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Abstract: Machinery degradation assessment can offer meaningful prognosis and health management infor-
mation. Although numerous machine prediction models based on artificial intelligence have emerged in recent
years, they still face a series of challenges: (1) Many models continue to rely on manual feature extraction. (2)
Deep learning models still struggle with long sequence prediction tasks. (3) Health indicators are inefficient for
remaining useful life (RUL) prediction with cross-operational environments when dealing with high-dimen-
sional datasets as inputs. This research proposes a health indicator construction methodology based on a trans-
former self-attention transfer network (TSTN). This methodology can directly deal with the high-dimensional
raw dataset and keep all the information without missing when the signals are taken as the input of the diag-
nosis and prognosis model. First, we design an encoder with a long-term and short-term self-attention mech-
anism to capture crucial time-varying information from a high-dimensional dataset. Second, we propose an
estimator that can map the embedding from the encoder output to the estimated degradation trends. Then, we
present a domain discriminator to extract invariant features from different machine operating conditions. The
case studies with the FEMTO-ST bearing dataset and the Monte Carlo method for RUL prediction during the
degradation process are conducted. The experiment results fully exhibited the significant advantages of the
proposed method compared to other state-of-the-art techniques.

Keywords: feature extraction; prognostics; self-attention transfer network; high-dimensional data; remaining
useful life prediction

1. Introduction

Machine condition prognostics is the critical part of intelligent health management (PHM) sys-
tem, which aims to predict a machine's remaining useful life (RUL) based on condition monitoring
information [1]. The general PHM procedures include the construction of health indicators (HIs) and
RUL prediction. The Hl is a crucial variable that indicates the current machine health condition, and
also it represents the information extracted from sensor data and provides degradation trends for
RUL prediction.

The HI construction process is called data fusion and has three categories: feature-level, decision-
level, and data-level fusion[2]. Feature-level fusion methods rely on prior knowledge of degradation
mechanisms and physical models. Ma [3] reported a multiple-view feature fusion method for pre-
dicting the RUL of lithium-ion batteries(LiBs). Decision-level techniques fuse high-level decisions based
on individual sensor data and do not depend on raw-signal feature extraction. Wei [4] proposed a
decision-level data fusion method to map a unique sensor signal onto reliable data to improve the
capability of the quality control system in additive manufacturing and RUL estimation for aircraft
engines. Data-level fusion methods find the embedding feature suitable for a task from raw data.
They can monitor the machine system state based on the requirements of an effective aero-engine
prognostic and also the monitoring task has strong versatility. Chen[5] proposed an improved HI
fusion method for generating a degradation tendency tracking strategy to predict gear's RUL. Wang
[6] extended the extreme learning machine to an interpretable neural network structure, which can
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automatically localize informative frequency bands and construct HI for machine condition monitor-
ing. RUL prediction reveals the remaining operating time before equipment requires maintenance.
They can be classified into four categories: physics model-based, statistical model-based, artificial
intelligence-based, and hybrid methods [7]. Many recent studies have focused on artificial intelli-
gence-based machine RUL prediction methods such as convolutional neural networks (CNNs) [8],
long short-term memory (LSTM) recurrent networks [9], and gated recurrent (GRU) networks[10].
Recurrent neural networks (RNNs) have gradually become the most popular of these methods. Many
scholars have focused on LSTM recurrent networks and GRU networks to address the vanishing gra-
dient problem. Xiang [11] added an attention mechanism to the basis of an ordered, updated LSTM
network, which further improved the robustness and accuracy of the LSTM network-based RUL pre-
diction model.

Although these methods can achieve an effective machine prognostic, most artificial intelligent-
based models rely on manual feature extraction (HI construction). Manual feature extraction inevita-
bly leads to information loss, which has a negative influence on prognostics. Several studies have
focused on allowing neural networks to extract features automatically from the original input, a pro-
cedure that can avoid input information loss from manual feature extraction. In the fault diagnosis
field, artificial intelligence-based models exhibit excellent fault diagnosis performance with the orig-
inal vibration signal input [12]. They can directly extract disguisable fault features from unlabeled
vibration signals [13]. These methods mainly utilize CNNs to realize automatic feature extraction.
Therefore, several researchers have attempted to utilize CNNs to extract degradation features for
predictive purposes. Xu [14] applied a dilated CNN to the field of prognostics, used five convolu-
tional layers to extract features from the original signal, and combined them with a fully connected
network to realize effective prognostics. Li [15] proposed a multivariable machine predictive method
based on a deep convolutional network. The proposed method uses the time-window method to
construct 2D data as convolutional network input. Ren [16] built a spectrum principal energy vector
from a raw vibration signal as a CNN input for bearing prognostics. CNNs demonstrate a strong
capability in high-dimensional input situations but are not good at dealing with long-term series
prognostics tasks. RNNs can easily construct long-term relationships but cannot directly utilize the
abundant long-term information owing to their limited in-network processing capacity. Thus, this
study proposes building a network that can directly deal with high-dimensional, long-term, time-
series data for machine prognostics. The aim was to establish the long-term degradation relationship
for prognostics from a large amount of raw data without relying on manual feature extraction and
HI construction.

Another non-negligible defect of the existing prognostics methods is that all degradation da-
tasets satisfy independent and identically distributed conditions. Due to the operating condition and
fault type variation, a distribution discrepancy generally exists between degradation datasets (each
degradation dataset is an independent domain), leading to performance fluctuation in prognostics
methods. Transfer learning (TL) is introduced to help artificial intelligence-based prognostics meth-
ods extract domain-varied features and achieve effective outcomes under cross-operating conditions.
TL can utilize the knowledge learned in previous tasks for new tasks by removing the domain invar-
iance feature [17], which is widely used in fault-diagnosis tasks. In recent years, many researchers
have focused on TL application in the prognostics field to achieve effective cross-operating condition
prognostics. For example, Wen [18]utilized a domain adversarial neural network structure to solve
the crossing domain prognostic problem. Roberto [19]proposed a domain adversarial LSTM neural
network that achieved effective aero-engine prognosis. Mao [20] performed a transfer component
analysis that sequentially adjusts the features of current testing bearings from auxiliary bearings to
enhance prognostics accuracy and numerical stability. This study introduces TL to extract the general
representation of bearing degradation data from different operating conditions and the final fault
types to achieve prognostics in cross-operating conditions. Figure 1 shows a general transfer learning
algorithm for the cross-operating conditions” Hls.


https://doi.org/10.20944/preprints202309.2035.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 September 2023 doi:10.20944/preprints202309.2035.v1

A TL

Health 4\ v Health

Failure - . >t Failure
Operating condition 1

t
Operating condition 2

Health

Failure
Cross-operating

TL TL

condition HIs
A

Health| j
€

Failur

t
Operating condition 3

Figure 1. Transfer learning for cross-operating condition Hls construction.

Transformer [21] is a popular multi-modal universal architecture neural network architecture.
The transformer utilizes a self-attention mechanism to capture the long-term dependence (spatial
dependence) information between input elements in a sequence. It uses the full sequence input for
each inference; therefore, it is less affected by the sequence length than traditional methods (RNN
and LSTM). This feature of the transformer network is suitable for the prognostic task. Zhang [22]
proposed a dual-aspect transformer network to fuse the time steps and sensor information for long-
time machine prognostic. Su [23] proposed a bearing prognostic method consisting of a transformer
and LSTM, achieving effective RUL prediction. Thanks to the advantages of the transformer archi-
tecture in processing long series and high-dimensional features, it has the potential to become a well-
data-driven prognostic tool. Therefore, the cross-domain prognostic based on a transformer architec-
ture is studied.

To address the limitations introduced by the above issues concerning feature extraction, cross-
operating conditions, and different data distributions, this study takes the FEMTO-ST bearing dataset
as an example to explore the degradation process based on a transformer-based self-attention transfer
learning network (TSTN). The method can automatically construct an HI from high-dimensional fea-
ture inputs and realize long-term information association to monitor machine conditions. The inno-
vations and contributions of this study are summarized as follows:

(1)Development of TSTN for Machine Prognostics:

We have introduced the Transformer-Based Self-Attention Transfer Learning Network (TSTN)
as a dedicated solution for machine prognostics. TSTN leverages long-term, high-dimensional spec-
trum vectors as its input and directly produces a linear Health Index (HI) output, a numerical value
ranging from 0 to 1. This HI value is straightforwardly compared to a failure threshold of 1. The core
transformer architecture within TSTN plays a pivotal role in extracting critical features from extended
time sequences.

(2)Incorporation of Long-term and Short-term Self-Attention Mechanisms:

TSTN incorporates both long-term and short-term self-attention mechanisms, empowering it to
discern short-term and long-term fluctuations in machine conditions. By analyzing historical high-
dimensional feature data in conjunction with current information, TSTN excels at identifying evolv-
ing machine states.

(3)Integration of Domain Adversarial Network (DAN) in TSTN:

To enhance TSTN's robustness and versatility, we have integrated a Domain Adversarial Net-
work (DAN) within its architecture. DAN effectively minimizes data disparities across various oper-
ational conditions, thus enabling TSTN to monitor machine states consistently across different sce-
narios and environments. This integration significantly extends TSTN's applicability for cross-oper-
ation machine state monitoring.
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The remainder of this paper is organized as follows. Section 2 introduces the preliminaries of
the proposed method. The principle of the proposed algorithm is presented in Section 3. Section 4
describes the proposed model's experimental study, and Section 5 summarizes this work.

2. The Related Work

This section reviews the basic architecture of the transformer network structure and adversarial
domain structure.

2.1. Transformer Network Structure

Vaswani proposed a transformer network structure [21]. This network is used to solve the short-
comings of the sequential computation network; that is, the number of operations required to relate
signals from two arbitrary input positions increases with the distance between positions. The critical
part of the transformer is the self-attention layer, which consists of two sub-parts: the multi-head
attention layer and the feedforward network (FFN). The structure of the self-attention layer is illus-

trated in Figure 2.
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Figure 2. Details of the self-attention layer network structure.

The critical operation of the self-attention layer is scaled dot-product attention (right side of Fig-
ure 2).

Assuming that the input data X consists of 72 patches, the i—thpatch is denoted as X;, and
the corresponding "query” (q € R™™ ), "keys" (k e R™~ ), "values" (V€ R ot ) can be calculated
through linear mapping (q, = W, xx," , K, = Wy x x,v,=W,xx).

In addition, W, e R moder e W, e R ot ,and W, € R U yere trainable variables.

To improve the learning capability of the self-attention layer, k, V,and q are linearly pro-
jected /4 times, which is called the multi-head attention layer. For example, (;is decomposed into

[4,,.9,,.+.4,, |, and the operations of K; and V; are similar to those of (;. J—th sub-parts of

q,,k;,and V, aredenoted as q,,.k,;,and v, respectively. The scaled dot-product attention op-

L7

eration is:
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T
qi,jkdot,j

\/d—k i,js (1)

where K,  referstoall k, ; that must be calculated via the scaled dot-product attention operation.

Head, ; = att(q; ;, Ky >V, ; £ softmax

After the scaled dot-product attention operation, the output results of the multi-head attention layer
are

MultiHead, = Concat ( Head,, Head, -, Head, ) W, )

d itel ><dm(l § . . . o1 .
where W7 g R me represents the learnable linear projection. To facilitate expression, the oper-

ations (1) and (2) are summarized into one operation symbol SM(q, ;,k v, ;) . FEN consists of

dot, ;>
one hidden layer, and the density of the hidden layer is denoted as d; ; the density of the output
layer is d

model *

2.2. Domain Adversarial Network

An adversarial domain network (DAN) is an effective TL method that can extract domain-invar-
iant features[24], and its architecture is shown in Figure 3. The DAN introduces adversarial learning
to achieve domain adaptation. In addition to the standard feed-forward feature extractor and label
predictor, the DAN contains a domain classifier that connects to the feature extractor via a gradient
reversal layer. During backpropagation-based training, the gradient reversal layer multiplies the gra-
dient by a certain negative constant. The training process must minimize label prediction and domain
classification losses. The feature distributions of all domains were similar to those of the domain clas-
sifier and the gradient reversal layer.

Label

predictor

Feature

extractor

Gradient Domain dis-

reversal criminator

Figure 3. Architecture of an adversarial domain network.

3. The Proposed TSTN
3.1. TSTN structure

The proposed network structure for machine RUL prediction based on the transformer and mul-
tiple-source domain adaptation is shown in Figure 4. The proposed network consists of three sub-
parts: an encoder, HI estimator, and domain discriminator.

The input data of this network is X,. When data x, € R“*"”  are fed into the network p,a

learnable patch X;is added in front of vector X, and multiplies this vector \/; . The input sequence

is X e R""*” The learnable patch on the encoder output serves as the HI representation, connect-
ing the HI estimator and domain discriminator. Learnable patches calculate self-attention with others
to capture the long-term collected signal sequence's high-dimensional feature (spectrum) change. The
encoder of the proposed TSTN consists of a local, long-term, and short-term self-attention layer and
a feed-forward network. For the ease of expression, H, e R""™"” and H_,_ R are

input output
denoted as encoder input and output, respectively.

It is well known that the datasets collected from different operating conditions and fault types
are challenging in terms of satisfying the independent identically distribution (IID) property. Hence,
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this proposed method introduces a domain discriminator with a gradient reversal layer to make the
HI representation distribution of different degradation datasets similar. This method can realize
prognostics under cross-operating conditions. The encoder, HI estimator, and domain discriminator
are introduced as follows. The detailed network settings are listed in Figure 4. In the training process,
the forward data flow is plotted using blue arrows, and the backward gradient flow is plotted using
orange arrows. The functions L, and L, were added directlyas L=L,, +L, in the training pro-

cess. Figure 4 displays the parameter setting of the proposed TSTN methodology.
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r=-1-- - - —— =
HI Domain /f‘
I Estimator | discriminator !
1 HI Domain '
jestimation label !
1
. t |
(T S 5 B | M et i

L

& Data flow for predicting RUL and domain adaptation /

| Feed forward network |

|
|

N 1 A

< |

A

Short-time self-attention ‘ L

'y e
1 i |

o<
1 A 1
: I Local self-attention | : -
! < !
1 'y 1
I . —1 [\
| | Long-time self-attention | ? *
| I r Y A444 IYVYY
| coder | [ 1 {111 e m
I PR S s s | ) i L ¥ H
I Data input I |learnable NN [(T11] [ B
| I patch Data input

Figure 4. The whole flowchart of the proposed TSTN methodology.

*  Query-key-value computation. The encoder input H, . consists of 1+mxn patches. The

input

I —th patch collected in the s—ri frameis H, , denoted as h ,, and the query, key, and

input
_ T _ T _ T
value vectors are [, computed by q,, =W, xh ', K, =W;xh ', and v =W, xh ,

respectively. Following the extended derivation in[25], denoting the s — ¢4 frame correspond-

ing time is,,, , and the rotary position embedding in the proposed method as follows:

ql Cos tindexgl q2 —sin tindexgl
q2 Cos t[ndexal ql Sin tindexel
q, coslb, n —sin/6,

qf,=| 4 |®| coslf |+| ¢; |®| sinlf |,(3)

qdmudelfl cos Zep/4 qq —Sin IHPM

q,

mode/

cosll,, q,

‘model/-1

sinl6,,

model


https://doi.org/10.20944/preprints202309.2035.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 September 2023 doi:10.20944/preprints202309.2035.v1

The predefined parameter is © = {49 = 10000 1) dmoas ,J € [1,29-'- d_ ../ 4]}, and the calculation

> ““model
operation of ki , is similar to that in (3). Using this position embedding method, the signal collected

time information

wdec and the spectrum location information / of patch h,; can be recognized us-

ing self-attention. The first learnable patch h,; needs the use of the same method to generate qfio ,
kg’o,and V- Since the time-embedding information offers the time auxiliary information, private

over-fitting £, will time a random value governed by N (1,0.003) .

¢ Long-term, local, and short-term self-attention. The dimensions of the input data X, are enor-
mous. The number of calculations is large when self-attention is calculated for each patch,
thereby confusing the network. We propose three sub-self-attention parts to allow the network
to capture the degradation trend from the high-dimensional spectrum: local, long-term, and
short-term self-attention.
To trace the long-term trend of machine conditions, we compute it by comparing each patch
with all patches at the same spectrum location.

ar o —sural [k (K v @

To learn the spectrum information from each collected signal, local self-attention operation only
computes patches with the others collected simultaneously. The local self-attention operation is:

ail(mca” = SM(qil ’[k(ﬁo’{kii }izl,u.,n ] »Var): ®)
The rapid, short-term changes in the machine conditions can be computed as follows:

ail(shol‘l-term) = SM(qf,[ b} |:k(1)z,0 s {kf/ }izl,---,s‘j—] - j| s Vs,l) 7 (6)

where § denotes the first § frame on which we wish to focus. After calculating all patches H,

input

via a self-attention operation, the output is represented as A .

e Residual connection and layer normalization. After the self-attention computation, the output
of the attention layer is calculated via the B = LayerNorm( A+H )residual connection [26]

input
and layer normalization[27].

e  FFN and layer normalization. The final layer of the encoder is the FFN and layer normalization;
that is, H = LayerNorm (B + FFN(B)) .
The feed-forward layer consists of an MLP with one hidden layer. The density of the hidden

output

layer is denoted by dy; =8p, and the density of the output layer is denoted by p . Notably, the

activation function of the hidden layer is GeGLU [28], and the output layer has no activation function.
GeGLU introduced gates to modulate the linear projection, which can control the information that is
not conducive to HI estimation passed on to the encoder.

Subsequently, all operationsin H, , areencoder outputs. To combine the long-term, local, and

short-term self-attention into one encoder, B®°"¢*™ is fed back to calculate the local self-attention

instead of being passed to the FFN. Hence, the new QR,KR and V are generated from Bret™
and fed into Eq (5) to calculate local self-attention. The operation of short-term self-attention was
similar to that of local self-attention.

e  HI estimator. An MLP with one hidden layer was connected to the learnable patch of the en-
coder output, and the MLP output was the HI estimated result €;; .
To indicate HI easily and intuitively, the training label is defined by the index results from the
normalized operating time ¢ divided by the machine system operating time T, label,, , = /T . As-

suming that G datasets are required in the training process, the loss function Lf,, from the

g-th training dataset is the mean squared error of e, and label,, . The naive average induces
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label imbalance because the length of the dataset varies. An adaptive weighting scheme [29] is intro-
duced to avoid the label imbalance problem, and the formula is

G G
Ly = z exp(L? )Lgm/ Z exp(L?,;) - (7)
g=1 g=l

e Domain discriminator. The domain discriminator consisted of an MLP with one hidden layer
connected to the learnable patch of the encoder output. The number of domain discriminators is
equal to the number of degradation-process datasets. The output of each domain discriminator
was a 2D vector. The second and first elements represent the current inputs sampled during the
degradation process. The network learns a domain-invariant HI representation if the domain
discriminator cannot differentiate the current input from the dataset.

Assuming that this network has G domain discriminators, the loss function Lf, of a single-
domain discriminator g is based on cross-entropy loss. The same adaptive weighting scheme was

applied to make domain discriminators available. A gradient reversal layer is inserted between the
domain discriminator and the learnable patch of the encoder output. In the forward process, the gra-
dient reversal layer performs nothing; however, in the backward process, the gradient is multiplied
by a pre-specified negative constant —A . The pre-specified negative constant —A is followed by

—A= —(2/ (1 + eXp(—lolV aining _ process )) - 1) in training, where training process denotes the

training progress linearly changing from zero to one.
Table 1 shows the network structure parameter setting of TSTN.

Table 1. Parameter setting of TSTN.

Encoder Multi-Head d . dyy Dropout rate
16 64 512 0.2
HI estimator Layer Dense Activation func- number
(MLP) tion
Fully connected 32 GeGLU 1
Fully connected 1 GeGLU 1
Domain dis- Layer Dense Activation func- number
criminator (MLP) tion
Fully connected 32 GeGLU Equal to dataset
Fully connected 2 Softmax number

3.2. Data pre-processing

For the data pre-processing part, there are two sub-parts: signal collection and the decomposi-
tion of patches. Figure 5 displays the data pre-processing input network.
o  Signal collection. The input of the proposed TSTN was clip X, € R"" consisting of

frames with 512 spectrum features extracted from the measured vibration signal. The frames
were divided according to the time to obtain abundant temporal information. The time-divided

. -1-i
relationship follows b =T X Hsm(m”fdwc X T — Zj + lj / 2} ,
m p—

index = (0,1,2,' e m—=2,m- 1) , which 7 denotes the time required to collect data.
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Assume m=5 n=4
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Figure 5. Data pre-processing input network.

e  Decomposition of patches. Each spectrum feature is decomposed into non-overlapping patches
with a size of p ; that is, = 512/ D . These patches are then flattened into a vector
X e R™™*7 as the network input.
In summary, the data preprocessing process can be divided into the following seven steps:
(1) Index collection: Assuming that the total length of the time series is 20s, set parameter m =5. The
indexes for collecting data are 0, 5, 10, 15 ,and 20.

(2) Calculation of times: From the indexes, we can calculate the ¢,

nder 15INE the index.

(3) Sampling data: Based on the calculated

e » the data are sampled at these time.

(4) Fourier transform: Perform Fourier transform on the sampled time.

(5) Select data points: From the Fourier transformed data, select the first 512 points for each sampling
time.

(6) Divide into blocks: Divide the selected 512data points into 4bloacks, each with a length of 1278.

(7) Reverse concatenation: concatenate these 4 blocks in reverse order.

3.3. TSTN training

This section mainly introduced the proposed diagnosis framework. First, the problem descrip-
tion is illustrated. The proposed machine monitoring methodology is based on historical data, fitting
the normalized RUL label ); (1-0) via the input features X;. Then, the transfer task is utilized to
extract the domain invariant part for cross-operation condition monitoring. The prognostics proces-
sion consists of two steps: first, constructing the TSTN network based on the input spectrum feature
combined with the health indicator; second, using the Monte Carlo method to predict RUL via the
TSTN output HI. In this section, a TSTN is developed to predict the machine HI. Details of the pro-
posed TSTN network are presented and shown in Figure 6. The domain discriminator of the devel-
oped TSTN was utilized only in the TL training process.
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Figure 6. Flowchart of the proposed TSTN model and its application.

In actual applications, the output of the HI estimator is the machine-condition monitoring HI of
the proposed framework. This study utilized the Monte Carlo method based on a linear model with
exponential smoothing with parameter 0.9 to generate the downstream prognostics result.

4. Experiment Analysis
4.1. Training and testing regimes

Training regime. Stochastic gradient descent (SGD) with 0.9 momenta is the optimizer in this work.
For practical training, the learning rate throughout the training varied according to the following
equation:

ﬂzmin(S_O'S,SXWS_l‘S )/(1+10Tp )0.75 ®

where S is the number of current training steps, and W =1000. T, is a training process that linearly

changes from 0 to 1. The batch size is set to 32, the network weights are updated with gradient accu-
mulation during training, and the random seed was 66.

Testing regime. Once the network finishes training, the testing data are fed into the grid for testing.
Apart from performing data pre-processing, other operations are not required for testing. The HI
estimator output was the bearing health condition of the input data. The HI-estimated output of the
proposed method is ey .

4.2. Prognostics result

The validation dataset was obtained from the PRONOSTIA [30] experimentation platform to test
and validating bearing fault detection, diagnostic, and prognostic approaches. The rig bench is pre-
sented in Figure 7. When the test rig was initialized, a file that contained a 0.1 s vibration signal with
a sampling frequency of 25.6 kHz was generated and recorded every 10 s. Three operating conditions
were considered; each had two training sets and several testing sets. Information on the training and
testing sets is presented in Figure 7.
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Figure 7. Overview of PRONOSTIA.

Table 2. Information on the FEMTO-ST dataset.

Operating condition 1 2 3
Speed (rpm) 1800 1650 1500
Loading (N) 4000 4200 5000

Training dateset 1-1,1-2 2-1,2-2 3-1,3-2
Testing dataset 1-3,1-4,1-5,1-6,1-7 2-3,2-4,2-5,2-6,2-7 3-3

The scoring benchmark was set according to [30], and only the vertical vibration signal (2560
points per file) was used to generate the network output. The size of the spectrum generated via fast
Fourier transform was 512. The pre-processing operation entailed 21 spectrum frames, and each
structure was decomposed into eight non-overlapping patches. The training epoch was set to 60. To
achieve cross-domain condition monitoring in the bearing, we use six training datasets in the same
training process.

1 1 1
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RUL
RUL
RUL

0 1000 2000 0 1000 2000 0 1000 2000

File File File
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RUL

0 1000 2000 0 200 400 600 0 200 400 600

File File File

Estimated HI Predicted RUL Ture RUL

Figure 8. Estimated HIs of the proposed method.
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After finishing the training process of the proposed network, the network can be utilized to
monitor the health condition of the bearing in the testing data. The proposed method's expected out-

put ey, isadirect HI of 0 to 1. To demonstrate the capability of the direct HI in RUL prediction, we

use the Monte Carlo method based on the linear model for curve fitting and RUL prediction ( preg,
)-

Figure 8 shows the estimated HI results and RUL predictions from the test data of the proposed
method. The blue line represents the HI output of the proposed method. The green line refers to the
RUL prediction and 95% confidence interval, and the yellow area represents the probability distribu-
tion function of the RUL prediction result preg;, ,. As shown in Figure 8, HI estimation using the

proposed method can effectively capture the bearing degradation trend. The proposed method can
provide nearly linear HI estimation.

5. Comparisons and Analysis

Then, the normalized prediction error £7; and benchmark scores were calculated [30]. The re-

sults of all the testing sets are listed in Table 3. As presented in Table 3, except for testing sets 2-7 and
3-3, the RUL prediction results of the proposed method are reasonable. The errors in the prediction
results of datasets 1-5 to 2-6 were shallow, and the proposed method could effectively perform bear-
ing condition monitoring with testing sets 1-5, 1-7, 2-4, and 2-6. Compared to the RNN-based RUL
prediction method [31], convolutional LSTM network [32], Bi-directional LSTM network with atten-
tion mechanism [33] and the traditional RUL prediction method based on vibration frequency anom-
aly detection and survival time ratio [34], the proposed TSTN method has higher RUL prediction
accuracy. These results confirm that the proposed method is applicable to the prognostics of mechan-
ical rotating components. For the last two datasets, the RUL predictions exhibit large deviations. The
reason for these large deviations is that the vibration signal changes slightly only in the early degra-
dation process, which displays a linear degradation trend. However, as time goes on, the linear trend

becomes nonlinear. The HI e, does not have a linear change rate in the latter stage. Hence, the pro-

posed HI is unsuitable for predicting the RUL in latter-stage degradation. However, compared with
other methods, the computational complexity is higher, and the training time is 3 hours.

Table 3. RUL Prediction results of the proposed method.

Dataset Er,% (our) Er%|[31] Er%[34] Er%[33] Er% [32]

1-3 0.5 43 37 -5 55
1-4 23 67 80 -9 39
1-5 25 -22 9 22 -99
1-6 9 21 -5 18 -121
1-7 -2 17 -2 43 71
2-3 82 37 64 45 76
2-4 85 -19 10 33 20
2-5 2 54 -440 50 8
2-6 70 -13 49 26 18
2-7 -1122 -55 -317 -41 2
3-3 -1633 3 90 20 3

Score 0.4017 0.2631 0.3066 0.3198 0.3828

5.1. Discussions of the proposed methodology

Influence of multi-head number. To improve the learning capability of the self-attention layer
of the encoder, linearly project keys, values, and query 7% times, which is called the multi-head

doi:10.20944/preprints202309.2035.v1
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attention operation. In this section, the influence of multi-head numbers is discussed. The predicted
RUL benchmark scores of different multi-head numbers indicate that 16 (score is 0.4017) is the most
suitable for the prognostics task, and it is higher than the results of four multi-head (score is 0.0607)
and eight multi-head (score is 0.1124) numbers. Theoretically, the larger the multi-head number, the
stronger the fitting capability. However, the rotary position embedding method requires almost four
numbers to indicate location information. When the multi-head operation breaks up the rotary posi-
tion embedding, the self-attention calculation cannot capture the time information. Therefore, the
score of the 32 multi-head numbers was 0.2631, and that of the 64 multi-head numbers was 0.0689. In

summary, the multi-head number needs to be set to @, / 4 in the prognostics task.

1-6 1-7 2-4 2-6
1 1 1 1
= 05 = 05 2 05 2 05
=} =} =) =)
~ ~ >4 4
0 0 0 0
0 1000 2000 0 1000 2000 0 200 400 600 0 200 400 600
File File File File
FTFN FTFN without transfer learning True RUL

Figure 9. Comparison of TSTN and TSTN without transfer learning.

Discussions with/without transfer learning. The proposed method uses the domain discrimi-
nator with the gradient reversal layer to extract the domain-invariant RUL representation. We expect
to use the TL method to improve the linearity of the estimated HI under different operating condi-
tions. An experiment was conducted on a TSTN without a TL, reflecting the domain discriminator's
effectiveness in cross-operating condition monitoring. Aside from removing the domain discrimina-
tor, the other network framework settings were similar to those in Figure 9. The RUL prediction score
decreased from 0.4017 to 0.0515. The prognostic results of TSTN and TSTN without a domain dis-
criminator for test datasets 1-6, 1-7, 2-4, and 2-6 indicate TL's effectiveness. Figure 9 shows the com-
parison of TSTN and TSTN without transfer learning. The blue lines represent the classical TSTN HI
results, and the greenish-blue lines denote the Hl-estimated effects of TSTN without TL. TL improves
the TSTN prognostics capability in cross-operating condition situations.

Effectiveness of the self-attention mechanism. This study utilized test sets 1-6 to generate a
self-attention heatmap (shown in Figure 10) to indicate the effectiveness of the self-attention mecha-
nism. The longitudinal of the self-attention heatmap refers to the 7 time frames, and the transverse
of the self-attention heatmap pertains to the 16 multi-heads with eight patches. In this study, 1/3, 2/3,
and 1 of the normalized operating time were selected. When a patch has a high self-attention value,
the network focuses on that patch. Figure 10 shows that only a few heads undertake the HI estimation
task, but our previous study indicated that a sizeable multi-head number equates to strong learning
capability. A possible reason is that a large multi-head results in a flexible feature association capa-
bility, which means that features can be selected precisely.

The first self-attention layer was a long-term self-attention layer. In Figure 10, head 12 of long-
term self-attention captures the severe degradation at the end of the operating time, and head 4 fo-
cuses on the weak degradation at the early and middle operating stages. After the long-term self-
attention layer, the spectrum long-term change relationship was obtained, and the local self-attention
layer was used to capture abundant information in one frame. In Figure 10, a clear degradation rela-
tionship was captured. Head 11 of the local self-attention layer captured the weak degradation in the
early operating stage. Head 10 focuses on degradation in the middle operating phase, and head 13
focuses on rapid degradation at the late operational stage. Figure 10 shows that local self-attention
plays a greater role than the long-term self-attention layer. However, the learning capability sharply
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declined when the two layers' order was changed. This result indicates that the long-term self-atten-
tion layer generates the long-term relationship and is strengthened by the local self-attention layer.
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Figure 10. The long-term, local, and short-term self-attention heatmap from testing sets 1-6.

In summary, the multi-heads in the short-term self-attention layer focus on the spectrum value,
thereby making the proposed TSTN sensitive to spectrum value changes.

6. Conclusions

Machine prognostics play a crucial role in the automaticity and intelligence of industrial plants,
especially in intelligent plant manufacturing and asset health management. This study proposed a
TSTN-based machine prognostic method to solve the HI automatic construction with a high-dimen-
sional feature input in a cross-operating condition. The proposed method is integrated with a novel
transformer network structure with a domain adversarial TL consisting of an encoder, an HI estima-
tor, and a domain discriminator. First, the proposed TSTN automatically extracts features (HI) from
a long-term high-dimensional feature input, avoiding information loss caused by manual feature ex-
traction. Second, we have devised a self-attention mechanism that encompasses long-term, short-
term, and local perspectives, enabling it to discern the dynamic interplay between long-term and
short-term machine health conditions. Third, when incorporating the DAN TL method, it addresses
issues of cross-operating conditions and different data distributions. The domain discriminator with
a gradient reversal layer can generate an accurate and robust HI. In the future, we plan to collect
more datasets to verify the effectiveness of the proposed method. In addition, we will conduct further
research on improving the generalization ability of the method for dealing with extremely cross-op-
erating conditions, such as predicting the RUL for an unseen operating condition. The proposed
method is a promising methodology for coping with HI estimator construction with a high-dimen-
sional feature input, monitoring machine health conditions, and predicting machines' RUL in cross-
operating working conditions.
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