEI data 

The SPEI dataset was originally proposed by Vicente-Serrano et al. (2010)[35]. It is calculated 
based on available water (monthly precipitation) and atmospheric evaporation demand (potential 
evapotranspiration) and offers the advantage of providing multi-time scale data while accounting for 
potential evapotranspiration in drought assessments [36]. SPEI has been widely used in numerous 
studies to assess drought trends [23,37,38]. The SPEI version 2.8 is available for access at the following 
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website: https://digital.csic.es/handle/10261/288226. Considering the SPEI with three-month time 
scale (SPEI-3) can better reflect the severity and duration of grassland drought [25], SPEI-3 was used 
to assess the effect of drought events on grassland vegetation growth in Inner Mongolia. The SPEI 
values and corresponding drought levels were described in Table 1 [35,39]. 

Table 1. Classification of drought levels based on the SPEI values. 

Classification SPEI value Status 

1 SPEI≥-0.5 No drought 
2 -0.5＜SPEI≤-1.0 Mildly drought 
3 -1.0＜SPEI≤-1.5 Moderately drought 
4 -1.5＜SPEI≤-2.0 Severely drought 
5 SPEI≤-2.0 Extreme drought 

2.2.4. Soil moisture data 

Climate Change Initiative (CCI) SM dataset, which provides surface soil moisture information, 
is a product of by the European Space Agency (ESA) CCI [40,41]. The latest release (v07.1) spans 43 
years from November 1978 to December 2021, and is accessible at this link: https://cata-
logue.ceda.ac.uk/uuid/. The SM CCI COMBINED dataset, which has a spatial resolution of 
0.25°×0.25° and a volumetric unit (m3/m3), were selected to assess drought conditions in the Inner 
Mongolia grassland from 2002 o 2020. The reliability of the dataset has been validated in various 
regions worldwide [42–44].  

2.2.5. Other data 

The climate class was characterized by the aridity index (AI), which is computed based on an-
nual precipitation, annual temperature, and annual reference evapo-transpiration (ET0) data from 
the 1970-2000 period. This dataset is accessible at https://csidotinfo.wordpress.com/data/global-arid-
ity-and-pet-database/. In this study, the Hyper Arid (AI<0.03), Arid (0.03<AI≤0.2), Semi-Arid 
(0.2<AI≤0.5), Dry sub-humid (0.5<AI≤0.65), and Humid (AI>0.65) were categorized by AI values in 
Inner Mongolia (Figure 1b) [45,46]. 

The classification of grassland types in Inner Mongolian of China was obtained from the Inner 
Mongolian Institute of Grassland Surveying and Planning [47,48]. The Inner Mongolian grassland 
comprises predominant types, including temperate steppe (TS), temperate meadow-steppe (TMS), 
temperate desert type (TD), temperate steppe-desert (TSD), lowland meadow (LM), Marsh, and tem-
perate mountain meadow (TMM) (Figure 1a). 

2.3. Subsection 

2.3.1. Theil-Sen Median trend and M-K test 

Theil-Sen Median slope and Mann–Kendall (M-K) nonparametric trend analysis methods were 
used to assess the change trends in NDVI, EVI, GOSIF, and GPP during the period from 2002 to 2020. 
This method is favored for their simplicity, computational efficiency, and robustness against data 
distribution or measurement errors. The calculation of the trend (β) is performed using the following 
equations [49–51]: 
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where β denotes the change trend, n denotes the length of the time series of NDVI, EVI, GOSIF, 

and GPP, sgn is the sign function, i and j are serial numbers, xi and xj denote the values at moments i 
and j, respectively. β >0 indicates an increasing trend; β <0 indicates a decreasing trend. |Z|≥1.96 
represent the change trend is significant at 0.05 confidence level.  

2.3.2. Standardized Anomaly 

The calculation standardized anomaly (SA) for each variable at the pixel level during the ith 
month of a drought period can be performed using the following equation [2,52]:  

2002 2020
grassland

2002 2020

Var( , ) Var ( , )
SA ( , )

(Var ( , ))

i j i j
i j

i jσ
−

−

−
=

                 (6) 
where, SAgrassland (i, j) and Var(i, j) is the standardized anomaly and value of each variable (CCI-

SM, NDVI, EVI, GOSIF, GPP) at the ith grid for the jth month during the drought period, respectively; 

2002 2020Var ( , )i j−  and 2002 2020(Var ( , ))i jσ −  is the average and standard deviation of each variable 
at the ith grid for the jth month during 2002-2020, respectively.  

2.3.3. Grassland NDVI, EVI, GOSIF and GPP loss assessment 

NDVI, EVI, GOSIF and GPP reductions induced by drought are calculated as the difference be-
tween the mean values of NDVI, EVI, GOSIF and GPP during drought years reference years [10]. 

drought mean

mean

Var Var
Var 100

Var

−
= ×

                           (7) 

where Var  represent the percentage reduction in NDVI, EVI, GOSIF and GPP during 
drought years, Vardrought and Varmean denote the value of NDVI, EVI, GOSIF and GPP during drought 
years (SPEI-12<-1.0) and near normal years (-1.0<SPEI-12≤1.0), respectively. 

3. Results 

3.1. Spatio-temporal patterns of NDVI, EVI, GOSIF, and GPP from 2002 to 2020 

Figure 2a illustrates the change trends in monthly grassland NDVI and EVI from 2002 to 2020, 
revealing apparent periodical characteristics with a one-year cycle. Notably, the maximum values of 
grassland NDVI, reaching around 0.40, consistently occurred in July or August each year, signifying 
the period when grassland growth and metabolism were most vigorous. Conversely, the minimum 
values of grassland NDVI, dropped below 0.1, were consistently observed in January, indicating min-
imal grassland growth during that period. The change trends of monthly grassland EVI exhibited 
similar patterns to NDVI, but the fluctuation range of EVI values was lower than NDVI (Figure 2a). 
Monthly grassland GOSIF and GPP also displayed clear periodic characteristics throughout the pe-
riod from 2002 to 2020 (Figure 2b). GOSIF exhibited patterns similar to those of GPP, with the maxi-
mum value appearing in August 2018, reaching 0.1371 W·m-2·μm-1·sr-1. Conversely, the minimum 
GOSIF value was recorded in February 2014, with a value of -0.0121 W·m-2·μm-1·sr-1. In the case of 
grassland GPP, its maximum value was observed in July 2012, reaching 126.61 gC·m-2·month-1. Over-
all, the monthly variations grassland NDVI, EVI, GOSIF and GPP consistently exhibited a one year 
cycle in Inner Mongolia between 2002 and 2020. 
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Figure 2. Temporal trends of monthly grassland (a) NDVI, EVI, (b) GOSIF, and GPP. 

In Figure 3, the yearly trends of NDVI, EVI, GOSIF and GPP from 2000 to 2020 are depicted. All 
four variables exhibited significant increasing trends during this period, with change rates of 0.0024 
a-1, 0.0018 a-1, 0.0012 W·m-2·μm-1·sr-1·a-1 and 4.6950 gC·m-2·a-1, respectively (P<0.01). The peak values 
for grassland NDVI, EVI, GOSIF and GPP were observed in 2018, reaching 0.4617, 0.3145, 0.1394 W·m-

2·μm-1·sr-1 and 447.7892 gC·m-2, respectively. Conversely, the minimum lowest values for grassland 
NDVI and EVI were recorded in 2009 at 0.3593 and 0.2381 (Figure 3a), while the lowest values for 
grassland GOSIF and GPP were observed in 2007, with values of 0.0856 W·m-2·μm-1·sr-1·a-1 and 322.67 
gC·m-2·a-1 (Figure 3b). 

2004 2008 2012 2016 2020
0.30

0.35

0.40

0.45

0.50

 NDVI Trend=0.0024 a-1 P<0.01

 EVI Trend=0.0018 a-1 P<0.01

Year

N
D

V
I

(a)

0.20

0.25

0.30

0.35

 E
V

I

2004 2008 2012 2016 2020
0.00

0.03

0.06

0.09

0.12

0.15

 GOSIF Trend=0.0012 W·m-2·μm-1·sr-1· a-1 P<0.01

 GPP Trend=4.6950 gC·m-2·a-1 P<0.01

Year

G
O

S
IF

(W
·m

-2
·μ

m
-1

·s
r-1

·a
-1

)

(b)

200

250

300

350

400

450

500
 G

P
P

(g
C

·m
-2

·a
-1

)

 
Figure 3. Temporal variations of annual (a) NDVI, EVI, (b) GOSIF, and GPP during 2002 to 2020 

Figure 4 illustrates the spatial patterns and change trends of grassland NDVI, EVI, GOSIF, and 
GPP in Inner Mongolia between 2002 and 2020. The annual mean values of these variables showed 
similar spatial distribution characteristics, gradually increasing from the northwest to the southeast 
(Figure 4a-4d). High values were primarily concentrated in the eastern part of t Inner Mongolia, in-
cluding LM and TMS regions (Figure 4a-4d and Figure 1), while lower values prevailed in the western 
orgions, which are predominantly TD and TSD (Figure 4a-4d and Figure 1). Spatial variability in 
grassland change trends across Inner Mongolia from 2002 to 2020 was evident. For NDVI and EVI, 
approximately 82.13% and 80.18% of the region displayed increasing trends. Notably, 25.83% and 
21.18% of the grassland NDVI and EVI values showed significant increasing trends, primarily con-
centrated in Tongliao, Ordos and Alxa League (Figure 1 and Figure 4e-4f). Conversely, only 0.91% 
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and 0.82% of the grassland NDVI and EVI values exhibited significant decreasing trends, scattered 
in areas such as Chifeng and Alxa League (Figure 1 and Figure 4e-4f). As for grassland GOSIF and 
GPP, the areas showing increasing trends (84.42% and 96.89%) were substantially higher than those 
with decreasing trends (15.58% and 3.11%). Specifically, 22.65% and 48.13% of grassland GOSIF and 
GPP values showed significant increasing trends, primarily distributed in Xingan League, Tongliao, 
Chifeng, Ordos and Alxa League. These regions are mainly covered by TS, TSD, and TMS (Figure 1). 
Conversely, only 0.50% and 0.26% of the grassland GOSIF and GPP values showed significant de-
creasing trends in the study area. 

 
Figure 4. Spatial patterns and change trends of grassland NDVI, EVI, GOSIF, and GPP in Inner Mon-
golia between 2002 and 2020. 

3.2. Changes of drought from 2002 to 2020 

Figure 5 indicated the SPEI and standardized anomaly of CCI-SM (SACCI-SM) change trends from 
2002 to 2020 in Inner Mongolia grassland. As shown in Figure 5, SPEI values exhibited frequent fluc-
tuations at 1-month time (SPEI-1) or 3-month time (SPEI-3), while remaining relatively stable at 
longer time scales (SPEI-12). The pronounced amplitude and higher frequency of wet and dry 
changes were primarily associated with SPEI-1 (Figure 5a). From 2002 to 2020, Inner Mongolia grass-
land experienced a total of 96 drought months including 50 mild droughts, 33 moderate droughts, 12 
severe droughts, and one extreme drought month. Among these, the lowest SPEI-1 value (-2.05) was 
recorded in March 2019 (Figure 5a). In contrast, SPEI-3 exhibited greater stability and provided in-
sight into seasonal scale dry-wet changes. During the same period, a total of 119 drought months 
were recorded, comprising 54 mild droughts, 48 moderate droughts, 14 severe droughts, and 3 ex-
treme droughts. The lowest SPEI-3 value (-2.08) occurred in June 2017 (Figure 5b). SPEI-12, reflecting 
the annual scale dry-wet variation, and was the most stable among the three indices. From 2002 to 
2012, SPEI-12 identified 57 mild droughts, 71 moderate droughts, 23 severe droughts and 6 extreme 
droughts. The lowest SPEI-12 value (-2.11) was found in March 2018 (Figure 5c). In particular, SPEI-
3 values were observed as -1.34, -1.45, -1.42, and -1.33 in June, July, August, and September 2007, 
respectively, and -2.08 and -2.0 in June and July 2017, respectively (Figure 5b). 

The soil moisture status of Inner Mongolia grassland was identified by the SACCI-SM (Figure 5d). 
From 2002 to 2020, a total of 112 drought months were identified by the soil moisture (SACCI-SM<0), 
with a minimum value of SACCI-SM appearing in December 2020 (SACCI-SM =-2.54). Notably, from June 
2007 to September 2007, SACCI-SM values consistently fell below -1 in Inner Mongolia grassland. Spe-
cifically, in June, July, August, September 2007, SACCI-SM values were -1.59, -1.30, -1.71, and -1.91, re-
spectively. In June and July 2017, SACCI-SM values were -1.02 and -1.12, respectively (Figure 5d). Con-
sidering with the droughts indicated by SPEI-3 and SACCI-SM, June 2007 to September 2007 and June 
2017 to July 2017 were selected to analyze the response of grassland vegetation growth to droughts. 
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Figure 5. Temporal changes of SPEI and SACCI-SM, at monthly, seasonal, and annual scales. 

Figure 6 and Figure 7 present the spatial patterns of SPEI-3 and SACCI-SM in Inner Mongolia grass-
land for the years in 2007 and 2017. As illustrated in Figure 6, the percentage of grassland areas af-
fected by severe and extreme drought was 47.98%, 59.24%, 63.01%, and 64.16%, respectively (Figure 
6a-6d). These regions are primarily situated in the central eastern part of Inner Mongolia, with milder 
drought conditions observed in the western regions. The spatial distribution of SACCI-SM closely mir-
rored that of SPEI-3. The proportion of areas with SACCI-SM values less than -1 was 61.38%, 48.37%, 
41.31% and 54.23%, respectively (Figure 6e-h). In June and July 2017, 61.27% and 56.36% of the grass-
land area showed extreme drought conditions, concentrated in the central eastern part of Inner Mon-
golia (Figure 7a and 7b). Spatial distribution of SACCI-SM closely paralleled that of SPEI-3, with pro-
portions of areas experiencing SACCI-SM values less than -1 at 50.80% and 45.70%, respectively (Figure 
7c and 7d).  

 
Figure 6. Spatial pattern of SPEI-3 and SACCI-SM in June, July, Auguste, September 2007. 
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Figure 7. Spatial pattern of SPEI-3 and SACCI-SM in June and July 2017. 

3.3. Divergent grassland vegetation growth response to two drought events 

Figure 8 and Figure 9 showed the spatial distributions of SA for NDVI, EVI, GOSIF and GPP 
during June, July, August, September 2007, as well as June and July 2017. Spatially, both NDVI and 
EVI indicated widespread declines (SA<-0.5) in during these months, particularly in east-central re-
gions of Inner Mongolia (SA < -2) (Figure 8a-h). Specifically, NDVI decreased by 17.39%, 11.38%, 
10.80% and 6.18% in June (-0.047), July (-0.039), August (-0.036) and September (-0.016), respectively, 
relative to the multi-year average (Figure 9a and 9b). Similarly, EVI declined by 18.33%, 13.97%, 
11.24% and 4.98% in June, July, August, and September, confirming a widespread vegetation brown-
ing phenomenon following drought from June to September 2007. Compared to NDVI and EVI, 
GOSIF indicated a similar spatial distribution pattern but displayed more drastic changes from June 
to September (Figure 8i-l). GOSIF decreased by 34.37%, 30.42%, 29.88% and 14.12% in June (-0.015 
Wm-2 μm-1 sr-1), July (-0.024 Wm-2 μm-1 sr-1), August (-0.023 Wm-2 μm-1 sr-1), and September (-0.005 
Wm-2 μm-1 sr-1), respectively, relative to the multi-year average (2002-2020) (Figure 9e and 9f). The 
spatial distributions of SA for GPP indicated a net loss in carbon sequestration relative to the multi-
year average becauseof the drought events. As a result, GPP decreased by 26.59%, 26.51%, 25.41%, 
and 10.28% in June (-10.93 gCm-2), July (-17.58 gCm-2), August (-16.23 gCm-2), and September (-3.48 
gCm-2), respectively, relative to the multi-year average (2002-2020) (Figure 9g and 9h). 
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Figure 8. The spatial distributions of SA for NDVI, EVI, GOSIF, and GPP in June, July, August, Sep-
tember 2007. 
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Figure 9. Temporal variation of NDVI, EVI, GOSIF, and GPP during the June, July, August, September 
drought in 2007  

In June-July 2017, NDVI, EVI, GOSIF and GPP revealed a significant inhibition of grassland veg-
etation growth in east-central Inner Mongolia (SA < -0.5) (Figure 10). NDVI decreased by 7.31% and 
5.22% in June (-0.022) and July (-0.019), respectively (Figure 11a and 11b). Similarly, EVI exhibited 
reductions of 9.05% and 6.36% in June (-0.017) and July (-0.015), respectively (Figure 11c and 11d). 
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Under the influence of drought stress, GOSIF decreased 10.20% and 17.01% in June (-0.006 Wm-2 μm-

1 sr-1) and July (-0.015 Wm-2 μm-1 sr-1), respectively, signifying a clear inhibition of grassland vegeta-
tion growth (Figure 11e and 11f). GPP decreased by 8.33% and 14.91% in June (-4.001 gCm-2) and July 
(-10.893 gCm-2), respectively (Figure 11g and 11h). Notably, the decrease in GPP in June was less 
pronounced than in July. This differential response was particularly evident in GOSIF, while NDVI 
and EVI failed to capture this variability. Therefore, GOSIF emerges as a superior indicator for as-
sessing the impact of drought events on grassland photosynthesis. 

Based on the responses of NDVI, EVI, and GOSIF to two drought events, NDVI, EVI, and GOSIF 
experienced water stress during the peak growth stage of grassland vegetation. However, GOSIF 
exhibited a more pronounced response to drought, with its change trend closely mirroring that of 
GPP. Therefore, GOSIF serves as a valuable indicator that closely reflects the processes associated 
with GPP during drought events. 

 
Figure 10. The spatial distributions of SA for NDVI, EVI, GOSIF, and GPP in June and July 2017. 
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Figure 11. Temporal variation of NDVI, EVI, GOSIF, and GPP during the July and August drought in 
2017. 
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3.4. NDVI, EVI, GOSIF and GPP loss in different drought-levels 

In order to evaluate the impacts of different drought severities levels events in grassland vege-
tation, we examined the NDVI, EVI, GOSIF, and GPP reductions across varying drought severities in 
Inner Mongolia. In general, all levels of drought (moderate, severe, and extreme) led to the declines 
in NDVI, EVI, GOSIF, and GPP (Table 2). However, the extent of NDVI, EVI, GOSIF, and GPP reduc-
tions varied significantly. For NDVI, the average reductions caused by moderate, severe, and extreme 
droughts were 8.82%, 14.46% and 26.81%, respectively. Similarly, EVI exhibited average reductions 
of 8.71%, 15.04% and 27.11% under moderate, severe, and extreme droughts conditions, respectively. 
Notably, GOSIF showed much larger reductions in grassland of the Inner Mongolia, with reductions 
of 20.58%, 22.83% and 67.31% under moderate, severe, and extreme droughts, respectively. For GPP, 
the average reductions caused by moderate, severe, and extreme droughts was 10.52%, 18.01% and 
27.05%, respectively. Overall, NDVI, EVI, GOSIF, and GPP exhibited decreased significant declines 
with increasing drought severity, with GOSIF displaying the most pronounced response to drought. 

Table 2. The NDVI, EVI, GOSIF, and GPP reductions along the different drought levels in Inner Mon-
golia grassland. 

 Moderate drought Severe drought 
Extreme 

drought 

NDVI 
EVI 

GOSIF 

8.82% 14.46% 26.81% 
8.71% 15.04% 27.11% 
20.58% 22.83% 67.31% 

GPP 10.52% 18.01% 27.05% 

The reductions in NDVI, EVI, GOSIF, and GPP across various grassland types along the drought 
severity gradient exhibit notable differences (Figure 12). During extreme drought conditions, the 
most significant NDVI reductions were observed in TS, with an average loss of -31.54%. LM, TMS, 
and TSD was also experienced substantial NDVI reductions, with average-16.88%, -16.52%, and -
27.37% (Figure 12a). A similar pattern was observed for EVI reductions, where TS, LM, TMS, and 
TSD exhibited reductions of -31.69%, -17.25%, -20.45%, and -25.30%, respectively (Figure 12b). Re-
markably, GOSIF reductions were most pronounced in TS, with an average loss of -92.15%, followed 
by LM (-67.72%), TSD (-61.37%), and TMS (-36.08%) (Figure 12c). Regarding GPP, TS experienced the 
highest average loss (-32.29%), followed by TSD (-23.73%), TMS (-20.28%), and LM (-19.01%) (Figure 
12d). For severe drought conditions, GOSIF reductions in TS, LM, TMS, and TSD were -65.83%, -
53.23%, -33.96%, and -53.94%, respectively (Figure 12c). GPP exhibited average losses of -23.42%, -
15.40%, -15.28%, and -16.87%, in TS, LM, TMS, and TSD, respectively (Figure 12d). These findings 
highlight the significant variation in NDVI, EVI, GOSIF and GPP reductions across different grass-
land types within the context of the same level of drought. TS displayed the most substantial decrease 
ratio, while TMS exhibited the smallest decrease ratio. 
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Figure 12. NDVI, EVI, GOSIF and GPP reductions (%) in different grassland types along the drought 
severity gradient. 

4. Discussion 

4.1. NDVI, EVI, GOSIF and GPP loss in different drought-levels 

In this study, an overall decrease of grassland vegetation growth during the 2007 and 2017 
drought events was found in Inner Mongolia (Figure 8 and Figure 10). This finding aligns with similar 
observations in other regions, such as southwest or northern China, U.S. Midwest, the tropical Ama-
zon and temperate Europe [2,53,54]. Moreover, we found that the decrease in grassland GOSIF was 
much more substantial than that observed in NDVI and EVI during 2007 and 2017 drought events 
(Figure 9 and Figure 11). This heightened sensitivity of GOSIF to drought event in Inner Mongolia’s 
grassland is significant. SIF captures information about vegetation photosynthesis, such as Absorbed 
Photosynthetically Active Radiation (FPAR) and light use efficiency [55]. As a sensitive indicator of 
vegetation photosynthesis, SIF can more realistically and sensitively reflect variations in canopy pho-
tosynthesis compared to traditional vegetation indices [18]. For example, studies conducted in the 
U.S. Midwest and Hulun Buir grassland have demonstrated that GOSIF is more sensitive to drought 
than NDVI and EVI [19,54]. Previous studies have also highlighted the superior performance of SIF 
is capturing variations in GPP during drought events [36,54]. Our findings further support the view-
point which the trend in GPP closely aligns with that of GOSIF during 2007 and 2017 drought events 
(Figure 9 and Figure 11). 

4.2. NDVI, EVI, GOSIF and GPP response under different drought severities 

This study also quantified the grassland NDVI, EVI, GOSIF and GPP loss under different 
drought severity levels, and reductions variation in different grassland types within the context of 
the same drought level, which is critical for identifying grassland most sensitive to severe and ex-
treme drought events (Table 2 and Figure 12). Our finding confirmed that NDVI, EVI, GOSIF and 
GPP all exhibited substantial decrease as drought severity increased, aligning with previous re-
searches [10,24]. For different grassland types, TS ecosystems were the most vulnerable to severe and 
extreme droughts in Inner Mongolia. TS regions, primarily studied in the semi-arid region of central 
Inner Mongolia (Figure 1b), displayed the highest reduction rates. This heightened vulnerability can 
be attributed to the unique characteristics of semi-arid ecosystems, which tend to exhibit the most 
pronounced physiological and functional responses to drought stress [24,56,57]. These findings align 
with similar observations in other semi-arid regions, such as southeastern Australia.  
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The TSD ecosystems exhibited the second-largest reduction in response to drought. TSD regions 
are mostly found in the arid western part of Inner Mongolia (Figure 1). While TSD ecosystems have 
adapted to living in arid conditions, extreme or severe droughts can still have detrimental effects. 
These conditions can lead to structural changes and reduced photosynthesis, as observed in our study 
and supported by previous research [24,56]. 

4.3. Uncertainties 

While this study provides valuable insights NDVI, EVI, GOSIF, and GPP trends and their re-
sponses to droughts in Inner Mongolia grassland, several limitations should be considered. Firstly, 
although GOSIF dataset, while offering continuity in spatiotemporal distribution, features relatively 
coarse resolution (0.05°×0.05°). Additionally, GOSIF is derived from a machine learning method 
based on OCO-2 satellite data, which introduces certain internal uncertainties [22,32]. Secondly, pre-
vious studies found the grasslands in Inner Mongolia may experience by compound droughts [58]. 
This study focused on the response to individual drought events, and further research should inves-
tigate how grassland vegetation responds to these more complex and compounded drought scenar-
ios. Moreover, this study assessed the impact of SPEI on grassland vegetation. The vapor pressure 
deficit (VPD), soil moisture and human activities can also affect vegetation growth [59,61], and ignor-
ing these variables will inevitably result in some uncertainties of the presented results. Therefore, 
these questions will need to be discussed and analyzed in future studies. 

5. Conclusions 

In this study, we utilized NDVI, EVI, GOSIF, GPP, and drought indices to assess the effect of 
drought events on grassland ecosystems in Inner Mongolia of China. Our investigation aimed to un-
cover spatiotemporal evolution patterns of grassland dynamics and evaluate how different drought 
severity levels affect various grassland types. This study shows that NDVI, EVI, GOSIF, and GPP 
exhibited significant increasing trends from 2000 to 2020, with 25.83%, 21.18%, 22.65% and 48.13% of 
the grassland areas, respectively. Compared with NDVI and EVI, the responses of GOSIF to drought 
more intense, and it can better reflect the impact of drought events on grassland photosynthesis in 
2007 and 2017. The reductions in NDVI, EVI, GOSIF, and GPP intensified as drought severity levels 
increased. The influence of drought events on NDVI, EVI, GOSIF, and GPP reductions in different 
grassland types under extreme drought conditions was obviously different, and the effects of differ-
ent drought-levels in same grassland type were also exist difference. These findings underscore the 
critical importance of effectively managing land carbon cycling and addressing the challenges posed 
by climate change, particularly in regions like Inner Mongolia, where grassland ecosystems play a 
vital role. 
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