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Abstract: We introduce the lower chaos grade of a real-valued function F defined on the Markov
triple (E, 4, I'), where u is a probability measure and T is the carré du champ operator. As an
application of this concept, we obtain the better estimate of the four moments theorem for Markov
diffusion generators worked by Bourguin et al. (2019). For our purpose, we need to find the largest
number except zero in the set of eigenvalues corresponding to its eigenfunction in the case where
the square of a random variable F, coming from a Markov triple structure, can be expressed as
a sum of eigenfunctions, We give some examples of eigenfunctions of the diffusion generators
such as Ornstein-Uhlenbeck, Jacobi and Romanovski-Routh. In particular, two bounds, called the
four moments theorem and fourth moment theorem respectively, will be provided for the normal
approximation of the case where a random variable F comes from eigenfunctions of a Jacobi generator.

Keywords: Markov diffusioin generator; carré du champ operator; Pearson distribution; Fourth
moment theorem; Malliavin calculus; Jacobi generator; Romanovski-Routh generator

1. Introduction

The aim of this paper is to find the better estiamte of the four moments theorems of a random
variable belonging to Markov chaos studied by Bourguin et al. in the paper [3]. The first study in
this field is the central limit theorem, called the fourth moment theorem, in [18] studied by Nualart and
Peccati. These authors found a necessary and sufficient condition such that a sequence of random
variables, belonging to a fixed Wiener chaos, converges in distribution to a Gaussian random variable.
More precisely, let (X = {X(h),h € $}) be an isonormal Gaussian process defined on a probability
space (Q), §,P), where ) is a real separable Hilbert space.

Theorem 1. [Fourth moment theorem] Fix an integer q > 2, and let {F,,n > 1} be a sequence of random
variables belonging to the qth Wiener chaos with E[F2] = 1 for all n > 1. Then F, £z if and only if

E[F}] — 3, where Z is a standard Gaussian random variable and the notation £, denotes the convergence in
distribution.

Such a result gives a dramatic simplication of the method of moments from the point of view
of convergence in distribution. The above fourth moment theorem is expressed in terms of Malliavin
derivative in [17]. However, the results given in [17,18] do not provide any information about the rate
of convergenc, whereas, in the paper [10], the authors prove that Theorem 1 can be recovered from the
estimate of the Kolmogorov (or total variation, Wasserstein) distance obtained by using the techniques
based on the combination between Malliavin calculus (see, e.g., [13,15,16]) and Stein’s method for
normal approximation (see, e.g., [4,20,21]). For more explanation of these techniques, we refer to the
papers [6,9-14].

One of the remarkable achievements of Nourdin-Peccati approach (see Theorem 3.1 in [10]) is the
quantification of fourth moment theorem for functionals of Gaussain fields. In the particular case where
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F is an element in the qth Wiener chaos of X with E[F?] = 1, the upper bound of Kolmogorov distance is

given by
g—1 7
Z) <4/ —=—1/E —3.

Here E[F*] — 3 is just the fourth cumulant x4 (F) of F.

Recently, the author in [8] proves that the fourth moment theorem also holds in the general
framework of Markov diffusion generators. More precisely, under a certain spectral condition on
Markov diffusion generator, a sequence of eigenfunctions of such a generator satisfies the bound
given in (1). In particular, this new method may avoid the use of complicated product formula of
multiple integrals. After this work, the authors in [1] introduce a Markov choas of eigenfunctions
being less restrictive than Markov chaos defined in [8]. Using this Markov chaos, they derive the
quantitative four moments theorem for convergence of the eigenfuctions towards Gaussian, Gamma,
Beta distributions. Furthermore, the authors in [3] that the convergence of the elements of a Markov
chaos to a Pearson distribution can be still bounded with just the first four moments by using the new
concept of chaos grade.

For the purposes of this paper, we will start by referring to the estimate given in Theorem 3.9
obtained by Bourguin et al. in [3]. Pearson diffusions are It diffusion given by the following stochastic

differential equation(sde)
dXt = H(Xt)dt + \/29b(Xt)dBt, (2)
where a(x) = —6(x — m) and b(x) = byx? + by x + by. Given the generator L defined on L?(E, u) by

Lf(x) = =0(x —m)f'(x) + 0b(x) f" (x), ®G)

its invariant measure y is a Pearson distribution and the set of eigenvalue of L is given by

A:{—n(l—(n—l)bz)G:nENo,b2<2n1_1}. @

Theorem 2 (Bourguin et al. (2019)). Let v be a Pearson distribution associated to the diffusion given by
sde (2). Let F be a chaotic eigenfunction of generator L with eigenvalue — A, chaos grade and moments up to 4.
Set G=F+mand { =u—2(1—by). Then, it holds
E[(T(G,—L'G) —b(G))’]
< 2(1-6-3)puE)+ L), ®)

where (&) = ¢ for & > 0and 0 for § < 0, and the polynomials Q and U are given by

Q(x) = x2+2(21212+711)x+b211<b0+W), (6)
U(x) = (1-0)Q) — 15 (Q (@) (x —m). @)

The notations I and L~! in the above theorem, related to Markov generator, are explained
in Section 2.

In this paper, we improve the estimate given in Theorem 2 by introducing the notion of the
lower chaos grade in the set of eigenvalues of generator L. For example, if the target distribution v
in Theorem 2 is a standard Gaussian measure, then the diffusion coefficients are given as b, = b; = 0
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and by = 1. Since a chaotic random variable F = I;(f), f € $*1 with E[F?] = 1, has the chaos grade
u = 2, the second term in the bound (5) is vanished and the bound is given as follows:

E[(T(F,—L7'F) —1)] < < (E[FY] - 3). ®)

W =

Note that d (F,Z) < \/E[(T(F, =L~ F) — 1)2]. Hence the bound in (1) provides a better estimate for
four moments theorem in comparison with bound of (8) in the case of F = I,(f). In this paper, we will
develop a new technique that provides more improved bounds as above.

Also we give two bounds, called the four moments theorem and fourth moment theorem
respectively, for the normal approximation of the case where a random variable F comes from
eigenfunctions of a Jacobi generator. One of the bounds is from our main result, Theorem 3 below, and
the other bound, obtained using the result in [7]. shows that the fourth moment theorem holds even if
the upper chaos grade is greater than two.

The rest of the paper is organized as follows: Section 2 reviews some basic notations and results
of Markov diffusion generator. Our main result, in particular the bound in Theorem 3, is presented
in Section 3, Finally, as an application of our main results, in Section 4, we consider the case where
a random variable G in Theorem 2 comes from an eiegnfunction of a generator associated to a
Pearson distribution.

2. Preliminaries

In this section, we recall some basic facts about Markov diffusion generator. The reader is referred
to [2] for a more detailed explanation. We begin by the definition of Markov triple (E, §, j¢) in the sense
of [2]. For the infinitesimal generator L of a Markov semigroup P = (P;);>o with L2(y)-domain D(L),
we associated a bilinear form I'. Assume that we are given a vector space A of D(L) such that for
every (F, G) of random variables defined on a probability space (E,§, ), the product FG is in D(L)
(Ap is an algebra). On this algebra Ay, the bilinear map (carré du champ operator) I' is defined

T(E,G) = %(L(FG) — FLG — GLF).

N

for every (F,G) € Ap x Aj. As the carré du champ operator I' and the measure y completely
determine the symmetric Markov generator L, we will work throughout this paper with Markov triple
(E,§, u) equipped with a probability measure y on a state space (E, §) and a symmetric bilinear map
I': Ay x Ag such that T'(F, F) > 0.

Next, we construct domain D (&) of the Dirichlet form £ by completion of .Ag, and then obtain,
from this Dirchlet domain, domain D(L) of L. Recall the Dirchlet form £ as

E(F,G) =E[['(F,G)] for (F,G) € Ap x Ap. 9)
If Ay is endowed with the norm
IElle = [IIFI3 + E(F,F)] ", (10)

the completion of Ay with respect to this norm turns it into a Hilbert space embedded in L?(u).
Once the Dirchlet domian D(€£) is contructed, the domaion D(L) C D(€) is defined as all elements
F € D(€) such that

£(F,G)| < crE[G?]

for all G € D(E), where cr is a finite constant only depending on F. On these domains, a relation of L
and I' holds, namely the integration by parts formula

E[I(F,G)] = —~E[FLG] = —E[GLF]. (11)
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By the integration by parts Formula (11) and I'(F, F) > 0, the operator —L is nonnegative and
symmetric, and therefore the spectrum of —L is contained S C [0, c0) We assume that —L has discrete
spectrum § = {Ag, k > 0}. Obviously, the zero is always an eigenfunction such that —L(1) = 0.

A Full Markov triple is a Standard Markov triple for which there is an extended algebra Ay C A,
with no requirement of integrability for elements of .4, satisfying the requirements given in Section 3.4.3
of [2]. In particular, the diffusion property holds: for any C* function ¥; Rk — R,and Fy,...,F,G € A,

k
T(Y(F,...F),G) =Y o¥(F,... R)L(F,G), (12)
i=1
and
k
L(¥(F,...F) = Y o;¥(F,...R)LF
i=1
k
+ ) 9;¥(F,... F)T(F, F). (13)
ij=1

We also define the operator L1, called the pseudo-inverse of L, satisfying for any F € D(L),
LL™'F=L"'LF = F—E[F]. (14)

Obviously, this pseudo-inverse L1 is naturally constructed and defined on D(L) by a self-adjointness
of the operator L.

3. Main Results

We denote the set of eigenvalues of the generator L by A C (—o0,0]. Then chaotic random
variables are defined as follows:

Definition 1. An eigenfunction F with respect to an eigenvalue A of the generator —L is called chaotic if there
exists u > 1 and ¢ < 1 such that —uA and —eA are eigenvalues of L, and

FPe P Ker(L+«ld) @ Ker(L). (15)

—xkeA\{0}
eA<k<ul

The smallest u satisfying (15) is called the upper chaos grade of F, and the largest e satisfying (15) is called the
lower chaos grade of F.

Now we improve the estimate given in Theorem 2 described in the introduction.
Theorem 3. Let v be a Pearson distribution associated to the diffusion given by sde (2). Let F be a chaotic

eigenfunction of generator L with eigenvalue —A, chaos grade w and moments up to 4. Set G = F 4+ m. Then,
we have

E[(T(G,~L'G) - b(G))?]
< 2(1 —by— ”I e) (; - bz)E[CI(G)]

+(1572 1) =20 - m)BEO), 6)
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where Q is given by (6), and
~ _ a4, 3 =b), n 4
u(x) = x+ 1 —3b2 (Q (x) X )
1 ! 3 4
—m((Q (x))”) (x —m) — 8x7).
Proof: From the proof of Theorem 3.9 in [3], we write
I'(G,—L71G)-b(G) = ﬁ(L+2(1 — by)AId)(Q(G)), (17)

where Q(x) is a quadratic polynomial given by (6). By the assumption,

Q(G) = ). JxQ(G). (18)

—KEA
k<ul
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Direct computations yield, together with (18), that

E[(T(G,—L~'G) — b(G))?]
= ToE[(LO(6) +2(1 ~ 2)AQ(G)) (L+2(1 - 1)1 Q(G)]
1

- {E[LQ(G) (L+2(1—by)A) (Q(G))]

+2(1 = b)AE[Q(G) (L +2(1 ~ 12)A) Q(G) | }

_ 412{ £ (-R)(201 - b2~ 0E[(QG)]

Kk<uA

+2(1=b2)A Y (2(1 = b2)A = 1)E[Jx(Q(G))?] } (19)

—KEA
k<ul

— 4;\2{ Y (—x)(uA —0)E[J(Q(G))?]

—KEA
Kk<uA

+2(1=b) —wA Y (—0)E[J(Q(G))*]

—KEA
Kk<uA

+2(1-b)A Y. (uA —)E[J(Q(G))?]

—KEA
Kk<uA

+2(1=by)(2(1 = by) — u)A? 72 E[Jx(Q(G))?] }

= 41;\2{ Y (=) (uA — ) E[J(Q(G))?]

—KEA
k<ul

+ (401 —b2) —WA ¥ (1~ 0E[(Q(C))?

— (2(1=by) —u)ur? Y E[J(Q(G))?] }

—KkEA
Kk<uA

+2(1-b)(2(1—bp) —u)A* Y E[J(Q(G))?] } (20)

—KEA
Kk<uA

Since —« < —eA forall —x € A\ {0}, we have that

Y. (—0)(uA —0)E[J(Q(G))?]

—KkEA
Kk<ulA

= 2\{ }(—K) (ur — O)E[Jc(Q(G))?]

< —ed Y (WA —0)E[J(Q(G))?]. (21)

—KEA
K<uA


https://doi.org/10.20944/preprints202310.0072.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 October 2023 doi:10.20944/preprints202310.0072.v1

7 of 16

Using (21) yields that
E[(T(G,~L7'6) = b(G))’]

—KEA
xk<ul

IN

—(2(1 =b2) —uur? ) E[Jx(Q(G))?]

—KEA
Kk<uA

+2(1-b2)(2(1 = by) —u)A? Y E[J(Q(G))?] }

1 u+te

+ (u—2(1 - by) uA’E[Q?(G)]

>E[Q(G)(L+uA1d)Q(G)]

—2(1—by)(u—2(1— bz))/\zE[QZ(G)]}

_ 411)@{4)\((1 ~ )~ 1 JBIQ(G) (L +2(1 - ) AD)Q(G)

+4<1 —sz - Z) (u—2(1— bz))AzE[Q2(G)]}

- 2(1 by — “Ie> (; —bz>1E[U(G)]

n (1 —b ) (1= 2(1 - b)) E[QX(C)]. @)

2 4

Here, for the last equality in (22), we use the following equality obtained from the proof of Theorem
3.9in[3],

E[Q(G)(L+uAId)Q(G)] = E[Q(G)(L+2(1— b)AId)Q(G)]
(1~ 2(1 — b)) AE[Q3(G))
= 2AB[U(G)] + (u—2(1 - b2) )AE[QX(G)].

4. Application to Three Polynomials

In this section, three examples will be given in order to illustrate the estimate (16) with the explict
expression. For this, we consider the case where a random variable F in Theorem 3 comes from
eigenfunctions of a generator associated to a Pearson distribution. For simplicity, we only consider
one-dimensional case, analogus results in finite or infinite dimensional case can be extended in a
similar way.

4.1. Ornstein-Uhlenbeck Generator

We consider the one dimensional Ornstein-Uhlenbeck generator L, defined for any test function

fby
Lf(x) = f"(x) — xf'(x) for x € R,

action on L?(R, 1), where
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Let us set F = Hy(x) where H; denotes the Hermite polynomial of order q. Then we have that
F € Ker(L +qId).

Corollary 1. Let v be a Gaussain distribution associated with the diffusion given by (2) with mean m and
bo = 0% If F = Hy(x), g > 2,and G = F + m, then we have

BI(N(G,~L16)~ o)) < (150 ) (BIFY - so2BIF) + 30, @)

Proof. By the well-known product formula, the square of F can be expressed as a linear combination
of Hermite polynomials up to order 24 such as

q 2
H2(x) = L (’Z) Hy(yp)(2): (24)

This product formula (24) gives that the upper chaos grade and lower chaos grade of H, are u = 2 and
= % < 1for g > 2. Hence Theorem 3 yields that

2
E[(T(G,~L71G) - ¢?)?] < 2( —2+">E[H(G)]

3 4
< (‘?)E[CI(G)}. (25)
When by = by = 0 and by = 02, a directed computation yields that
U(x) = % [(x = m)* — 602 (x — m)? + 3c?],
so that
E[U(G)] = E[F*] — 65°E[F?] + 3¢, (26)

From (25) and (26), the proof of the result (23) is completed. [

Remark 1. When L is the infinite dimensional Ornstein-Uhlenbeck generator, then LI,(f) = —ql,(f),
q=20,1,...,. Hence the spectrum of L consists of zero and the negative integers with the eigenfunctions being
represented by mutiple stochastic integrals. The product formula of the multiple stochastic integrals gives that

q 2
Iq(f>2 = Z r! <Z> I2q72r(f r f)
r=0
This formula shows that the upper chaos grade and lower chaos grade of I, (f) are still given by u = 2 and
e = % as the one-dimensional case. The upper bound in (1) can be obtained from Theorem 3. O

4.2. Jacobi Generator

We consider the one-dimensional Jacobi generator L, g defined on L?([0, 1], jt, g) by

Lapf(x) = (&= (a+ B)x) f'(x) + x(1 = x) f" (x), (27)

where

Hap(dx) = mx"‘_l(l - x)ﬁ_ll[oll]dx.
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Its spectrum A is of the form
A={-nn+a+p-1):neN}. (28)
SetA, =n(n+a+p—1),n=0,1,.... Then, we have that
L%([0,1] | Hap) = @Ker wp T Anld),
and the kernels are given by
Ker(Lyg +Aald) = {aPi 7V (1 - 20);a € R}, (29)
where P\*) (x) denotes the nth Jacobi polynomials
PP () = CUT 0 gmn 14 (1 (a4 P (30)

2np!

Recall that , F; denotes the generalized hypergeometric function with p numerator and g denominator,

given by
(ap) 2 (a1)(a2) - (ap)i xF
F X = —,
P ( (bg) kg) (b1)k(b2)k - - (bp)g k!
where the notation (a,) denotes the array of p parameter ay, .. .,a, and
_ I'(a+n)
(DC)n = W

Then Jacobi polynomials are given by

() (a+1), —n,a+p+n+1
B =R

1—x
2

In this section, we consider the case when the target distribution v is a Beta distribution.

4.2.1. Beta Approximation

Corollary 2. Let v be the Beta distribution associated to the the diffusion given by (2) with mean ,

o 1 1
, by = — , by = dby = 0. 31
a+p 2 a+p ! oc—i—ﬁun 0 GD

Let F = P(“ L= 1)(1 —2x),n > 2, and set

114

G=F
+1x+,3

forwa, > 0.

doi:10.20944/preprints202310.0072.v1
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Then we have
E (F(G, —L71G) - aiﬁca — G))2
< S sy ) (SR
* (0;(2/1;)1 " In(n f;fﬁ—n)
(e R )

where the constants by, by, by and m in U (x) and Q(x) are given by (31).

Proof. The square of a Jacobi polynomial P,Sa”g ) (x) can be expressed as a linear combination of Jacobi
polynomials up to order 2 as follows:

2n
P,Slx_l'ﬁ_l)(l . 2x>2 _ Z Cn/kplgzx—l,ﬁ—l) (1 _ 2x), (33)
k=0

where the linearization coefficients c,, ; are explicitly given in the paper [5]. This product Formula (33)

1,8-1

shows that the upper chaos grade u and the lower chaos grade ¢ of P, are given by

Ao 2(2n4a+p—1)

= — 7 34
" An (n+a+p-—1) 34
_ M a+p
¢ A nn+a+p—1) 35
Hence from (34) and (35) together with b, = — ﬁ, the upper bound (32) follows. O

4.2.2. Normal Approximation

In this section, we consider the case when the target distribution v is a standard Gaussian measure.
Then the diffusion coefficients are given as b, = b; = 0 and by = 1. For simplicity, we will deal with
the second Jacobi polynomials Py “La=1(9 _2x) for « > 0, defined on L2([0,1], jta.0), for the case n=2
and « = Bin (30). Let us set

Py (1 - 2x)

F= . (36)
“Ta-1
1P (1 = 29) 12 ((01) )
Then it is obvious that F has E[F] = 0 and E[F?] = 1. From (34) and (35), it follows that
As 2020 +3)
= e —— 7
" A (2a+1)’ 57)
)\1 o

This implies that the upper chaos grade has u > 2 and the lower chaos grade ¢ < 1. By Theorem 3, the
bound is given as follows:

E[(T(F,—L7'F) —1)?]

2 <1 B uze) (E[FY) - 3) + WVW(FZ). (39)

IN
I
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Even when the fourth cumulant of F in the first term of (39) is 0, we may not be able to guarantee that
F has a standard Gaussian distribution because of the second term in (39). This shows that the fourth
moment theorem of Theorem 1 may not hold.

To overcome this problem, a new techique, in [7], has been developed to show that the fourth
moment theorem (Theorem 4 below) holds even though the chaos grade is greater than two. Let F be a
chaotic eigenfunction of — L with respect to A with E[F] = 0 and E[F?] = 1. We define a linear function
¢(x) = mx + b, where

"= m e/\<K§uA(2/\ — OB [J«(F)?],
b= —pz L KA 0E[F))

Here J(F?) denotes the projection of F? on Ker(L + xId).

Theorem 4. If m # 0, then we have

2 — Cm,b

E[(T(F,—L7'F) —1)?] = c

(E[F*] -3), (40)
where ¢, , is a constsnt such that ¢(c,, ,) = 0.
Proof. Using the argument in the proof of Theorem 3 in [7] shows that, for any x € R,

E[(T(F, —L7YF) —1)?] = 2m — xm + ¢(x). (41)

Since m # 0, there exists a constant ¢, ;,, depending on m and b, such that ¢(c,, ) = 0. Also the proof

of Theorem 3 in [7] shows that

m = %(]E[P‘*] —3(E[FY)?). 42)

Plugging c,, , into x in (41) yields, together with (42), that (4) holds. [

We will use Theorem 4 to find that, given F as (36), under which conditions the fourth moment
theorem is working by removing the second term in (39). Define a linear function ¢(x) = mx + b, where
the slope m and the intercept b are

m = 16a (vc+1)4tx+22{(oc+1 (20 — 1)
— 6% (24)2(a+2)°( +3)7 (20 +1) (20 +3) (20 + 5) }. (43)
b = 16a2(vc+1)4(vc+2)2{12x(24)2(1x+2)5(oc+3)7(20c+3)2(2¢x—|-5)
~(a+1)(2a — 1220 +1)}. (44)

Theorem 5. Let F be a chaotic random variable given by (36). If & > 0, one has that,
E[(T(F,—L7'F) —1)3] = %‘"(E[P‘*] -3). (45)
Here ¢, is a positive constant given by

B 49(a) — (20 —1)3(a + 1)
“ T T@etT) - Ga- 1P o
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where
B(a) =6 x (24)%(a +2)°(a +3)7 (22 + 3) (2a + 5).
Proof. When n = 2 in (33), the linearization coefficients c, y are given by
0 = 2(2a+1)y[(a)a]?, (47)
0r = 8[(a+1)1(a)3(2a —1)p(2a + 1)y, (48)
04 = 24(a+2)y(a)z(a)s(2e +1)2)%, (49)

and ¢, = 01if k is odd, where (x), = x(x +1) - - - (x + n — 1). Note that the general form c, o of (47) is
also given by
cno = nl(n+ 20 — 1), [(a)4]% (50)

Since Pé“il"x*l) (1 —2x) =1, we have, from (33), that

1
/0 P (1~ 2x) 2y (dx) = cap. (51)

By orthogonality, we have that

1 8 1
[ 2Pua) = Yoey [ ATV - 2u(dx)
0 = o
= C40- (52)

Since ¢,y = 0 fork = 1,3 and
Py A1 — 2x)

7

F =

€2,0

the intercept of a linear function ¢ can be written, using (51) and (52), as
40 = —Aa(2A — A)E[2(F?)?] — Ag(2A5 — Ay)E[J4(F?)?]
= =121 —Ap) < ) / Pz(a_l’“_l)(l — 2x)%v(dx)
(a—1a—1) 2
—A4(205 — Ay) P4 (1 —2x)"v(dx)
% i\’
= —A(2A2— 7\2)* — M2 — Ay) () €4,0- (53)
2,0 2,0

Using (47)—(50), the right-hand side of (53) can be computed as

4030 = —64A30% (0 + 1) (a +2)% (20 — 1)%(2a 4 1)
+128 x (24)3a2(a + 1)* (@ +2)7(a +3)7 (20 + 1)2
x (2a 4 3)%(2a +5). (54)
Hence we have
b = —16a%(a+1)%(a+2)*20 —1)>(2ax +1)

18 x (24)%a?(a + 1)*(a +2)7 (a« +3)7 (2 + 3)%(2a 4 5)
= 16a*(a+1)*(a + 2)2{12 x (24)%*(a 4+ 2)°(a +3)7(2a + 3)*(2a + 5)

f(zx+1)(2(x—1)2(20¢+1)}. (55)
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From (55), we see that b > 0 for « > 0. Using the same arguments as for the case of b shows that

2 2
c c
4/\27’1 = /\22 + (2/\2 - }\4) (2'4> C40
2,0 2,0

= 64ha?(a+1)°(a +2)%(20 — 1)%(2a + 1)
—32 x (24)3a?(a + D +2)7(a +3)7 (20 + 1)?
X (20 +3)(2a + 5). (56)

So

m = 16a%(a+1)°(a+2)%(2a — 1)
—4x (2430 (a 4+ D)*(a +2)7(a +3)7(2a +1)
X (20 +3)(2a 4 5)
= 1602w+ 1)*(a + 2)2{(1x +1)(20 — 1)

— 6% (24)%(a +2)%(a +3)7 (20 + 1) (2a + 3) (20 +5) } (57)

Obviously, the right-hand side of (57) shows that m < 0 for « > 0. Now, we will find a point x such
that ¢(x) = 0. From (55) and (57), the solution of ¢(x) = 0is given by

b
m
20(a)(2a +3) — (20 — 1)?(a +1)(2a + 1)

x = -

- 8a)2a+1)— e —1)2(a+1) 8)
Hence, it follows from (58) that
cw = 24 E
m
(W) - (2a—1)%(a+1) 59)

Oa)2a+1) — (e —1)2(a+1)
O
Remark 2. In Theorem 5, we assume that « = B (ultraspherical case). This assumption shows that the factor
oFg being the generalized hypergeometric function with 9 numerators and 8 denominator parameters, given in
the paper [19], vanishes, so that Rahman’s formula is considerably simplified. This assumption allows us to find
a point x satisfying ¢(x) < 0 quickly and explicitly. O
4.3. Romanovski-Routh Generator
We consider the one-dimensional generator L, g, action on (R, Hp,q), Where

L(p+r(p-9)
220-p)T(2p — 1)

tpq(dx) = (x> +1) Pexp (q arctan(x))dx,

defined by

2
Lpqef(x) = _2(1x7_p)fﬂ(x) - (x - 2(;]_1)>f/(x)- (60)
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Its spectrum A is of the form
A=donf1+ 221 Y inen (61)
B 20-p))
Corollary 3. Let v be the skew t-distribution with mean % and diffusion coefficients given by
1 1
bz = 72(1771) and bo = 72(;?71).
Let F = RV (x), p,q € Rand n > 2 and set
q
G=F+ orp,g € R.
-1 S
Ifp > 2n+ 3, then we have
1 2
E <r G -L'G >
( )~ 5-5% " 7T ]
2p—3 dn—4p +3 2p 5
< 2
- 20p—1) 4(n—2p+1)
x E[U (G
2p — 1
i (n—2p+ 1))
2(2n—2p+1) 2p 3 ’
62

where the constants by, by, by and m in U(x) and Q(x) are given by

1 1 q
by=——,01=0, by = and m = ————.
2721t T 2(p-1) 2(p—1)

(P‘i)( )

Proof. First note that the Romanovski-Routh polynomials R
Jacobi polynomials:

can be represented by complexified

RPD (x) = nt(2iy" Py P E P D i), (63)

where P,Ep’q) (x) are the well-known Jacobi polynomials and i = \/—1. By using (33) and (63), the

square of a Ramanovski-Routh polynomial Rﬁp.q) (x) can be expressed as a linear combination of Jacobi
polynomials up to order 2 as follows:

R}(qu‘i)(x)Z — (n!)2(2i)2”P,(l_p+q7i'_p_%i)(ix)2
2n i i
= ()*(-4)" ) Cn,kplc(_p+%’_p_%)(ix)
k=0
2 e Sk o(pa)
= (L R (). v

= k1(20)k
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where the linearization coefficients c,, ; are explicitly given in the paper [5]. By Proposition 4.2 in [3],
the random variable F is chaotic. This product formula (64) shows that the upper chaos grade u and the

() are

lower chaos grade ¢ of Ry

o 2n—1
ra (H 21 m) 202n—2p +1)
W o= Lo = , (65)
/\l’l n—1 n— Zp + 1
—n(1+ -p)
M -1 1
A —2p+1
" —n(l + 2(111__1p)> " P ”
Hence it follows, from (65) and (66) together with by, = ﬁ, that
2
1
I(G,—-L7'G )
| (r - 35 -0 " 55D 1
<2p—3 4n—4p+3>(2p 5>
< 2
2(p—1) 4(n—2p+1
x E[U(G)]
+( 2p-3 1 >
4p—1) 4(n-2p+1)
22n—2p+1) 2p-3 ’

where the constants by, by, by and m in U(x) and Q(x) are given by

_ 1 _ _ 1 o q
bz—i_, bl—O, b()—iz(p_l) and m—iz(p_l).

O

5. Conclusions and Future Works

The motivation of this study is that the bound in (1) provides a better estimate for four moments
theorem in comparison with bound of (8) in the case of F = I;(f). We need to develope a new method
for obtaining a more improved bound than the bound given in [3]. For this, we find the largest
number except zero in the set of eigenvalues corresponding to its eigenfunction in the case where the
square of a random variable F, coming from a Markov triple structure, can be expressed as a sum of
eigenfunctions,

Future works will be carried out in two directions: (1) We will develop a new technique that can
show that the fourth moment theorem like Theorem 4 holds even when the target distribution is not
Gaussian. (2) We will study how the second term of the bound (16) in Theorem 3 can be removed even
though the chaos grade is greater than two
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