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Abstract: The paper investigates into the intricacies of semiconductor manufacturing, a highly
complex process entailing a wide array of subprocesses and diverse equipment. Semiconductors are
miniaturized integrated circuits comprising numerous components. The semiconductor
manufacturing process begins with the thin disc-shaped silicon wafers. On each wafer, up to
thousands of identical chips can be prepared depending upon the diameter of the wafer to build up
the circuits layer by layer in a wafer fab. The size of the semiconductors requires a high number of
units to be produced, thus necessitating a large amount of data to control for improving the
semiconductor manufacturing process. Therefore, the collection and analysis of the equipment data,
process data, and machine history data throughout the manufacturing process are required to
diagnose faults, monitor the process, and manage the manufacturing process effectively. This
research is focused on improving the semiconductor manufacturing process through a rigorous
analysis of collected manufacturing process data, employing statistical process control (SPC), data
mining techniques, and data-driven decision models. The project's primary objective is to increase
the manufacturing process stability and productivity by utilizing the latest data-driven technologies
in the scientific community. A structured review was undertaken, exploring contemporary data-
driven methodologies in semiconductor manufacturing process improvement, specifically
pertaining to process capability, product yield rate, and process stability. This review accentuates a
comprehensive evaluation of data-driven methodologies applicable to conventional semiconductor
manufacturing facilities, aiming to drive substantial process improvements. It features a detailed
demonstration facilitating the selection of optimal semiconductor manufacturing processes to
enhance overall operational performance. This study of process improvement in the semiconductor
manufacturing steps through the application of data-driven methodologies will be effective in
delivering advanced, real-time, and proactive control decisions throughout the manufacturing
facilities. This endeavor is expected to promptly provide critical insights for enterprise
manufacturing decision-makers to reduce manufacturing cycle time, improve the product yield
rate, and increase the overall efficiency of the manufacturing process.

Keywords: semiconductor manufacturing; statistical process control (SPC); data mining techniques;
data-driven decision models; process improvement; product yield rate; process stability

1. Introduction

Semiconductor manufacturing is a very complicated process that involves a large number of
subprocesses and a wide range of equipment. Thin disc-shaped silicon wafers are used to start the
semiconductor manufacturing process. The scale of semiconductors necessitates the production of a
huge number of units, necessitating a big quantity of data to regulate in order to improve the
semiconductor manufacturing process. Since semiconductor manufacturing methods have shrunk in
size over the last few years, the transistors produced on single wafer has increased towards billions
[1]. The previous several decades have seen the emergence of a wide range of electrical and electronic
equipment-related products and services, as well as the incorporation of these equipment into a wide
range of products and services that are constantly changing [2]. So the companies of this industry
must be flexible and able to react swiftly to a continuously changing environment [3].

Semiconductor manufacturing is the process of creating integrated circuits in electrical devices
and consumer electronics, such as transistors, LEDs, and diodes. The crystalline silicon ingot and
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wafers are formed during the front-end process, and the electrical circuits are built using
photolithography and other chemical procedures before being electrically tested. The chunks are
sliced off the wafer, connected (glued), encased, and tested in the back-end process [4].

The term "semiconductor” refers to an important component present in electrical devices and
widely used in industries. Smartphones, wearable gadgets, and mobile devices all rely on
semiconductors for basic and enhanced functionality, resulting in increased global semiconductor
demand. The line width of semiconductors has shrunk dramatically, moving from the microscale to
the nanoscale, while process power and memory have grown at the same time. Integrated circuits,
which are comprised of semiconductor material, are a crucial component of modern electronic
gadgets in both the commercial and consumer markets. To conduct fundamental arithmetic
operations in a computer, these circuits must be able to operate as transistor.

Several phases in the semiconductor device manufacturing process are conducted in the
sophisticated manufacturing units. The time it takes to create a semiconductor varies depending on
its complexity, but it typically takes 3 to 5 years from initial research to final product.

The most significant resource for the creation of microelectronic components is very pure silicon.
The manufacturing process is depicted in a simplified form in Figure 1 [5]. The initial stage in making
a semiconductor device is to get semiconductor materials with the required degree of impurities,
such as germanium, gallium arsenide, and silicon [6,7]. Because semiconductors are so small, even
the tiniest amount of contamination can degrade their performance. The somewhat harsh solutions
used in the semiconductor manufacturing process should be conveyed, distributed, and handled

safely [8].
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Figure 1. The semiconductor manufacturing process is depicted in a simplified form. [5]

The development of monocrystalline silicon crystals and multicrystalline ingots is the second
major phase. Wafers are then cut from these ingots, then shaped, polished, and cleaned before being
ready for further processing or device fabrication [9]. A preceding design procedure for each of the
phases, as well as a mask design, is required to generate a working device with set parameters as a
final output [10].

Extreme ultraviolet (EUV) lithography, as shown in Figure 1, is one of the most significant
phases in semiconductor production because it enables the carving of more electrical circuits in
semiconductor silicon wafers. Images are transferred to silicon using light in a lithographic technique
[11,12]. EUV lithography is considered critical in semiconductor manufacturing because it can
generate a shorter wavelength, allowing more electrical circuits to fit into a chip [13]. Then there's an
etching process, which is a microfabrication technique that involves chemically removing layers of
material from a wafer's surface.


https://doi.org/10.20944/preprints202310.0056.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 October 2023 doi:10.20944/preprints202310.0056.v1

The next step is wafer probing, which involves electrically checking each die on a wafer. This is
done through the use of an automated wafer probing system that actively searches for functional
flaws using particular test patterns [14-16]. The semiconductor packaging and assembly process
encloses ICs and includes, among other things. The encapsulation method protects the delicate layers
from extraneous influences and ensures that they remain effective [17,18]. Finally, the completed
component is thoroughly examined to ensure that it complies with standard criteria. In the context
of design verification, specialized manufacturing, and quality control, the testing procedure is used
to test semiconductors [19].

2. Motivation

Industry 4.0 is a concept that entails using data mining techniques, big data, deep learning, and
artificial intelligence technology to the present industrial structure in order to produce disruptive
breakthroughs [20]. As predicted by the industry 4.0 idea, the purpose of this strategy is to enable
flexible decision-making and smart manufacturing processes. As a result, along with Internet of
Things (IoT), other emerging technologies will play key part in making Industry 4.0 a reality [21]. In
semiconductor manufacturing systems, like in other production technologies, the trend toward
unmanned operations, increased automation and substitution of traditional materials has been
steadily expanding [22,23].

Traditionally, semiconductor manufacturing systems have been associated with convoluted and
time-consuming process. Wafers often entail a large number of steps, which can frequently exceed a
thousand [24,25]. Every phase is usually equated to a medium-sized industrial unit in terms of
complexity. As a result, increased demands and pressure to operate at high plant productivity
provide a significant task for semiconductor manufacturing businesses [2].

Semiconductor businesses are fully aware of the ever-increasing need for integrated circuits that
can give more performance at lower costs. As a result, wafer metrology tools are used in the design
and manufacture of semiconductors for enhancing manufacturing process. Additionally, data-driven
methods ensure that the electrical and physical characteristics of generated semiconductors are as
near to the desired outcome as possible. Wafer metrology combined with data-driven techniques can
reliably and rapidly identify surface pattern errors, particulates, and other situations that might
degrade semiconductor performance [26].

Data-driven technologies in semiconductor manufacturing can discover and deliver systematic
enterprise knowledge by investigating manufacturing and production system application databases
and connecting several databases inside the organization to expose information. The methods can
increase product yield rate by predicting parameter settings for future production cycle and
computing the best process parameters, boosting manufacturing stability and improving product
quality. By calculating process parameters in real-time and delivering automatic feedback to save
personnel and increase manufacturing efficiency, the approaches can cut production cycle time and
improve efficiency. Data-driven techniques can examine the links between obtained parameters and
identify specific patterns or parameter qualities to utilize as production references, decreasing the
number of product testing necessary. These strategies create a data model based on the decision-
makers' needs and make historical data available through an integrated storage environment with
query and analytical capabilities to offer information for corporate manufacturing decision-making
as rapidly as feasible [27].

Semiconductor manufacturing has traditionally been regarded to be a fiercely competitive
business with expensive equipment and complicated operating and production circumstances [28].
Because the demand for electronic products is continually expanding, manufacturers' capabilities are
restricted, and the market is extremely competitive, maintaining a high level of productivity is critical
to maintaining a competitive edge. Semiconductor manufacturing has long been noted for its
equipment-intensive manufacturing procedures. Consequently, manufacturing organizations have a
technological and organizational difficulty in meeting rising demands for high plant productivity.

With the consideration of the complexity of the semiconductor manufacturing, the objective of
this project is to utilize newest data-driven technologies in the scientific community to improve
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manufacturing process stability and productivity. The project's focus has been on a thorough
examination of data-driven approaches that may be used to improve traditional semiconductor
production facilities. This analysis includes an in-depth explanation of how to choose an efficient
semiconductor manufacturing method that will increase the process' overall performance. This
detailed project includes identifying improvement scopes and assisting in the selection of required
improvement actions. The use of data-driven approaches to process optimization in semiconductor
manufacturing processes will be beneficial in offering enhanced, real-time, and proactive control
choices throughout production facilities. The initiative will instantly give data to corporate
production decision-makers to help them shorten manufacturing cycle times, enhance product yield
rates, and improve overall manufacturing process efficiency.

3. Principles

3.1 Data Mining

Data mining is the process of extracting substantial and implicit previously unknown and
possibly useful information from data. It can identify patterns in massive amounts of data. The
process can sort and categorize data, also search big data sets for anomalies, trends, and correlations
in order to predict outcomes. Companies may utilize this data for a number of purposes, including
problem identification, quality control, increasing revenue, cutting expenses, improving customer
relationships, and reducing risk [29]. Because contemporary semiconductor production processes are
so complicated, and the data size is so large, it's hard for achieving rapid yield increase by physically
finding relevant patterns in raw data [26]. Nonetheless, in modern manufacturing units like
semiconductor fabrication, many elements and features are interrelated and affect the yield of the
generated wafers [30]. As a result, the data mining methods can help with the varied issues in
semiconductor manufacturing, including the yield development [4,26], quality checking [31], fault
recognition [32], predictive maintenance [33], metrology [34], scheduling [35], business enhancement
[36], and market prediction [37], among others.

Despite the fact that there are numerous studies on data mining approaches in the
manufacturing process of semiconductor, a gap in the literature was identified after compiling all
published studies into a single paper without regard to location or characteristics. The goal of
Espadinha-Cruz et al. was to assemble all existing articles on this issue on Scopus and WoS, classify
them, and compare them in order to fill the identified research gap. As a result, one of the objectives
of this research was to learn about the current status of data mining solutions for semiconductor
manufacturing difficulties. In semiconductor manufacturing, data mining has a wide range of uses.
The research is divided into categories based on the areas of following applications.

3.1.1 Data Mining Applications for Quality Control

The fundamental goal of quality prediction tools is to foresee product behavior and to predict
trends of the crucial parameters. This is often performed by using learning functions that can derive
knowledge from previous data. Forecasting quality using data mining techniques often begins with
the creation of a model based on past data [38].

3.1.2 Data Mining Applications for Maintenance

A multiple classifier method is presented for predictive maintenance [39] and a similar study is
proposed in [33]. Predictive maintenance based on hidden Markov model is presented in another
study over a one-year timeframe [40]. A data mining strategy for improved yield management is
proposed and proved its efficacy [41]. The final research emphasizes on increased resolution and
detection of faulty and malfunctioning equipment, and it is applied by Advanced Micro Devices, Inc.
(AMD).
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3.1.3 Data Mining Applications for Metrology, Measurement, and Instrumentation

Virtual metrology is an important issue, and it is described as a set of methodologies for
estimating the qualities of a wafer using machine data rather than costly physical measurements [42—
44]. Because of the fact that machine data is sampled much more frequently than metrology data, and
also machine data is immediately available, unlike metrology data. A few feature extraction
approaches for virtual metrology using sensor data have been presented in [34,45,46].

Different types of measurement and instrumentation are also presented and categorized. For
example, a real-time data mining solution is presented for extracting defects from the production
data of raw wafer probe test automatically and correctly [47]. A data mining strategy is also
described, which employs machine learning algorithms to model unknown functional interrelations
and predict the thickness of dielectric layers of manufactured wafers [48]. Finally, IBM created a data
mining technique for detecting and exploring correlations between inline measurements and test
results in analog and/or radio frequency (RF) devices [49]. This approach is put to use and validated
in the real world.

3.1.4 Data Mining Applications for Decision Support Systems

The usage of decision support systems (DSS) is another development in semiconductor
production. A DSS is a system that aids in the resolution of unstructured and semi structured
managerial challenges at all phases of the decision-making process. This isn't the first time the DSS
has been used in this situation. The first articles in this field were published in the 1990s. DSSs may
have a knowledge base, which necessitates the use of artificial intelligence to give information to aid
the decision-making process. Nevertheless, the first applications of DSS necessitated knowledge
modeling from documented and expert information by knowledge engineers. It was possible to find
hidden information in enormous volumes of data by extracting knowledge from unprocessed data.
Researchers use data mining tools to look for trends and hidden relationships that might help them
make better semiconductor decisions. The purpose is usually to establish relationships between
control parameters and product quality, mostly through decision rules [5].

3.1.5 Data Mining Applications for Production and Production Scheduling

The purpose of much production planning research is to reduce cycle time. To avoid work in
progress (WIP) bubbles and improve cycle time, a unique approach capable of using data mining has
been presented [50]. A novel technique capable of incorporating data mining was proposed a with
the goal of eliminating work in progress (WIP) bubbles and shorten process times [51]. In
semiconductor production system, a data-mining technique is provided for calculating the interval
cycle time of each task [52]. Furthermore, a data mining approach for identifying essential
components of the cycle time in a semiconductor manufacturing plant with the purpose of estimating
its value has been addressed [53].

Semiconductor wafers are manufactured in a series of sequential processes. The process stages
having a significant association with wafer yield are known as critical process steps. Because wafer
yield is such an important metric in wafer production, it's important to pick and control the critical
process steps properly. Lee et al. provided a method for identifying critical process steps that were
methodical and data driven.

The method of Lee et al. is in line with the current semiconductor industry trend. The anticipated
technique assesses 3 aspects of data from wafer production process utilizing data mining tools. They
used the SECOM dataset as a case study for assessing the effect of their recommended method at
various missing value rates. The suggested method's technique is depicted in Figure 2.
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Figure 2. The proposed methodology of data mining

They used a hypothetical operational data set as a case study and found that the proposed
strategy performed effectively [24].

3.2 Artificial Intelligence

A data-driven decision method was presented by Senoner et al. to improve the process quality.
Handling high-dimensional and nonlinear production data is a problem for standard quality
management approaches. This obstacle was overcome by using explainable artificial intelligence (AI)
to quality management. They proposed using nonlinear modeling using Shapley additive
explanations (SHAP) values to infer how a collection of production parameters and a manufacturing
system’s process quality are linked. As a result, they offered a metric for determining the importance
of processes, which manufacturers may use to prioritize processes for quality improvement. Their
decision methodology, which was based on quality management theory, chose improvement
activities that targeted the sources of quality variance. The decision model has been proven in a real-
world application at a prominent high-power semiconductor factory. They used their decision model
to choose improvement activities for a transistor chip product in order to enhance production yield.
They next conducted a field experiment to ensure that the improvement efforts were effective. The
investigation showed a 21.7% reduction in yield loss when compared to the average yield in our
sample. They also shared findings from a post-experimental roll-out of the decision model, which
resulted in considerable yield increases. They illustrated the practical usefulness of explainable
artificial intelligence by demonstrating that traditional methodologies might miss crucial drivers of
process quality [54].

3.3 Computer-integrated manufacturing (CIM)

The semiconductor production process has advanced extensively to allow the Internet of Things.
One of the major issues in wafer manufacturing is quality improvement. CIM emerged as a way to
decrease the rework and enhance manufacturing process over time. To evaluate the acquired
semiconductor process data, Li et al. used data mining approaches and statistical process control
(SPC). The research extends manufacturing capabilities, increases the yielding rate, and lowers
overall cost. The focus of this research is on wafer manufacturing facilities. Between CIM and the
manufacturing execution system, a data mining architecture is developed. The system can forecast
the best process parameters for the next batch using a mix of real-time feedback and SPC utilizing
past process data. The system adapts dynamically for variances between different machines and
goods, allowing each machine a degree of flexibility in product manufacture. The suggested
semiconductor system may be used to analyze processes in the traditional manufacturing business.
Their findings demonstrate how their technology may enhance semiconductor production process,
giving the wafer fab a competitive edge [27].
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3.4 Machine Learning Algorithms

The intricacy of semiconductor manufacturing creates difficulty on plant availability
requirements in this competitive sector. Biebl et al. addressed these issues in their paper by
developing a conceptual model for prescriptive maintenance in semiconductor production. To
estimate unexpected downtimes, several Machine Learning Algorithms were applied. Furthermore,
Bayesian Networks were utilized to forecast the underlying cause of a failure [2].

3.5 Big-Data-Based Monitoring System

Nakata et al. focused their study on yield exploration task to determine the failure reason using
failure patterns and production history.

3.5.1 Failure Map Pattern Monitoring by Clustering

At first, they implemented a clustering algorithm to track failure map patterns. Clustering is an
unsupervised learning technique that divides things into clusters. K-Means clustering is one of the
most basic and often used clustering algorithms. Wafers with analogous failure patterns were
grouped using a clustering technique that included K-Means. Engineers may comprehend failure
incidence without verifying every wafer by sight since each cluster size immediately shows wafer
amount along with the failure pattern.

3.5.2 Failure Cause Identification

Second, the research team used a pattern mining approach to identify the causative devices of
failure patterns. Typically, engineers look at a large quantity of production history data, such as
which devices wafers have passed through throughout each step.

3.5.3 Failure Recurrence Monitoring

Finally, Finally, they presented a Deep Learning technique for monitoring failure recurrences.
In recent studies, machine learning approaches have been used to classify failure map patterns. With
the supervised learning strategy, the models automatically categorize fresh wafers and reveal a long-
term trend of failure incidence.

Big data analysis provides inclusive monitoring automation, which is the most crucial aspect to
remember. They implemented daily thorough monitoring with enormous production data using
quick and scalable clustering and pattern mining technologies. They also investigated the
performance of deep learning, which has been a popular machine learning core technique in recent
years, in the categorization of wafer failure map patterns [26].

3.6 Internet of Things (I0T) and Big Data Analytics

The IoT and big data analytics for semiconductor production have been facilitated by the
increased usage of multi featured sensors, complex equipment, and robots. Khakifirooz et al.
developed a methodology to explore the complex semiconductor production data for defect
identification and intelligent manufacturing. A data-mining framework was developed in the study
to analyze vast amounts of semiconductor manufacturing data in order to discover insufficient tool-
chamber at a given production period. The four main processes are provided in Figure 3.
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Figure 3. Research layout of Khakifirooz et al.

An empirical investigation and simulation were used to validate the suggested method. The
outcomes demonstrated that the recommended strategy is feasible in practice [4].

The process of optimizing manufacturing processes through the integration of cyber-physical
systems and the utilization of data, particularly big data, is referred to as smart manufacturing (SM).
Because SM adoption has been unequal among sectors, there is a chance to turn to other industries
for solutions and roadmaps for industries like biochemistry and biology. The growth of big data
allows for the management of considerably bigger volumes of data and the use of analytics to enhance
diagnoses and prognostics. Analytical capabilities will be enhanced in the future by a better big data
environment that incorporates smart manufacturing ideas like the digital twin [55].

4. Reviews

The study of Espadinha-Cruz et al. has following points on data mining applications in
semiconductor production.

- First, few studies exist for research on wafer cutting, cleaning, drying, and polishing, although
there is no specialized study on edge rounding and lapping. Only a few research identify in which
subprocesses, data mining methods are used.

- The varied application of data mining techniques is another trend seen in the reviewed
literature. However, most articles focus on quality control, maintenance, and manufacturing. In the
semiconductor literature, predictive approaches for estimating wafer standard [56], defect
identification [57,58], or process time [59]. In quality control, classification algorithms are used to
categorize defects [60], failures of bin maps [61], or lots. Techniques are used to investigate the causes
of yield loss or failure diagnostics [5].

Data is collected from different sources in a real-world semiconductor production line. Sensor
information is frequently noisy owing to unreliable functioning or data transfer. Considering the data
source, there are multiple data types. The study of Lee et al. considered that only quantitative data
exists in the proposed problem, with no noisy data. So various data formats should be explored.
Human inspection information, for example, is frequently text data in the form of words [62].
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Word2vec, an open-source program may be used in this context. This suggested method's distance
measure may be substituted by the similarity index. Then, depending on the estimated similarity
index, the key traits may be chosen.

Qualitative data is another sort of data that is frequently seen in real-world circumstances. The
data collected by the inspection machines are qualitative in nature. The percentage of damaged chips
must have been computed when using this qualitative data to the suggested approach. The suggested
method's distance measure may then be adjusted by novel method, similar to text data example [24].

Senoner et al. suggested a data-driven decision approach for enhancing semiconductor
manufacturing process quality. The decision model has three qualities that overcome the
shortcomings of conventional quality modeling methodologies. First, it is strongly associated with
quality management theory to focus on the sources of variance before deciding on quality
improvement initiatives. Second, it's built to deal with both high-dimensional and nonlinear
production data. Third, it provides a metric for process significance, allowing manufacturers to
prioritize processes for quality improvement without having access to quality variables gathered
during intermediate inspections. Even when manufacturing data is prone to nonlinearities, their
estimate of process relevance aids in the appropriate allocation of improvement efforts. They gave
evidence from two distinct interventions where typical quality management methodologies failed to
give adequate insights into the real-world application at Hitachi ABB. The suggested decision model,
on the other hand, highlighted crucial linkages that led to considerable quality increases. They also
offered a simulation to show that their process significance metric is useful in detecting quality
drivers in nonlinearities. Overall, the practical utility of explainable Al is demonstrated by the field
study [54].

The system architecture suggested by Li et al. can be used to analyze traditional semiconductor
production processes. Their research contributes to a number of ways. Their technique enables the
automation of the semiconductor production process, which can improve a product's yield rate.
Parameter optimization can be used to improve a manufacturing process' overall capabilities. This
technology provides increased stability and flexibility for semiconductor foundry, giving the firm a
competitive advantage. Manufacturing costs can be decreased even while yield rates rise [27].

Nakata et al. concentrated on the yield analysis job in their research. To assist engineers, they
used data-driven tools to analyze failure patterns, identify causes, and track failure recurrences. In
addition, they used Deep Learning to classify wafer failure map patterns. They evaluated operational
variables for assisting engineers' work. Their approach is predicted towards significant labor savings
for engineers and a significant increase in output [26]. Data clearing and variable selection, in addition
to data preparation, are important processes, however, the techniques take a long time. The structure
of Khakifirooz et al. coupled a Bayesian technique with statistical conclusions and a data-mining
viewpoint for investigating complicated production data [4]. A new Gibbs sampler method has been
developed for speedier interactions within the production system, according to recent research [63].
The analytics environment in semiconductor manufacture is evolving, partly because of SM
mandates and innovation, but also as a result of the growth of big data within manufacturing.

The form of analysis, known as artificial neural networks (ANN), has been around for decades.
As part of the big data movement, certain forms of Al analytics have experienced a return. Deep
Learning, for example, is a technique that uses hierarchical abstraction to improve the process. It is
quite similar to structured ANN [64]. In big data contexts, deep learning algorithms profit from larger
data quantities and employ approaches to uncover links. Furthermore, because established models
are rarely made publicly available, assessing their future resilience might be challenging. Recently,
research has been concentrated on merging SME with Al approaches; these techniques have the
potential to be applied on the production floor in the future.

Background analysis by solutions known as "crawlers" [65] is another analytical capacity that is
gaining traction in industrial big data applications. These applications mine data in the background
in search of providing more flexibility in the manufacturing process [55].
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5. Applications

To deal with the semiconductor industry's data restrictions and problems, the semiconductor
industry's growth is heavily reliant on big data. By allowing bigger volumes and longer archives of
data, many systems have been able to accurately cover the system dynamics for decreasing
interruptions and solving quality problems. Data mining techniques must be adjusted in these
systems to take use of the parallel computation [55]. Researchers and practitioners must adjust data
mining techniques so that they may be tailored to individual applications in terms of data integrity.

Hundreds of sophisticated procedures entail towards making semiconductor wafers. Critical
process steps have a significant association with wafer yield. Because they have such a big impact on
wafer yield, the essential stages should be carefully chosen and handled. The selection criteria, on the
other hand, are frequently unclear and rely on the process engineers' expertise and intuition. In
practice, critical characteristics (i.e., important process stages) are frequently chosen based on domain
experts' understanding. Domain expertise is usually beneficial and helps when selecting essential
features. It is, however, sometimes difficult to give quantitative proof of domain expertise. Lee et al.
predicted that the suggested technique would choose most of the characteristics chosen by domain
experts. The suggested approach can be utilized for providing quantitative data to back up the
domain expert's view. Furthermore, when domain experts lack sufficient understanding of the
process (as is typically the case when new processes are built), the suggested method's collection of
important characteristics may be used like guide for selecting critical features [24].

The study of Espadinha-Cruz et al. offered some insight on the potential uses of data mining
techniques in semiconductor production by analyzing enormous volumes of data and exposing
previously unseen connections and opportunities. Decision-makers, on the other hand, must select
which data should be collected and used [66]. Because these approaches are always evolving, the
necessity to adapt them to newer semiconductor production processes is another opportunity to
investigate [5].

The decision model of Senoner et al. can be effectively implemented into quality management
practice. As a result, manufacturers may get fresh insights from data that is frequently underutilized.
[67,68]. They don't make any assumptions about which meta-model is being utilized. This allows for
the simple application of well-known models from the operations management literature [69-71].
They demonstrated that employing a different meta-model (considering equivalent modeling)
resulted in identical improvement actions as part of the robustness tests. Furthermore, the decision
model is defined in a general way, requiring just minimal input in the form of production data, a
measurable process quality variable, and process requirements. Their field study took place in the
semiconductor sector, which offers a number of advantages for deploying explainable Al To begin
with, semiconductor production is highly automated, making data collection and system coverage
easier. Then, fabrication procedures are well specified, allowing each product to be traced back to a
specific technique. Finally, semiconductor producers face significant yield losses, which drives
quality improvement efforts [54].

The ultimate goal of prescriptive maintenance model of Biebl et al. is towards the establishment
of the optimal point of intervention. Various advantages can be obtained as a result of this. The
maintenance time is significantly less than the required time for unexpected maintenance operations
since there is no waiting time for replacement parts to be delivered from stock or for a sufficient
competent crew to conduct the maintenance activity. Adjusting and prioritizing personnel can
considerably minimize this waiting time. Another advantage of verifying spare part availability and
spare part orders is that downtime caused by missing spare parts may be prevented [2].

6. Challenges

Data driven technologies have the potential to infringe on people's privacy. It may be extremely
harmful to users and lead to misunderstanding among staff, resulting in serious privacy issues [72].
Every data-oriented technology, including semiconductor production, has a significant security
component. Malicious attacks may target data that is extremely important [73]. Too much and
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duplicate data collecting can be detrimental, as identifying unnecessary data can be difficult.
Information might be misused as a result of the data-driven process.

Another restriction is the accuracy of data-driven techniques. Accuracy is a measuring method
that determines how effectively a data-driven model performs. As a result, enhancing precision
becomes critical. In data-driven methodologies, there are a variety of data integration and
interoperability difficulties that might arise.

Data interoperability and data integration have an impact on an organization's success. To
overcome the issues of interoperability and integration, a complete solution is required.

In this business, missing and skewed data is a problem. As a result of the unbalanced data, the
majority of classification algorithms perform poorly. Because wafer yield improvement is such an
important metric in semiconductor wafer production, essential process stages must be carefully
chosen and regulated.

Data preparation time is another constraint that has a substantial influence on available time, as
it accounts for more than half of the time and effort spent on the overall data analysis process [5].

7. Suggestions

Data-driven applications in semiconductor production still have improvement scopes.
Semiconductor businesses, for example, might use IoT and machine data for equipping
manufacturing units to deliver insights and alarms to those who need them. This will enable the
collection of a large amount of information. Moreover, the integration of sustainable practices such
as renewable energy adoption [74] and the implementation of circular economy principles [75] within
the semiconductor manufacturing process promises to provide a leading-edge advantage for
enhancing the overall process efficiency and sustainability.

Nonetheless, IoT deployment, and with it, complete use of data mining tools, may be determined
by how quickly industry participants solve specific hurdles [5]. Semiconductor firms must adapt
quickly to survive and be able to keep up with the rate of change and problems. In light of this
dynamic, industrial units should embrace digitization as quickly as possible [76].

However, Lee et al. proposed four potential study paths for determining essential process stages
using a systematic and data-driven methodology. Firstly, the suggested method's robustness must
be increased. When the missing value rate is large, the suggested technique is susceptible to random
deletion trials. In order to improve the robustness of our strategy, it is needed to study other missing
data imputation methods. Secondly, evaluation criteria for the important actions that have been
chosen must be defined. For instance, indicators for equipment health evaluation might be used [77].
Thirdly, it is required to take continuous values into account while analyzing yield data. In practice,
however, the yield has a continuous range of values from 0 to 1. This point can help to perform a
more realistic analysis. Finally, the suggested technique may be improved by taking into account the
practical industry challenges [24].

Despite the advantages of the research context, the decision model of Senoner et al. generalizes
to production settings other than semiconductor manufacture. The most difficult challenge is
presenting data that covers all essential operations and manufacturing metrics. There is a danger that
quality drivers will go overlooked if essential production metrics are removed. Pharmaceuticals,
petrochemicals, and automated manufacturing lines for fast-moving consumer items or printed
circuit boards are among the other industries that are expected to benefit. Because manual procedures
are typically quality drivers but difficult to capture digitally, the decision model is expected to
perform poorly in labor-intensive production. The issues of data representability are projected to be
lessened in the future with the ongoing advancement of manufacturing process [54].

Biebl et al. provided a conceptual model that used Machine Learning Algorithms allowed for
the prediction of unscheduled downtimes as well as the recommendation of actions on components
that may be the root cause. However, a high degree of data and information quality is necessary to
properly use the recommended model or alternative techniques in terms of prescriptive maintenance.
As a result, maintenance measures must be classified and component-specific documentation of
completed orders must be generated [2].
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8. Conclusion

The identification and classification of a number of beneficial and successful examples can help
future research efforts to apply a wide variety of methodologies in order to increase the data-driven
approaches in the industry. Understanding of the data-driven technologies may result in good
consequences not only for the development of theory but also for the practical implementation, since
most of the methods have been applied and proven on production floor. Nevertheless, numerous
applications are still possible because some research focus on a single phase of semiconductor
fabrication and real-world application data is lacking. Furthermore, because there are fewer research,
contemporary data-driven methodologies and models have a better chance of being adopted. Finally,
because the semiconductor manufacturing process is continually changing, adapting these
approaches to the current process offers a new problem and opportunity to pursue.

Overall, the implementation of data-driven methodologies should be promoted in order to
provide proactive adjustment and advanced control decisions for the whole process and smart
facilities in real-time, as evidenced by all of the studies compiled from various stages of
semiconductor manufacture. As a result, more research is needed into exploiting and supporting
smart manufacturing for fourth industrial revolution across a number of industries to digitally
change and update present manufacturing units. This approach will increase choice flexibility while
also improving the capacity to optimize related decisions.
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