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Abstract: We tested selecting data randomly or proportionally in class imbalanced sample. Collecting data into
the training and test set according to the initial ratio of QSOs, galaxies and stars were recommended. We
experimented using the original imbalanced data or introducing the class balance technologies: SMOTE,
SMOTEENN, SMOTETomek, ADASYN, BorderlineSMOTE], BorderlineSMOTE?2, and
RandomUndersampling. The SMOTEENN performed the best in the Sample 1. The LightGBM, CatBoost,
XGBoost, and RF were compared when adopting the SMOTEENN using the petroMag_u, petroMag_g,
petroMag_r, petroMag_i, petroMag_z, ], H, Ks, W1, W2, W3, W4 magnitudes as features. All of the precisions
or recalls exceeded 0.94. The RF cost a little more time than the other three algorithms, but resulted in the best
evaluating indicators. Utilizing the SMOTEENN +RF technology, the precision, recall and fl-score for QSOs
(galaxies, stars) could achieve 0.98 (0.99, 0.98), 0.99 (0.96, 1.00), 0.98 (0.97, 0.99) respectively in Sample 1.
Utilizing the SMOTEENN +RF technology, the precision, recall and fl-score for QSOs (galaxies, stars) could
achieve 0.94 (0.96, 0.96), 0.98 (0.90, 0.97), 0.96 (0.93, 0.97) using the petroMag_u, petroMag_g, petroMag_r,
petroMag_i, petroMag_z, W1, W2, W3, W4 magnitudes as features.

Keywords: QSOs; LightGBM; CatBoost; XGBoost; random forest

1. Introduction

The new era in modern astronomy is closely connected to using the big data by artificial
intelligence. Broad band photometry from wide-field surveys has been our main source of
information, and produces a large amount of data. Spectroscopy provides a more detailed and deeper
understanding of individual objects, but yields less sample than photometry. It is possible to estimate
the astronomical nature from the photometry, i.e., stars, galaxies, QSOs, planetary nebulae, or
supernovae. The classification of objects in survey catalogues could speed up considerably studies
focusing on a particular object. Many classification problems in astronomy have started to be
approached using a machine learning (ML) algorithm, which is a purely data-driven methodology
[1-12].

Brescis et al. 2015 [3] applied the MLPQNA (Multi Layer Perceptron with Quasi Newton
Algorithm) method to the optical data of the Sloan Digital Sky Survey (SDSS)—Data Release 10,
investigating whether photometric data alone sufficed to disentangle different classes of objects as
they were defined in the SDSS spectroscopic classification. In disentangling quasars from stars and
galaxies, their method achieved an overall efficiency of 91.31% and a QSO class purity of ~ 95%. They
used 5 psfMag and 5 modelMag magnitudes as input features.

Bai et al. 2018 [13] applied the random forest (RF) algorithm to class 85,613,922 objects in the
Gaia Data Release 2, based on a combination of Pan-STARRS 1 and AIIWISE data. The fraction of
stars in their sample was 98%, and the fraction of galaxies was 2%. The total accuracy was 91.9%. Bai
et al. 2019 [14] also applied the RF to the star/galaxy/QSO classification based on the combination of
Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) and SDSS spectroscopic data.
Narrow line QSOs were classified as galaxies by both the SDSS and LAMOST pipelines. A QSO was
referred to a theoretical one with broad emission lines. The training samples were built with a nine-
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color data set of about three million objects. They obtained classification accuracies higher than 99%
for stars and galaxies, and higher than 94% for QSOs.

Costa-Duarte et al. 2019 [5] used the RF algorithm to a star/galaxy classification for the Southern
Photometric Local Universe Survey. They trained the algorithm using the S-PLUS optical photometry
up to r=21, matched to SDSS/DR13. The influence of the morphological parameters had been
evaluated training the RF with and without the inclusion of morphological parameters, presenting
accuracy values of 95.0% and 88.1%, respectively. The morphology could notably improve the
classification of stars and galaxies. The classification of QSOs as extragalactic objects was slightly
better using photometric-only case.

Nakoneczny et al. 2019 [15] trained the RF on SDSS DR14 spectroscopic data. They identified
QSOs from broad-band photometric ugri data of the Kilo-Degree Survey Data Release 3 (KiDSDR3).
They selected the 17 most useful features for the classification by a feature importance analysis, and
limited the inference set to r <22. Accuracy of 97% (percentage of correctly classified objects), purity
of 91% (percentage of true quasars within the objects classified as such), and completeness of 87%
(detection ratio of all true quasars), as derived from a test set extracted from SDSS were confirmed
by comparison with external spectroscopic and photometric QSO catalogs overlapping with the
KiDSDRS3 footprint.

Logan et al. 2020 [6] presented an unsupervised machine learning method to separate stars,
galaxies and QSOs using photometric data. Their work used Hierarchical Density-Based Spatial
Clustering of Applications with Noise (hdbscan) to find the star, galaxy, and QSO clusters in a
multidimensional color space. They obtained f1-scores of 98.9, 98.9, and 93.13 respectively for star,
galaxy, and QSO selection in their 50 000 spectroscopically labelled sample. They created a
multiwavelength catalogue of 2.7 million sources using the KiDS, VIKING, and ALLWISE surveys
and published corresponding classifications.

Baqui et al. 2021 [16] cross-matched the mini Javalambre-Physics of the Accelerating Universe
Astrophysical Survey (miniJPAS) dataset with SDSS and Hyper Suprime-Cam Subaru Strategic
Program data, whose classification was trustworthy within the intervals 15<r <20 and 18.5<r<23.5.
They used six different ML algorithms on the two cross-matched catalogs: K-nearest neighbors,
decision trees, RF, artificial neural networks, extremely randomized trees (ERT), and an ensemble
classifier. They used the magnitudes from the 60 filters together with their errors, with and without
the morphological parameters as features. They found that, an area under the curve (Area Under
Curve) AUC = 0.957 with RF when photometric information alone was used, and AUC = 0.986 with
ERT when photometric and morphological information was used together, when 15 <r < 23.5. They
observed that errors (the width of the distribution) were as important as the measurements (central
value of the distribution).

Cunha & Humphrey 2022 [7] combined the outputs from the XGBoost, LightGBM, and CatBoost
learning algorithms to create a stronger classifier named SHEEP, using the psfMag, petroMag,
cModelMag, modelMag for the five optical bands (u, g, 1, i, z) and the Wide-field Infrared Survey
Explorer (WISE) magnitude W1, W2, W3, W4. The best results were in one vs all by Light GBM: the
accuracy, precision, recall, f1-score for QSOs were 0.991, 0.985, 0.978, 0.982. The accuracy, precision,
recall, f1-score for galaxies were 0.989, 0.989, 0.986, 0.987. The accuracy, precision, recall, f1-score for
stars were 0.995, 0.993, 0.989, 0.991, respectively.

Martinez-Solaeche et al. 2023 [9] developed two algorithms based on artificial neural networks
(ANN) to classify objects into four categories: stars, galaxies, quasars at low redshift (z < 2.1), and
quasars at high redshift (z 2 2.1) in miniJPAS. In the mock test set, the fl-score for quasars at high
redshift with the ANN1 (ANN2) were 0.99 (0.99), 0.93 (0.92), and 0.63 (0.57) for 17 <r<20,20<r <
22.5, and 22.5<r<23.6. In the case of low-redshift quasars, galaxies, and stars, the fl-scores reached
0.97 (0.97), 0.82 (0.79), and 0.61 (0.58); 0.94 (0.94), 0.90 (0.89), and 0.81 (0.80); and 1.0 (1.0), 0.96 (0.94),
and 0.70 (0.52) in the same r bins. In the SDSS DR12Q superset miniJPAS sample, the weighted f1-
score reached 0.87(0.88) for objects that were mostly within 20<r<22.5.

All these studies were not focus on the unbalanced classification of categories. Classification of
imbalanced dataset was necessary to study carefully in machine learning. Our paper used different
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sampling methods to redress disequilibrium, including Synthetic Minority Over-sampling Technique
+ Edited Nearest Neighbor (SMOTEENN), BorderlineSSMOTE, Synthetic Minority Over-sampling
Technique (SMOTE), Adaptive synthetic sampling (ADASYN), random undersampling, random
oversampling, and so on. We employed the following classification methodologies: LightGBM,
CatBoost, XGBoost, RF, which were the most popular ones.

The paper was organized as follows: in Sect.2, we described the data we employed and how we
preprocessed the data. In Sect.3, we introduced the class balance technologies and the classification
algorithms. We did the classifications using the original data or different class balance technologies.
We did experiments using 4 different ML methodologies, and stated the evaluating indicators
respectively. We compared the efficiency and effect of these methodologies. In Sect.4, we gave our
summary and discussion.

2. Data and Preprocessing

2.1. Data

The SDSS has created the most detailed three-dimensional maps of the Universe ever made, with
deep multi-color images of one third of the sky, and spectra for more than three million astronomical
objects. It has progressed through several phases, SDSS-I (2000-2005), SDSS-II (2005-2008), SDSS-III
(2008-2014), SDSS-IV (2014-2020) and SDSS-V (2020-). Data Rease 18 (DR18) is the first data release
for the SDSS-V [17]. The AIIWISE Data Release [18] gave the WISE [19] W1 magnitude (3.35um), W2
magnitude (4.6um), W3 magnitude (11.6um), W4 magnitude (22.1um) joint with the Two Micron All
Sky Survey (2MASS) ] magnitude (1.25um), 2MASS H magnitude (1.65um) and 2MASS Ks
magnitude (2.17um). This ALLWISE catalog was a subset of the full AIIWISE catalog available from
NASA/IPAC Infrared Science Archive with a selection of the columns of the full catalog. The 2MASS
magnitudes were from the 2MASS All-Sky Catalog of Point Sources [20]. Some sources were short of
J, H, Ks magnitudes in the catalog since the limit of WISE was higher and deeper than 2MASS.

The ra, dec, redshifts, class, petroMag_u, petroMag_g, petroMag_r, petroMag_i, petroMag_z
and errors of the five bands, were downloaded from the SpecPhoto Catalog of SDSS DR18 through
https://skyserver.sdss.org/CasJobs/. The class labels were from the spectral information and were
regarded as true. We sorted on the ra, dec and deduplicated the coordinates. We crossmatched these
coordinates to ALLWISE in CDS Xmatch . We chose the nearest match when one SDSS source
corresponding to muti-ALLWISE sources or one ALLWISE source corresponding to muti-SDSS
sources. Those sources without accurate measurements were discarded. We found some sources with
the spectroscopic redshift equal to integer 0 and deleted those sources. Those sources with |zerr| >=1
were deleted. All the errors in ALLWISE magnitudes were lower than 1, but some errors in SDSS
magnitudes were large. Those sources with either |petroMagErr_ul > 5, |petroMagErr_gl > 5,
| petroMagErr_rl > 5, |petroMagErr_il > 5, or |petroMagErr_z!| > 5 were deleted. There were some
null values in the ], H, Ks, W2, W3, W4 magnitudes, which were filled with blank spaces. The reason
was that these sources could be collected into the catalog when their SDSS and W1 bands were
observed. However, the J, H, Ks, W2, W3, W4 magnitudes might be too weak to be determined. In
Sample 1, we deleted those sources with any of the 12 bands equal to the ‘nan’. Sample 1 contained
1286475 sources with the petroMag_u, petroMag_g, petroMag_r, petroMag_i, petroMag_z, ], H, Ks,
W1, W2, W3, W4 magnitudes, including 33189 QSOs, 862804 galaxies, and 390482 stars. Sample 1 was
composed of many bright sources, the peak of petroMag_r ~ 17. It consisted of many nearby sources,
although the redshift of QSOs could reach 7. The distributions were shown in Figure 1.

Instead, we did not consider the J, H, Ks observations and deleted the sources with any of the 9
bands being the ‘nan’. If we unused the features of the J, H, Ks, the sample should be larger, which
were called Sample 2. Sample 2 contained 3769397 sources with the petroMag_u, petroMag_g,
petroMag_r, petroMag_i, petroMag_z, W1, W2, W3, W4 magnitudes, including 677166 QSOs,
2448971 galaxies, and 643260 stars. Sample 2 was comprised of two parts: the nearby sources and the
intermediary redshifts sources, or the bright sources and the dim sources. The distance and
brightness were not the one-to-one correspondence. The distributions were shown in Figure 2.

doi:10.20944/preprints202309.2160.v1
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Figure 1. the distributions of the Sample 1 (a) the petroMag_r; (b) the redshift.
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Figure 2. the distributions of the Sample 2 (a) the petroMag_r; (b) the redshift.

In Costa-Duarte et al. 2019, the optical photometry was up to r=21. In Nakoneczny et al. 2019,
the inference was set to r < 22. In Baqui et al. 2021, the photometry was up to r < 23.5. In Martinez-
Solaeche et al. 2023, the photometry was up to r < 23.6. In our Sample 1 and Sample 2, the optical
photometry up to r ~ 30. It seemed to be larger and deeper. Our two samples were very imbalanced.
The imbalance of Sampe 1 and Sample 2 were shown in Figure 3.

Sample 1 5 5P Sample 2
800000:
2.0
600000
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GALAXY STAR Qso GALAXY QS0 STAR
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Figure 3. (a) the imbalance of Sampe 1: 33189 QSOs, 862804 galaxies, and 390482 stars; (b) the
imbalance of Sampe 2: 677166 QSOs, 2448971 galaxies, and 643260 stars.

2.2. Preprocessing

We adopted the RobustScaler from sklearn.preprocessing to do the standardization of the
features. The RobustScaler calculation method was as follows:
’ vi—median __ vi—median

vi = IQR  03-Q1 @

V; was any value in one feature, v{ was the rescaled values, ; was the first Quartile, Q3 was
the first Quartile, and IQR was InterQuartile Range.

The RobustScaler was a data standardization tool based on statistical methods, which was used
to eliminate scales and biases in data. It could reduce the distance between features by comparing the
scale differences between different features. It could ensure that the algorithm could better handle
features of different scales during training. This preprocessing made the algorithm more accurate.
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3. Experiments

The StratifiedKFold from sklearn.model_selection was a good tool to collect samples according
to the primary proportion of different categories. We tested selecting data randomly or
proportionally in class imbalanced sample. Also, the experiment was tried without any data
balancing technology according to the initial ratio of QSOs, galaxies and stars as a comparison. The
sample, no matter the original sample or the resampled sample were divided into the train set (4/5)
and the test set (1/5) at random. The test set was not used in training the classifier, but in testing the
classifier. The class labels of the training objects were from spectroscopy and were regarded as true.

3.1. class Balance Technologies

random undersampling: For example, QSO was the fewest category in the Sample 1. The number
of the QSOs was 33189. We picked up 33189 galaxies and 33189 stars at random, and combined a new
sample with the same ratio of different types. The disadvantage of undersampling was that it might
lead to losing some information. We could use the new sample to train the machine learning model,
and retrained the model using the original imbalanced data to reduce the loss of information.

random oversampling: It copied minority class samples to make the number of categories in the
dataset more balanced. It was easy to implement. Its disadvantage was that it might lead to
overfitting. We did not employ this method.

Synthetic Minority Oversampling Technique (SMOTE) [21]: (1) For each sample x in the minority
class, this method calculated distances from all samples in the minority class sample using Euclidean
distance as the standard, and obtained the k-nearest neighbor. (2) It set a sampling ratio based on the
sample imbalance ratio to determine the sampling rate. For each minority sample x, it randomly
selected several samples from its k-nearest neighbors, assuming the selected nearest neighbor was
X. (3) For each randomly selected nearest neighbor X, it constructed a new sample with the original
sample according to the following formula:

Xnew = X +rand(0,1) X (¥ — x) )

Adaptive Synthetic Sampling (ADASYN) [22]: It was based on SMOTE with some improvement.
It adaptively generated new samples based on the distribution differences between different
categories. It calculated the distance between each minority class sample and its neighboring samples,
and then calculated the distribution density of each sample based on the distance. In areas with low
distribution density, ADASYN generated more composite samples to increase the number of
minority class samples, which avoided generating too many synthesized samples in areas with high
distribution density.

Borderline-SMOTE [23]: Boundary and nearby examples were more likely to be misclassified
than examples far from the boundary, making classification more important. Examples that were far
from the boundary might not be helpful for classification. In order to achieve better prediction, most
classification algorithms attempted to learn the boundaries of each class as accurately as possible
during the training process. When generating new samples from boundary sample points,
Borderline-SMOTE 1 chose the minority samples randomly in the k-neighbour, but Borderline-
SMOTE 2 chose any samples in the k-neighbour.

SMOTEENN [24]: The minority class samples generated by the ordinary SMOTE method were
obtained through linear interpolation, which expanded the sample space of the minority class. The
problem was that the space originally belonging to the majority class samples might be “invaded” by
the minority class, which could easily cause overfitting of the model. This method generated new
minority class samples using the SMOTE method to obtain the expanded dataset. Then it used K-
NearestNeighbor (usually 3 out of K) method to predict each sample in the expanded dataset. If the
predicted result did not match the actual category label, this sample point would be removed.

SMOTETomek [24]: It also generated new minority class samples using the SMOTE method to
obtain the expanded dataset. Tomek links should remove noise points or boundary points to avoid
SMOTE causing the space that originally belonged to the majority class sample to be “invaded” by
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the minority class. When dealing with the noise or boundary points, it could effectively solve the
problem of “intrusion”.

3.2. classification Algorithms

Ensemble learning could effectively solve the problem of class imbalance by combining the
prediction results of multiple base learners for decision-making. The ensemble learning included
Bagging, Boosting, and Stacking. Boosting trained multiple base learners through serialization. Each
base learner focused on the wrongly predicted samples from the previous base learner to improve
the recognition ability of the model to classify samples.

Light Gradient Boosting Machine (LightGBM) [25] was a gradient boosting framework that used
tree based learning algorithms. It was designed to be distributed and efficient with the following
advantages: faster training speed and higher efficiency, lower memory usage, better accuracy,
support of parallel, distributed, GPU learning, and capable of handling large-scale data. LightGBM
adopted a leaf growth strategy to optimize this issue. The specific rule was to select the leaf that could
bring the maximum gain during each split. Under the same number of divisions, it was evident that
leaf growth could reduce the loss function even more.

CatBoost [26] was a high-performance open source library for gradient boosting on decision
trees. The advantages lay in its ability to efficiently handle categorical variables, effectively prevent
overfitting, and high model training accuracy. It also combined existing category-based features
based on their inherent connections in modeling, enriching the feature dimension and improving the
accuracy of prediction results. It was based on a random sorting of samples, processing and
calculating the samples to obtain unbiased estimates of target variable statistics and model gradient
values, effectively avoiding prediction shift.

XGBoost [27] was an end-to-end gradient lifting tree system proposed by Chen Tiangi. It directly
added the loss function and regularization term to form a global loss function. The second derivative
of this loss function was got to obtain the final obj, and a score was calculated using obj. The smaller
the score, the better. Finally, the score calculated using obj determined the structure of the tree and
the score of the entire strong learner. So XGBoost was not achieved by fitting residuals, but by directly
calculating the obj function to obtain the tree structure.

RF [28] was to establish a forest in a random manner, where there were many decision trees, and
there was no correlation between each decision tree in a random forest. After obtaining the forest,
when a new input sample entered, each decision tree in the forest was asked to make a judgment
separately to see which class the sample should belong to (for classification algorithms), and then to
see which class was selected the most, to predict which class the sample belonged to.

LightGBM, CatBoost, XGBoost belonged to the Boosting algorithms. RF belonged to the Bagging
algorithms. All the four algorithms could prevent overfitting in some way.

3.3. Results

There were some definitions. The True Positive (TP) were the number of the predicted positive
classes when they were true positive classes. The False Positive (FP) were the number of the predicted
positive classes when they were true negative classes. The False Negative (FN) were the number of
the predicted negative classes when they were true positive classes. The True Negative (TN) were the
number of the predicted negative classes when they were true negative classes. The precision was
equal to TP/(TP+FP). The recall was equal to TP/(TP+FN). The accuracy was equal to
(TP+TN)/(TP+FP+TN+EN). The f1-score was equal to 2*(precision* recall)/(precision + recall). If the
micro avg was adopted, the accuracy was equal to the precision, the recall, or the f1-score. All of them
were equal.

3.3.1. Comparing Class Balance Technologies

The accuracy was meaningless in extreme imbalance data. For example, there were 100 samples,
including 1 female and 99 males. When the model predicting everyone as males, the accuracy could
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reach 99%. The precision and recall were recommended. The experiments was once tested using the
original imbalanced data. When considering putting the data into the training and test set, we used
two ways: selecting randomly or selecting proportionally. When selecting data randomly, the
train_test_split from sklearn.model_selection was used, which was the most popular way as we
guessed. However, selecting randomly would lead to inaccurate precision in unbalanced data.

The StratifiedKFold was used to collect samples according to the initial ratio of QSOs, galaxies
and stars. The ratio of the training set and the test set that we used was 4:1. Then we used the 7 class
balance technologies to do the experiments. The LightGBM algorithm was adopted when comparing
the class balance technologies or nonuse them. The results of the test set were given in Table 1. When
putting the data into the training and test set randomly not proportionally, the accuracy was a little
high but unbelievable. There were some overfitting more or less. When putting the data into the
training and test set proportionally, the evaluation indicators were really low.

When using random-undersampling for the Sample 1, we picked up 33189 galaxies, and 33189
stars randomly to match the number of QSOs, and combined them into a new sample. The random-
undersampling method lost some information and produced poor effects not even retraining the
model by original data again. It was hard to predict the minority class QSOs, while searching for
QSOs was the potential demand in some surveys.

For example, GALAXY was the most category in the Sample 1 with the number of 862804. When
using all the oversampling for the Sample 1, we resampled the QSO and STAR to the number of
862804. Among the 7 class balance technologies, the SMOTE, SMOTEENN, SMOTETomek
outperformed the other 4 technologies in our Sample 1 data. The improved versions of SMOTE such
as ADASYN, BorderlineSMOTEI1, BorderlineSMOTE2 had poor performances. The SMOTEENN was
the best method especially for QSOs, in which the precision ~ 0.94, recall ~ 0.96, f1-score ~ 0.95. There
was a method called SVMSMOTE, which could result in better recall but worse precision than the
SMOTEENN. However, it cost a lot of time and was not illuminated in Table 1.

Table 1. Sample 1, using 12 features by LightGBM algorithm. We compared using different class
balance technologies or original data.

Sample 1 - 12 features

LightGBM

precision recall fl-score support

QsO 0.86 0.81 0.83 6690

GALAXY 0.99 0.99 0.99 172353

original data, selected randomly STAR 098 098 098 78252
accuracy 0.98 257295

macro avg 0.94 0.93 0.93 257295

weighted avg 0.98 0.98 0.98 257295
precision recall f1-score support

QsO 0.40 0.22 0.28 6638

GALAXY 0.96 0.94 0.95 172560

original data, select proportionally STAR 084 091 087 78097
accuracy 091 257295

macro avg 0.73 0.69 0.70 257295

weighted avg 0.91 0.91 0.91 257295
precision recall f1-score support

QSO 0.3 0.96 0.46 6638

GALAXY 0.98 0.91 0.94 172560

Random STAR 0.93 0.9 0.92 78097
Undersampling, select proportionally accuracy 091 257295
macro avg 0.74 0.92 0.77 257295

weighted avg 0.95 091 0.92 257295
precision recall f1-score support

Random QsO 0.49 0.28 0.35 6638
undersampling GALAXY 0.96 0.94 0.95 172560

train the model STAR 0.84 0.91 0.87 78097
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by original data (select proportionally) again  accuracy 091 257295
macro avg 0.76 0.71 0.72 257295

weighted avg 091 091 091 257295

precision recall f1-score support

QsO 0.92 0.96 0.94 172561

GALAXY 0.96 0.88 0.92 172560

. STAR 0.94 0.98 0.96 172561

SMOTE, select proportionally accuracy 0.94 517682
macro avg 0.94 0.94 0.94 517682

weighted avg 0.94 0.94 0.94 517682

precision recall fl-score support

QsO 0.63 0.75 0.69 172535

GALAXY 0.95 0.77 0.85 172560

ADASYN, select proportionally acsczi?cy 063 063 8?2 g:(l)gz
macro avg 0.74 0.72 0.72 518102

weighted avg 0.74 0.72 0.72 518102

precision recall fl-score support

QsO 0.82 0.97 0.89 172561

GALAXY 0.95 0.84 0.89 172560

. . STAR 0.87 0.82 0.84 172561
BorderlineSMOTEL select proportionally accuracy 0.87 517682
macro avg 0.88 0.87 0.87 517682

weighted avg 0.88 0.87 0.87 517682
precision recall f1-score support

QsO 0.7 0.88 0.78 172561

GALAXY 0.78 0.82 0.8 172560

. . STAR 0.76 0.53 0.63 172561
BorderlineSMOTE2 select proportionally accuracy 0.74 517682
macro avg 0.75 0.74 0.74 517682

weighted avg 0.75 0.74 0.74 517682
precision recall f1-score support

QsoO 0.94 0.96 0.95 172125

GALAXY 0.97 0.93 0.95 165234

. STAR 0.97 0.99 0.98 169550

SMOTEENN, select proportionally accuracy 0.96 506909
macro avg 0.96 0.96 0.96 506909

weighted avg 0.96 0.96 0.96 506909
precision recall fl-score support

QsO 0.92 0.96 0.94 172541

GALAXY 0.96 0.88 0.92 172414

. STAR 0.94 0.98 0.96 172426

SMOTETomek, select proportionally accuracy 0.94 517381
macro avg 0.94 0.94 0.94 517381

weighted avg 0.94 0.94 0.94 517381

3.3.2. Comparing Classification Algorithms

When comparing different classification algorithms, we employed the SMOTEENN in our
following tests. The most popular algorithms were the LightGBM, CatBoost, XGBoost, and RF at
present. The comparison was elaborated in Table 2. The bagging algorithm —RF outperformed the
boosting algorithm: LightGBM, CatBoost, and XGBoost. Actually all of them were really good. For
all of the algorithms, the precision or recall exceeded 0.94. CatBoost produced the same indicators as
XGBoost. RF cost a little more time than the other three algorithms, although all of them were not
time-consuming as the other algorithms, such as the Support Vector Machine.

In the RF algorithm, the precision, recall and fl-score for QSOs were 0.98, 0.99 and 0.98
separately. That meant 99% of QSOs in the sample could be found. It was very useful in the following
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photometry surveys searching for more QSOs candidates. The precision, recall and fl-score for
galaxies were 0.99, 0.96 and 0.97. The precision, recall and f1-score for stars were 0.98, 1.00 and 0.99
respectively.

3.3.3. Comparing Different Samples

Sample 1 and Sample 2 had different depth of redshift and different imbalance. The SMOTEENN
could perform well in extreme imbalance data, for example the Sample 1. The SMOTEENN +RF was
performed in different samples. The precision and recall in the Sample 2 were a little lower than those
in the Sample 1. It demonstrated that the J, H, K magnitudes were important than the number of the
samples. Nonetheless, the SMOTEENN +RF algorithm could still give good search for the QSOs in
Sample 2. The 98% of all QSOs could be picked out. Any precision or recall reached 0.90 of any
categories. The prediction was still good until the redshift to 7, and r magnitudes to 30. The results
were described in Table 3.

Table 2. Sample 1, using 12 features by 4 different classification algorithms.

Sample 1 - 12 features

SMOTEENN

precision recall fl-score support
QsO 0.94 0.96 0.95 172125
GALAXY 0.97 0.93 0.95 165234
STAR 0.97 0.99 0.98 169550
LightGBM accuracy 0.96 506909
macro avg 0.96 0.96 0.96 506909
weighted avg 0.96 0.96 0.96 506909

run_time: 1118.32(s)
QSO 0.96 0.97 0.96 172136
GALAXY 0.98 0.94 0.96 165206
STAR 0.97 0.99 0.98 169560
CatBoost accuracy 0.97 506902
macro avg 0.97 0.97 0.97 506902
weighted avg 0.97 0.97 0.97 506902

run_time: 1466.98(s)
QSO 0.96 0.97 0.96 172126
GALAXY 0.98 0.94 0.96 165211
STAR 0.97 0.99 0.98 169526
XGBoost accuracy 0.97 506863
macro avg 0.97 0.97 0.97 506863
weighted avg 0.97 0.97 0.97 506863

run_time: 1776.15(s)
QsO 0.98 0.99 0.98 172122
GALAXY 0.99 0.96 0.97 165232
STAR 0.98 1.00 0.99 169562
RF accuracy 0.98 506916
macro avg 0.98 0.98 0.98 506916
weighted avg 0.98 0.98 0.98 506916

run_time: 2260.97(s)

doi:10.20944/preprints202309.2160.v1
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Table 3. Sample 1 and Sample 2 using SMOTEENN+RF algorithms.

SMOTEENN+RF

precision recall f1-score support
QsO 0.98 0.99 0.98 172122
GALAXY 0.99 0.96 0.97 165232
STAR 0.98 1.00 0.99 169562
Sample 1 accuracy 0.98 506916
macro avg 0.98 0.98 0.98 506916
weighted avg 0.98 0.98 0.98 506916

run_time: 2260.97(s)
QsO 0.94 0.98 0.96 469389
GALAXY 0.96 0.90 0.93 380337
STAR 0.96 0.97 0.97 462677
Sample 2 accuracy 0.95 1312403
macro avg 0.96 0.95 0.95 1312403
weighted avg 0.95 0.95 0.95 1312403

run_time: 6659.07(s)

4. Summary and Discussion

When putting data into the training and test set, it was not good to use selecting data randomly
in class imbalanced sample. Selecting data proportionally to make the training set, the test set and
the original data consisting of the same proportion of categories was important. We tested the class
balance technologies: SMOTE, SMOTEENN, SMOTETomek, ADASYN, BorderlineSMOTE],
BorderlineSSMOTE?2, and RandomUndersampling. The contrast of class balance technologies was
executed in the LightGBM algorithm. The former three outperformed the other 4 technologies in our
Sample 1 data. The improved versions of SMOTE such as ADASYN, BorderlineSMOTE],
BorderlineSSMOTE2 had poor performances. The SMOTEENN was the best method especially for
QSOs, in which the precision ~ 0.94, recall ~ 0.96, f1-score ~ 0.95.

The LightGBM, CatBoost, XGBoost, and RF were compared when adopting the SMOTEENN
class balance technologies in Sample 1. For all of the algorithms, the precision or recall exceeded 0.94.
The RF cost a little more time than the other three algorithms, but yielded the best evaluating
indicators.

Utilizing the SMOTEENN + RF technology, we obtained excellent classifiers. Adopting the
simple features of petroMag_u, petroMag_g, petroMag_r, petroMag_i, petroMag_z, ], H, Ks, W1, W2,
W3, W4 magnitudes, not including any morphological parameters, the precision, recall and f1-score
for QSOs could achieve 0.98, 0.99, 0.98. The precision, recall and f1-score for galaxies could achieve
0.99, 0.96, 0.97. The precision, recall and fl-score for stars could achieve 0.98, 1.00, 0.99 respectively.
That meant if a study focused on QSOs, only 1% of the supposed QSOs had been missed. Among the
found QSOs, the purity was 98%. The SMOTEENN +RF technology was very kind to those projects
searching for QSOs, since QSO was a minority class among the sources in the sky.

Adopting the simple features of petroMag u, petroMag_g, petroMag_r, petroMag_i,
petroMag_z, W1, W2, W3, W4 magnitudes, not including any morphological parameters, the
precision, recall and f1-score for QSOs could achieve 0.94, 0.98, 0.96. The precision, recall and f1-score
for galaxies could achieve 0.96, 0.90, 0.93. The precision, recall and f1-score for galaxies could achieve
0.96,0.97, 0.97.

Our study had the similar precision, recall, f1-score, and accuracy as Cunha & Humphrey 2022.
The results seemed better than the others’ results introduced in Section 1. If we demanding no
omissions, we needed the higher recall. If we demanding the purity, we needed the higher precision.
Paying the close attention to the f1-score or AUC was not recommended. When we focused on the
QSOs study which was the minority class, the accuracy for the whole sample would not work.

In the former studies, such as Costa-Duarte et al. 2019, Baqui et al. 2021, the morphologies were
used as input features. However, excluding the morphological parameters were important. In many
of the following photometry surveys, there were no any morphological parameters included,


https://doi.org/10.20944/preprints202309.2160.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 September 2023 doi:10.20944/preprints202309.2160.v1

11

providing just different kinds of photometry. One could match the photometry of surveys to
ALLWISE or Simbad to get a labeled training set, and adopted the SMOTEENN to enlarge the
training set. They could train their own RF classifiers, and applied the models to their whole surveys
to get a clear classification of the sources. The SMOTEENN technology was necessary to search the
QSOs in the surveys.
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