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Abstract: Recently, the triple-network convergence system (TNCS) has emerged from the deep integration of the power grid, trans-
portation network, and information network. Fault recovery research in the TNCS is important since this system's complexity and 
interactivity can expand the faults scale and increase faults impact. Currently, fault recovery focuses primarily on single power 
grids and cyber-physical systems, but there are certain shortcomings, such as ignoring uncertainties including generator start-up 
failures and the occurrence of new faults during recovery, energy supply-demand imbalances leading to system security issues and 
communication delay caused by network attacks. In this study, we propose a recovery method based on the improved TD3 algo-
rithm, factoring in shortcomings of the existing research. Specifically, we establish a TNCS model to analyze interaction mechanisms 
and design a state matrix to represent the uncertainty changes in the TNCS, a negative reward to reflect the impact of unit start-up 
failures, a special reward to reflect the impact of communication delay and an improved Actor network update mechanism. Exper-
imental results show that our method obtains the optimal recovery decisions, maximizes restoration benefit in power grid failure 
scenarios and demonstrates a strong resilience against communication delay caused by DoS attacks. 

Keywords: triple-network convergence; fault recovery; TD3 algorithm; DoS attack; resilience 

 

1. Introduction 

In recent years, the TNCS has emerged due to the rapid development and deep integration of power grids, trans-

portation networks, and information networks, caused by the widespread adoption of electric vehicles. This conver-

gence system enables efficient coordination among energy flow, traffic flow, and information flow [1-2]. However, the 

increasing complexity and interdependence of the system has also created favorable conditions for fault propagation, 

in which local disturbances can easily initiate cascading failures across networks, resulting in severe system risks such 

as wide-scale power outages [3-7]. Therefore, research on fault recovery method for the TNCS is essential. 

The development of a recovery method for the TNCS necessitates a clear understanding of its interaction mecha-

nisms. However, there is a paucity of explicit domestic and international research on modelling the interaction mecha-

nisms of such systems, which adds to the complexity of the study. Furthermore, there is a paucity of research on fault 

recovery method related to the TNCS. Despite this, a body of research exists on fault recovery for power grids and 

power cyber-physical systems. In reference [8], for instance, cascading fault recovery model based on the SRG was 

suggested for power transmission networks and proven by simulations. In reference [9], an optimization model for the 

entire black start restoration process in gearbox systems was formulated and solved using a linearized hybrid integer 

linear programming model and the L-shaped algorithm, taking into consideration the uncertainty of wind power out-

put. Reference [10] analyzed the potential delays caused by information system failures on power system generation, 

transmission line operation, and load restoration. In these studies, however, the impact of generator start-up failures on 

restoration decisions is not considered. Reference [11] proposed a parallel recovery method for power systems. Alt-

hough this method considered uncertainties during the restoration process, it did not consider the possibility of new 

faults occurring in power systems during component restoration. 

The recovery of power system components can result in alterations to the power system's topology, power flow, 

and power levels, which may cause problems such as line overloads, imbalances in energy supply and demand in 
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certain regions, and system instability. However, existing research lacks studies on the risks of new faults or system 

instability that may arise from component recovery. For instance, in reference [12], a two-stage recovery strategy was 

proposed for power facility restoration after hurricanes, focusing on the design of distributed generation and mainte-

nance personnel scheduling, but excluding the analysis of new faults that might occur from power system component 

recovery. References [13-15] also ignored the occurrence of new faults. 

It is evident that existing research typically establishes optimization models for different fault scenarios and solves 

them using various optimization algorithms, but lacks consideration of uncertainties that may occur during the actual 

restoration process, such as generator start-up failures and faults triggered by recovery actions, and their impact on 

recovery decisions. Consequently, these uncertainties should be considered, when studying fault recovery methods for 

TNCS. Such research methods would be more applicable to real-world circumstances. 

Moreover, due to the high complexity and interactivity of the TNCS, network attacks can exploit intricate network 

interaction mechanisms and exacerbate the hazards of faults with relative ease. By manipulating power grid data and 

injecting false information, for instance, the assessment of the system's operational status may deviate, resulting in er-

roneous decisions by administrators and potentially triggering large-scale cascading failures [16-19]. By injecting a large 

number of useless requests and obstructing communication channels, DoS attacks can cause an increase in communi-

cation delay and thus initiate or exacerbate power outages [20-24]. An example of this is the DoS attack launched by a 

hacker group against a power company in the western United States in 2019, which resulted in communication disrup-

tion between the control center and various site devices [25]. There is limited research on restoration decisions for power 

cyber-physical systems that take network attacks into account at present. While the optimization strategy proposed in 

[26] considered the impact of information system failures caused by DoS attacks on the restoration process, but the 

solving algorithm lacks flexibility to handle uncertainty factors and becomes less efficient as the system scale increases. 

The TD3 algorithm from the discipline of deep reinforcement learning can be used to address this issue [27]. By 

designing the state space and reward function appropriately, uncertainties can be accounted for, and the neural network 

can effectively address the curse of dimensionality problem caused by the large scale of the TNCS [28-29]. In addition, 

compared to DQN, AC, and DDPG algorithms [30-32], the TD3 algorithm exhibits better capability to suppress network 

overestimation and provides more stable network training. Consequently, the utilization of the TD3 algorithm is more 

suitable for solving the model. However, the optimization objective of the TD3 algorithm is to find actions that maxim-

ize the action-value function in different states, without considering the specific role and impact of recovery actions in 

particular scenarios, such as system security. Therefore, improvements to the TD3 algorithm are necessary to ensure 

system security. 

Based on the above analysis, this study makes the following main contributions to the research on fault recovery 

methods in TNCS: 

1. Focusing on the charging behavior of electric vehicles, a TNCS model is established to reveal the underlying 

interaction mechanisms. 

2. An efficient fault recovery method for TNCS is proposed, incorporating an improved TD3 algorithm and 

considering communication delays. By designing and improving the TD3 algorithm, the uncertainties and security is-

sues in the restoration process are considered, leading to the design of an effective recovery algorithm. In addition, the 

resilience of the algorithm is evaluated by introducing DoS attacks in the context of power grid faults. Lastly, the efficacy 

of the proposed recovery method is demonstrated through simulation experiments. 

2. Methods 

2.1. Modeling 

2.1.1. Overall Framework 

As shown in Figure 1, the TNCS in this study consists of three layers: the execution layer, the coupling layer, and 

the control layer. The execution layer consists of the actual power grid and transportation network, responsible for the 

reliable operation of energy interactions. The coupling layer mainly consists of power collection and control devices, as 

well as communication channels, responsible for information acquisition, execution of control commands, and infor-

mation data transmission. The control layer, primarily based on the information network, is responsible for state mon-

itoring and dispatch control. 
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Figure 1. TNCS model. 

2.1.2. Execution Layer 

The power grid topology is a directed graph 𝐺𝑃 = (𝑉𝑃 , 𝐸𝑃), where 𝑉𝑃 represents power nodes including genera-

tors, loads, and circuit breakers, and 𝐸𝑃 represents transmission lines. The topological information of the power grid is 

represented by a matrix 𝑇𝑃 whose elements 𝑇𝑖𝑗𝑃 adhere to the following rule: 𝑇𝑖𝑗𝑃 = 1 denotes the presence of a line 

between nodes i and j, while 𝑇𝑖𝑗𝑃 = 0 denotes the absence of a line. The nodal admittance matrix 𝐵, nodal injection 

power vector 𝑃, line power flow vector 𝑓, and nodal phase angle vector 𝜃 are established. Based on the DC power 

flow model, the power flow information matrix 𝑃𝐹 of the power grid can be obtained from the following equations. 𝑃𝐹 = 𝑑𝑖𝑎𝑔(𝑃) + 𝑓 (1) 𝐵𝜃 = 𝑃 (2) (𝜃𝑄 − 𝑄𝑇𝜃𝑇) ∘ 𝐵 = 𝑓 (3) 

where the value of 𝑄 is [1,1,1, . . . ,1], and 𝑑𝑖𝑎𝑔(𝑃) represents a diagonal matrix with vector 𝑃 as its diagonal elements. 

The road topology of the transportation network is an undirected graph 𝐺𝑇 = (𝑉𝑇 , 𝐸𝑇), where 𝑉𝑇 represents road 

nodes (including charging stations) and 𝐸𝑇 represents paths between them. A matrix 𝐴𝑇 is established to represent 

the topological information of the transportation network, with matrix elements 𝐴𝑖𝑗𝑇  following the following rule: 𝐴𝑖𝑗𝑇 =1 indicates the presence of a connected road between road nodes i and j, while 𝐴𝑖𝑗𝑇 = 0 indicates the absence of a con-

nected road. A decision vector 𝑆𝐸 is used to assess whether each road node has a charging station, where 𝑆𝐸𝑖 = 1 

indicates the presence of a charging station in road node i and 𝑆𝐸𝑖 = 0 indicates its absence. A charging station load 

vector 𝑃𝑐 is introduced for the transportation network, where 𝑃𝑖𝑐 represents the load at the charging station located 

on road node i and can be obtained from the following equations. 

𝑃𝑖𝑐′ = ∑ 𝐶𝑆𝑂𝑖𝑗 ∘ 𝐶𝑆𝑊𝑖𝑗𝑁𝑖𝑆
𝑗=1 ∘ 𝐶𝑆𝑃𝑖𝑗  (4) 

𝑃𝑖𝑐 = 𝑆𝐸𝑖 ∘ 𝑃𝑖𝑐′ (5) 

where 𝑁𝑖𝑆 represents the number of charging piles in the charging station located at road node i. 𝐶𝑆𝑂𝑖𝑗 indicates the 

operational status of the j-th charging pile in the charging station at road node i, with a value of 1 indicating that it is 

operational and 0 indicating that it is not. 𝐶𝑆𝑊𝑖𝑗 represents the operational status of the j-th charging pile in the charg-

ing station at road node i, with 1 indicating operation and 0 indicating inactivity. 𝐶𝑆𝑃𝑖𝑗 represents the charging power 

of the j-th charging pile at the road node i charging station. 
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To assure the safety of charging services, the maximum charging power for each charging pile must be specified. 

Establishing a maximum power vector 𝐶𝑆𝑀, where 𝐶𝑆𝑀𝑖𝑗 represents the maximum charging power of the j-th charg-

ing pile in the charging station at road node i. 

2.1.3. Coupling Layer 

The matrices 𝑆𝑃 and 𝑆𝑇 are respectively defined to represent sensor deployment in the power grid and transpor-

tation network. In 𝑆𝑃, diagonal elements denote sensors on the nodes of the power grid, while off-diagonal elements 

represent sensors on the power lines. In 𝑆𝑇, the diagonal elements represent sensors on the road node charging stations. 

The elements of both matrices are assigned the value 1 to denote the presence of a sensor and the value 0 to denote the 

absence of a sensor. The actuator matrices 𝐴𝑃 and 𝐴𝑇 are defined in the same way as the sensor matrices. 

The uplink data communication channel matrix contains 𝑈𝐶𝑃 for the power grid and 𝑈𝐶𝑇 for the transportation 

network. The matrix elements, 𝑈𝐶𝑖𝑗, satisfy 𝑈𝐶𝑖𝑗 ∈ {0,1}. In 𝑈𝐶𝑃, 𝑈𝐶𝑖𝑖𝑃 = 1 indicates the presence of an uplink data 

communication channel between the sensor on the power grid node and the information network control center, trans-

mitting node power information. 𝑈𝐶𝑖𝑗𝑃 = 1 indicates the existence of an uplink data communication channel between 

sensors on power grid lines i-j and the information network control center, transmitting current flow information and 

circuit breaker status. In 𝑈𝐶𝑇, 𝑈𝐶𝑖𝑇 = 1 denotes the presence of an uplink data communication channel between the 

sensors in the charging station at road node i and the information network control center, transmitting charging station 

operational information. The downlink data communication channel matrix is defined in the same way as 𝑈𝐶𝑃 and 𝑈𝐶𝑇, with different transmitted content. It carries commands for the charging station's circuit breaker open or close, 

node power adjustment, charging pile open or close, and maximal charging power adjustment. 

2.1.4. Control Layer 

The information network topology is defined as a directed graph 𝐺𝐶 = (𝑉𝐶 , 𝐸𝐶), where 𝑉𝐶 represents the infor-

mation nodes and 𝐸𝐶  represents the communication links between nodes. The connectivity status of the communica-

tion links is represented by the link status matrix 𝐶, with matrix elements 𝐶𝑖𝑗(𝑖 ≠ 𝑗) = {0,1}. A value of 𝐶𝑖𝑗 = 1 indi-

cates that an effective connection has been established between information nodes i and j. The control center in the 

information network adjusts the operational status of the power grid and transportation network based on the received 

data. The storage of received information includes 𝑃𝑀𝑓 and 𝑃𝑀𝑡 for power flow information (𝑃𝐹) and power grid 

topology information (𝑇𝑃), respectively, while 𝑇𝑀𝑆 represents the storage of received charging station information. 

Utilizing this information, the reduction in output of generator nodes and the reduction in load of load nodes are cal-

culated, thereby calculating the decrease in power at the charging stations in the transportation network, as illustrated 

below. 

∑ 𝑃𝑖𝑎 ∑ 𝐶𝑆𝑂𝑖𝑗′
𝑁𝑖𝑆

𝑗=1 = ∑ 𝑃𝑖𝐶 − 𝑃𝑖𝑆𝑁
𝑖=1  𝑁

𝑖  (6) 

|𝑃𝐶 − 𝑃𝑆| ≤ |𝐿𝑆| (7) 

where 𝐿𝑆 satisfies equations (1) to (3), it is used to represent the reduction in output of power nodes or the reduction 

in load of load nodes. 𝑃𝑆 is the drop value in charging power at road node i, while 𝑃𝑖𝑎 is the adjusted average charging 

power of charging piles in charging stations. 𝐶𝑆𝑂𝑖𝑗′  refers to the adjusted operational state of the j-th charging pile in 

the i-th road node. N represents the number of road nodes in the transportation network. We assume that the charging 

stations will bear the maximum extent of power grid load variations. 

The control center then generates and distributes decision instructions to the executive layer. 

2.2. Fault Recovery Method 

2.2.1. Design of Restoration Model 

In this section, we define importance indicators for power grid faults in the context of the TNCS, assessing the 

importance of fault power lines. With the objective of maximizing restoration benefits, a restoration model is estab-

lished. 
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We assume that power grid faults in the TNCS result from the overload-induced disconnection of power lines, 

leading to redistribution of power flow, reduction in output of generator nodes, and load shedding at load nodes. Con-

currently, adjustments are made to the charging power of charging stations in the transportation network correspond-

ing to the affected power nodes, which may impact the travel of EV users. The importance of power lines, 𝜂, is deter-

mined by the importance of its connected power nodes (𝜂𝑃) and the importance of the charging stations on the corre-

sponding coupled road nodes (𝜂𝑆), as shown below. 𝜂 = 𝜆1 ⋅ 𝜔𝜂𝑃 + 𝜆2 ⋅ (1 − 𝜔)𝜂𝑆, 𝜂 > 0, 𝜂𝑃 > 0, 𝜂𝑆 > 0,0 < 𝜔 < 1 (8) 

where 𝜔 represents the weight coefficient. 𝜆1 and 𝜆2 are binary variables that indicate the existence of the respective 

item, taking a value of 1 if it exists and 0 otherwise. 𝜂𝑃 consists of the degree, generation capacity, and load of the 

power nodes, and 𝜂𝑆 consists of the degree of the road nodes and the number of electric vehicles affected, as shown 

below. 𝜂𝑃 = 𝜆3 𝑃𝑔∑ 𝑃𝑖𝑔𝑖∈𝑔𝑒𝑛 + 𝜆4 𝛾𝑑∑ 𝛾𝑖𝑖∈|𝑉𝑃| + 𝜆5 𝑃𝑙∑ 𝑃𝑖𝑙𝑖∈𝑙𝑜𝑎𝑑  (9) 

𝜂𝑆 = 𝜆6 𝛾𝑡∑ 𝛾𝑖𝑖∈|𝑉𝑇| + 𝜆7 𝜒𝑡∑ 𝜒𝑖𝑡𝑖∈|𝑉𝑇|  (10) 

𝜒𝑡 = 𝜒𝑡1 + 𝜒𝑡2 (11) 

𝜒𝑡1 = 𝜒𝑡1 + 1, ∑ ∑ ∑ 𝐼𝐹(|𝑇𝑆𝑖𝑝(𝑗, 𝑘)| > 0𝐴𝑁𝐷 𝐶𝑆𝑁𝑖(𝑗, 𝑘) ≠ 0,1,0)𝑁𝑆
𝑘=1

|𝑉𝑇|
𝑗=1

𝐾
𝑖=1  (12) 

𝜒𝑡2 = 𝜒𝑡2 + 1, ∑ ∑ ∑ 𝐼𝐹(|𝑇𝑆𝑖𝑝(𝑗, 𝑘)| > 0𝐴𝑁𝐷 𝐶𝑆𝑄𝑖(𝑗, 𝑘) ≠ 0,1,0)𝑁𝑆
𝑘=1

|𝑉𝑇|
𝑗=1

𝐾
𝑖=1  (13) 

where 𝜆3, 𝜆4, 𝜆5, 𝜆6, and 𝜆7 are binary variables indicating the existence of the respective items. 𝑃𝑔 represents the 

power output of generator nodes, and ∑ 𝑃𝑖𝑔𝑖∈𝑔𝑒𝑛  represents the total power output of generator nodes. 𝛾𝑑 represents 

the degree of nodes in the power grid, while ∑ 𝛾𝑖𝑖∈|𝑉𝑃|  represents the sum of degree of power nodes. 𝛾𝑡 represents the 

degree of road nodes in the transportation network, while ∑ 𝛾𝑖𝑡𝑖∈|𝑉𝑇|  is the sum of degree of road nodes. 𝑃𝑙  represents 

the power load of load nodes in the power grid, while ∑ 𝑃𝑖𝑙𝑚𝑖∈𝑙𝑜𝑎𝑑  denotes the total power load of load nodes in the 

power grid. 𝜒𝑡  obtained by equations (11), (12), and (13) represents the number of EVs impacted during travel, while ∑ 𝜒𝑖𝑡𝑖∈|𝑉𝑇|  represents the total number of EVs impacted during travel. Equation (12) calculates the adjusted number of 

charging station users 𝜒𝑡1, while equation (13) calculates the adjusted number of charging station electric vehicles 𝜒𝑡2. 𝑇𝑆𝑖𝑝 represents the power adjustment matrix for the i-th charging station, 𝐶𝑆𝑁𝑖 represents the identifier of the current 

charging station users, and 𝐶𝑆𝑄𝑖 represents the identifier of the current charging station reservation users. 

After calculating the importance of each power line, they are sorted in descending order to determine the restora-

tion priority. 𝛤 is defined as the quantified priority value, and 𝑒𝑝 represents the number of restoration steps. The op-

timization objective is to maximize the restoration benefit which consists of the recovery power from the power grid 

and transportation network, based on the importance of power lines. 

𝑚𝑎𝑥 ∑ 𝛤(𝐿𝑆𝑟𝑚 + 𝑃𝑟𝑚𝑆 )𝑒𝑝
𝑚  (14) 

𝑠. 𝑡. 𝛤 = 1 − 0.02(𝑒𝑝 − 1), 𝑒𝑝 ≥ 1 (15) 𝑚𝑖𝑛(𝐿𝑆) ≤ 𝐿𝑆𝑟𝑚 ≤ 𝑚𝑎𝑥(𝐿𝑆) (16) 𝑚𝑖𝑛(𝑃𝑆) ≤ 𝑃𝑟𝑚𝑆 ≤ 𝑚𝑎𝑥(𝑃𝑆) (17) 𝑃𝑚𝑖𝑛𝐺 ≤ 𝑃𝐺 ≤ 𝑃𝑚𝑎𝑥𝐺  (18) 
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𝑉𝑚𝑖𝑛 ≤ 𝑉 ≤ 𝑉𝑚𝑎𝑥  (19) 𝑓𝑚𝑖𝑛 < 𝑓 < 𝑓𝑚𝑎𝑥 (20) 0 < 𝑇𝑢𝑝 < 𝑇ℎ (21) 

∑ 𝑃𝑖𝑔𝑖∈𝑔𝑒𝑛 = ∑ 𝑃𝑖𝑙𝑖∈𝑙𝑜𝑎𝑑  (22) 

where 𝛤(𝐿𝑆𝑟𝑚 + 𝑃𝑟𝑚𝑆 ) represents the restoration benefit obtained from restoring the fault at step m. 𝑃𝐺  is the active 

power of the generator, and 𝑉 is the voltage at the terminals of the power system. Equation (20) represents the line 

flow constraint, where power flow varies with the restoration of the faults. Exceeding the limits of line flow, 𝑓𝑚𝑖𝑛 or 𝑓𝑚𝑎𝑥, may result in overload issues, leading to the disconnection or damage of the concerned line or other lines. In 

Equation (21), 𝑇𝑢𝑝 represents the unit start-up time, while 𝑇ℎ represents the maximum start-up time of the unit, en-

suring the required time for thermal start-up. Equation (22) represents the energy supply-demand balance constraint in 

the power grid, ensuring the balance between actual supply and demand. Imbalances can lead to voltage fluctuations, 

frequency deviations, and overloaded operation, causing power equipment failures or system security issues such as 

power grid collapse. In this study, we assume that energy imbalance can cause line overloads and disconnection so that 

fault recovery should avoid energy supply-demand imbalances. 

2.2.2. Design of Restoration Algorithm 

In the context of fault recovery in the power grid of TNCS, the restoration sequence of each faulty line significantly 

influences the restoration benefit, giving rise to a decision-making problem. In this section, we focus on the design and 

improvement of the TD3 algorithm in the field of deep reinforcement learning with the aim of determining the optimal 

restoration strategy. Figure 2 illustrates the restoration algorithm structure based on the TNCS. 

 

Figure 2. Structure of the restoration algorithm. First, the TNCS environment interacts with the Actor network in the Main 

networks, incorporating exploration noise. Specifically, this interaction indicates the state matrix 𝑆 , as the input to the 

Actor network, and the Actor network chooses an action based on 𝑆. Then, the action can change the state matrix, resulting 

in a certain reward. Second, the obtained transitions from the interaction (transitions primarily include 𝑆, 𝐴, 𝑆′ and 𝑅) 

are preserved in the replay buffer via experience replay. To train and update the Actor network and Critic network in the 

Main networks, a batch-sized transition sample is selected at random. During the update of the Critic network, TD-error 

is generated and gradient descent is performed with introducing policy noise into the process. The Actor network is up-

dated using gradient ascent to maximize 𝑄𝜃1. The Target networks are updated after a certain number of updates to the 

Main networks. 
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Specifically, we consider the control center as the agent and define the action space as the set of all available resto-

ration actions from which the control center can choose in the TNCS environment, denoted as 𝐴𝑐, and action 𝐴 belongs 

to 𝐴𝑐. In the restoration model, the recovery of faults can cause new faults. To address this uncertainty, we employ a 

state matrix 𝑆 to represent the state space, reflecting the changes in the state of the TNCS. As shown in Figure 3, each 

row of the state matrix represents a power node or line, and each column represents a fault type. The arrangement 

follows the order of power node and line numbering, as well as fault type. Based on the rows and columns, the location 

and type of faults can be determined. An element value of 1 indicates no fault, while 0 indicates that a fault exists. 

Consequently, the changes in the state of the TNCS caused by fault recovery and occurrence can be reflected through 

the variation of element values. 

The design of the reward function is as follows. 

𝑅 = {𝐼𝑑 + 𝐼𝑏 + 𝐼𝑚 , (𝜇 = 1, 𝜀 = 1)𝐼𝑑 + 𝐼𝑐 , (𝜇 = 0)𝐼𝑑 − 1, (𝜇 = 1, 𝜀 = 0)  (23) 

𝐼𝑚 = 𝐿𝑆𝑟𝑚 + 𝑃𝑟𝑚𝑆𝑚𝑎𝑥(𝐿𝑆) + 𝑚𝑎𝑥(𝑃𝑆) (24) 

𝐼𝑐 = (1 + 𝛽 ℎ𝑡𝐻 )𝛤 + 𝛼 𝑒𝑐𝐸  (25) 

The control center conducts a status check on the TNCS at the beginning of each restoration step, and when the 

check is complete, the reward 𝐼𝑑 is obtained. If no data information is received from a node or line in the execution 

layer within time 𝑇𝑙 , it is considered communication delays, 𝜇 = 0 is set, and the reward 𝐼𝑐 is obtained. Equation (25) 

represents the impact of communication delays on restoration decisions, where 𝛽 and 𝛼 are proportional coefficients 

with respective ranges of [0,1] and (0,1). 𝐻 represents the total number of restoration stages, indicating the duration of 

the entire restoration process, while ℎ𝑡 represents the restoration stage at which the communication delay occurs. The 

restoration stage 𝐸 represents the maximum number of restoration steps required to address communication faults 

(with a single stage consisting of multiple consecutive restoration steps), and 𝑒𝑐 represents the actual number of resto-

ration steps required for communication fault recovery. 𝜇 = 1 denotes normal communication, with 𝜀 = 1 indicating 

the effectiveness of the restoration action, resulting in the reward 𝐼𝑏 , and the restoration benefit 𝐼𝑚 calculated from 

equation (24). When 𝜀 equals zero, the restoration action is ineffective, resulting in a negative reward of -1. 

The effectiveness of a restoration action refers to its objective of targeting the faulty lines without causing any 

additional faults. Restoring a power node requires at least one connected power line to be operational (excluding black-

start nodes). For a power generation node, equation (21) must be satisfied, and if not, it is considered a failed unit start-

up, which is uncertain and may be caused by unpredictable factors. In the case of a failed unit start-up, the reward 

function returns -1, reflecting the impact of this uncertainty on restoration decisions, and we can enhance the practicality 

of our method by employing this approach. 

 

Figure 3. State matrix. We assume the presence of 30 power nodes, 41 lines, and fault types including faults at power 

nodes and lines. 

In response to potential system security issues caused by an imbalance between energy supply and demand during 

the restoration process, the TD3 algorithm is improved as follows. 
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𝜌 = 𝜆8𝜂 (26) 𝑞 = 𝑄𝜃1(𝑆, 𝐴)|𝐴=𝜋𝜙(𝑆) · (1 − 𝜌𝑎) (27) 

Equation (27) adds a multiplicative term, (1 − 𝜌𝑎) in the original estimated value, 𝑄𝜃1(𝑆, 𝐴)|𝐴=𝜋∅(𝑆)used for updat-

ing the Actor network, where 𝑞 represents the improved estimated value and 𝜌𝑎 belongs to the set 𝜌. 𝜌 represents 

the set of line importance, as determined by equation (26). 𝜆8 is a binary variable with values of 0 and 1, and it is set to 

1 if the restoration action causes an energy supply-demand imbalance in the system, and 0 otherwise. 

The addition of the multiplicative term can affect the original estimated value after the improvement. When high-

priority lines are disconnected due to an energy supply-demand imbalance, the multiplicative term becomes smaller, 

resulting in a decrease in estimated value, and indicating that the restoration actions under the current state pose a 

security risk to the system. Therefore, the Actor network can conclude that the chosen restoration action is not optimal. 

Lastly, the neural networks used in the algorithm consist of an input layer, fully connected hidden layers, and an 

output layer. The specific parameter setting depends on the simulation experimental scenarios. 

3. Experiments and Results 

3.1. Experimental Settings 

Based on the TNCS model, a simulation experimental scenario is constructed as follows. 

The power grid uses the IEEE 30-bus power system [33], as shown in Figure 4. The transportation network has 

5000 EVs and 30 nodes with 50 charging piles at each road node. Each charging pile has a maximal output of 20 kW. 

The nodes of the transportation network and the power grid with the same number are coupled. The information net-

work consists of 101 information nodes, where the first 30 nodes correspond to the power grid nodes, with node 10 

serving as the control center. Nodes 31 to 71 correspond to the power lines, while the remaining nodes correspond to 

the transportation network nodes. The simulation experiments are implemented using MATLAB programming without 

GPU acceleration techniques. 

 

Figure 4. IEEE 30-bus power system diagram. The power lines are numbered from 31 to 71. 

3.2. Small-scale Power Grid Faults 

In this section, we simulated small-scale faults in the power grid of the TNCS. Specifically, we induce faults in the 

power lines with the line numbers 31, 32, 33, 34, 36, and 37, and these lines are placed in an open-circuit state. The 

specific experimental parameter settings are as follows. 
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The Actor network consists of an input layer with 142 neurons, a first hidden layer with 256 neurons, a second 

hidden layer with 128 neurons, and an output layer with 6 neurons. The target Actor network is updated once after 

every five updates of the Actor network. 

The Critic network consists of an input layer with 142 neurons, a first hidden layer with 256 neurons, a second 

hidden layer with 256 neurons, and an output layer with 1 neurons. The target Critic network is updated once after 

every five updates of the Critic network. 

The ReLU function is used as the activation function in the hidden layers of all networks. The Actor network is 

updated once after every three updates of the Critic network. Set the discount factor to 0.99, the exploration noise stand-

ard deviation to 0.15, the policy noise standard deviation to 0.3, the batch size to 64, the total number of episodes to 

1000, and the 𝜔, 𝐼𝑑, 𝐼𝑏 , and 𝜏 values to 0.5, 0.1, 0.1, and 0.005, respectively. The parameter 𝜏, specifically, is used in the 

soft update. 

The simulation experimental results are as follows. 

 

Figure 5. Learning curve. We can observe that the learning curve exhibits significant fluctuations during the first 300 or 

so episodes. Approximately between 300 and 700 episodes, the fluctuations decrease. After roughly 700 episodes, the 

average reward converges on a stable value. 

The result in Figure 5 indicates that the Actor network is well-trained and able to make accurate and effective 

decisions. 

The obtained restoration scheme is shown in Table 1. The restoration sequence is primarily determined by the 

order of line restoration; once a line is restored, the connected nodes automatically begin their restoration process (ex-

cept for black-start nodes). The restoration sequence refers specifically to the order of initiating restoration. As a result, 

the restoration processes for multiple faults can proceed simultaneously. For example, the restoration of line 36 can be 

initiated during the restoration of node 1. 

To validate the optimality of the restoration sequence, we compared it with several backup schemes based on the 

restoration benefit criterion. As shown in Table 2, the restoration benefit obtained by our proposed scheme, denoted 𝐹1, 

is 15.36% to 25.52% greater than that of the other schemes, indicating that our scheme is optimal in terms of restoration 

benefit. 

Table 1. Restoration sequence. 

Steps  Power grid lines and nodes 

1  1、31、2 

2  36、6 

3  33、4 

4  37 

5  32 

6  34 
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Table 2. Comparison of schemes. 

Scheme Restoration sequence Restoration benefit(MW) 𝐹1 31、36、33、37、32、34 2.8239 𝐹2 33、36、37、32、31、34 2.2689 𝐹3 31、32、34、37、36、33 2.3564 𝐹4 36、32、34、31、33、37 2.3901 𝐹5 34、33、36、32、31、37 2.1032 𝐹6 31、37、32、34、36、33 2.2946 

Additionally, Figure 6 shows the improvement effect of the TD3 algorithm. 

 

Figure 6. Improvement effect of the TD3 algorithm. The values of the bar indicate the number of occurrence of 𝜆8 = 1 per 

200 episodes, while the values of the line indicate the average of the estimated value every 200 episodes. 

It can be observed that the occurrence number of 𝜆8 = 1 is lower in the improved algorithm compared to the 

unimproved version. This indicates that the evaluation of restoration actions in the improved algorithm is not solely 

based on maximizing 𝑄(𝑆, 𝐴), but also considers system security issues caused by energy supply-demand imbalances, 

as represented by the inclusion of a multiplicative term. Using this method, it is possible to lower the original estimated 

values 𝑄𝜃1(𝑆, 𝐴)|𝐴=𝜋∅(𝑆), as shown by the lower values of the line in the figure for the improved TD3 algorithm com-

pared to the unimproved TD3 algorithm. When the chosen restoration action leads to an energy supply-demand imbal-

ance, 𝜆8 equals 1, the estimated value decreases, and the Actor network receives feedback indicating that the chosen 

restoration action is not optimal. As the number of episodes increases, the Actor network gradually learns to avoid 

restoration actions that may cause energy supply-demand imbalances. Consequently, in the figure, we can observe that 

the frequency of 𝜆8 = 1 decreases over time, with only three occurrences between episodes 800 and 1000, representing 

a probability of 1.5%. This is a 66.67% reduction compared to the unimproved TD3 algorithm, and demonstrates the 

effectiveness of our improvements to the TD3 algorithm in reducing the probability of system security issues caused by 

energy supply-demand imbalances during the restoration process. 

3.3. Large-scale Power Grid Faults 

We set all power lines to an open-circuit state, paralyzing the power grid in TNCS. In this scenario, the impact of 

uncertainties such as failed unit start-up and the occurrence of new faults caused by the restoration process is analyzed, 

and algorithm proposed in this study is compared with other algorithms to evaluate the performance and efficacy. 

Set the batch size to 128 and the total number of episodes to 5000, while the settings of the remaining experimental 

parameters are identical to those in the small-scale fault scenario. The simulation results are shown below. 
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Figure 7. The impact of uncertainty factors on fault recovery. curve 1 represents the scenario without considering the 

possibility of unit start-up failures during the restoration process. curve 2 represents the scenario without considering the 

possibility of fault recovery causing new faults. curve 3 represents the scenario that considers both unit startup failures 

and the occurrence of new faults during the restoration process. 

We can observe that curve 3 gradually converges to a stable value in Figure 7, which indicates that the Actor net-

work is well-trained and able to make accurate and effective decisions in the scenario of large-scale power grid faults. 

Furthermore, curve 3 exhibits the lowest average reward, and both curve 3 and curve 1 show significantly higher fluc-

tuations compared to curve 2. This is due to the fact that both generator start-up failures and new faults occurring 

during the restoration process result in a reward value of -1. Consequently, curve 3 exhibits lower values than the other 

two curves. The presence of new faults increases the uncertain change of 𝑆 and the difficulty of convergence, leading 

to higher fluctuations in curve 3 and curve 1. 

To validate the impact of uncertainties on restoration sequence, we take the restoration sequence of power line 42 

as an example to observe the change of its restoration sequence, and the results are shown in Figure 8. We can observe 

that in the case corresponding to curve 3, the restoration sequence of power line 42 in 10 experiments is approximately 

the 17th step, which differs from the cases corresponding to curves 1 and 2. This indicates that uncertainties during the 

restoration process can alter the restoration sequence, and should not be ignored in practical restoration process. 

At the end of this section, we also compare the proposed algorithm with other intelligent algorithms to verify the 

superiority of the proposed algorithm in solving the fault recovery problem of the TNCS. The results are shown in Table 

3. We can observe that Ours outperforms other algorithms by 0.3% to 20.96% in terms of restoration benefit, and in 

terms of convergence time, there exists a reduction of 2.82% to 14.39% compared to other algorithms except for the PSO 

algorithm, with only a marginal increase of 1.2% compared to the PSO algorithm. The aforementioned comparative 

results demonstrate that ours has distinct advantages in terms of both restoration benefit and convergence time, indi-

cating its superiority in an overall assessment. Moreover, compared to the TD3 algorithm, although the restoration 

benefit is very close, ours exhibits an 8.93% reduction in time. This is due to improvement made to the TD3 algorithm, 

which reduces the occurrence of new faults during the restoration process and effectively reduce the uncertain change 

of 𝑆, thereby reducing convergence difficulties during training. 
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Figure 8. Impact of uncertainties on restoration sequence. The curves labeled as curve1, curve2, and curve3 in this figure 

correspond to curve2, curve1, and curve3 in Figure 7, respectively. The restoration sequence of power line 42 refers to the 

step at which this line is recovered. 

Table 3. Comparison of different algorithms. 

Algorithm 
Performance metrics 

Restoration benefit (MW) Convergence time (s) 

Ours 12.3968 14763 

GA 10.4519 15192 

PSO 9.7987 14580 

DQN 10.4832 17244 

AC 10.8751 16848 

DDPG 11.7285 16416 

TD3 12.3812 16211 

3.4. Communication Faults 

In this section, we add the simulation of communication faults on the basis of large-scale power grid faults to 

validate the resilience of algorithm proposed in this study. 

Specifically, we assume that DoS attackers send a significant volume of disguised packets to information nodes 31, 

32, 33, and 34, resulting in their infection. As a result, the communication channels within the coupling layer connected 

to the information nodes and the communication links within the information network of the control layer become 

blocked. When communication delays are detected, the technical staff at the control center suspends the restoration of 

power grid faults and initiate the deployment of firewalls and intrusion detection systems to restore communication 

faults. Equation (25) demonstrates that the impact of communication delays on restoration benefit depends on its oc-

currence timing and restoration speed. To facilitate statistical analysis, the occurrence time of communication delays is 

divided into six stages: stage 1: 1 to 6 steps, stage 2: 7 to 12 steps, stage 3: 13 to 18 steps, stage 4: 19 to 24 steps, stage 5: 

25 to 30 steps, and stage 6: More than 30 steps. We set 𝐻 = 6, with ℎ𝑡 = 1 corresponding to the first stage, ℎ𝑡 = 2 cor-

responding to the second stage, etc. There are five levels of restoration speed: level 1: 𝑒𝑐 = 1, level 2: 𝑒𝑐 = 2, level 3: 𝑒𝑐 = 3, level 4: 𝑒𝑐 = 4, and level 5: 𝑒𝑐 = 5. Among them, 𝑒𝑐 = 1 indicates that the restoration of communication delay 

requires one step, 𝑒𝑐 = 2 requires two steps, etc. We set 𝐸 = 5 and 𝛼 = 0.1. The remaining experimental parameters 

are maintained in accordance with the previous section. The simulation results are shown as follows. 
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Figure 9. Impact of communication delay on restoration benefit. There is one curve representing normal communication, 

the value of which remains constant at 12,3968 MW, and five curves representing communication delay. 

As shown in Figure 9, the restoration benefit of the communication delay curves is less than that of the normal 

communication curve, which is due to communication delay causes a reduction in 𝛤 value of certain power lines, il-

lustrated in Figure 10. 

Figure 9 also illustrates two additional aspects: first is the impact of the occurrence time of DoS attacks on restora-

tion and second is the impact of restoration speed of communication delay on restoration. 

 

Figure 10. Mechanism of 𝛤 value reduction. We assume that a DoS attack is launched against the information node at 

step 2. It can be observed that the DoS attack has no impact on the restoration of steps 2 and 1. As the restoration process 

reaches step 3, the control center performs a status check and detects the communication delay, initiating its restoration. 

Power line 42 cannot be restored in step 3, and its recovery order is changed from step 3 to step 4. The reason it is changed 

to step 4, rather than step 5, step 6, etc. is because 𝑒𝑐 = 1. Similarly, the restoration step for power line 45 transitions from 

step 4 to step 5, etc. At step 4, regardless of whether power lines 45 or 42 are restored, the 𝛤 value corresponding to step 

4 remains unchanged. When power line 42 is restored at step 4, the 𝛤 value reduces from 0.96 (corresponding to step 3) 

to 0.94. The above analysis explains the reduction of the 𝛤 value. 

For the first aspect, we can observe that when the restoration speed remains constant, the later the occurrence of 

communication delay caused by DoS attacks, the less the restoration benefit is reduced. This is due to the fact that a 

delayed occurrence of communication delay results in fewer affected power lines, resulting in a less reduction in the ∑ 𝛤𝑒𝑝𝑚  value of the objective function (as explained by the mechanism for 𝛤 value reduction), while the ∑ 𝐿𝑆𝑟𝑚 + 𝑃𝑟𝑚𝑆𝑒𝑝𝑚  

value remains unchanged. Consequently, the communication delay curve exhibits an increasing trend as the restoration 

process progresses. 
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The timing of DoS attacks is characterized by uncertainty, while the reduction in restoration benefit caused by DoS 

attacks can be mitigated by adjusting the value of 𝛽. According to Table 4, when communication delay occurs in stage 

1, stage 2, and stage 3, setting 𝛽 to its maximum value of 1 minimizes the reduction in restoration benefit by 9.23%, 

4.22 %, and 0.68%, respectively, compared to the normal communication benefit of 12.3968 MW. However, in stage 4, 

setting 𝛽 to 1 leads to a restoration benefit of 12.510 MW, which is higher than the normal benefit and unrealistic. 

Therefore, 𝛽 cannot be set to 1, and 𝛽 = 0.75 results in a restoration benefit of 12,267 MW, which is marginally less 

than 12,3968 MW. Thus, the valid range for 𝛽 in stage 4 is 0.75 ≤ 𝛽 < 1. Similarly, in stage 5 and stage 6, the valid 

range for 𝛽 is 0.75 ≤ 𝛽 < 1 and 0.5 ≤ 𝛽 < 0.75, respectively. 

Table 4. The impact of 𝛽 on restoration benefit 𝒉𝒕 Restoration benefit (MW)( 𝒆𝒄 = 𝟏) 𝜷 = 𝟏 𝜷 = 𝟎. 𝟕𝟓 𝜷 = 𝟎. 𝟓 𝜷 = 𝟎. 𝟐𝟓 𝜷 = 𝟎 

1 11.252 10.955 10.705 10.457 10.207 

2 11.873 11.590 11.401 11.159 10.915 

3 12.312 12.065 11.823 11.577 11.321 

4 12.510 12.267 12.030 11.780 11.531 

5 12.627 12.371 12.120 11.878 11.652 

6 12.800 12.550 12.231 11.990 11.730 

For the second aspect, it can be observed that the restoration benefit of the communication delay curve correspond-

ing to 𝑒𝑐 = 1 is greater than that of the curves corresponding to other restoration speed in all restoration stages. This is 

due to restoring communication delay leads to obtain the reward 𝐼𝑐. If the restoration speed is fast, such as completing 

the restoration in a single step, one 𝐼𝑐 is obtained. Alternatively, multiple 𝐼𝑐 can be obtained if the restoration speed is 

slow and requires multiple stages to complete. However, 𝐼𝑐 and 𝐼𝑏 + 𝐼𝑚 are not equivalent, and a difference exists 

between them. Obtaining multiple 𝐼𝑐 can lead to overestimation or underestimation of 𝑄(𝑆, 𝐴), which may result in 

policy bias and affect restoration decision-making. To solve this issue, we can adjust the values of 𝛽 and 𝛼 to reduce 

the difference between 𝐼𝑐 and 𝐼𝑏 + 𝐼𝑚. It is important to note that we cannot directly control the restoration speed due 

to its uncertainty and dependence on the defensive deployment level of the information network. When the occurrence 

time of DoS attacks is fixed, we can adjust the value of 𝛼 to mitigate the policy bias caused by restoration speed. Figure 

11 illustrates the impact of different values of 𝛼 on policy bias when 𝛽 = 0.5. 

It can be observed from the Figure 11 that as the value of 𝛼 reduces, the occurrence number of 𝐼𝑐 reduces regard-

less of the restoration speed. First, this indicates that when 𝛽 = 0.5, the value of 𝐼𝑐 is greater than 𝐼𝑏 + 𝐼𝑚, resulting in 

a 𝑄(𝑆, 𝐴) overestimation. To solve this, the value of 𝛽 can be appropriately reduced with considering the occurrence 

time of DoS attacks. Second, the minimum occurrence number of 𝐼𝑐 reduces by 60.26% to 80.12% compared to the 

maximum occurrence number for the five restoration speed by adjusting the value of 𝛼, demonstrating that adjusting 

the value of 𝛼 effectively resolves the policy bias issue caused by restoration speed. 
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Figure 11. The impact of 𝛼 on policy bias. The various colored bars represent various 𝛼 values. 

The average occurrence number of 𝐼𝑐 for the five restoration speed under each 𝛼 value in Figure 11 is calculated 

to represent the actual policy bias under normal restoration speed. The results are shown in Table 5, where the difference 

ratio indicates the percentage reduction in the average occurrence number of 𝐼𝑐 for the next 𝛼 value compared to the 

current 𝛼 value. For instance, when the value of 𝛼 changes from 1 to 0.9, the average occurrence number of 𝐼𝑐 reduces 

by 11.29%, resulting in a difference ratio of 11.29%. We can observe that as the value of 𝛼 reduces from 1, the difference 

ratio increases continuously. When the value of 𝛼 changes from 0.4 to 0.3, the difference ratio reaches its maximum 

value of 24.38%, and as the value of 𝛼 continues to reduce, the difference ratio also reduces. This indicates that under 

the condition of 𝛽 = 0.5, the optimal range of 𝛼 value for minimizing the difference between 𝐼𝑐 and 𝐼𝑏 + 𝐼𝑚 is around 

0.3, leading to a more effective improvement in solving the problem of policy bias. 

Table 5. The impact of 𝛼 on policy bias 𝜶 value 
𝑰𝒄 average occurrence num-

ber 
Difference ratio 

1 258.6 0 

0.9 229.4 11.29% 

0.8 202.6 11.68% 

0.7 177.4 12.44% 

0.6 153.2 13.64% 

0.5 129.2 15.67% 

0.4 104.2 19.35% 

0.3 78.8 24.38% 

0.2 65.0 17.51% 

0.1 55.5 14.62% 

Based on the aforementioned analysis, it is evident that for uncertainties that cannot be directly controlled, such as 

the occurrence time of DoS attack and the restoration speed of communication delay，we can adjust the value of 𝛽 to 

mitigate the extent of restoration loss under various occurrence time of DoS attack. Additionally, we can improve the 

issue of policy bias caused by restoration speed by adjusting the value of 𝛼. The experimental results demonstrate that 

the proposed algorithm exhibits strong adaptability and resilience in the presence of communication delay caused by 

DoS attack. 

4. Conclusions 

In addressing the issue of fault recovery in TNCS, we propose a recovery method based on improved TD3 algo-

rithm. In the design of this method, we have particularly considered the uncertainties, system security issues and com-

munication faults. Experimental results indicate that the proposed method can obtain the optimal recovery decisions 

and accomplish the maximum restoration benefit when faults occur in the power grid of the TNCS. Furthermore, the 

improvement to the TD3 algorithm effectively reduces the occurrence of energy supply-demand imbalance and the 

uncertainties are able to impact the restoration sequence so that they should not be ignored during actual restoration 

process. The results also show that communication delay caused by DoS attacks can reduce the restoration benefit and 

lead to the policy bias. By adjusting the values of 𝛽 and 𝛼, the proposed algorithm can effectively mitigate the extent 

of restoration loss under various occurrence time of DoS attack and improve the issue of policy bias caused by restora-

tion speed, thereby demonstrating strong resilience. Lastly, regarding future research directions, several avenues can 

be explored, such as studying the impact of transportation network faults on restoration process, designing recovery 

method when confronted with various types of network attacks, and employing other intelligent algorithms to solve 

the fault recovery problem in TNCS. 
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