
Article

Not peer-reviewed version

Better estimate of four moments

theorems and its application to

polynomials

Yoon Tae Kim and Hyun Suk Park 

*

Posted Date: 3 October 2023

doi: 10.20944/preprints202310.0072.v1

Keywords: Markov diffusioin generator; carré du champ operator; Pearson distribution; Fourth moment

theorem; Malliavin calculus; Jacobi generator; Romanovski-Routh generator

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/1769485


Article

Better Estimate of Four Moments Theorems and Its
Application to Polynomials

Yoon Tae Kim and Hyun Suk Park *

Devision of Data Science, and Data Science Convergence Research Center, Hallym University, Chuncheon,

Gangwon-Do 200-702, Republic of Korea; ytkim@hallym.ac.kr

* Correspondence: hspark@hallym.ac.kr

Abstract: We introduce the lower chaos grade of a real-valued function F defined on the Markov

triple (E, µ, Γ), where µ is a probability measure and Γ is the carré du champ operator. As an

application of this concept, we obtain the better estimate of the four moments theorem for Markov

diffusion generators worked by Bourguin et al. (2019). For our purpose, we need to find the largest

number except zero in the set of eigenvalues corresponding to its eigenfunction in the case where

the square of a random variable F, coming from a Markov triple structure, can be expressed as

a sum of eigenfunctions, We give some examples of eigenfunctions of the diffusion generators

such as Ornstein-Uhlenbeck, Jacobi and Romanovski-Routh. In particular, two bounds, called the

four moments theorem and fourth moment theorem respectively, will be provided for the normal

approximation of the case where a random variable F comes from eigenfunctions of a Jacobi generator.

Keywords: Markov diffusioin generator; carré du champ operator; Pearson distribution; Fourth

moment theorem; Malliavin calculus; Jacobi generator; Romanovski-Routh generator

1. Introduction

The aim of this paper is to find the better estiamte of the four moments theorems of a random

variable belonging to Markov chaos studied by Bourguin et al. in the paper [3]. The first study in

this field is the central limit theorem, called the fourth moment theorem, in [18] studied by Nualart and

Peccati. These authors found a necessary and sufficient condition such that a sequence of random

variables, belonging to a fixed Wiener chaos, converges in distribution to a Gaussian random variable.

More precisely, let (X = {X(h), h ∈ H}) be an isonormal Gaussian process defined on a probability

space (Ω,F,P), where H is a real separable Hilbert space.

Theorem 1. [Fourth moment theorem] Fix an integer q ≥ 2, and let {Fn, n ≥ 1} be a sequence of random

variables belonging to the qth Wiener chaos with E[F2
n ] = 1 for all n ≥ 1. Then Fn

L−→ Z if and only if

E[F4
n ] → 3, where Z is a standard Gaussian random variable and the notation

L−→ denotes the convergence in

distribution.

Such a result gives a dramatic simplication of the method of moments from the point of view

of convergence in distribution. The above fourth moment theorem is expressed in terms of Malliavin

derivative in [17]. However, the results given in [17,18] do not provide any information about the rate

of convergenc, whereas, in the paper [10], the authors prove that Theorem 1 can be recovered from the

estimate of the Kolmogorov (or total variation, Wasserstein) distance obtained by using the techniques

based on the combination between Malliavin calculus (see, e.g., [13,15,16]) and Stein’s method for

normal approximation (see, e.g., [4,20,21]). For more explanation of these techniques, we refer to the

papers [6,9–14].

One of the remarkable achievements of Nourdin-Peccati approach (see Theorem 3.1 in [10]) is the

quantification of fourth moment theorem for functionals of Gaussain fields. In the particular case where
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F is an element in the qth Wiener chaos of X with E[F2] = 1, the upper bound of Kolmogorov distance is

given by

dKol(F, Z) ≤
√

q − 1

3q

√

E[F4]− 3. (1)

Here E[F4]− 3 is just the fourth cumulant κ4(F) of F.

Recently, the author in [8] proves that the fourth moment theorem also holds in the general

framework of Markov diffusion generators. More precisely, under a certain spectral condition on

Markov diffusion generator, a sequence of eigenfunctions of such a generator satisfies the bound

given in (1). In particular, this new method may avoid the use of complicated product formula of

multiple integrals. After this work, the authors in [1] introduce a Markov choas of eigenfunctions

being less restrictive than Markov chaos defined in [8]. Using this Markov chaos, they derive the

quantitative four moments theorem for convergence of the eigenfuctions towards Gaussian, Gamma,

Beta distributions. Furthermore, the authors in [3] that the convergence of the elements of a Markov

chaos to a Pearson distribution can be still bounded with just the first four moments by using the new

concept of chaos grade.

For the purposes of this paper, we will start by referring to the estimate given in Theorem 3.9

obtained by Bourguin et al. in [3]. Pearson diffusions are Itô diffusion given by the following stochastic

differential equation(sde)

dXt = a(Xt)dt +
√

2θb(Xt)dBt, (2)

where a(x) = −θ(x − m) and b(x) = b2x2 + b1x + b0. Given the generator L defined on L2(E, µ) by

L f (x) = −θ(x − m) f ′(x) + θb(x) f ′′(x), (3)

its invariant measure µ is a Pearson distribution and the set of eigenvalue of L is given by

Λ =

{

− n(1 − (n − 1)b2)θ : n ∈ N0, b2 <
1

2n − 1

}

. (4)

Theorem 2 (Bourguin et al. (2019)). Let ν be a Pearson distribution associated to the diffusion given by

sde (2). Let F be a chaotic eigenfunction of generator L with eigenvalue −λ, chaos grade and moments up to 4.

Set G = F + m and ξ = u− 2(1 − b2) . Then, it holds

E
[(

Γ(G,−L−1G)− b(G)
)2]

≤ 2

(

1 − b2 −
u

4

)

E[U(G)] +
(ξ)+(1 − b2)

2
E[Q2(G)], (5)

where (ξ)+ = ξ for ξ > 0 and 0 for ξ ≤ 0, and the polynomials Q and U are given by

Q(x) = x2 +
2(b1 + m)

2b2 − 1
x +

1

b2 − 1

(

b0 +
m(b1 + m)

2b2 − 1

)

, (6)

U(x) = (1 − b2)Q
2(x)− 1

12
(Q′(x))3(x − m). (7)

The notations Γ and L−1 in the above theorem, related to Markov generator, are explained

in Section 2.

In this paper, we improve the estimate given in Theorem 2 by introducing the notion of the

lower chaos grade in the set of eigenvalues of generator L. For example, if the target distribution ν

in Theorem 2 is a standard Gaussian measure, then the diffusion coefficients are given as b2 = b1 = 0
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and b0 = 1. Since a chaotic random variable F = Iq( f ), f ∈ H⊗q with E[F2] = 1, has the chaos grade

u = 2, the second term in the bound (5) is vanished and the bound is given as follows:

E
[(

Γ(F,−L−1F)− 1
)2] ≤ 1

3

(

E[F4]− 3
)

. (8)

Note that dKol(F, Z) ≤
√

E[(Γ(F,−L−1F)− 1)2]. Hence the bound in (1) provides a better estimate for

four moments theorem in comparison with bound of (8) in the case of F = Iq( f ). In this paper, we will

develop a new technique that provides more improved bounds as above.

Also we give two bounds, called the four moments theorem and fourth moment theorem

respectively, for the normal approximation of the case where a random variable F comes from

eigenfunctions of a Jacobi generator. One of the bounds is from our main result, Theorem 3 below, and

the other bound, obtained using the result in [7]. shows that the fourth moment theorem holds even if

the upper chaos grade is greater than two.

The rest of the paper is organized as follows: Section 2 reviews some basic notations and results

of Markov diffusion generator. Our main result, in particular the bound in Theorem 3, is presented

in Section 3, Finally, as an application of our main results, in Section 4, we consider the case where

a random variable G in Theorem 2 comes from an eiegnfunction of a generator associated to a

Pearson distribution.

2. Preliminaries

In this section, we recall some basic facts about Markov diffusion generator. The reader is referred

to [2] for a more detailed explanation. We begin by the definition of Markov triple (E,F, µ) in the sense

of [2]. For the infinitesimal generator L of a Markov semigroup P = (Pt)t≥0 with L2(µ)-domain D(L),

we associated a bilinear form Γ. Assume that we are given a vector space A0 of D(L) such that for

every (F, G) of random variables defined on a probability space (E,F, µ), the product FG is in D(L)

(A0 is an algebra). On this algebra A0, the bilinear map (carré du champ operator) Γ is defined

Γ(F, G) =
1

2
(L(FG)− FLG − GLF).

for every (F, G) ∈ A0 × A0. As the carré du champ operator Γ and the measure µ completely

determine the symmetric Markov generator L, we will work throughout this paper with Markov triple

(E,F, µ) equipped with a probability measure µ on a state space (E,F) and a symmetric bilinear map

Γ : A0 ×A0 such that Γ(F, F) ≥ 0.

Next, we construct domain D(E) of the Dirichlet form E by completion of A0, and then obtain,

from this Dirchlet domain, domain D(L) of L. Recall the Dirchlet form E as

E(F, G) = E[Γ(F, G)] for (F, G) ∈ A0 ×A0. (9)

If A0 is endowed with the norm

‖F‖E =
[

‖F‖2
2 + E(F, F)

]1/2
, (10)

the completion of A0 with respect to this norm turns it into a Hilbert space embedded in L2(µ).

Once the Dirchlet domian D(E) is contructed, the domaion D(L) ⊆ D(E) is defined as all elements

F ∈ D(E) such that

|E(F, G)| ≤ cFE[G
2]

for all G ∈ D(E), where cF is a finite constant only depending on F. On these domains, a relation of L

and Γ holds, namely the integration by parts formula

E[Γ(F, G)] = −E[FLG] = −E[GLF]. (11)
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By the integration by parts Formula (11) and Γ(F, F) ≥ 0, the operator −L is nonnegative and

symmetric, and therefore the spectrum of −L is contained S ⊆ [0, ∞) We assume that −L has discrete

spectrum S = {λk, k ≥ 0}. Obviously, the zero is always an eigenfunction such that −L(1) = 0.

A Full Markov triple is a Standard Markov triple for which there is an extended algebra A0 ⊂ A,

with no requirement of integrability for elements of A, satisfying the requirements given in Section 3.4.3

of [2]. In particular, the diffusion property holds: for any C∞ function Ψ;Rk → R, and F1, . . . , Fk, G ∈ A,

Γ(Ψ(F1, . . . Fk), G) =
k

∑
i=1

∂iΨ(F1, . . . Fk)Γ(Fi, G), (12)

and

L(Ψ(F1, . . . Fk) =
k

∑
i=1

∂iΨ(F1, . . . Fk)LFi

+
k

∑
i,j=1

∂ijΨ(F1, . . . Fk)Γ(Fi, Fj). (13)

We also define the operator L−1, called the pseudo-inverse of L, satisfying for any F ∈ D(L),

LL−1F = L−1LF = F −E[F]. (14)

Obviously, this pseudo-inverse L−1 is naturally constructed and defined on D(L) by a self-adjointness

of the operator L.

3. Main Results

We denote the set of eigenvalues of the generator L by Λ ⊆ (−∞, 0]. Then chaotic random

variables are defined as follows:

Definition 1. An eigenfunction F with respect to an eigenvalue λ of the generator −L is called chaotic if there

exists u > 1 and e ≤ 1 such that −uλ and −eλ are eigenvalues of L, and

F2 ∈
⊕

−κ∈Λ\{0}
eλ≤κ≤uλ

Ker(L + κ Id)
⊕

Ker(L). (15)

The smallest u satisfying (15) is called the upper chaos grade of F, and the largest e satisfying (15) is called the

lower chaos grade of F.

Now we improve the estimate given in Theorem 2 described in the introduction.

Theorem 3. Let ν be a Pearson distribution associated to the diffusion given by sde (2). Let F be a chaotic

eigenfunction of generator L with eigenvalue −λ, chaos grade u and moments up to 4. Set G = F + m. Then,

we have

E
[(

Γ(G,−L−1G)− b(G)
)2]

≤ 2

(

1 − b2 −
u+ e

4

)(

1

3
− b2

)

E[Ũ(G)]

+

(

1 − b2

2
− e

4

)

(

u− 2(1 − b2)
)

E[Q2(G)], (16)
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where Q is given by (6), and

Ũ(x) = x4 +
3(1 − b2)

1 − 3b2
(Q2(x)− x4)

− 1

4(1 − 3b2)

(

(Q′(x))3)(x − m)− 8x4
)

.

Proof: From the proof of Theorem 3.9 in [3], we write

Γ(G,−L−1G)− b(G) =
1

2λ

(

L + 2(1 − b2)λId
)

(Q(G)), (17)

where Q(x) is a quadratic polynomial given by (6). By the assumption,

Q(G) = ∑
−κ∈Λ
κ≤uλ

JκQ(G). (18)
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Direct computations yield, together with (18), that

E
[

(Γ(G,−L−1G)− b(G))2
]

=
1

4λ2
E

[

(

LQ(G) + 2(1 − b2)λQ(G)
)(

L + 2(1 − b2)λ
)

Q(G)
]

=
1

4λ2

{

E

[

LQ(G)
(

L + 2(1 − b2)λ
)

(Q(G))
]

+ 2(1 − b2)λE
[

Q(G)
(

L + 2(1 − b2)λ
)

Q(G)
]

}

=
1

4λ2

{

∑
−κ∈Λ
κ≤uλ

(−κ)(2(1 − b2)λ − κ)E
[

Jκ(Q(G))2
]

+2(1 − b2)λ ∑
−κ∈Λ
κ≤uλ

(2(1 − b2)λ − κ)E
[

Jκ(Q(G))2
]

}

(19)

=
1

4λ2

{

∑
−κ∈Λ
κ≤uλ

(−κ)(uλ − κ)E
[

Jκ(Q(G))2
]

+ (2(1 − b2)− u)λ ∑
−κ∈Λ
κ≤uλ

(−κ)E
[

Jκ(Q(G))2
]

+ 2(1 − b2)λ ∑
−κ∈Λ
κ≤uλ

(uλ − κ)E
[

Jκ(Q(G))2
]

+ 2(1 − b2)(2(1 − b2)− u)λ2 ∑
−κ∈Λ
κ≤uλ

E
[

Jκ(Q(G))2
]

}

=
1

4λ2

{

∑
−κ∈Λ
κ≤uλ

(−κ)(uλ − κ)E
[

Jκ(Q(G))2
]

+ (4(1 − b2)− u)λ ∑
−κ∈Λ
κ≤uλ

(uλ − κ)E
[

Jκ(Q(G))2
]

− (2(1 − b2)− u)uλ2 ∑
−κ∈Λ
κ≤uλ

E
[

Jκ(Q(G))2
]

}

+ 2(1 − b2)(2(1 − b2)− u)λ2 ∑
−κ∈Λ
κ≤uλ

E
[

Jκ(Q(G))2
]

}

. (20)

Since −κ ≤ −eλ for all −κ ∈ Λ \ {0}, we have that

∑
−κ∈Λ
κ≤uλ

(−κ)(uλ − κ)E
[

Jκ(Q(G))2
]

= ∑
−κ∈Λ\{0}

κ≤uλ

(−κ)(uλ − κ)E
[

Jκ(Q(G))2
]

≤ −eλ ∑
−κ∈Λ
κ≤uλ

(uλ − κ)E
[

Jκ(Q(G))2
]

. (21)
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Using (21) yields that

E
[

(Γ(G,−L−1G)− b(G))2
]

≤ 1

4λ2

{

4λ

(

(1 − b2)−
u+ e

4

)

∑
−κ∈Λ
κ≤uλ

(uλ − κ)E
[

Jκ(Q(G))2
]

− (2(1 − b2)− u)uλ2 ∑
−κ∈Λ
κ≤uλ

E
[

Jκ(Q(G))2
]

+ 2(1 − b2)(2(1 − b2)− u)λ2 ∑
−κ∈Λ
κ≤uλ

E
[

Jκ(Q(G))2
]

}

=
1

4λ2

{

4λ

(

(1 − b2)−
u+ e

4

)

E[Q(G)(L + uλId)Q(G)]

+ (u− 2(1 − b2))uλ2
E[Q2(G)]

− 2(1 − b2)(u− 2(1 − b2))λ
2
E[Q2(G)]

}

=
1

4λ2

{

4λ

(

(1 − b2)−
u+ e

4

)

E[Q(G)(L + 2(1 − b2)λId)Q(G)]

+ 4

(

1 − b2

2
− e

4

)

(u− 2(1 − b2))λ
2
E[Q2(G)]

}

= 2

(

1 − b2 −
u+ e

4

)(

1

3
− b2

)

E[Ũ(G)]

+

(

1 − b2

2
− e

4

)

(u− 2(1 − b2))E[Q
2(G)]. (22)

Here, for the last equality in (22), we use the following equality obtained from the proof of Theorem

3.9 in [3],

E[Q(G)(L + uλId)Q(G)] = E[Q(G)(L + 2(1 − b2)λId)Q(G)]

+(u− 2(1 − b2))λE[Q
2(G)]

= 2λE[U(G)] + (u− 2(1 − b2))λE[Q
2(G)].

4. Application to Three Polynomials

In this section, three examples will be given in order to illustrate the estimate (16) with the explict

expression. For this, we consider the case where a random variable F in Theorem 3 comes from

eigenfunctions of a generator associated to a Pearson distribution. For simplicity, we only consider

one-dimensional case, analogus results in finite or infinite dimensional case can be extended in a

similar way.

4.1. Ornstein-Uhlenbeck Generator

We consider the one dimensional Ornstein-Uhlenbeck generator L, defined for any test function

f by

L f (x) = f ′′(x)− x f ′(x) for x ∈ R,

action on L2(R, µ), where

µ(dx) =
1√
2π

e−
x2

2 dx.
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Let us set F = Hq(x) where Hq denotes the Hermite polynomial of order q. Then we have that

F ∈ Ker(L + qId).

Corollary 1. Let ν be a Gaussain distribution associated with the diffusion given by (2) with mean m and

b0 = σ2. If F = Hq(x), q ≥ 2, and G = F + m, then we have

E
[(

Γ(G,−L−1G)− σ2
)2] ≤

(

q − 1

3q

)

(

E[F4]− 6σ2
E[F2] + 3σ4

)

, (23)

Proof. By the well-known product formula, the square of F can be expressed as a linear combination

of Hermite polynomials up to order 2q such as

H2
q (x) =

q

∑
r=0

r!

(

q

r

)2

H2(q−r)(x). (24)

This product formula (24) gives that the upper chaos grade and lower chaos grade of Hq are u = 2 and

e = 2
q ≤ 1 for q ≥ 2. Hence Theorem 3 yields that

E
[(

Γ(G,−L−1G)− σ2
)2] ≤ 2

3

(

1 −
2 + 2

q

4

)

E[Ũ(G)]

≤
(

q − 1

3q

)

E[Ũ(G)]. (25)

When b2 = b1 = 0 and b0 = σ2, a directed computation yields that

U(x) =
1

3

[

(x − m)4 − 6σ2(x − m)2 + 3σ4
]

,

so that

E[Ũ(G)] = E[F4]− 6σ2
E[F2] + 3σ4, (26)

From (25) and (26), the proof of the result (23) is completed.

Remark 1. When L is the infinite dimensional Ornstein-Uhlenbeck generator, then LIq( f ) = −qIq( f ),

q = 0, 1, . . . ,. Hence the spectrum of L consists of zero and the negative integers with the eigenfunctions being

represented by mutiple stochastic integrals. The product formula of the multiple stochastic integrals gives that

Iq( f )2 =
q

∑
r=0

r!

(

q

r

)2

I2q−2r( f ⊗r f ).

This formula shows that the upper chaos grade and lower chaos grade of Iq( f ) are still given by u = 2 and

e = 2
q as the one-dimensional case. The upper bound in (1) can be obtained from Theorem 3. �

4.2. Jacobi Generator

We consider the one-dimensional Jacobi generator Lα,β defined on L2([0, 1], µα,β) by

Lα,β f (x) = (α − (α + β)x) f ′(x) + x(1 − x) f ′′(x), (27)

where

µα,β(dx) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−11[0,1]dx.
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Its spectrum Λ is of the form

Λ =
{

− n(n + α + β − 1) : n ∈ N0

}

. (28)

Set λn = n(n + α + β − 1), n = 0, 1, . . .. Then, we have that

L2([0, 1], µα,β) =
∞
⊕

n=0

Ker(Lα,β + λn Id),

and the kernels are given by

Ker(Lα,β + λn Id) =
{

aP
(α−1,β−1)
n (1 − 2x); a ∈ R

}

, (29)

where P
(α,β)
n (x) denotes the nth Jacobi polynomials

P
(α,β)
n (x) =

(−1)n

2nn!
(1 − x)−α(1 + x)−β dn

dxn
((1 − x)α+n(1 + x)β+n). (30)

Recall that pFq denotes the generalized hypergeometric function with p numerator and q denominator,

given by

pFq

(

(ap)

(bq)

∣

∣

∣

∣

∣

x

)

=
∞

∑
k=0

(a1)k(a2)k · · · (ap)k

(b1)k(b2)k · · · (bp)k

xk

k!
,

where the notation (ap) denotes the array of p parameter a1, . . . , ap and

(α)n =
Γ(α + n)

Γ(α)
.

Then Jacobi polynomials are given by

P
(α,β)
n (x) =

(α + 1)n

n!
2F1

(

−n, α + β + n + 1

α + 1

∣

∣

∣

∣

∣

1 − x

2

)

.

4.2.1. Beta Approximation

In this section, we consider the case when the target distribution ν is a Beta distribution.

Corollary 2. Let ν be the Beta distribution associated to the the diffusion given by (2) with mean ,

m =
α

α + β
, b2 = − 1

α + β
, b1 =

1

α + β
and b0 = 0. (31)

Let F = P
(α−1,β−1)
n (1 − 2x), n ≥ 2, and set

G = F +
α

α + β
for α, β > 0.
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Then we have

E

[

(

Γ(G,−L−1G)− 1

α + β
G(1 − G)

)2
]

≤ 2

3

(

1 +
1

α + β
− 2n(2n + α + β − 1) + α + β

4n(n + α + β − 1)

)(

α + β + 3

α + β

)

E[Ũ(G)]

+

(

α + β + 1

2(α + β)
− α + β

4n(n + α + β − 1)

)

×
(

2(2n + α + β − 1)

(n + α + β − 1)
− 2(α + β + 1)

α + β

)

E[Q2(G)], (32)

where the constants b2, b1, b0 and m in Ũ(x) and Q(x) are given by (31).

Proof. The square of a Jacobi polynomial P
(α,β)
n (x) can be expressed as a linear combination of Jacobi

polynomials up to order 2n as follows:

P
(α−1,β−1)
n (1 − 2x)2 =

2n

∑
k=0

cn,kP
(α−1,β−1)
k (1 − 2x), (33)

where the linearization coefficients cn,k are explicitly given in the paper [5]. This product Formula (33)

shows that the upper chaos grade u and the lower chaos grade e of P
α−1,β−1
n are given by

u =
λ2n

λn
=

2(2n + α + β − 1)

(n + α + β − 1)
, (34)

e =
λ1

λn
=

α + β

n(n + α + β − 1)
. (35)

Hence from (34) and (35) together with b2 = − 1
α+β , the upper bound (32) follows.

4.2.2. Normal Approximation

In this section, we consider the case when the target distribution ν is a standard Gaussian measure.

Then the diffusion coefficients are given as b2 = b1 = 0 and b0 = 1. For simplicity, we will deal with

the second Jacobi polynomials Pα−1,α−1
2 (1 − 2x) for α > 0, defined on L2([0, 1], µα,α), for the case n=2

and α = β in (30). Let us set

F =
Pα−1,α−1

2 (1 − 2x)

‖Pα−1,α−1
2 (1 − 2·)‖L2([0,1],µα,α)

. (36)

Then it is obvious that F has E[F] = 0 and E[F2] = 1. From (34) and (35), it follows that

u =
λ4

λ2
=

2(2α + 3)

(2α + 1)
, (37)

e =
λ1

λ2
=

α

(2α + 1)
. (38)

This implies that the upper chaos grade has u > 2 and the lower chaos grade e < 1. By Theorem 3, the

bound is given as follows:

E
[(

Γ(F,−L−1F)− 1
)2]

≤ 2

3

(

1 − u+ e

4

)

(

E[F4]− 3
)

+
(2 − e)(u− 2)

4
Var(F2). (39)
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Even when the fourth cumulant of F in the first term of (39) is 0, we may not be able to guarantee that

F has a standard Gaussian distribution because of the second term in (39). This shows that the fourth

moment theorem of Theorem 1 may not hold.

To overcome this problem, a new techique, in [7], has been developed to show that the fourth

moment theorem (Theorem 4 below) holds even though the chaos grade is greater than two. Let F be a

chaotic eigenfunction of −L with respect to λ with E[F] = 0 and E[F2] = 1. We define a linear function

φ(x) = mx + b, where

m =
1

4λ ∑
eλ≤κ≤uλ

(2λ − κ)E
[

Jκ(F2)2
]

,

b = − 1

4λ2 ∑
eλ≤κ≤uλ

κ(2λ − κ)E
[

Jκ(F2)2
]

.

Here Jκ(F2) denotes the projection of F2 on Ker(L + κ Id).

Theorem 4. If m 6= 0, then we have

E[(Γ(F,−L−1F)− 1)2] =
2 − cm,b

6

(

E[F4]− 3
)

, (40)

where cm,b is a constsnt such that φ(cm,b) = 0.

Proof. Using the argument in the proof of Theorem 3 in [7] shows that , for any x ∈ R,

E[(Γ(F,−L−1F)− 1)2] = 2m − xm + φ(x). (41)

Since m 6= 0, there exists a constant cm,b, depending on m and b, such that φ(cm,b) = 0. Also the proof

of Theorem 3 in [7] shows that

m =
1

6

(

E[F4]− 3
(

E[F2]
)2)

. (42)

Plugging cm,b into x in (41) yields, together with (42), that (4) holds.

We will use Theorem 4 to find that, given F as (36), under which conditions the fourth moment

theorem is working by removing the second term in (39). Define a linear function φ(x) = mx + b, where

the slope m and the intercept b are

m = 16α2(α + 1)4(α + 2)2
{

(α + 1)(2α − 1)2

− 6 × (24)2(α + 2)5(α + 3)7(2α + 1)(2α + 3)(2α + 5)
}

. (43)

b = 16α2(α + 1)4(α + 2)2
{

12 × (24)2(α + 2)5(α + 3)7(2α + 3)2(2α + 5)

−(α + 1)(2α − 1)2(2α + 1)
}

. (44)

Theorem 5. Let F be a chaotic random variable given by (36). If α > 0, one has that,

E[(Γ(F,−L−1F)− 1)2] =
cα

6

(

E[F4]− 3
)

. (45)

Here cα is a positive constant given by

cα = − 4ϑ(α)− (2α − 1)3(α + 1)

ϑ(α)(2α + 1)− (2α − 1)2(α + 1)
, (46)
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where

ϑ(α) = 6 × (24)2(α + 2)5(α + 3)7(2α + 3)(2α + 5).

Proof. When n = 2 in (33), the linearization coefficients cn,k are given by

c2,0 = 2(2α + 1)2[(α)2]
2, (47)

c2,2 = 8[(α + 1)1]
3(α)3(2α − 1)2(2α + 1)1, (48)

c2,4 = 24(α + 2)2(α)2(α)4[(2α + 1)2]
2, (49)

and cn,k = 0 if k is odd, where (x)n = x(x + 1) · · · (x + n − 1). Note that the general form cn,0 of (47) is

also given by

cn,0 = n!(n + 2α − 1)n[(α)n]
2. (50)

Since P
(α−1,α−1)
0 (1 − 2x) = 1, we have, from (33), that

∫ 1

0
P
(α−1,α−1)
2 (1 − 2x)2ν(dx) = c2,0. (51)

By orthogonality, we have that

∫ 1

0
P
(α−1,α−1)
4 (1 − 2x)2ν(dx) =

8

∑
k=0

c4,k

∫ 1

0
P
(α−1,α−1)
k (1 − 2x)ν(dx)

= c4,0. (52)

Since cn,k = 0 for k = 1, 3 and

F =
Pα−1,α−1

2 (1 − 2x)
√

c2,0
,

the intercept of a linear function φ can be written, using (51) and (52), as

4λ2
2b = −λ2(2λ2 − λ2)E[J2(F2)2]− λ4(2λ2 − λ4)E[J4(F2)2]

= −λ2(2λ2 − λ2)

(

c2,2

c2,0

)2 ∫ 1

0
P
(α−1,α−1)
2 (1 − 2x)2ν(dx)

−λ4(2λ2 − λ4)

(

c2,4

c2,0

)2 ∫ 1

0
P
(α−1,α−1)
4 (1 − 2x)2ν(dx)

= −λ2(2λ2 − λ2)
c2

2,2

c2,0
− λ4(2λ2 − λ4)

(

c2,4

c2,0

)2

c4,0. (53)

Using (47)–(50), the right-hand side of (53) can be computed as

4λ2
2b = −64λ2

2α2(α + 1)5(α + 2)2(2α − 1)2(2α + 1)

+128 × (24)3α2(α + 1)4(α + 2)7(α + 3)7(2α + 1)2

× (2α + 3)2(2α + 5). (54)

Hence we have

b = −16α2(α + 1)5(α + 2)2(2α − 1)2(2α + 1)

+8 × (24)3α2(α + 1)4(α + 2)7(α + 3)7(2α + 3)2(2α + 5)

= 16α2(α + 1)4(α + 2)2
{

12 × (24)2(α + 2)5(α + 3)7(2α + 3)2(2α + 5)

−(α + 1)(2α − 1)2(2α + 1)
}

. (55)
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From (55), we see that b > 0 for α > 0. Using the same arguments as for the case of b shows that

4λ2m = λ2

c2
2,2

c2,0
+ (2λ2 − λ4)

(

c2,4

c2,0

)2

c4,0

= 64λ2α2(α + 1)5(α + 2)2(2α − 1)2(2α + 1)

−32 × (24)3α2(α + 1)4(α + 2)7(α + 3)7(2α + 1)2

× (2α + 3)(2α + 5). (56)

So

m = 16α2(α + 1)5(α + 2)2(2α − 1)2

−4 × (24)3α2(α + 1)4(α + 2)7(α + 3)7(2α + 1)

× (2α + 3)(2α + 5)

= 16α2(α + 1)4(α + 2)2
{

(α + 1)(2α − 1)2

− 6 × (24)2(α + 2)5(α + 3)7(2α + 1)(2α + 3)(2α + 5)
}

. (57)

Obviously, the right-hand side of (57) shows that m < 0 for α > 0. Now, we will find a point x such

that φ(x) = 0. From (55) and (57), the solution of φ(x) = 0 is given by

x = − b

m

=
2ϑ(α)(2α + 3)− (2α − 1)2(α + 1)(2α + 1)

ϑ(α)(2α + 1)− (2α − 1)2(α + 1)
. (58)

Hence, it follows from (58) that

cα = 2 +
b

m

= − 4ϑ(α)− (2α − 1)3(α + 1)

ϑ(α)(2α + 1)− (2α − 1)2(α + 1)
. (59)

Remark 2. In Theorem 5, we assume that α = β (ultraspherical case). This assumption shows that the factor

9F8 being the generalized hypergeometric function with 9 numerators and 8 denominator parameters, given in

the paper [19], vanishes, so that Rahman’s formula is considerably simplified. This assumption allows us to find

a point x satisfying φ(x) ≤ 0 quickly and explicitly. �

4.3. Romanovski-Routh Generator

We consider the one-dimensional generator Lα,β, action on L2(R, µp,q), where

µp,q(dx) =
Γ
(

p + iq
2

)

Γ
(

p − iq
2

)

22(1−p)Γ(2p − 1)
(x2 + 1)−p exp

(

q arctan(x)
)

dx,

defined by

Lp,q f (x) = − x2

2(1 − p)
f ′′(x)−

(

x − q

2(p − 1)

)

f ′(x). (60)
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Its spectrum Λ is of the form

Λ =

{

− n

(

1 +
n − 1

2(1 − p)

)

: n ∈ N0

}

. (61)

Corollary 3. Let ν be the skew t-distribution with mean
q

2(p−1)
and diffusion coefficients given by

b2 =
1

2(p − 1)
and b0 =

1

2(p − 1)
.

Let F = R
p,q
n (x), p, q ∈ R and n ≥ 2 and set

G = F +
q

2(p − 1)
for p, q ∈ R.

If p > 2n + 1
2 , then we have

E

[

(

Γ(G,−L−1G)− 1

2(p − 1)
G2 − 1

2(p − 1)

)2
]

≤ 2

(

2p − 3

2(p − 1)
− 4n − 4p + 3

4(n − 2p + 1)

)(

2p − 5

6(p − 1)

)

×E[Ũ(G)]

+

(

2p − 3

4(p − 1)
− 1

4(n − 2p + 1)

)

×
(

2(2n − 2p + 1)

(n − 2p + 1)
− 2p − 3

p − 1

)

E[Q2(G)], (62)

where the constants b2, b1, b0 and m in Ũ(x) and Q(x) are given by

b2 =
1

2(p − 1)
, b1 = 0, b0 =

1

2(p − 1)
and m =

q

2(p − 1)
.

Proof. First note that the Romanovski-Routh polynomials R
(p,q)
n (x) can be represented by complexified

Jacobi polynomials:

R
(p,q)
n (x) = n!(2i)nP

(−p+
qi
2 ,−p− qi

2 )
n (ix), (63)

where P
(p,q)
n (x) are the well-known Jacobi polynomials and i =

√
−1. By using (33) and (63), the

square of a Ramanovski-Routh polynomial R
(p.q)
n (x) can be expressed as a linear combination of Jacobi

polynomials up to order 2n as follows:

R
(p,q)
n (x)2 = (n!)2(2i)2nP

(−p+
qi
2 ,−p− qi

2 )
n (ix)2

= (n!)2(−4)n
2n

∑
k=0

cn,kP
(−p+

qi
2 ,−p− qi

2 )
k (ix)

= (n!)2(−4)n
2n

∑
k=0

cn,k

k!(2i)k
R
(p,q)
k (x). (64)
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where the linearization coefficients cn,k are explicitly given in the paper [5]. By Proposition 4.2 in [3],

the random variable F is chaotic. This product formula (64) shows that the upper chaos grade u and the

lower chaos grade e of R
(p,q)
n are

u =
λ2n

λn
=

−2n

(

1 + 2n−1
2(1−p)

)

−n

(

1 + n−1
2(1−p)

) =
2(2n − 2p + 1)

n − 2p + 1
, (65)

e =
λ1

λn
=

−1

−n

(

1 + n−1
2(1−p)

) =
1

n − 2p + 1
. (66)

Hence it follows, from (65) and (66) together with b2 = 1
2(p−1)

, that

E

[

(

Γ(G,−L−1G)− 1

2(p − 1)
G2 − 1

2(p − 1)

)2
]

≤ 2

(

2p − 3

2(p − 1)
− 4n − 4p + 3

4(n − 2p + 1)

)(

2p − 5

6(p − 1)

)

×E[Ũ(G)]

+

(

2p − 3

4(p − 1)
− 1

4(n − 2p + 1)

)

×
(

2(2n − 2p + 1)

(n − 2p + 1)
− 2p − 3

p − 1

)

E[Q2(G)], (67)

where the constants b2, b1, b0 and m in Ũ(x) and Q(x) are given by

b2 =
1

2(p − 1)
, b1 = 0, b0 =

1

2(p − 1)
and m =

q

2(p − 1)
.

5. Conclusions and Future Works

The motivation of this study is that the bound in (1) provides a better estimate for four moments

theorem in comparison with bound of (8) in the case of F = Iq( f ). We need to develope a new method

for obtaining a more improved bound than the bound given in [3]. For this, we find the largest

number except zero in the set of eigenvalues corresponding to its eigenfunction in the case where the

square of a random variable F, coming from a Markov triple structure, can be expressed as a sum of

eigenfunctions,

Future works will be carried out in two directions: (1) We will develop a new technique that can

show that the fourth moment theorem like Theorem 4 holds even when the target distribution is not

Gaussian. (2) We will study how the second term of the bound (16) in Theorem 3 can be removed even

though the chaos grade is greater than two
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