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Abstract: Machinery degradation assessment can offer meaningful prognosis and health management infor-

mation. Although numerous machine prediction models based on artificial intelligence have emerged in recent 

years, they still face a series of challenges: (1) Many models continue to rely on manual feature extraction. (2) 

Deep learning models still struggle with long sequence prediction tasks. (3) Health indicators are inefficient for 

remaining useful life (RUL) prediction with cross-operational environments when dealing with high-dimen-

sional datasets as inputs. This research proposes a health indicator construction methodology based on a trans-

former self-attention transfer network (TSTN). This methodology can directly deal with the high-dimensional 

raw dataset and keep all the information without missing when the signals are taken as the input of the diag-

nosis and prognosis model.  First, we design an encoder with a long-term and short-term self-attention mech-

anism to capture crucial time-varying information from a high-dimensional dataset. Second, we propose an 

estimator that can map the embedding from the encoder output to the estimated degradation trends. Then, we 

present a domain discriminator to extract invariant features from different machine operating conditions. The 

case studies with the FEMTO-ST bearing dataset and the Monte Carlo method for RUL prediction during the 

degradation process are conducted. The experiment results fully exhibited the significant advantages of the 

proposed method compared to other state-of-the-art techniques. 

Keywords: feature extraction; prognostics; self-attention transfer network; high-dimensional data; remaining 

useful life prediction 

 

1. Introduction 

Machine condition prognostics is the critical part of intelligent health management (PHM) sys-

tem, which aims to predict a machine's remaining useful life (RUL) based on  condition monitoring 

information [1]. The general PHM procedures include the construction of health indicators (HIs) and 

RUL prediction. The HI is a crucial variable that indicates the current machine health condition, and 

also it represents the information extracted from sensor data and provides degradation trends for 

RUL prediction. 

The HI construction process is called data fusion and has three categories: feature-level, decision-

level, and data-level fusion[2]. Feature-level fusion methods rely on prior knowledge of degradation 

mechanisms and physical models. Ma [3] reported a multiple-view feature fusion method for pre-

dicting the RUL of lithium-ion batteries(LiBs). Decision-level techniques fuse high-level decisions based 

on individual sensor data and do not depend on raw-signal feature extraction. Wei [4] proposed a 

decision-level data fusion method to map a unique sensor signal onto reliable data to improve the 

capability of the quality control system in additive manufacturing and RUL estimation for aircraft 

engines. Data-level fusion methods find the embedding feature suitable for a task from raw data. 

They can monitor the machine system state based on the requirements of an effective aero-engine 

prognostic and also the monitoring task has strong versatility. Chen[5] proposed an improved HI 

fusion method for generating a degradation tendency tracking strategy to predict gear's RUL. Wang 

[6] extended the extreme learning machine to an interpretable neural network structure, which can 
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automatically localize informative frequency bands and construct HI for machine condition monitor-

ing. RUL prediction reveals the remaining operating time before equipment requires maintenance. 

They can be classified into four categories: physics model-based, statistical model-based, artificial 

intelligence-based, and hybrid methods [7]. Many recent studies have focused on artificial intelli-

gence-based machine RUL prediction methods such as convolutional neural networks (CNNs) [8], 

long short-term memory (LSTM) recurrent networks [9], and gated recurrent (GRU) networks[10]. 

Recurrent neural networks (RNNs) have gradually become the most popular of these methods. Many 

scholars have focused on LSTM recurrent networks and GRU networks to address the vanishing gra-

dient problem. Xiang [11] added an attention mechanism to the basis of an ordered, updated LSTM 

network, which further improved the robustness and accuracy of the LSTM network-based RUL pre-

diction model. 

Although these methods can achieve an effective machine prognostic, most artificial intelligent-

based models rely on manual feature extraction (HI construction). Manual feature extraction inevita-

bly leads to information loss, which has a negative influence on prognostics. Several studies have 

focused on allowing neural networks to extract features automatically from the original input, a pro-

cedure that can avoid input information loss from manual feature extraction. In the fault diagnosis 

field, artificial intelligence-based models exhibit excellent fault diagnosis performance with the orig-

inal vibration signal input [12]. They can directly extract disguisable fault features from unlabeled 

vibration signals [13]. These methods mainly utilize CNNs to realize automatic feature extraction. 

Therefore, several researchers have attempted to utilize CNNs to extract degradation features for 

predictive purposes. Xu [14] applied a dilated CNN to the field of prognostics, used five convolu-

tional layers to extract features from the original signal, and combined them with a fully connected 

network to realize effective prognostics. Li [15] proposed a multivariable machine predictive method 

based on a deep convolutional network. The proposed method uses the time-window method to 

construct 2D data as convolutional network input. Ren [16] built a spectrum principal energy vector 

from a raw vibration signal as a CNN input for bearing prognostics. CNNs demonstrate a strong 

capability in high-dimensional input situations but are not good at dealing with long-term series 

prognostics tasks. RNNs can easily construct long-term relationships but cannot directly utilize the 

abundant long-term information owing to their limited in-network processing capacity. Thus, this 

study proposes building a network that can directly deal with high-dimensional, long-term, time-

series data for machine prognostics. The aim was to establish the long-term degradation relationship 

for prognostics from a large amount of raw data without relying on manual feature extraction and 

HI construction. 

Another non-negligible defect of the existing prognostics methods is that all degradation da-

tasets satisfy independent and identically distributed conditions. Due to the operating condition and 

fault type variation, a distribution discrepancy generally exists between degradation datasets (each 

degradation dataset is an independent domain), leading to performance fluctuation in prognostics 

methods. Transfer learning (TL) is introduced to help artificial intelligence-based prognostics meth-

ods extract domain-varied features and achieve effective outcomes under cross-operating conditions. 

TL can utilize the knowledge learned in previous tasks for new tasks by removing the domain invar-

iance feature [17], which is widely used in fault-diagnosis tasks. In recent years, many researchers 

have focused on TL application in the prognostics field to achieve effective cross-operating condition 

prognostics. For example, Wen [18]utilized a domain adversarial neural network structure to solve 

the crossing domain prognostic problem. Roberto [19]proposed a domain adversarial LSTM neural 

network that achieved effective aero-engine prognosis. Mao [20] performed a transfer component 

analysis that sequentially adjusts the features of current testing bearings from auxiliary bearings to 

enhance prognostics accuracy and numerical stability. This study introduces TL to extract the general 

representation of bearing degradation data from different operating conditions and the final fault 

types to achieve prognostics in cross-operating conditions. Figure 1 shows a general transfer learning 

algorithm for the cross-operating conditions’ HIs. 
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Figure 1. Transfer learning for cross-operating condition HIs construction. 

Transformer [21] is a popular multi-modal universal architecture neural network architecture. 

The transformer utilizes a self-attention mechanism to capture the long-term dependence (spatial 

dependence) information between input elements in a sequence. It uses the full sequence input for 

each inference; therefore, it is less affected by the sequence length than traditional methods (RNN 

and LSTM). This feature of the transformer network is suitable for the prognostic task. Zhang [22] 

proposed a dual-aspect transformer network to fuse the time steps and sensor information for long-

time machine prognostic. Su [23] proposed a bearing prognostic method consisting of a transformer 

and LSTM, achieving effective RUL prediction. Thanks to the advantages of the transformer archi-

tecture in processing long series and high-dimensional features, it has the potential to become a well-

data-driven prognostic tool. Therefore, the cross-domain prognostic based on a transformer architec-

ture is studied. 

To address the limitations introduced by the above issues concerning feature extraction, cross-

operating conditions, and different data distributions, this study takes the FEMTO-ST bearing dataset 

as an example to explore the degradation process based on a transformer-based self-attention transfer 

learning network (TSTN). The method can automatically construct an HI from high-dimensional fea-

ture inputs and realize long-term information association to monitor machine conditions. The inno-

vations and contributions of this study are summarized as follows: 

(1)Development of TSTN for Machine Prognostics: 

We have introduced the Transformer-Based Self-Attention Transfer Learning Network (TSTN) 

as a dedicated solution for machine prognostics. TSTN leverages long-term, high-dimensional spec-

trum vectors as its input and directly produces a linear Health Index (HI) output, a numerical value 

ranging from 0 to 1. This HI value is straightforwardly compared to a failure threshold of 1. The core 

transformer architecture within TSTN plays a pivotal role in extracting critical features from extended 

time sequences. 

(2)Incorporation of Long-term and Short-term Self-Attention Mechanisms: 

TSTN incorporates both long-term and short-term self-attention mechanisms, empowering it to 

discern short-term and long-term fluctuations in machine conditions. By analyzing historical high-

dimensional feature data in conjunction with current information, TSTN excels at identifying evolv-

ing machine states. 

(3)Integration of Domain Adversarial Network (DAN) in TSTN: 

To enhance TSTN's robustness and versatility, we have integrated a Domain Adversarial Net-

work (DAN) within its architecture. DAN effectively minimizes data disparities across various oper-

ational conditions, thus enabling TSTN to monitor machine states consistently across different sce-

narios and environments. This integration significantly extends TSTN's applicability for cross-oper-

ation machine state monitoring. 
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The remainder of this paper is organized as follows. Section 2 introduces the preliminaries of 

the proposed method. The principle of the proposed algorithm is presented in Section 3. Section 4 

describes the proposed model's experimental study, and Section 5 summarizes this work. 

2. The Related Work 

This section reviews the basic architecture of the transformer network structure and adversarial 

domain structure. 

2.1. Transformer Network Structure 

Vaswani proposed a transformer network structure [21]. This network is used to solve the short-

comings of the sequential computation network; that is, the number of operations required to relate 

signals from two arbitrary input positions increases with the distance between positions. The critical 

part of the transformer is the self-attention layer, which consists of two sub-parts: the multi-head 

attention layer and the feedforward network (FFN). The structure of the self-attention layer is illus-

trated in Figure 2. 

 

Figure 2. Details of the self-attention layer network structure. 

The critical operation of the self-attention layer is scaled dot-product attention (right side of Fig-

ure 2).  

Assuming that the input data X consists of n patches, the i th− patch is denoted as ix , and 

the corresponding "query" ( model1 d×∈q  ), "keys" ( model1 d×∈k  ), "values" ( model1 d×∈v  ) can be calculated 

through linear mapping ( T

i Q i= ×q W x ,
T

i K i= ×k W x ,
T

i V i= ×v W x ).  

In addition, model patchd d

Q

×∈W  , model patchd d

K

×∈W  , and model patchd d

V

×∈W  were trainable variables.  

To improve the learning capability of the self-attention layer, k , v , and q  are linearly pro-

jected h  times, which is called the multi-head attention layer. For example, iq is decomposed into 

,1 ,2 ,, , ,i i i h
  q q q , and the operations of ik  and iv  are similar to those of iq . j th−  sub-parts of 

iq , ik , and iv  are denoted as ,i jq , ,i jk , and ,i jv , respectively. The scaled dot-product attention op-

eration is: 
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, dot ,

, , dot , , , s( , , ) oftmax

T

i j j

i j i j j i j i j

k

Head att
d

 
=   

 

q k
q k v v ,      (1) 

where dot, jk refers to all ,i jk  that must be calculated via the scaled dot-product attention operation. 

After the scaled dot-product attention operation, the output results of the multi-head attention layer 

are 

( )1 2Concat , , , O

i hMultiHead Head Head Head= W ,         (2) 

where 
patch modeld dO ×∈W   represents the learnable linear projection. To facilitate expression, the oper-

ations (1) and (2) are summarized into one operation symbol , dot , ,( , , )i j j i jSM q k v . FFN consists of 

one hidden layer, and the density of the hidden layer is denoted as diffd ; the density of the output 

layer is modeld . 

2.2. Domain Adversarial Network 

An adversarial domain network (DAN) is an effective TL method that can extract domain-invar-

iant features[24], and its architecture is shown in Figure 3. The DAN introduces adversarial learning 

to achieve domain adaptation. In addition to the standard feed-forward feature extractor and label 

predictor, the DAN contains a domain classifier that connects to the feature extractor via a gradient 

reversal layer. During backpropagation-based training, the gradient reversal layer multiplies the gra-

dient by a certain negative constant. The training process must minimize label prediction and domain 

classification losses. The feature distributions of all domains were similar to those of the domain clas-

sifier and the gradient reversal layer. 

 

Figure 3. Architecture of an adversarial domain network. 

3. The Proposed TSTN 

3.1. TSTN structure 

The proposed network structure for machine RUL prediction based on the transformer and mul-

tiple-source domain adaptation is shown in Figure 4. The proposed network consists of three sub-

parts: an encoder, HI estimator, and domain discriminator. 

The input data of this network is tx . When data 
( )m n p

t

× ×∈x   are fed into the network p , a 

learnable patch 0x is added in front of vector tx and multiplies this vector p . The input sequence 

is (1 )m n p+ × ×∈X  . The learnable patch on the encoder output serves as the HI representation, connect-

ing the HI estimator and domain discriminator. Learnable patches calculate self-attention with others 

to capture the long-term collected signal sequence's high-dimensional feature (spectrum) change. The 

encoder of the proposed TSTN consists of a local, long-term, and short-term self-attention layer and 

a feed-forward network. For the ease of expression, (1 )

input

m n p+ × ×∈H   and (1 )

output

m n p+ × ×∈H   are 

denoted as encoder input and output, respectively. 

It is well known that the datasets collected from different operating conditions and fault types 

are challenging in terms of satisfying the independent identically distribution (IID) property. Hence, 
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this proposed method introduces a domain discriminator with a gradient reversal layer to make the 

HI representation distribution of different degradation datasets similar. This method can realize 

prognostics under cross-operating conditions. The encoder, HI estimator, and domain discriminator 

are introduced as follows. The detailed network settings are listed in Figure 4. In the training process, 

the forward data flow is plotted using blue arrows, and the backward gradient flow is plotted using 

orange arrows. The functions HIL and dL  were added directly as HI dL L L= +  in the training pro-

cess. Figure 4 displays the parameter setting of the proposed TSTN methodology. 

 

Figure 4. The whole flowchart of the proposed TSTN methodology. 

• Query–key–value computation. The encoder input 
inputH  consists of 1 m n+ ×  patches. The 

l th−  patch collected in the s th−  frame is 
inputH  denoted as ,s lh , and the query, key, and 

value vectors are indext computed by 
, ,

T

s l Q s l= ×q W h , , ,

T

s l K s l= ×k W h , and , ,

T

s l V s l= ×v W h , 

respectively. Following the extended derivation in[25], denoting the s th− frame correspond-

ing time is indext  , and the rotary position embedding in the proposed method as follows: 

mod 1 mod

mod mod 1
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3 41
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/4
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cos sin
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d dp
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θ

θ
θ

θ
θ

−

−
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    
    
    

= ⊗ ⊗    
    
    
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The predefined parameter is 
( ) [ ]{ }model4 1 /

model10000 , 1,2, , / 4
j d

j j dθ − −Θ = = ∈  , and the calculation 

operation of ,

R

s lk  is similar to that in (3). Using this position embedding method, the signal collected 

time information indext  and the spectrum location information l  of patch ,s lh  can be recognized us-

ing self-attention. The first learnable patch 0,0h  needs the use of the same method to generate 0,0

R
q ,

0,0

R
k ,and 0,0v . Since the time-embedding information offers the time auxiliary information, private 

over-fitting indext will time a random value governed by ( )1,0.003N . 

• Long-term, local, and short-term self-attention. The dimensions of the input data tx  are enor-

mous. The number of calculations is large when self-attention is calculated for each patch, 

thereby confusing the network. We propose three sub-self-attention parts to allow the network 

to capture the degradation trend from the high-dimensional spectrum: local, long-term, and 

short-term self-attention. 

To trace the long-term trend of machine conditions, we compute it by comparing each patch 

with all patches at the same spectrum location. 

{ }(Long-term)

, , 0,0 , ,1, ,
( , , , )R R R R

s l s l i l s li m
SM

=
 =
 

a q k k v


.             (4) 

To learn the spectrum information from each collected signal, local self-attention operation only 

computes patches with the others collected simultaneously. The local self-attention operation is: 

 { }(Local)

, , 0,0 , ,1, ,
( , , , )R R R R

s l s l s i s li n
SM

=
 =
 

a q k k v


.               (5) 

The rapid, short-term changes in the machine conditions can be computed as follows: 

 { }(Short-term)

, , 0,0 , ,1, , ; 1, ,
( , , , ) R R R R

s l s l i j s li s j n
SM

= =
 =   

a q k k v
 

,    (6) 

where s denotes the first s  frame on which we wish to focus. After calculating all patches 
input

H  

via a self-attention operation, the output is represented as A .  

• Residual connection and layer normalization. After the self-attention computation, the output 

of the attention layer is calculated via the ( )inputLayerNorm= +B A H residual connection [26] 

and layer normalization[27]. 

• FFN and layer normalization. The final layer of the encoder is the FFN and layer normalization; 

that is, ( )output ( )LayerNorm FFN= +H B B .  

The feed-forward layer consists of an MLP with one hidden layer. The density of the hidden 

layer is denoted by diff 8d p= , and the density of the output layer is denoted by p . Notably, the 

activation function of the hidden layer is GeGLU [28], and the output layer has no activation function. 

GeGLU introduced gates to modulate the linear projection, which can control the information that is 

not conducive to HI estimation passed on to the encoder. 

Subsequently, all operations in 
inputH  are encoder outputs. To combine the long-term, local, and 

short-term self-attention into one encoder, (Long-term)
B  is fed back to calculate the local self-attention 

instead of being passed to the FFN. Hence, the new ,R R
Q K and V are generated from (Long-term)

B  

and fed into Eq (5) to calculate local self-attention. The operation of short-term self-attention was 

similar to that of local self-attention.  

• HI estimator. An MLP with one hidden layer was connected to the learnable patch of the en-

coder output, and the MLP output was the HI estimated result HIe . 

To indicate HI easily and intuitively, the training label is defined by the index results from the 

normalized operating time t divided by the machine system operating time T, ,HI tlabel t T= . As-

suming that G  datasets are required in the training process, the loss function 
g

HIL  from the 

g th−  training dataset is the mean squared error of ,HI te  and ,HI tlabel . The naive average induces 
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label imbalance because the length of the dataset varies. An adaptive weighting scheme [29] is intro-

duced to avoid the label imbalance problem, and the formula is  

 
1 1

exp( ) exp( )
G G

g g g

HI HI HI HI

g g

L L L L
= =

=∑ ∑ .                    (7) 

• Domain discriminator. The domain discriminator consisted of an MLP with one hidden layer 

connected to the learnable patch of the encoder output. The number of domain discriminators is 

equal to the number of degradation-process datasets. The output of each domain discriminator 

was a 2D vector. The second and first elements represent the current inputs sampled during the 

degradation process. The network learns a domain-invariant HI representation if the domain 

discriminator cannot differentiate the current input from the dataset. 

Assuming that this network has G domain discriminators, the loss function 
g

DL  of a single-

domain discriminator g  is based on cross-entropy loss. The same adaptive weighting scheme was 

applied to make domain discriminators available. A gradient reversal layer is inserted between the 

domain discriminator and the learnable patch of the encoder output. In the forward process, the gra-

dient reversal layer performs nothing; however, in the backward process, the gradient is multiplied 

by a pre-specified negative constant λ− . The pre-specified negative constant λ−  is followed by 

( )( )( )2 1 exp 10 _ 1training processλ− = − + − −  in training, where _training process  denotes the 

training progress linearly changing from zero to one. 

Table 1 shows the network structure parameter setting of TSTN. 

Table 1. Parameter setting of TSTN. 

 Encoder Multi-Head  model
d  diff

d  Dropout rate 

16 64 512 0.2 

HI estimator 

(MLP) 

Layer Dense Activation func-

tion 

number 

Fully connected 32 GeGLU 1 

Fully connected 1 GeGLU 1 

Domain dis-

criminator (MLP) 

Layer Dense Activation func-

tion 

number 

Fully connected 32 GeGLU Equal to dataset 

number Fully connected 2 Softmax 

3.2. Data pre-processing 

For the data pre-processing part, there are two sub-parts: signal collection and the decomposi-

tion of patches. Figure 5 displays the data pre-processing input network. 

• Signal collection. The input of the proposed TSTN was clip 
512m

t

×∈X   consisting of m

frames with 512 spectrum features extracted from the measured vibration signal. The frames 

were divided according to the time to obtain abundant temporal information. The time-divided 

relationship follows 
1

sin 1 2
1 2

index

m index
t

m

πτ π
  − − = × × − +   −   

，

(0,1,2, , 2, 1)index m m= − − , which τ denotes the time required to collect data.  
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. 

Figure 5. Data pre-processing input network. 

• Decomposition of patches. Each spectrum feature is decomposed into non-overlapping patches 

with a size of p ; that is, 512 /n p= . These patches are then flattened into a vector 
( )m n p× ×∈X   as the network input.  

In summary, the data preprocessing process can be divided into the following seven steps: 

(1) Index collection: Assuming that the total length of the time series is 20s, set parameter m = 5. The 

indexes for collecting data are 0, 5, 10, 15 ,and 20. 

(2) Calculation of times: From the indexes, we can calculate the indext using the index. 

(3) Sampling data: Based on the calculated indext , the data are sampled at these time. 

(4) Fourier transform: Perform Fourier transform on the sampled time. 

(5) Select data points: From the Fourier transformed data, select the first 512 points for each sampling 

time. 

(6) Divide into blocks: Divide the selected 512data points into 4bloacks, each with a length of 1278. 

(7) Reverse concatenation: concatenate these 4 blocks in reverse order. 

3.3. TSTN training 

This section mainly introduced the proposed diagnosis framework. First, the problem descrip-

tion is illustrated. The proposed machine monitoring methodology is based on historical data, fitting 

the normalized RUL label iy  (1-0) via the input features ix . Then, the transfer task is utilized to 

extract the domain invariant part for cross-operation condition monitoring. The prognostics proces-

sion consists of two steps: first, constructing the TSTN network based on the input spectrum feature 

combined with the health indicator; second, using the Monte Carlo method to predict RUL via the 

TSTN output HI. In this section, a TSTN is developed to predict the machine HI. Details of the pro-

posed TSTN network are presented and shown in Figure 6. The domain discriminator of the devel-

oped TSTN was utilized only in the TL training process. 
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Figure 6. Flowchart of the proposed TSTN model and its application. 

In actual applications, the output of the HI estimator is the machine-condition monitoring HI of 

the proposed framework. This study utilized the Monte Carlo method based on a linear model with 

exponential smoothing with parameter 0.9 to generate the downstream prognostics result. 

4. Experiment Analysis 

4.1. Training and testing regimes 

Training regime. Stochastic gradient descent (SGD) with 0.9 momenta is the optimizer in this work. 

For practical training, the learning rate throughout the training varied according to the following 

equation: 

 ( ) ( )0.75
0.5 1.5min , 1 10S pS S W Tµ − −= × + ,    (8) 

where S is the number of current training steps, and 1000SW = . pT is a training process that linearly 

changes from 0 to 1. The batch size is set to 32, the network weights are updated with gradient accu-

mulation during training, and the random seed was 66.  

Testing regime. Once the network finishes training, the testing data are fed into the grid for testing. 

Apart from performing data pre-processing, other operations are not required for testing. The HI 

estimator output was the bearing health condition of the input data. The HI-estimated output of the 

proposed method is ,HI te . 

4.2. Prognostics result 

The validation dataset was obtained from the PRONOSTIA [30] experimentation platform to test 

and validating bearing fault detection, diagnostic, and prognostic approaches. The rig bench is pre-

sented in Figure 7. When the test rig was initialized, a file that contained a 0.1 s vibration signal with 

a sampling frequency of 25.6 kHz was generated and recorded every 10 s. Three operating conditions 

were considered; each had two training sets and several testing sets. Information on the training and 

testing sets is presented in Figure 7. 
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Figure 7. Overview of PRONOSTIA. 

Table 2. Information on the FEMTO-ST dataset. 

Operating condition 1 2 3 

Speed (rpm) 1800 1650 1500 

Loading (N) 4000 4200 5000 

Training dateset 1-1,1-2 2-1,2-2 3-1,3-2 

Testing dataset 1-3,1-4,1-5,1-6,1-7 2-3,2-4,2-5,2-6,2-7 3-3 

The scoring benchmark was set according to [30], and only the vertical vibration signal (2560 

points per file) was used to generate the network output. The size of the spectrum generated via fast 

Fourier transform was 512. The pre-processing operation entailed 21 spectrum frames, and each 

structure was decomposed into eight non-overlapping patches. The training epoch was set to 60. To 

achieve cross-domain condition monitoring in the bearing, we use six training datasets in the same 

training process. 

 

Figure 8. Estimated HIs of the proposed method. 
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After finishing the training process of the proposed network, the network can be utilized to 

monitor the health condition of the bearing in the testing data. The proposed method's expected out-

put ,HI te  is a direct HI of 0 to 1. To demonstrate the capability of the direct HI in RUL prediction, we 

use the Monte Carlo method based on the linear model for curve fitting and RUL prediction ( ,RUL tpre

). 

Figure 8 shows the estimated HI results and RUL predictions from the test data of the proposed 

method. The blue line represents the HI output of the proposed method. The green line refers to the 

RUL prediction and 95% confidence interval, and the yellow area represents the probability distribu-

tion function of the RUL prediction result ,RUL tpre . As shown in Figure 8, HI estimation using the 

proposed method can effectively capture the bearing degradation trend. The proposed method can 

provide nearly linear HI estimation. 

5. Comparisons and Analysis 

Then, the normalized prediction error iEr  and benchmark scores were calculated [30]. The re-

sults of all the testing sets are listed in Table 3. As presented in Table 3, except for testing sets 2-7 and 

3-3, the RUL prediction results of the proposed method are reasonable. The errors in the prediction 

results of datasets 1-5 to 2-6 were shallow, and the proposed method could effectively perform bear-

ing condition monitoring with testing sets 1-5, 1-7, 2-4, and 2-6. Compared to the RNN-based RUL 

prediction method [31], convolutional LSTM network [32], Bi-directional LSTM network with atten-

tion mechanism [33] and the traditional RUL prediction method based on vibration frequency anom-

aly detection and survival time ratio [34], the proposed TSTN method has higher RUL prediction 

accuracy. These results confirm that the proposed method is applicable to the prognostics of mechan-

ical rotating components. For the last two datasets, the RUL predictions exhibit large deviations. The 

reason for these large deviations is that the vibration signal changes slightly only in the early degra-

dation process, which displays a linear degradation trend. However, as time goes on, the linear trend 

becomes nonlinear. The HI ,HI te does not have a linear change rate in the latter stage. Hence, the pro-

posed HI is unsuitable for predicting the RUL in latter-stage degradation. However, compared with 

other methods, the computational complexity is higher, and the training time is 3 hours. 

Table 3. RUL Prediction results of the proposed method. 

Dataset %
i

Er (our) %
i

Er [31] %
i

Er [34] %
i

Er [33] %
i

Er  [32] 

1-3 0.5 43 37 -5 55 

1-4 23 67 80 -9 39 

1-5 25 -22 9 22 -99 

1-6 9 21 -5 18 -121 

1-7 -2 17 -2 43 71 

2-3 82 37 64 45 76 

2-4 85 -19 10 33 20 

2-5 2 54 -440 50 8 

2-6 70 -13 49 26 18 

2-7 -1122 -55 -317 -41 2 

3-3 -1633 3 90 20 3 

Score 0.4017 0.2631 0.3066 0.3198 0.3828 

5.1. Discussions of the proposed methodology 

Influence of multi-head number. To improve the learning capability of the self-attention layer 

of the encoder, linearly project keys, values, and query h  times, which is called the multi-head 
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attention operation. In this section, the influence of multi-head numbers is discussed. The predicted 

RUL benchmark scores of different multi-head numbers indicate that 16 (score is 0.4017) is the most 

suitable for the prognostics task, and it is higher than the results of four multi-head (score is 0.0607) 

and eight multi-head (score is 0.1124) numbers. Theoretically, the larger the multi-head number, the 

stronger the fitting capability. However, the rotary position embedding method requires almost four 

numbers to indicate location information. When the multi-head operation breaks up the rotary posi-

tion embedding, the self-attention calculation cannot capture the time information. Therefore, the 

score of the 32 multi-head numbers was 0.2631, and that of the 64 multi-head numbers was 0.0689. In 

summary, the multi-head number needs to be set to model 4d  in the prognostics task. 

 

Figure 9. Comparison of TSTN and TSTN without transfer learning. 

Discussions with/without transfer learning. The proposed method uses the domain discrimi-

nator with the gradient reversal layer to extract the domain-invariant RUL representation. We expect 

to use the TL method to improve the linearity of the estimated HI under different operating condi-

tions. An experiment was conducted on a TSTN without a TL, reflecting the domain discriminator's 

effectiveness in cross-operating condition monitoring. Aside from removing the domain discrimina-

tor, the other network framework settings were similar to those in Figure 9. The RUL prediction score 

decreased from 0.4017 to 0.0515. The prognostic results of TSTN and TSTN without a domain dis-

criminator for test datasets 1-6, 1-7, 2-4, and 2-6 indicate TL's effectiveness. Figure 9 shows the com-

parison of TSTN and TSTN without transfer learning. The blue lines represent the classical TSTN HI 

results, and the greenish-blue lines denote the HI-estimated effects of TSTN without TL. TL improves 

the TSTN prognostics capability in cross-operating condition situations. 

Effectiveness of the self-attention mechanism. This study utilized test sets 1-6 to generate a 

self-attention heatmap (shown in Figure 10) to indicate the effectiveness of the self-attention mecha-

nism. The longitudinal of the self-attention heatmap refers to the m  time frames, and the transverse 

of the self-attention heatmap pertains to the 16 multi-heads with eight patches. In this study, 1/3, 2/3, 

and 1 of the normalized operating time were selected. When a patch has a high self-attention value, 

the network focuses on that patch. Figure 10 shows that only a few heads undertake the HI estimation 

task, but our previous study indicated that a sizeable multi-head number equates to strong learning 

capability. A possible reason is that a large multi-head results in a flexible feature association capa-

bility, which means that features can be selected precisely. 

The first self-attention layer was a long-term self-attention layer. In Figure 10, head 12 of long-

term self-attention captures the severe degradation at the end of the operating time, and head 4 fo-

cuses on the weak degradation at the early and middle operating stages. After the long-term self-

attention layer, the spectrum long-term change relationship was obtained, and the local self-attention 

layer was used to capture abundant information in one frame. In Figure 10, a clear degradation rela-

tionship was captured. Head 11 of the local self-attention layer captured the weak degradation in the 

early operating stage. Head 10 focuses on degradation in the middle operating phase, and head 13 

focuses on rapid degradation at the late operational stage. Figure 10 shows that local self-attention 

plays a greater role than the long-term self-attention layer. However, the learning capability sharply 
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declined when the two layers' order was changed. This result indicates that the long-term self-atten-

tion layer generates the long-term relationship and is strengthened by the local self-attention layer.  

 

Figure 10. The long-term, local, and short-term self-attention heatmap from testing sets 1-6. 

In summary, the multi-heads in the short-term self-attention layer focus on the spectrum value, 

thereby making the proposed TSTN sensitive to spectrum value changes. 

6. Conclusions 

Machine prognostics play a crucial role in the automaticity and intelligence of industrial plants, 

especially in intelligent plant manufacturing and asset health management. This study proposed a 

TSTN-based machine prognostic method to solve the HI automatic construction with a high-dimen-

sional feature input in a cross-operating condition. The proposed method is integrated with a novel 

transformer network structure with a domain adversarial TL consisting of an encoder, an HI estima-

tor, and a domain discriminator. First, the proposed TSTN automatically extracts features (HI) from 

a long-term high-dimensional feature input, avoiding information loss caused by manual feature ex-

traction. Second, we have devised a self-attention mechanism that encompasses long-term, short-

term, and local perspectives, enabling it to discern the dynamic interplay between long-term and 

short-term machine health conditions. Third, when incorporating the DAN TL method, it addresses 

issues of cross-operating conditions and different data distributions. The domain discriminator with 

a gradient reversal layer can generate an accurate and robust HI. In the future, we plan to collect 

more datasets to verify the effectiveness of the proposed method. In addition, we will conduct further 

research on improving the generalization ability of the method for dealing with extremely cross-op-

erating conditions, such as predicting the RUL for an unseen operating condition. The proposed 

method is a promising methodology for coping with HI estimator construction with a high-dimen-

sional feature input, monitoring machine health conditions, and predicting machines' RUL in cross-

operating working conditions. 
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