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Abstract: Advancements in technology, policies, and cost reductions have led to rapid growth in 

wind power production. One of the major challenges in wind energy production is the instability of 

wind power generation due to weather changes. Efficient power grid management requires accurate 

power output forecasting. New wind energy forecasting methods based on deep learning are better 

than traditional methods, like numerical weather prediction, statistical models, and machine 

learning models. This is more true for short-term prediction. Since there is a relationship between 

methods, climates, and forecasting complexity, forecasting methods do not always perform the 

same depending on the climate and terrain of the data source. This paper proposes a novel model 

that combines the variational mode decomposition method with a long short-term memory model, 

developed for next-hour wind speed prediction in a hot desert climate, such as the climate in Saudi 

Arabia. We compared the proposed model performance to two other hybrid models, six deep 

learning models, and four machine learning models using different feature sets. Also, we tested the 

proposed model on data from different climates, Caracas and Toronto. The proposed model showed 

a forecast skill between 61% to 74% based on mean absolute error, 64% to 72% based on root mean 

square error, and 59% to 68% based on mean absolute percentage error for locations in Saudi Arabia. 

Keywords: wind speed forecasting; deep learning; LSTM; GRU; wind energy; CEEMDAN; EMD; 

VMD 

 

1. Introduction 

Advancements in technology, policies, and cost reductions have led to rapid growth in wind 

power production. Onshore wind capacity rose from 178 gigawatts (GW) in 2010 to 699 GW in 2020, 

while offshore wind grew from 3.1 GW in 2010 to 34.4 GW in 2020. Industry forecasts expect onshore 

and offshore wind capacity will reach 1787 GW and 228 GW respectively by 2030. Wind power, along 

with solar energy, would lead the way in transforming the global electricity sector and help the world 

meet Paris climate targets of CO2 emissions reductions by 2050 [1]. 

 Saudi Arabia plans to install 16 GW of wind capacity by 2030. In 2022, Dumat Aljandal began 

generating electricity and became the first 400-megawatt (MW) onshore wind power project in Saudi 

Arabia. Even though the Dumat Aljandal wind farm will be the largest in the Middle East, it will 

account for only 2.5% of the total installed capacity target set by ‘Vision 2030’ (16 GW) [2,3]. Dumat 

Aljandal is in the northwestern region of the country and it is the most recommended region for solar 

and wind energy in Saudi Arabia [4]. The Saudi government has announced three new wind projects 

as part of the National Renewable Energy Program. The first is the Yanbu project with a capacity of 

700 MW, the second project is in Alghat with 600 MW, and the third is in Waad Alshamal with 500 

MW [5]. 

Turbine size and blade length determine how much power wind sources produce. Power output 

is proportional to the rotor dimension and the cube of the wind speed. Theories show that when wind 

speed doubles, the wind power potential increases by a factor of eight. Therefore, accurate prediction 
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of wind speed helps in estimating the power generated by wind turbines. The hub heights of modern 

wind turbines may be up to 120 m. Hence, to carry out wind resource assessment at the hub height, 

one must measure or extrapolate wind speed to that height with minimal error [6]. Temperature, 

pressure, and other meteorological variables affect wind speed. Therefore, including these variables 

might increase the accuracy of wind speed and power forecasting.  

One of the main challenges in wind energy production is the instability of wind power 

generation due to weather changes. Efficient management of power grids and energy markets relies 

on the accurate prediction of short-term power output. This has motivated researchers across the 

globe to develop advanced methods for wind power forecasting. There are three kinds of models 

used in the wind power prediction field: physical models, statistical models, and machine learning 

models. Physical models forecast the wind speed based on physical processes in the atmosphere and 

often require a vast amount of meteorological and geographical data, which results in expensive 

operating costs. A numerical weather prediction (NWP) model is a typical physical model. Physical 

models can generate accurate long-term forecasting results but do not show superiority in short-term 

forecasting tasks. Statistical models forecast the wind speed by using historical wind speed data and 

they are better at dealing with short-term forecasting problems compared with physical models. 

Statistical models are simple and effective but often have a limited utility with nonlinear time series 

because that modeling assumes stationary and linear characteristics of time series. Using machine 

learning (ML) models attracts many researchers. Deep learning (DL)-based methods show superior 

performance compared to other types of forecasting methods [7–10] because of their ability to handle 

nonlinear characteristics of wind speed series.  

In this work, we propose a novel model that combines the variational mode decomposition 

(VMD) method and long short-term memory (LSTM) model, developed for next-hour wind speed 

prediction in a hot desert climate, such as the climate in Saudi Arabia. To test the superiority of the 

proposed model, we compared its performance with another twelve forecasting models: two hybrid 

models of decomposition methods and the LSTM model, six DL-based models, and four traditional 

ML-based models. Figure 1 provides a graphical abstract of the work, which shows the data inputs 

used, the forecasting models developed for comparison, and the evaluation metrics. 

 

Figure 1. Graphical abstract. 

We summarize the contributions of this paper as follows. 

1. We propose a novel hybrid model of the VMD method and LSTM model for next-hour wind 

speed prediction in a hot desert climate, such as the climate in Saudi Arabia. This is the first 

work, to our knowledge, proposing a hybrid model for this combination of task and weather. 

2. We provide a performance comparison of the proposed model and two hybrid models of data 

decomposition techniques and the LSTM model, six DL-based models, and four ML-based 
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models, using previous hours’ wind speed values only versus using weather variables besides 

wind speed values to show the effect of including weather variables on the forecasting 

performance. 

3. Model performance comparisons are provided using data from four different locations in Saudi 

Arabia and two international locations, Caracas and Toronto. We present the results using 

visualization and several performance metrics, including mean absolute error (MAE), root mean 

square error (RMSE), mean absolute percentage error (MAPE), and forecast skills (FS).  

We organize this paper into sections. Section 2 discusses the related works and highlights the 

research gap. Section 3 describes the methodology used in this paper, including data preprocessing 

steps, models’ development process, implementation details, and the evaluation metrics used to 

present the results. Next, Section 4 provides the results of wind speed (WS) forecasting based on the 

effect of using weather variables, the effect of seasonality, the effect of using decomposition methods, 

and the forecast skills of the models. Section 5 concludes the work. 

2. Related Work 

DL-based wind energy forecasting methods outperform other traditional methods, such as 

NWP, statistical, and conventional machine ML models, when making short-term predictions. We 

have performed an extensive literature review on DL-based wind energy forecasting methods in [11]. 

From our review and many other literature reviews of the renewable energy forecasting field [7–10], 

we noted a relationship between methods, terrain, and forecasting complexity. Method performances 

vary depending on the climate and terrain of the data source. The need for complex models differs 

based on the data. In some studies, ML methods, or shallow networks, provide satisfactory results 

with close performance to DL structures. In other studies, combining a decomposition method with 

a DL model has improved the forecasting performance.  

There is a need for more studies that compare the prediction performance of ML methods using 

data gathered from different climates and terrains to reach a conclusion on the best method for certain 

data. For example, Manero et al. in [12] tested five DL models using wind data from around 126,000 

locations in North America. They found that recurrent neural network (RNN) models perform better 

in desert areas, such as Nevada and Arizona. Also, they found that RNN and convolutional neural 

network (CNN) models provide better performance than the multilayer perceptron (MLP) neural 

network model for 1-hour ahead prediction, while the latter is better for 3 to 12-hour ahead 

prediction. Peng et al. proposed a hybrid model for wind speed forecasting that combines wavelet 

soft threshold denoising (WSTD) and gated recurrent unit (GRU) [13]. They tested their model using 

data from four locations in the United States with different climates. They found that the worst 

performance is associated with desert rock. Alhussein et al. [14] developed a model to predict wind 

speed and solar irradiance based on a multi-headed CNN using data from three locations in the 

United States with different climates, but they noted that different seasons and climates do not affect 

wind speed prediction results as solar radiation prediction. 

In this work, we aim to enrich the literature by first proposing a novel model for wind speed 

prediction in a hot desert climate as in Saudi Arabia, and second by comparing the performance of 

several ML and DL models besides hybrid models for such climate using different datasets and 

features. The objective is to find the model and dataset features that achieve accurate predictions in 

a hot desert climate. We found several studies in the literature that used Saudi data, but to the best 

of our knowledge, none of them proposed hybrid models. Lawal et al. [15] compared the performance 

of linear, dense, CNN, and LSTM models with a hybrid model of CNN and bidirectional LSTM 

(BiLSTM) for next-hour wind speed prediction using data gathered from a location in Saudi Arabia. 

They found that the models’ performance at a height of 98 meters is better than 18 meters and the 
CNN-BiLSTM model performed the best. Faniband and Shaahid [16] compared the performance of 

three ML methods k-nearest neighbors (kNN), random forest, and support vector regression (SVR) 

to three statistical methods linear regression, Holt-Winter, and Auto Regressive Integrated Moving 

Average (ARIMA) for 1-hour ahead wind speed forecasting in Yanbu, Saudi Arabia. They found that 

ML methods provide better performance for 1-hour ahead prediction and SVR achieved the best 
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performance. Zheng et al. [17] compared the performance of three ML models kernel ridge regression 

(RR), SVR, and artificial neural network for next-hour wind speed prediction using data from a city 

in Saudi Arabia. The comparison includes studying the effect of including weather variables besides 

wind speed and direction on prediction performance. Salman et al. [18] studied the effect that using 

three exogenous variables had on LSTM model performance for wind speed prediction using data 

from Dhahran, Saudi Arabia. They found that the best performance for 1 hour ahead is achieved with 

previous values of wind speed and temperature measured at 10 and 2 meters. Huang et al. [19] 

developed a spatio-temporal forecast model based on the echo state network (ESN) to predict wind 

speed in Saudi Arabia. They found the ESN model provides a more accurate prediction than the 

ARIMA method. Alharbi and Csala proposed a BiLSTM model in [20] and a GRU model in [21] to 

predict wind speed using data from Dumat Aljandal, Saudi Arabia. Both models provide similar 

performance. Tayeb Brahimi [22] used a feed forward neural network (FFNN) model with four 

hidden layers for hourly wind speed forecasting in four locations in Saudi Arabia. Faniband and 

Shaahid [23] used an FFNN model for hourly wind speed prediction. The dataset used to train and 

test their network was collected from Qaisumah, a village in the eastern province of Saudi Arabia. 

However, in both works [22,23], measurements of meteorological variables of the same prediction 

hour were used to train the models, which are unavailable in advance unless forecasted values are 

used.  

Hybrid models that combine a decomposition method and a DL forecaster have proven their 

superiority in the wind energy forecasting field. Several works proposed hybrid models for wind 

speed prediction using data from locations with other climates than hot desert climates, such as China 

and the United States. For example, Liang et al. [24] developed a hybrid model of complete ensemble 

empirical mode decomposition with adaptive noise (CEEMDAN), permutation entropy (PE), GRU, 

radial basis function neural network (RBFNN), and an improved bat algorithm (IBA) for short-term 

wind speed forecasting for a wind farm in Zhangjiakou, China. The proposed model’s performance 
was compared to another eight ML models to validate its superiority. CEEMDAN in the proposed 

model was used to decompose wind speed data into several signals, then PE was calculated for each 

signal to combine closer ones into a smaller number of signals. Next, several GRUs were employed 

to extract the features from signals, which were fed into the RBFNN layer improved by IBA to 

produce the final prediction. In addition, Jiang et al. [25] developed a hybrid model of convolutional 

GRU, eXtreme gradient boosting (XGB) feature selection, and secondary decomposition method for 

multi-step wind speed forecasting for a wind farm in Shandong Province of China. Their secondary 

decomposition method starts with empirical mode decomposition (EMD) to decompose the original 

wind speed signal to several intrinsic mode functions (IMF), then VMD to further decompose the first 

IMF to several modes. For each subseries resulting from the decomposition stage, an XGB model was 

trained to extract the most important six features from the last 24-hour subseries, which were fed into 

a convolutional GRU that was optimized by genetic algorithm (GA) to provide forecasting results. 

This hybrid model outperformed another six ML models according to the comparison results. Lv and 

Wang [26] combined two decomposition methods: VMD and linear-nonlinear (LN) to decompose 

wind speed data and they used Multi-Objective Binary Back-tracking Search Algorithm (MOBBSA) 

to optimize the decomposition parameters. The final forecasting in their hybrid model results from 

averaging the outputs of multiple LSTM autoencoder sequence to sequence models. The proposed 

model in this work outperformed another four DL models in short-term wind speed forecasting for 

the Rocky Mountains, United States. Yildiz et al. [27] combined VMD and a residual-based CNN 

model for wind power forecasting using data from a wind farm in Turkey. They decomposed wind 

data by VMD, then reconstructed as 2D input images to be fed into a residual-based CNN model to 

produce forecasting. The performance of the proposed model was compared with five DL models to 

prove its improved accuracy. Wang et al. [28] developed a hybrid model for both wind power and 

wind speed forecasting, which combined VMD and Stacked Independently Recurrent Auto Encoder 

(SIRAE). Their model shows better performance than another four ML models. Hu et al. [29] 

proposed a hybrid model that combines VMD and ESN optimized by Differential Evolution 
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algorithm (DE) for wind speed forecasting using data from a wind farm in Galicia, Spain. They 

validate the proposed model’s performance through comparison with six different models. 

Table 1 summarizes the related work by specifying the forecasting objective, whether it is wind 

speed (WS) or wind power (WP), the forecasting method, features used as inputs, data source, 

whether it is ground-based measurements or simulation data, and the main results. If a work targets 

a prediction horizon other than the next-hour prediction, only the results of next-hour forecasting are 

included in the table.  

Table 1. Summary of the related work. 

Ref 

No.  
Objective  Method  Features   Data source Results  

[15] WS 
CNN-

BiLSTM  

WS, Maximum 

WS, SD of WS 

Ground-

based 

MAE=0.30, RMSE=0.43, MAPE=115 

for a location in SA 

[16] WS  SVR WS 
Ground-

based 

MAE=2.37, MAPE= 206.80 for 

Yanbu, SA 

[17] WS RR 
WS, WD, PWS, T, 

P, RH    

Mesoscale 

atmospheric 

model 

MAE=1.22, RMSE=0.26, R2=0.9 for a 

city in SA 

[18] WS LSTM WS, T, P 
Ground-

based 
MAE=0.28, R2=0.97 for Dhahran, SA 

[19] WS ESN WS 

Simulated 

data by 

WRF 

MSE= 0.24 for a location in SA 

[20] WS BiLSTM 
WS, GHI, DNI, 

DHI, T 

Simulated 

data 

MAE=0.4, RMSE=0.6, MAPE=15, 

R2=0.93 for Dumat Aljandal, SA 

[21] WS GRU WS, T 
Simulated 

data 

MAE=0.48, RMSE=0.66, MAPE=5, 

R2=0.93 for Dumat Aljandal, SA 

[22] WS FFNN  
T, WD, GHI, PWS, 

RH, P 

Ground-

based 

RMSE =0.81, R=0.92, MAE=0.61 for 

Jeddah, SA 

RMSE =0.54, R=0.87 for Riyadh, SA 

RMSE =0.86, R=0.90, for Taif, SA 

RMSE =1.12, R=0.90, for Afif, SA 

[23] WS FFNN  WS, T, RH  
Ground-

based 

MAPE =6.65%, MSE = 0.09 for 

Qaisumah village, SA  

[12] WS 
MLP, CNN, 

RNN 
WS 

Simulated 

data by 

WRF 

R2 for CNN and RNN model is 

higher than MLP in USA  

[14] WS  CNN 

T, RH, P, WS, 

season, month, 

day, hour 

Simulated 

data by PSM 

MAE=0.09, RMSE=0.23, sMAPE=4.92 

for USA 

[13] WS 

Hybrid 

model of 

WSTD+ GRU 

WS 
Ground-

based 

MAE=0.23, RMSE=0.38, MAPE=0.01 

for Bondvill, USA 

MAE=0.17, RMSE=0.26, MAPE=0.07 

for Penn State University, USA 

MAE=0.40, RMSE=0.53, MAPE=0.03 

for Boulder, USA 

MAE=1.26, RMSE=1.86, MAPE=0.19 

for Desert Rock, USA 

[24] WS 

Hybrid 

model of 

CEEMDAN+ 

PE+ 

WS 
Ground-

based  

MAE=0.45, RMSE=0.59, 

MAPE=4.79% for Zhangjiakou, 

China 
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GRU+RBFN

N +IBA  

[25] WS  

Hybrid 

model of 

EMD+VMD+ 

XGB+ 

CGRU+ GA 

WS 
Ground-

based 

RMSE=0.57, MAE=0.41, 

MAPE=8.36% 

for Shandong Province of China  

[26] WS 

Hybrid 

model of 

VMD+LN+ 

MOBBSA+ 

LSTM-AE 

WS 
Ground-

based 

MAE= 0.08, RMSE=0.11, 

MAPE=2.95% 

for Rocky Mountains, USA 

[27] WP 

Hybrid 

model of 

VMD+ 

residual-

based CNN 

WP, WS, WD 
Ground-

based 

R= 0.97, RMSE=0.05, MAE=0.04 for a 

location in Turkey   

[28] WP & WS 

Hybrid 

model of 

VMD+ SIRAE 

WP, WS 
Ground-

based 

RMSE= 1.23% for Galicia, Spain  

MAE= 2.45%, RMSE=3.16% for 

Dodge City, USA 

[29] WS  

Hybrid 

model of 

VMD+ 

ESN+DE 

WS, WD, T, P, RH,  
Ground-

based 

RMSE= 0.12, MAE= 0.10, MAPE= 

2.6% for Galicia, Spain  

*T: Temperature, P: Pressure, WD: Wind Direction, RH: Relative Humidity, PWS: Peak Wind Speed, SD: 

Standard Deviation, GHI: Global Horizontal Irradiation, DNI: Direct Normal Irradiance, DHI: Diffuse 

Horizontal Irradiance. 

Research Gap  

As highlighted in this section, there is a need to develop new models designed for wind speed 

prediction in a hot desert climate. The literature in this field lacks comparative studies that show how 

ML and DL models perform under such climate conditions. To our knowledge, this is the first work 

proposing a hybrid model of a decomposition method and a DL model for such a climate. Also, it is 

important to quantify the improvement in the accuracy of DL models over ML with and without 

exogenous variables to show important data features. It is essential to highlight the performance 

gains of hybrid models over single models to justify the added complexity and help in making an 

informed decision on the tradeoff between accuracy and efficiency.   

3. Methodology  

We first describe data preprocessing steps in Section 3.1, including data collection, feature 

engineering, data normalization and portioning, and data decomposition methods. Then in Section 

3.2, we describe the development process of seven DL models, which are LSTM, GRU, bidirectional 

LSTM (BiLSTM), bidirectional GRU (BiGRU), LSTM autoencoder (LSTM-AE), convolutional neural 

network LSTM (CNN-LSTM), and the hybrid model of decomposition methods and LSTM. We also 

describe four ML-based models, which are SVR, random forest regression (RFR), XGB, and multiple 

linear regression (MLR). In Section 3.3, we explain the implementation details of the models 

developed in this work. In Section 3.4, we clarify the performance evaluation metrics used for 

comparison. 

3.1. Data Preprocessing  

In this section, we describe four data preprocessing steps: data collection, feature engineering, 

data normalization and portioning, and data decomposition methods. 
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3.1.1. Data Collection  

We used six datasets in this work from the National Solar Radiation Database (NSRDB) accessed 

through the National Renewable Energy Laboratory (NREL) website [30]. NREL notes the data is 

gathered by the METEOSAT IODC satellite and simulated by the Physical Solar Model (PSM) version 

3 with a one-hour temporal resolution and 4 KM spatial resolution. The datasets cover the years 2017, 

2018, and 2019. Four datasets were collected from locations in Saudi Arabia as shown in Figure 2, and 

two international datasets were collected from Caracas, Venezuela and Toronto, Canada, as shown 

in Figure 3. The climate classification of the Saudi locations is hot desert climate (BWh), whereas the 

climate classification of Toronto is humid continental (Dfb) and that of Caracas is tropical (A), 

according to the Köppen classification. Table 2 clarifies Saudi datasets locations information while 

Table 3 shows international datasets locations information. 

 

Figure 2. Wind dataset locations on Saudi Arabia map. 

Table 2. Saudi dataset location information. 

Location No.  Location Name Latitude (N) Longitude (E) Elevation (m) 

1 Alghat 26.32 43.45 674 

2 Dumat Aljandal 29.52 39.58 618 

3 Waad Alshamal 31.37 38.46 747 

4 Yanbu 23.59 38.13 10 
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Figure 3. Toronto and Caracas locations on a map. 

Table 3. International dataset location information. 

Location Name Latitude (N) Longitude (E) Elevation (m) 

 Caracas, Venezuela  10.49 -66.9 942 

 Toronto, Canada 43.65 -79.38 93 

3.1.2. Feature Engineering  

Besides date and time information, all the datasets contain hourly values of 11 attributes: 

1. Output: Wind Speed as a meter per second (m/s) 

2. Wind Direction as degree (°) 

3. Clear sky Global Horizontal Irradiance as watt per square meter (w/m2) 

4. Clear sky Diffuse Horizontal Irradiance as w/m2 

5. Clear sky Direct Normal Irradiance as w/m2 

6. Precipitable Water (PW) as Millimeter 

7. Temperature (T) as Celsius (°C) 

8. Dew Point (DP) as Celsius (°C) 

9. Pressure (P) as Millibar 

10. Relative Humidity as a percentage (%) 

The correlation matrixes of Saudi locations are plotted in Figure 4 for Alghat, Figure 5 for Dumat 

Aljandal, Figure 6 for Waad Alshamal, and Figure 7 for Yanbu. From the correlation matrixes of these 

four locations, WS is positively correlated with WD, GHI, DHI, DNI, and T, whereas WS is negatively 

correlated with RH in all four locations. However, WS correlations with DP and PW are positive for 

Alghat, Dumat Aljandal, and Waad Alshamal, while they are negative for Yanbu. WS correlation 

with P is negative for Alghat, Dumat Aljandal, and Waad Alshamal, while it is positive for Yanbu. 

The strongest positive correlation of WS for all four datasets is with DHI and GHI, whereas the 

strongest negative correlation of WS is with P for Alghat, Dumat Aljandal, and Waad Alshamal, while 

it is with RH for Yanbu.  

From the correlation matrix of Caracas in Figure 8, we note WS is positively correlated with GHI, 

DHI, DNI, and P, while WS is negatively correlated with T, DP, RH, PW, and WD. Also, positive 
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correlations with WS are weak, whereas the strongest negative correlation with WS is with DP, PW, 

and WD. As appears in the Toronto correlation matrix in Figure 9, WS is negatively correlated with 

all variables except RH and WD and the strongest negative correlation of WS is with T and DP. 

 

Figure 4. Correlation matrix (Alghat). 

 

Figure 5. Correlation matrix (Dumat Aljandal). 
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Figure 6. Correlation matrix (Waad Alshamal). 

 

Figure 7. Correlation matrix (Yanbu). 
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Figure 8. Correlation matrix (Caracas). 

 

Figure 9. Correlation matrix (Toronto). 

Since GHI, DNI, and DHI are all related to solar radiation information and are correlated, we 

nominated DHI to represent radiation in the Saudi datasets and eliminated DNI and GHI. DNI was 

chosen for the Caracas dataset, while GHI was chosen for the Toronto dataset because they have the 

highest correlations with WS. In addition, weather variables in the forecasting time (t) would not be 
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available in reality, therefore, we used the last hour’s weather variables (at time t−1) as features to 

train the forecasting models, which include GHI_lag1, DP_lag1, RH_lag1, P_lag1, and PW_lag1. We 

did not use t−2 or t−3 weather variables because the correlations of time t−1 features with WS are 

insignificant (see Figures 11–16), so there is no need to go further.  

Temporal variables (month, day, hour) of the forecasting time (t) are also important inputs. We 

converted the day attribute to the Day of the Year. This eliminated the need to include the month 

number while also representing seasonality. For example, the first day of January will become Day 1 

and the last day of December will become Day 365. Second, temporal variables have a cyclical nature. 

For example, Hour 23 is close to Hour 1 and Day 1 is close to Day 365. Treating temporal variables as 

regular numbers would make Hour 1 far from Hour 23, even though the difference is small. To avoid 

this problem that might affect the models’ learning, we eliminated the effect of the cyclical nature of 
temporal variables by encoding them into sine and cosine using the following equations [31]. The 

result is an additional four features: Hour Sine (HS), Hour Cosine (HC), Day Sine (DS), and Day 

Cosine (DC). We divided by 23 and 365 in equations 1 and 2 because 23 is the maximum hour in the 

datasets, whereas 365 is the maximum Day of the Year. 

Wind direction has also a cyclical nature. For example, WD of value 10° is close to WD of value 

360°. Therefore, we applied equations 1 and 2 and got an additional two features: WD Sine (WDS) 

and WD Cosine (WDC). 

Lagged values of WS are essential inputs for making accurate forecasting. Therefore, we created 

WS lagged values with the shift method in the Pandas library. To guide the decision on lag, we used 

the autocorrelation function (ACF) for WS in each dataset, as presented in Figure 10. The ACF of 

Saudi datasets in Figure 10 (a), (b), (c), and (d) show a significant correlation of WS with its 5 past 

values. The correlation drops below 0.5 after lag 5. Therefore, we added WS values of the previous 

five hours to the feature set of Saudi datasets (WS_lag1, WS_lag2, WS_lag3, WS_lag4, WS_lag5). In 

addition, the last day same hour’s WS value might be important for forecasting, so we included it in 
the feature set (WS_1D) after checking its correlation with WS. The situation with Caracas and 

Toronto is different. In Caracas (see Figure 10 (e)), WS is significantly correlated with its 72 past 

values. Thus, we added WS_lag6, and WS_lag7 to the feature set. However, the correlation coefficient 

after WS_lag7 has the same value up to WS_1D, thus, we decided to only include WS_1D in the 

feature set to represent the trend and eliminate WS_lag8 to WS_lag23. In Toronto (see Figure 10 (f)), 

WS is significantly correlated with its 12 past values and correlation decreases afterward, so we added 

WS_lag8 to WS_lag12 to the feature set.  

  

(a) Alghat (b) Dumat Aljandal 

𝒳̃ =  sin ( 2  π 𝒳max(𝒳))                 (1)         𝒳̃ = c𝑜𝑠 ( 2  π 𝒳max(𝒳))                 (2)                       

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 September 2023                   doi:10.20944/preprints202309.1966.v1

https://doi.org/10.20944/preprints202309.1966.v1


 13 

 

  

(c) Waad Alshamal (d) Yanbu 

  

(e) Caracas (f) Toronto 

Figure 10. a) ACF of WS (Alghat); (b) ACF of WS (Dumat Aljandal); (c) ACF of WS (Waad Alshamal); 

(d) ACF of WS (Yanbu); (e) ACF of WS (Caracas); (f) ACF of WS (Toronto). 

The final number of features in Saudi datasets after the feature engineering process is 18, as listed 

in Table 4. Figure 11 shows the correlation matrix of the Alghat dataset with these final features. If 

the threshold for significant correlation is +/−0.5, the correlations between WS and its past four hours’ 
values (WS_lag1 to WS_lag4) are significant. Figure 12 shows the correlation matrix of the Dumat 

Aljandal dataset with the final features, which has the same significant correlations as the Alghat 

dataset. Figure 13 displays the correlation matrix of the Waad Alshamal dataset in which the 

correlations between WS and its past five hours’ values (WS_lag1 to WS_lag5) are significant. Figure 

14 shows the correlation matrix of the Yanbu dataset with these final features. WS has significant 

correlations with its past four hours’ values (WS_lag1 to WS_lag4) and WS value at the same hour on 
the last day, WS_1D.  

Table 4. Saudi dataset features. 

Time t 

features 

Time t−1 

features 

WS lagged features 

WS 

(output) 

T_lag1 WS_lag1 

DHI_lag1 WS_lag2 

HS DP_lag1 WS_lag3 

HC RH_ lag1 WS_lag4 
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DS P_lag1 WS_lag5 

DC PW_lag1 WS_1D 

 WDS_lag

1 

 

 WDC_lag

1 

 

 

Figure 11. Correlation matrix of feature set (Alghat). 
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Figure 12. Correlation matrix of feature set (Dumat Aljandal). 

 

Figure 13. Correlation matrix of feature set (Waad Alshamal). 
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Figure 14. Correlation matrix of feature set (Yanbu). 

The final number of features after the feature engineering process is 20 in the Caracas dataset 

and 24 for the Toronto dataset. Table 5 lists the common features among both datasets and shows the 

different features of each one. Figure 15 displays the correlation matrix of the Caracas dataset in 

which the correlation between WS and DS is significant, showing that the season has a strong effect 

on WS at Caracas. Also, the correlations between WS and its past hours’ values (WS_lag1 to WS_1D) 
are significant. Figure 16 displays the correlation matrix of Toronto in which the correlations between 

WS and its past 12 hours’ values (WS_lag1 to WS_lag12) are significant.  

Table 5. Caracas and Toronto dataset features. 

Common features Caracas 

only 

Toronto 

only 

WS 

(output) 

T_lag1 WS_lag1 WS_1D WS_lag8 

DP_lag1 WS_lag2 DNI_lag1 WS_lag9 

HS RH_ lag1 WS_lag3  WS_lag10 

HC P_lag1 WS_lag4  WS_lag11 

DS PW_lag1 WS_lag5  WS_lag12 

DC WDS_lag

1 

WS_lag6  GHI_lag1 

 WDC_lag

1 

WS_lag7   
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Figure 15. Correlation matrix of feature set (Caracas). 

 

Figure 16. Correlation matrix of feature set (Toronto). 

3.1.3. Data Normalization and Portioning  

All features were normalized to the range of [0,1] using a min-max scaler, then denormalized to 

the normal range after the training process was complete and before calculating the evaluation 

metrics. We portioned data into 70% for training, 15% for validation, and 15% for testing. The total 
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number of records for each dataset is 26255, out of which 18410 records are used for training, 3906 

used for validation, and 3939 used for testing. Table 6 describes each dataset used in this work. It 

defines mean, standard deviation, variance (VAR), minimum (MIN), and maximum (MAX) values of 

WS in each data portion and in the dataset entirely. 

Table 6. Dataset descriptions. 

Dataset WS mean WS SD WS VAR WS MIN WS MAX 

Alghat Train:  3.03 1.53 2.33 0.1 10 

Val:   3.13 1.58 2.50 0.2 8.6 

Test: 3.01 1.43 2.04 0.2 9.2 

All:  3.04 1.52 2.31 0.1 10 

Dumat Aljandal Train:  2.65 1.40 1.97 0.1 9.8 

Val:   2.79 1.55 2.39 0.1 10.3 

Test:   2.62 1.37 1.87 0.1 7.3 

All:  2.66 1.42 2.02 0.1 10.3 

Waad Alshamal Train:  3.08 1.56 2.44 0.2 10.6 

Val:  3.40 1.69 2.86 0.4 11.1 

Test:   2.97 1.39 1.93 0.2 9.3 

All:   3.12 1.56 2.44 0.2 11.1 

Yanbu Train:  3.17 1.61 2.58 0.1 11.2 

Val:  3.31 1.70 2.89 0.1 9.9 

Test:   3.06 1.58 2.50 0.2 9.6 

All:   3.17 1.62 2.62 0.1 11.2 

Caracas Train:  1.63 0.42 0.17 0.1 2.9 

Val:  1.76 0.34 0.12 0.8 2.7 

Test:   1.39 0.39 0.15 0.1 2.6 

All:   1.62 0.42 0.17 0.1 2.9 

Toronto Train:  4.38 2.37 5.60 0.1 14.7 

Val:  3.85 2.49 6.17 0.3 15.6 

Test:   4.28 2.07 4.29 0.3 14.1 

All:   4.28 2.35 5.52 0.1 15.6 

3.1.4. Data Decomposition Methods 

We have performed two tests to check the stationarity of wind speed data, which are the Dickey-

Fuller (AD) test and the Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test. Even though both tests 

showed data is stationary, we tried data decomposition methods and checked their effect on 

forecasting. Section 4 shows the improvement in prediction results after using three methods: EMD, 

CEEMDAN, and VMD. In this section, we describe these three methods. 

3.1.4.1. EMD 

The EMD method decomposes a time series into a set of IMFs with different frequency bands 

and a residue based on the local properties of the time series. EMD effectiveness is proven in a broad 

range of applications for analyzing nonlinear and nonstationary processes. However, there are still 

some limitations to applying EMD. One of the major limitations is the mode mixing problem. Mode 
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mixing means that a signal of different scales exists in one IMF or a signal of a similar scale exists in 

different IMFs [32,33]. 

EMD results of WS decomposition for all datasets are illustrated in Figure 17. Without limiting 

the number of IMFs, EMD decomposes WS into eleven IMFs and a residue. However, we set the 

maximum number of IMFs to 4 after the trial-and-error process because we have not seen an 

improvement in forecasting with a bigger number. 

  

(a) Alghat (b) Dumat Aljandal 

  

(c) Waad Alshamal (d) Yanbu 
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(e) Caracas (f) Toronto 

Figure 17. EMD results of (a) Alghat; (b) Dumat Aljandal; (c) Waad Alshamal; (d) Yanbu; (e) Caracas; 

(f) Toronto. 

3.1.4.2. CEEMDAN 

To address the mode mixing problems in EMD, various improved EMD methods were proposed 

and CEEMDAN is one of the latest versions. CEEMDAN can solve the mode mixing problem without 

adding extra noise to the reconstructed signal [32,33]. 

CEEMDAN results of WS decomposition for all datasets are illustrated in Figure 18. Without 

limiting the number of IMFs, CEEMDAN decomposes WS into eleven or twelve IMFs and a residue. 

However, we set the maximum number of IMF to 4 after the trial-and-error process because we have 

not seen an improvement in forecasting with a bigger number. 

  

(a) Alghat (b) Dumat Aljandal 
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(c) Waad Alshamal (d) Yanbu 

  
(e) Caracas (f) Toronto 

Figure 18. CEEMDAN results of (a) Alghat; (b) Dumat Aljandal; (c) Waad Alshamal; (d) Yanbu; (e) 

Caracas; (f) Toronto. 

3.1.4.3. VMD 

VMD is an effective decomposition algorithm that decomposes a time series into several modes, 

which have specific sparsity properties while producing the original time series [32,33]. VMD-based 

models show better noise robustness and more precise component separation. 

VMD results of WS decomposition for all datasets are illustrated in Figure 19. We set the number 

of modes to 4 based on the trial-and-error process because we have not seen an improvement in 

forecasting with a bigger number. 
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(a) Alghat (b) Dumat Aljandal 

  

(c) Waad Alshamal (d) Yanbu 

  

(e) Caracas (f) Toronto 

Figure 19. VMD results of (a) Alghat; (b) Dumat Aljandal; (c) Waad Alshamal; (d) Yanbu; (e) Caracas; 

(f) Toronto. 
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3.2. Models’ Development  

In Section 3.2.1, we describe seven DL-based models: LSTM, GRU, BiLSTM, BiGRU, LSTM-AE, 

CNN-LSTM, and the hybrid model of a decomposition method and LSTM. We describe four ML-

based models in Section 3.2.2: SVR, RFR, XGB, and MLR. 

3.2.1. DL-Based Models 

Seven DL-based models are described here, which are used for next-hour WS forecasting. These 

models are LSTM, GRU, BiLSTM, BiGRU, LSTM-AE, CNN-LSTM, and the hybrid model of a 

decomposition method and LSTM. 

3.2.1.1. LSTM 

LSTM is a special type of RNN that can learn long-term dependencies. It performs better than 

traditional RNN in diverse tasks. Besides the hidden state, LSTMs contain the cell state that conveys 

important inputs from previous steps to later steps. Meanwhile, new inputs are added to or deleted 

from the cell state through input and forget gates. The output gate determines if the current memory 

cell will be output. More details on LSTM are in [34,35]. 

An LSTM model for the next-hour WS forecasting is implemented in this work, as clarified in 

Figure 20, which comprises two LSTM layers for feature extraction and two dense layers to make WS 

prediction. The activation function of the LSTM model is ReLU. Further implementation details are 

given in Section 3.3.    

3.2.1.2. GRU 

GRU is like LSTM because it captures long-term dependencies but does not contain the cell state. 

The update gate in GRU determines the amount of past information that needs to be kept because 

the reset gate determines how much to forget. GRUs are often faster and need less computation time 

and memory than LSTMs [36]. 

A GRU model for the next-hour WS forecasting is implemented in this work, as clarified in 

Figure 21, which comprises two GRU layers for feature extraction and two dense layers to make a 

WS prediction. More implementation details are given in Section 3.3. 
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Figure 20. LSTM model. 
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Figure 21. GRU model. 

3.2.1.3. BiLSTM  

BiLSTM is an adjusted version of LSTM that contains two layers: one to process inputs in a 

forward direction, and another to process inputs in a backward direction. This structure allows 

learning from past and future information. More details on BiLSTMs are in [20,34].  

BiLSTM model for the next-hour WS forecasting is implemented in this work, as clarified in 

Figure 22. It comprises one BiLSTM layer, and one LSTM layer, followed by two dense layers to make 

WS prediction. More implementation details are given in Section 3.3. 

3.2.1.4. BiGRU 

Similar to BiLSTM, BiGRU comprises two GRUs, which process the input sequence from two 

directions, then merge their representations [37].  

A BiGRU model for the next-hour WS forecasting is implemented in this work, as clarified in 

Figure 23. It comprises one BiGRU layer, and one GRU layer, followed by two dense layers to make 

WS prediction. More implementation details are given in Section 3.3. 
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Figure 22. BiLSTM model. 
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Figure 23. BiGRU model. 

3.2.1.5. LSTM-AE 

Autoencoder is a neural network that comprises two parts: the encoder and the decoder. The 

encoder compresses inputs into a feature vector called latent space, and the decoder decompresses it 

into output. This data reconstruction process helps the model extract the most important features. 

The LSTM-AE model is an autoencoder in which both the encoder and decoder comprise LSTM layers 

to learn temporal dependencies in sequence data. Work in [38] and [39] contains more on LSTM-AE. 

An LSTM-AE model for the next-hour WS forecasting is implemented in this work, as clarified 

in Figure 24. Both the encoder and decoder have two LSTM layers, followed by two dense layers to 

make WS prediction. More implementation details are given in Section 3.3. 

3.2.1.6. CNN-LSTM 

In CNN and LSTM structure, convolutional and pooling layers are followed by LSTM layers, 

then one or more dense layers to generate the output [40]. 

A CNN-LSTM model for the next-hour WS forecasting is implemented in this work as clarified 

in Figure 25, which comprises two 1D convolutional layers with kernel size equals 2, a max-pooling 

layer, a flatten layer, a repeat vector layer, an LSTM layer, a dropout layer, and two dense layers. 

Section provides more implementation details. 
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Figure 24. CNN-LSTM model. 
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Figure 25. LSTM-AE model. 

3.2.1.7. Hybrid Model of Decomposition Methods and LSTM 

The LSTM model, combined with the decomposition methods (EMD, CEEMDAN, VMD), is the 

same model illustrated in Section 3.2.1.1. However, the activation function is Tanh instead of ReLU, 

as appears in Figure 26 because the decomposition process produces negative values for which Tanh 

is more suitable (refer to Figure 17, Figure 18, and Figure 19 to see the range of decomposition results). 

To understand how the hybrid model works, Figure 27 clarifies the forecasting process, which starts 

with applying a decomposition method on WS original data series, then uses a separate LSTM model 

for each subseries. The results of these separate LSTM models are totaled to provide the final WS 

forecasting.    
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Figure 26. LSTM combined with decomposition methods. 

3.2.2. ML-Based Models 

In this section, we describe four ML-based models used in this work for performance 

comparison, which are SVR, RFR, XGB, and MLR. 

3.2.2.1. SVR 

SVR is a supervised ML algorithm for regression problems, which recognizes non-linearity in 

the data. It predicts values instead of predicting classes as a support vector machine that is used for 

classification problems. In SVR, the best-fit line is the hyperplane that has the maximum number of 

points [41]. 
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In this work, the SVR was built using Scikit-learn library with radial basis function kernel, with 

the parameter settings: C = 100; epsilon = 0.001. It was trained and tested using the same training and 

testing sets of the datasets described in Table 6. 

3.2.2.2. RFR 

Random forest is a non-parametric, supervised, and ensemble-based learning method used for 

both classification and regression tasks. Its final output is the average of multiple decision trees’ 
outputs. Therefore, it produces a more accurate prediction than a single decision tree [42].  

In this work, the RFR, which was built using Scikit-learn library, has 600 estimators with a 

maximum depth equal to 50. It was trained and tested using the same training and testing sets of the 

datasets described in Table 6. 

3.2.2.3. XGB 

XGB is a scalable, distributed gradient-boosted decision tree. It is an ensemble learning 

algorithm, like a random forest for classification and regression. Gradient boosting improves a single 

weak model by combining it with several other weak models to generate a strong ensemble model. 

XGB is an accurate and efficient implementation of gradient boosting that uses computing power for 

building trees in parallel [25]. 

In this work, the XGB, which was built using XGBoost library, has 500 estimators with a learning 

rate equal to 0.1. It was trained and tested using the same training and testing sets of the datasets 

described in Table 6. 

 

Figure 27. Hybrid model of decomposition methods and LSTM. 

3.2.2.4. MLR 

MLR is a conventional statistical method to define the relationship between multiple 

independent variables and one dependent variable. This relationship is represented by the following 

equation: 𝑦 =    𝛽0 + 𝛽1 𝒳1 + 𝛽2 𝒳2 + 𝛽3 𝒳3 + ⋯ 𝜀 (3) 

where y is the dependent variable, 𝒳 is the independent variable, 𝛽 is the regression coefficient, 

and 𝜀 is the residual error [43].  

In this work, the MLR was built using Scikit-learn library and the same training and testing sets 

of the datasets described in Table 6. 

3.3. Implementation  

In this work, the Keras Library, a DL API written in Python and running on top of the 

TensorFlow platform, was used to create DL models, where Python3 was employed as the 

programming language. The PyEMD library was used for EMD and CEEMDAN, whereas the vmdpy 

library was used for VMD. The experiments were performed on a laptop with Intel Core i7-11800 H 
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CPU, NVIDIA GeForce RTX 3070 GPU, and 16 GB memory. However, all DL models were developed 

using the GPU. Table 7 specifies the hyperparameters used in developing DL models, besides the 

optimization methods. The structures of all DL model including the type and number of layers and 

their neurons, are illustrated in Section 3.2.1.   

Table 7. DL-based Models’ hyperparameters and optimization methods. 

Hyperparameter Value  Optimization 

Learning Rate  0.001 Adam Optimizer 

Number of Epochs 100 Activation Function= ReLU, Tanh* 

Dropout 0.1 Loss Function= MSE 

 Batch Size 500 Early Stopping 

Weight Decay  0.000001 Kernel Initializer= glorot uniform 

* In hybrid LSTM model with decomposition methods. 

3.4. Evaluation Metrics  

In this work, four performance evaluation metrics are used to evaluate the forecasting models. 

Mean absolute error is the mean of the absolute values of the individual forecast errors on overall 

examples (N) in the test set. Each forecasting error is the difference between the actual value (actual 

WS) and the forecast value (forecast WS). A lower value of MAE is better. It is calculated as follows 

[44]. 𝑀𝐴𝐸 = 1𝑁 ∑|𝑎𝑐𝑡𝑢𝑎𝑙 𝑊𝑆𝑖 − 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑊𝑆𝑖|𝑁
i=1      (4) 

Root Mean Square Error is the standard deviation of the residuals or the forecast errors. It 

measures residual spread and how the data is concentrated around the line of regression. A lower 

value of RMSE is better. RMSE is calculated as follows [44]. 

𝑅𝑀𝑆𝐸 =  √1𝑁 ∑(𝑎𝑐𝑡𝑢𝑎𝑙 𝑊𝑆𝑖 −  𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑊𝑆𝑖)2𝑁
i=1      (5) 

Mean absolute percentage error is a measure of forecasting accuracy. This percentage shows the 

average difference between the forecasted value and the actual value. Smaller MAPE provides better 

forecasts. MAPE is calculated as follows [45]. 𝑀𝐴𝑃𝐸 = 1𝑁 ∑ |𝑎𝑐𝑡𝑢𝑎𝑙 𝑊𝑆𝑖 −  𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑊𝑆i𝑎𝑐𝑡𝑢𝑎𝑙 𝑊𝑆𝑖 |𝑁
i=1 × 100%   (6) 

Forecast skills are used to compare a proposed forecasting model performance metric with a 

reference model performance metric. An often-used reference model in the literature is the 

persistence method. The evaluation metric could be RMSE, MAE, or others. FS is calculated as follows 

[46].   𝐹𝑆 = 1 − 𝑀𝑒𝑡𝑟𝑖𝑐 proposed 𝑀𝑒𝑡𝑟𝑖𝑐 persistence  ∗ 100%        (7) 

4. Results and Discussion  

In this section, we present and discuss the results of the models’ forecasting performance from 
four aspects: the effect of using weather variables besides lagged wind speed features on forecasting 

accuracy (Section 4.1); the effect of seasonality on forecasting accuracy (Section 4.2); the effect of using 

three decomposition methods with the LSTM model for forecasting accuracy (Section 4.3); and the 
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percentage of the forecasting improvement of all models over the persistence method, known as the 

Forecast Skill (Section 4.4).  

4.1. Effect of Using Last Hour’s Weather Variables on Forecasting  

To study this effect on Saudi datasets, ten forecasting models were trained and tested twice with 

the same records. First, training was conducted using 18 features as shown in Table 8, which include 

temporal features, the last hour’s weather variables, and WS values of the previous 5 hours besides 
the WS value of the same hour last day. In the second trial, only WS values of the previous 5 hours 

were used, as highlighted in Table 8. For the Caracas dataset, 20 features were used in the first trial 

(with WS_lag6, and WS_lag7 added to Table 8 features) and 7 features in the second trial (WS_lag1 

to WS_lag7). For the Toronto dataset, 24 features were used in the first trial (with WS_lag8 to 

WS_lag12 added to Table 8 features and WS_1D removed). In the second trial for the Toronto dataset, 

only 12 features were used (WS_lag1 to WS_lag12). 

Table 8. Features used to train the models. 

Time t 

features 

Time t-1 

features 

WS features 

WS 

(output) 

T_lag1 WS_lag1 

DHI_lag1 WS_lag2 

HS DP_lag1 WS_lag3 

HC RH_ lag1 WS_lag4 

DS P_lag1 WS_lag5 

DC PW_lag1 WS_1D 

 WDS_lag1  

 WDC_lag1  

Figure 28 shows the average MAE results of 20 runs of the six DL-based forecasting models and 

four ML-based models when weather features were used besides WS lagged features, whereas Figure 

29 shows the same when only WS lagged features were used.  

For Alghat dataset, we noted that using weather features has improved the MAE results for all 

six DL-based forecasting models by 33% at most as with the GRU model and 20% at least as with the 

CNN-LSTM model. Using weather features in ML-based models improved the MAE results for all 

four models by 30% at most as with the XGB model and 5% at least as with MLR model. The best 

MAE value is 0.14 achieved by LSTM, GRU, BiLSTM, BiGRU, and XGB models, while the worst MAE 

value is 0.20 and associated with the MLR model.  

For Dumat Aljandal dataset, using weather features has improved MAE results for all six DL-

based forecasting models by 25% at most as with LSTM, BiLSTM, BiGRU, and LSTM-AE models and 

15% at least as with CNN-LSTM model. Using weather features in ML-based models improved the 

MAE results for all four models by 24% at most as with the XGB model and 5% at least as with MLR 

model. The best MAE value is 0.15 achieved by LSTM, BiLSTM, BiGRU, and LSTM-AE models, while 

the worst MAE value is 0.20 and associated with the MLR model.  

For the Waad Alshamal dataset, using weather features has improved MAE results for all six 

DL-based forecasting models by 32% at most as with BiLSTM model and 16% at least as with CNN-

LSTM model. Using weather features in ML-based models improved the MAE results for all four 

models by 27% at most, as with the RFR model and 5% at least as with the MLR model. The best MAE 

value is 0.13, achieved by BiLSTM, while the worst MAE value is 0.20 and associated with the MLR 

model.  

For the Yanbu dataset, using weather features has improved MAE results for all DL-based 

forecasting models, except CNN-LSTM model, by 18% at most as with LSTM, GRU, BiLSTM, and 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 September 2023                   doi:10.20944/preprints202309.1966.v1

https://doi.org/10.20944/preprints202309.1966.v1


 34 

 

BiGRU models. Using weather features in ML-based models improved the MAE results for all four 

models by 18% at most, as with SVR and 6% at least as with the MLR model. The best MAE value is 

0.14, achieved by LSTM, GRU, BiLSTM, BiGRU, and SVR models, while the worst MAE value is 0.20 

and associated with the MLR model.  

For the Caracas dataset, using weather features has not improved MAE results, except for GRU 

and RFR models, which were improved by 14%. The best MAE value is 0.06, achieved by all models 

with weather features. 

For the Toronto dataset, using weather features has not improved MAE results, except for CNN-

LSTM and MLR models, which were improved by 5%. In fact, LSTM, GRU, BiLSTM, and LSTM-AE 

models achieved better results using only lagged features. Weather features worsened the results. 

The best MAE value is 0.18, achieved by the SVR model with only lagged features. 

For Saudi datasets, we can summarize MAE results that using weather features has improved 

all DL- and ML-based models for all four locations, but the improvement percentage is the highest 

with the Alghat dataset and the lowest with the Yanbu dataset. We might relate low improvement 

with the Yanbu dataset to the lower correlation between WS and T_lag1 and between WS and 

DHI_lag1 (see Figure 14) compared to other locations. Also, Yanbu is a coastal city, unlike the other 

three locations, and there are no significant changes in Yanbu weather from season to season. For 

example, the average temperature is 32° C in August and 21° C in January. With weather features, all 

models have similar MAE results, except the MLR model, which achieved the worst MAE value for 

all four datasets. The BiLSTM model is the best, which attained the best MAE value for all Saudi 

locations. 

To summarize MAE results for the Caracas dataset, weather features have not improved MAE 

results because WS has strong correlations with its lagged seven features (see Figure 15), which makes 

it easy to predict the next value with no extra features. Also, the MAE value is 0.06 for all models. 

This is a low value compared to other locations because the maximum WS in Caracas is 2.9 (see Table 

6). Using weather features in the Toronto dataset has made MAE results worse in most of the cases 

because WS has strong correlations with its lagged twelve features (see Figure 16). Also, MAE values 

for Toronto are the largest because the maximum WS is 15.6—the highest among all locations (see 

Table 6).  

 

Figure 28. MAE results (weather features). 
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Figure 29. MAE results (WS lagged features). 

Figure 30 shows the average RMSE results of 20 runs of the six DL-based forecasting models and 

four ML-based models when weather features were used besides WS lagged features, whereas Figure 

31 shows the same when only WS lagged features were used.  

For the Alghat dataset, we noted that using weather features has improved the RMSE results for 

all six DL-based forecasting models by 32% at most as with GRU model and 21% at least as with 

CNN-LSTM model. Using weather features in ML-based models improved the RMSE results for all 

four models by 27% at most, as with the RFR model and 4% at least as with the MLR model. The best 

RMSE value is 0.19 achieved by LSTM, GRU, BiLSTM, and BiGRU models, while the worst RMSE 

value is 0.27 and associated with the MLR model.  

For Dumat Aljandal dataset, using weather features has improved RMSE results for all six DL-

based forecasting models by 25% at most as with the LSTM model and 18% at least as with the CNN-

LSTM model. Using weather features in ML-based models improved the RMSE results for all four 

models by 24% at most as with the XGB model and 3% at least as with MLR model. The best RMSE 

value is 0.21 achieved by LSTM, BiLSTM, and LSTM-AE models, while the worst RMSE value is 0.28 

and associated with the MLR model.  

For Waad Alshamal dataset, using weather features has improved RMSE results for all six DL-

based forecasting models by 33% at most as with LSTM, GRU, and BiLSTM models and 19% at least 

as with the CNN-LSTM model. Using weather features in ML-based models improved the RMSE 

results for all four models by 30% at most as with XGB model and 3% at least as with MLR model. 

The best RMSE value is 0.18 achieved by LSTM, GRU, BiLSTM, and BiGRU models, while the worst 

RMSE value is 0.28 and associated with the MLR model.  

For the Yanbu dataset, using weather features has improved RMSE results for all DL-based 

forecasting models, except CNN-LSTM model, by 22% at most, as with the LSTM model. Using 

weather features in ML-based models improved the RMSE results for all four models by 18% at most, 
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as with SVR and 8% at least as with the MLR model. The best RMSE value is 0.18 achieved by LSTM, 

BiLSTM, and SVR models, while the worst RMSE value is 0.23 and is associated with the RFR model.  

For the Caracas dataset, using weather features has improved RMSE results only for LSTM, 

GRU, SVR, MLR, and XGB models by 13% and RFR model by 22% The best RMSE value is 0.07 

achieved by six models with weather features. 

For the Toronto dataset, using weather features has not improved the RMSE results, except for 

CNN-LSTM, SVR, and XGB models, which were improved by 3% at least. In fact, GRU, BiLSTM, and 

LSTM-AE models achieved better results with lagged features only and using weather features 

worsened the results. The best RMSE value is 0.30 achieved by the XGB model with weather features 

and achieved by GRU and BiLSTM with lagged features only.   

For Saudi datasets, we can summarize RMSE results that using weather features has improved 

all DL-based models and ML-based models for all four locations. However, the improvement 

percentage is the highest with Alghat and Waad Alshamal datasets and the lowest with the Yanbu 

dataset. We might relate low improvement with the Yanbu dataset to the lower correlation between 

WS and T_lag1 and between WS and DHI_lag1 (see Figure 14) compared to other locations. Also, 

Yanbu is a coastal city, unlike the other three locations, and there are no significant changes in Yanbu 

weather from season to season. For example, the average temperature is 32° C in August and 21° C 

in January. With weather features, DL-based models have similar RMSE results, except CNN-LSTM 

model and ML-based models have similar RMSE results, except MLR model. MLR model achieved 

the worst RMSE value for three datasets, while LSTM and BiLSTM models attained the best RMSE 

value for all Saudi locations. 

To summarize the RMSE results for the Caracas dataset, weather features have not improved 

RMSE results because WS has strong correlations with its lagged seven features (see  Figure 15), 

which makes it easy to predict the next value with no extra features. Also, the RMSE value is 0.07 or 

0.08 for all models and is a low value compared to other locations because the maximum WS in 

Caracas is 2.9 (see Table 6). Using weather features in the Toronto dataset has not improved RMSE 

results for most of the models because WS has strong correlations with its lagged twelve features (see 

Figure 16). Also, RMSE values for Toronto are the largest because the maximum WS is 15.6 and is the 

highest among all locations (see Table 6).  

 

Figure 30. RMSE results (weather features). 
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Figure 31. RMSE results (WS lagged features). 

Figure 32 shows the average MAPE results of 20 runs of the six DL-based forecasting models 

and four ML-based models when weather features were used besides WS lagged features, whereas 

Figure 33 shows the same when only WS lagged features were used.  

For Alghat dataset, noted that using weather features has improved the MAPE results for all six 

DL-based forecasting models by 25% at most as with LSTM and GRU models and 15% at least as with 

the CNN-LSTM model. Using weather features in ML-based models improved the RMSE results for 

all four models by 25% at most as with XGB and RFR models and 2% at least as with MLR model. 

The best MAPE value is 5.91 achieved by the LSTM model, while the worst MAPE value is 8.31 and 

is associated with the MLR model.  

For Dumat Aljandal dataset, using weather features has improved MAPE results for all six DL-

based forecasting models by 18% at most as with the LSTM model and 11% at least as with the CNN-

LSTM model. Using weather features in ML-based models improved the MAPE results for the RFR 

model by 15% and for XGB and SVR models by 9% at least. The best MAPE value is 7.66 achieved by 

the LSTM model, while the worst RMSE value is 10.05 and is associated with the MLR model.  

For the Waad Alshamal dataset, using weather features has improved MAPE results for all six 

DL-based forecasting models by 31% at most as with BiLSTM model and 15% at least as with CNN-

LSTM model. Using weather features in ML-based models improved the MAPE results for all four 

models by 28% at most as with the XGB model and 3% at least as with MLR model. The best MAPE 

value is 5.41 achieved by the BiLSTM model, while the worst MAPE value is 8.22 and is associated 

with the MLR model.  

For the Yanbu dataset, using weather features has improved MAPE results for all DL-based 

forecasting models by 23% at most as with the LSTM model and by 5% at least as with the CNN-

LSTM model. Using weather features in ML-based models improved the MAPE results for all four 

models by 17% at most as with SVR and 6% at least as with the MLR model. The best MAPE value is 

6.67 achieved by the LSTM model, while the worst MAPE value is 8.25 and is associated with the RFR 

model.  

For the Caracas dataset, using weather features has improved MAPE results, except for BiLSTM 

and CNN-LSTM models. The highest improvement percentage is 12% for the RFR model and the 

Alghat Dumat Aljandal Waad Alshamal Yanbu Caracas Toronto

LSTM 0.27 0.28 0.27 0.23 0.08 0.31

GRU 0.28 0.28 0.27 0.22 0.08 0.30

BiLSTM 0.27 0.27 0.27 0.22 0.08 0.30

BiGRU 0.28 0.28 0.26 0.22 0.08 0.31

LSTM-AE 0.28 0.27 0.27 0.23 0.08 0.32

CNN-LSTM 0.28 0.28 0.27 0.22 0.08 0.33

SVR 0.27 0.28 0.28 0.22 0.08 0.33

MLR 0.28 0.29 0.29 0.24 0.08 0.32

XGBoost 0.27 0.29 0.27 0.24 0.08 0.31

RFR 0.30 0.31 0.30 0.26 0.09 0.32
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lowest is 2% for the MLR model. The best MAPE value is 4.68, achieved by the SVR model with 

weather features. 

For the Toronto dataset, using weather features has not improved MAPE results, except for ML-

based models, which were improved by 2% at most. In fact, DL-based models achieved better results 

with lagged features only and using weather features worsened the results. The best MAPE value is 

5.37, achieved by the SVR model with weather features. 

For Saudi datasets, we can summarize MAPE results that using weather features has improved 

all DL- and ML-based models for all four locations. However, the improvement percentage is the 

highest with the Alghat and Waad Alshamal datasets and the lowest with the Yanbu dataset. We 

might relate low improvement with the Yanbu dataset to the lower correlation between WS and 

T_lag1 and between WS and DHI_lag1 (see Figure 14) compared to other locations. Also, Yanbu is a 

coastal city, unlike the other three locations, and there are no significant changes in Yanbu weather 

from season to season. For example, the average temperature is 32° C in August and 21° C in January. 

With weather features, all models have similar MAPE results, except MLR and RFR models. MLR 

model achieved the worst MAPE value for three datasets, while LSTM attained the best MAPE value 

for three datasets out of four Saudi locations. 

To summarize MAPE results for the Caracas dataset, weather features have improved MAPE 

results because WS has strong correlations with its lagged seven features (see  Figure 15), which 

makes it easy to predict the next value with no extra features. Using weather features in the Toronto 

dataset has not improved MAPE results for most of the models because WS has strong correlations 

with its lagged twelve features (see Figure 16).  

 

Figure 32. MAPE results (weather features). 

Alghat Dumat Aljandal Waad Alshamal Yanbu Caracas Toronto

LSTM 5.91 7.66 5.66 6.67 4.72 5.97

GRU 6.07 7.99 5.69 6.78 4.87 6.43

BiLSTM 5.95 7.76 5.41 6.69 5.12 5.95

BiGRU 5.98 7.82 5.67 6.91 4.93 6.04

LSTM-AE 6.22 7.90 5.90 7.40 5.21 6.32

CNN-LSTM 6.65 8.52 6.39 7.70 5.19 6.04

SVR 6.69 8.29 6.25 6.79 4.68 5.37

MLR 8.31 10.05 8.22 8.21 4.92 5.52

XGB 6.03 8.07 5.64 7.41 4.78 5.71

RFR 6.69 9.09 6.60 8.25 4.88 5.99
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Figure 33. MAPE results (WS lagged features). 

From MAE, RMSE, and MAPE results in this section, we note that using weather features has 

improved the forecasting results of all models for Saudi locations by around 30% at most. However, 

DL-based models experienced higher improvement than ML-based models did. This may be related 

to DL-based models’ ability to handle high dimensionality. Also, the Yanbu dataset has the least 

improvement percentage because, as explained earlier, Yanbu is a coastal city, unlike the other three 

locations, and there are no significant changes in Yanbu weather from season to season. This makes 

weather features less important than WS lagged features in predicting the next value of WS. This is 

reflected in the lower correlation between WS and T_lag1 and between WS and DHI_lag1 (see Figure 

14) compared to other locations. Weather features with Caracas improved the forecasting results 

slightly, while it has worsened the results with Toronto for most of the models. The reason behind 

this is strong WS correlations with its lagged features. We used seven lagged features for Caracas and 

twelve for Toronto (see Figure 10). Therefore, the results of ML-based models are better or similar to 

the results of DL-based models for both locations. We can conclude that when wind speed has strong 

correlations with its lagged values, ML-based models’ performance would be satisfactory (i.e., SVR 
and XGB models) while DL-based models are needed with less strong or weak correlations. The same 

applies to weather features, which can improve the forecasting results more if there are less strong 

correlations between WS and its lagged features. 

4.2. Effect of Seasonality on Forecasting 

The datasets used in this work cover the period from January 2017 to December 2019. As 

mentioned earlier in Section 3.1.3, we used 15% of the size of the datasets for testing, hence; the testing 

set starts from July 20 to December 31, 2019, and it only contains complete data for the last five months 

of the year 2019. In this section, we present the changes in MAE, RMSE, and MAPE for August, 

September, October, November, and December to note the effect of seasonality on next-hour WS 

forecasting.  

Figure 34 shows the WS hourly average per month for all datasets. Saudi Arabia has only two 

seasons and, as shown in the figure, the WS hourly average does not differ from month to month, 

which ranges from 2.42 to 3.6 m/s. In Alghat, the WS hourly average is above 3 m/s in March, April, 

June, July, August, and November, whereas in Dumat Aljandal, it has not reached 3 m/s. In Yanbu, 

the WS hourly average is above 3 m/s in all months, except May, September, October, and November. 

Alghat Dumat Aljandal Waad Alshamal Yanbu Caracas Toronto

LSTM 7.84 9.37 7.95 8.61 5.14 5.78

GRU 8.09 9.59 7.95 8.44 5.38 5.70

BiLSTM 7.86 9.21 7.88 8.17 5.12 5.65

BiGRU 7.91 9.32 7.73 8.13 5.11 5.82

LSTM-AE 8.12 9.35 8.00 8.77 5.57 5.92

CNN-LSTM 7.79 9.53 7.53 8.14 5.15 6.03

SVR 7.77 9.25 7.62 8.17 4.95 5.49

MLR 8.48 10.06 8.45 8.73 5.04 5.55

XGBoost 8.02 8.83 7.78 8.49 5.37 5.83

RFR 8.94 10.67 8.57 9.21 5.56 6.11
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Among the Saudi locations, Yanbu has the highest average and Dumat Aljandal has the lowest. As 

noted in [47], the western region of Saudi Arabia, where Yanbu is located, has more potential for 

wind energy than other regions do. In Caracas, the WS hourly average is low compared to other 

locations and the highest value is 1.94 m/s in February. It drops below 1.5 from July to October. In 

contrast, the WS hourly average in Toronto is high compared to other locations and the highest value 

is 5.95 m/s in January. It drops below 4 from May to September. 

 

Figure 34. WS hourly average per month. 

Figure 35 shows MAE, RMSE, and MAPE results for five months (August, September, October, 

November, and December) for all datasets. Alghat results (a) and (b) show that according to MAE 

and RMSE results of all models, November and December results are worse than the remaining 

months, except for the MLR model, which performs worse in August and December. MAPE results 

of all models as shown in (c) show that October has the worst results followed by November and 

December. Dumat Aljandal's results in (d), (e), and (f), show October results are the worst for all 

models. For Waad Alshamal results in (g) and (h), October results are the worst for all models, except 

for the MLR model whereas MAPE results in (i) show that December besides October has the worst 

results. Yanbu results in (g), (k), and (l), show performance differences across months from model to 

model. However, September and October have higher errors than other months for most of the 

models. Caracas results in (m), (n), and (o) show that September is the most difficult month for 

forecasting. Toronto MAE results in (p) show that October and December have the highest error, 

while RMSE results in (q) show a significant increase in October error. Toronto MAPE results in (r) 

show that August and September results are even worse than October. 
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(d) (e) (f) 

   

(g) (h) (i) 

   

(j) (k) (l) 

   

(m) (n) (o) 

   

(p) (q) (r) 

Figure 35. Forecasting results per month: (a) MAE; (b) RMSE; and (c) MAPE for Alghat; (d) MAE; (e) 

RMSE; and (f) MAPE for Dumat Aljandal; (g) MAE; (h) RMSE; an (i) MAPE for Waad Alshamal (j); 

MAE; (k) RMSE; and (l) MAPE for Yanbu; (m) MAE; (n) RMSE; and (o) MAPE for Caracas; (p) MAE; 

(q) RMSE; and (r) MAPE for Toronto. 

To conclude, it is unnecessary to worry about seasonality effects unless the hourly average of 

WS varies from one month to another or from one season to another. In the Saudi locations covered, 

there is no significant variance in the results from August to December, despite higher errors in some 

months, such as October. However, longer testing sets that cover a whole year should validate this 

observation. Caracas has the lowest WS hourly average in September. It also has the highest 
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forecasting error. In Toronto, MAPE results show the same inverse relationship in which August and 

September have the lowest WS hourly average and the highest forecasting error. However, we cannot 

validate this observation without a test set covering a whole year. 

4.3. Effect of Using Decomposition Methods on Forecasting  

To study this effect, three decomposition methods (described in Section 3.1.4) are combined with 

the LSTM model. Section 3.2.1.6. describes the structure of these hybrid models in detail. The features 

used to train and test the three hybrid models are the last five hours’ WS values in Saudi locations, 
the last seven values in Caracas, and the last twelve values in Toronto. The forecasting results of the 

three hybrid models are compared to six DL-based models and four ML-based models (the same 

results appeared in Section 4.1 for WS lagged features in Figure 29, Figure 31, and Figure 33).  

Figure 36 shows the MAE results of three hybrid models (EMD-LSTM, CEEMDAN-LSTM, 

VMD-LSTM), six DL-based models (LSTM, GRU, BiLSTM, BiGRU, LSTM-AE, CNN-LSTM), and four 

ML-based models (SVR, MLR, XGB, RFR) for all datasets. 

From Figure 36, we note that the best performing model for all Saudi locations is VMD-LSTM 

model, and the worst is RFR model. The hybrid model of VMD-LSTM achieved MAE value equals to 

0.12, which improved the forecasting results over LSTM model by 40% for Alghat, Dumat Aljandal, 

and Waad Alshamal. It also achieved MAE value equals to 0.09 for Yanbu, which improved the 

forecasting results over the LSTM model by 47%. Regarding the Caracas dataset, all three hybrid 

models achieved the same MAE value equals to 0.03, which provided 50% improvement over the 

LSTM model result. With the Toronto dataset, the hybrid model of CEEMDAN-LSTM achieved better 

MAE value than the other two hybrid models, which provided 42% improvement over the LSTM 

model result. 

  

Figure 36. MAE results of 13 models. 

Figure 37 shows the RMSE results of three hybrid models (EMD-LSTM, CEEMDAN-LSTM, 

VMD-LSTM), six DL-based models (LSTM, GRU, BiLSTM, BiGRU, LSTM-AE, CNN-LSTM), and four 

ML-based models (SVR, MLR, XGB, RFR) for all datasets.  

Alghat Dumat Aljandal Waad Alshamal Yanbu Caracas Toronto

EMD-LSTM 0.15 0.14 0.15 0.12 0.03 0.12

CEEMDAN-LSTM 0.13 0.13 0.14 0.11 0.03 0.11

VMD-LSTM 0.12 0.12 0.12 0.09 0.03 0.12

LSTM 0.20 0.20 0.20 0.17 0.06 0.19

GRU 0.21 0.20 0.19 0.17 0.07 0.19

BiLSTM 0.20 0.20 0.19 0.17 0.06 0.19

BiGRU 0.20 0.20 0.19 0.17 0.06 0.20

LSTM-AE 0.20 0.20 0.19 0.18 0.06 0.20

CNN-LSTM 0.20 0.20 0.19 0.17 0.06 0.21

SVR 0.19 0.20 0.19 0.17 0.06 0.18

MLR 0.21 0.21 0.21 0.18 0.06 0.19

XGBoost 0.20 0.21 0.19 0.18 0.06 0.19

RFR 0.22 0.22 0.22 0.19 0.07 0.20
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From Figure 37, we note that the best performing model for all Saudi locations is the VMD-LSTM 

model, and the worst is the RFR model. The hybrid model of VMD-LSTM achieved RMSE value 

equals to 0.15, which improved the forecasting results over LSTM model by 44% for Alghat and Waad 

Alshamal. It also achieved RMSE value equals to 0.16 for Dumat Aljandal and 0.13 for Yanbu, which 

improved the forecasting results over LSTM model by 43%. Regarding the Caracas and the Toronto 

datasets, the hybrid model of CEEMDAN-LSTM achieved slightly better RMSE value than the other 

two hybrid models, which considered 63% improvement in Caracas and 39% improvement in 

Toronto forecasting results over LSTM model. 

 

Figure 37. RMSE results of 13 models. 

Figure 38 shows the MAPE results of three hybrid models (EMD-LSTM, CEEMDAN-LSTM, 

VMD-LSTM), six DL-based models (LSTM, GRU, BiLSTM, BiGRU, LSTM-AE, CNN-LSTM), and four 

ML-based models (SVR, MLR, XGB, RFR) for all datasets.  

From Figure 38, we note that the best performing model for all Saudi locations is the VMD-LSTM 

model, and the worst is the RFR model. The hybrid model of VMD-LSTM achieved MAPE value 

equals to 4.81 for Alghat and 5.39 for Dumat Aljandal, which improved the forecasting results over 

the LSTM model by 39% and 37% for both locations. It also achieved MAPE value equals to 4.7 for 

Waad Alshamal and 4.66 for Yanbu, which improved the forecasting results over the LSTM model 

by 41% and 46% for both locations. Regarding the Caracas and the Toronto datasets, the hybrid model 

of CEEMDAN-LSTM achieved better MAPE value than the other two hybrid models, which 

considered 58% improvement in Caracas and 41% improvement in Toronto forecasting results over 

the LSTM model. 

Alghat Dumat Aljandal Waad Alshamal Yanbu Caracas Toronto

EMD-LSTM 0.20 0.19 0.19 0.16 0.04 0.20

CEEMDAN-LSTM 0.18 0.18 0.18 0.14 0.03 0.19

VMD-LSTM 0.15 0.16 0.15 0.13 0.04 0.20

LSTM 0.27 0.28 0.27 0.23 0.08 0.31

GRU 0.28 0.28 0.27 0.22 0.08 0.30

BiLSTM 0.27 0.27 0.27 0.22 0.08 0.30

BiGRU 0.28 0.28 0.26 0.22 0.08 0.31

LSTM-AE 0.28 0.27 0.27 0.23 0.08 0.32

CNN-LSTM 0.28 0.28 0.27 0.22 0.08 0.33

SVR 0.27 0.28 0.28 0.22 0.08 0.33

MLR 0.28 0.29 0.29 0.24 0.08 0.32

XGBoost 0.27 0.29 0.27 0.24 0.08 0.31

RFR 0.30 0.31 0.30 0.26 0.09 0.32
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Figure 38. MAPE results of 13 models. 

From MAE, RMSE, and MAPE results in this section, we conclude that using a hybrid model of 

LSTM and a decomposition method always achieves better results than using the LSTM model alone. 

In Saudi locations, the best hybrid model is VMD-LSTM according to all evaluation metrics, with 

improvement percentage ranges from 39% to 47% over the LSTM model. This observation agrees 

with the performance comparison done in [29] between EMD, Ensemble EMD, Wavelet Packet 

Decomposition, and VMD, in which VMD achieved the most accurate and stable performance. Also, 

in [48], VMD compared well to Empirical Wavelet Transform, Complementary Ensemble Empirical 

Mode Decomposition, and Ensemble Intrinsic Time-scale Decomposition. VMD outperformed EMD 

in [49]. In this field, many works show that VMD-based models perform better compared with 

Wavelet Transform-based and EMD-based models [29,50,51]. The reason behind the VMD 

superiority is its ability to decompose nonstationary and nonlinear time series and its robustness 

handling data noise. 

Regarding the Caracas and the Toronto datasets, the best hybrid model is CEEMDAN-LSTM 

according to all evaluation metrics with improvement percentage ranges from 50% to 63% over LSTM 

model in Caracas and from 39% to 42% over LSTM model in Toronto. 

We studied decomposition methods for forecasting by comparing the results of hybrid models 

to the results of DL- and ML-based models using only lagged WS values. We wonder which method 

is better: hybrid models with decomposition methods or weather variables with DL-based models 

(as done in Section 4.1). To answer this question, we compared the best performing hybrid models 

VMD-LSTM and CEEMDAN-LSTM to the LSTM model that was trained and tested using weather 

variables for each dataset in Figure 39. Figure 39 (a) shows MAE results for these three models, while 

RMSE and MAPE results are shown in (b) and (c). From the figure, we can see that the VMD-LSTM 

model achieved the best forecasting accuracy for Saudi datasets, while the CEEMDAN-LSTM model 

achieved the same for Caracas and Toronto datasets. Therefore, we can conclude that hybrid models 

with decomposition methods achieved better results than using weather variables with DL-based 

models. 

Alghat Dumat Aljandal Waad Alshamal Yanbu Caracas Toronto

EMD-LSTM 6.06 7.04 6.08 5.76 2.73 3.63

CEEMDAN-LSTM 5.43 6.53 5.72 5.25 2.25 3.38

VMD-LSTM 4.81 5.93 4.70 4.66 2.91 3.96

LSTM 7.84 9.37 7.95 8.61 5.14 5.78

GRU 8.09 9.59 7.95 8.44 5.38 5.70

BiLSTM 7.86 9.21 7.88 8.17 5.12 5.65

BiGRU 7.91 9.32 7.73 8.13 5.11 5.82

LSTM-AE 8.12 9.35 8.00 8.77 5.57 5.92

CNN-LSTM 7.79 9.53 7.53 8.14 5.15 6.03

SVR 7.77 9.25 7.62 8.17 4.95 5.49

MLR 8.48 10.06 8.45 8.73 5.04 5.55

XGBoost 8.02 8.83 7.78 8.49 5.37 5.83

RFR 8.94 10.67 8.57 9.21 5.56 6.11
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(a) 

 

(b) 

 

(c) 

Figure 39. Comparing the effect of using decomposition methods to the effect of using weather 

variables: (a) MAE results; (b) RMSE results; and (c) MAPE results. 
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4.4. Forecast Skills of all Models   

We compared DL-based model performance to ML-based models and hybrid models with 

decomposition methods. In this section, the forecast skills of all forecasting models are presented, 

which measure the improvement in forecasting compared to the persistence method. This metric 

(refer to equation 7) not only shows the feasibility of a proposed model for the same dataset but also 

helps to evaluate a model's performance compared to other models developed using different 

datasets. The results presented in this section are for the forecasting models that were trained and 

tested using WS lagged features. 

Figure 40 shows the FS of all models using the MAE metric for all six datasets. From the figure, 

we note that the highest FS values for Saudi datasets are achieved by the VMD-LSTM model, and the 

worst are associated with the RFR model. For Caracas, only the three hybrid models achieved 

improvement over the persistence method by 50%. For Toronto, the EMD-LSTM model and 

CEEMDAN-LSTM model attained 63% as the highest FS value, whereas the worst was 30% 

associated with the CNN-LSTM model. 

 

Figure 40. Forecast skill of all models (MAE). 

Figure 41 shows the FS of all models using the RMSE metric for all six datasets. From the figure, 

we note that the highest FS values for Saudi datasets are achieved by the VMD-LSTM model, and the 

worst are associated with the RFR model. For Caracas, the CEEMDAN-LSTM model achieved the 

best FS of 67%. The remaining two hybrid models attained FS equal to 56% while other models could 

not improve the FS by more than 11%. For Toronto, the CEEMDAN-LSTM model attained 56% as the 

highest FS value, whereas the worst was 23%, associated with CNN-LSTM and SVR models. 

EMD-LSTM
CEEMDAN-

LSTM
VMD-LSTM LSTM GRU BiLSTM BiGRU LSTM-AE CNN-LSTM SVR MLR XGBoost RFR

Alghat 53% 59% 63% 38% 34% 38% 38% 38% 38% 41% 34% 38% 31%

Dumat Aljandal 55% 58% 61% 35% 35% 35% 35% 35% 35% 35% 32% 32% 29%

Waad Alshamal 53% 56% 63% 38% 41% 41% 41% 41% 41% 41% 34% 41% 31%

Yanbu 65% 68% 74% 50% 50% 50% 50% 47% 50% 50% 47% 47% 44%

Caracas 50% 50% 50% 0% -17% 0% 0% 0% 0% 0% 0% 0% -17%

Toronto 63% 63% 60% 37% 37% 37% 33% 33% 30% 40% 37% 37% 33%
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Figure 41. Forecast skill of all models (RMSE). 

Figure 42 shows the FS of all models using the MAPE metric for all six datasets. From the figure, 

we note that the highest FS values for Saudi datasets are achieved by the VMD-LSTM model, and the 

worst are associated with the RFR model. For Caracas, the CEEMDAN-LSTM model achieved the 

best FS equal to 57%. The remaining two hybrid models attained FS equal to 48% and 44%, while 

most of the remaining models are worse than the persistence method. For Toronto, the CEEMDAN-

LSTM model attained 62% as the highest FS value, whereas the worst was 31%, associated with the 

RFR model. 

 

Figure 42. Forecast skill of all models (MAPE). 

EMD-LSTM
CEEMDAN-

LSTM
VMD-LSTM LSTM GRU BiLSTM BiGRU LSTM-AE CNN-LSTM SVR MLR XGBoost RFR

Alghat 56% 60% 67% 40% 38% 40% 38% 38% 38% 40% 38% 40% 33%

Dumat Aljandal 58% 60% 64% 38% 38% 40% 38% 40% 38% 38% 36% 36% 31%

Waad Alshamal 59% 61% 67% 41% 41% 41% 43% 41% 41% 39% 37% 41% 35%

Yanbu 65% 70% 72% 50% 52% 52% 52% 50% 52% 52% 48% 48% 43%

Caracas 56% 67% 56% 11% 11% 11% 11% 11% 11% 11% 11% 11% 0%

Toronto 53% 56% 53% 28% 30% 30% 28% 26% 23% 23% 26% 28% 26%
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Yanbu 60% 63% 68% 40% 41% 43% 43% 39% 43% 43% 39% 41% 36%

Caracas 48% 57% 44% 2% -3% 2% 2% -6% 2% 6% 4% -2% -6%

Toronto 59% 62% 55% 35% 36% 36% 34% 33% 32% 38% 37% 34% 31%
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We conclude from the figures above that the highest FS percentages of all metrics are achieved 

by hybrid models. The VMD-LSTM model is the best with the Saudi datasets, and the CEEMDAN-

LSTM model is the best with the Caracas and Toronto datasets. Also, apart from the hybrid models 

for Caracas, other models are worse, equal to, or just better than, the persistence method. The 

significant correlation between WS and its last value in Caracas makes prediction with the persistence 

method easier and more accurate. 

5. Conclusion   

This paper aims to propose a novel hybrid model that combines VMD and LSTM that is 

developed for next-hour wind speed prediction in a hot desert climate, such as the climate in Saudi 

Arabia. It also shows the improvement in the accuracy of DL models over ML with and without 

exogenous variables to give insights about important data features. It highlights the performance 

gain of hybrid models over single models to justify the added complexity and help in making an 

informed decision about the tradeoff between accuracy and efficiency. These objectives are achieved 

through the performance comparison of three hybrid models, six DL-based models, and four ML-

based models, which cover several aspects, such as seasonality and using different features and 

decomposition methods. 

We can summarize the findings: 

• The best forecasting model for the Saudi locations, according to MAE, RMSE, MAPE, and FS, is 

the hybrid model of VMD and LSTM model.  

• The best forecasting model for Caracas and Toronto, according to MAE, RMSE, MAPE, and FS, 

is the hybrid model of CEEMDAN and the LSTM model.  

• All DL-based models have similar performance, but complex structures like the LSTM-AE and 

CNN-LSTM models have higher errors. 

• Using the last hour’s weather variables besides the last values of WS has improved the 

forecasting results for all models. However, the hybrid models with decomposition methods 

achieved better forecasting results. 

• If seasons do not affect the hourly average of WS at the data source location, forecasting results 

would not show a big variance either. Here, it is unnecessary to partition the datasets according 

to seasons and train separate forecasters. 

In future work, we will build a novel DL-based auto-selective approach and tool that predicts 

the best-performing DL model for wind energy forecasting, as we did in [52] for solar energy. Also, 

the datasets used were collected by satellite from the NSRDB website and only covered three years. 

We could not find complete ground-based data for the desired locations and periods. In the future, 

we will try to find accurate ground-based data for a longer period and more locations to validate the 

results. 
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Abbreviations  

SA Saudi Arabia 

NWP Numerical Weather Prediction 

RNN Recurrent Neural Network 

kNN K-Nearest Neighbors 
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AE Autoencoder 

LSTM Long Short-Term Memory 

CNN Convolutional Neural Network 

GRU Gated Recurrent Unit 

BiLSTM Bidirectional LSTM 

BiGRU Bidirectional GRU 

RFR Random Forest Regression 

MLR Multiple Linear Regression 

MLP Multilayer Perceptron Network 

VMD Variational Mode Decomposition 

EMD Empirical Mode Decomposition 

CEEMDAN Complete Ensemble Empirical Mode Decomposition with Adaptive Noise 

SVR Support Vector Regression 

RMSE Root Mean Square Error 

MAPE Mean Absolute Percentage Error 

MAE Mean Absolute Error 

MSE Mean Squared Error loss 

WS Wind Speed 

WD Wind Direction  

WP Wind Power  

T Temperature 

P Pressure  

RH Relative Humidity 

ZA Zenith Angle 

PW Precipitable Water 

DP Dew Point 

HS Hour Sine 

HC Hour Cosine 

DS Day Sine 

DC Day Cosine 

WDS Wind Direction Sine 

WDC Wind Direction Cosine 

ML Machine Learning 

DL Deep Learning 

FFNN Feed Forward Neural Network 

GHI Global Horizontal Irradiation 

DHI Diffuse Horizontal Irradiation 

DNI Direct Normal Irradiance 

WSTD Wavelet Soft Threshold Denoising 

ReLU Rectified Linear Unit 

RR Ridge Regression 

ESN Echo State Network 

PE Permutation Entropy 

RBFNN Radial Basis Function Neural Network 

IBA Improved Bat Algorithm 

FS Forecast Skill 

XGB eXtreme Gradient Boosting 

ACF Autocorrelation Function 

GA Genetic Algorithm 

LN Linear-Nonlinear 

MOBBSA Multi-Objective Binary Back-tracking Search Algorithm 

DE Differential Evolution algorithm 

SIRAE Stacked Independently Recurrent Auto Encoder  

NSRDB National Solar Radiation Data Base   

NREL National Renewable Energy Laboratory 

PSM Physical Solar Model 

SD Standard Deviation  

VAR Variance 
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IMFs Intrinsic Mode Functions 

ARIMA Auto Regressive Integrated Moving Average 

References 

1. International Renewable Energy Agency (IRENA), “Future of Wind - Executive Summary,” 2019. 
2. “Dumat Al Jandal wind farm in Saudi Arabia starts production.” https://www.power-

technology.com/news/dumat-al-jandal-wind/ (accessed Feb. 24, 2023). 

3. P. Giani, F. Tagle, M. G. Genton, S. Castruccio, and P. Crippa, “Closing the gap between wind energy 
targets and implementation for emerging countries,” Appl. Energy, vol. 269, p. 115085, 2020. 

4. F. Alharbi and D. Csala, “Saudi Arabia’s solar and wind energy penetration: Future performance and 
requirements,” Energies, vol. 13, no. 3, p. 588, 2020. 

5. Saudi press agency, “Saudi Arabia Announces Floating Five Projects to Produce Electricity with Use of 
Renewable Energy with Total Capacity of 3,300mw,” 25/09/2022. 

https://www.spa.gov.sa/viewfullstory.php?lang=en&newsid=2386966 (accessed Apr. 01, 2023). 

6. M. A. Mohandes and S. Rehman, “Wind speed extrapolation using machine learning methods and LiDAR 
measurements,” IEEE Access, vol. 6, pp. 77634–77642, 2018. 

7. L. Abualigah et al., “Wind, Solar, and Photovoltaic Renewable Energy Systems with and without Energy 
Storage Optimization: A Survey of Advanced Machine Learning and Deep Learning Techniques,” Energies, 

vol. 15, no. 2, 2022, doi: 10.3390/en15020578. 

8. V. Bali, A. Kumar, and S. Gangwar, “Deep learning based wind speed forecasting-A review,” in 2019 9th 

International Conference on Cloud Computing, Data Science & Engineering (Confluence), 2019, pp. 426–431. 

9. X. Deng, H. Shao, C. Hu, D. Jiang, and Y. Jiang, “Wind Power Forecasting Methods Based on Deep 
Learning: A Survey,” Comput. Model. Eng. Sci., vol. 122, no. 1, pp. 273–302, 2020. 

10. H. Liu, C. Chen, X. Lv, X. Wu, and M. Liu, “Deterministic wind energy forecasting: A review of intelligent 
predictors and auxiliary methods,” Energy Convers. Manag., vol. 195, pp. 328–345, 2019. 

11. G. Alkhayat and R. Mehmood, “A Review and Taxonomy of Wind and Solar Energy Forecasting Methods 

Based on Deep Learning,” Energy AI, p. 100060, 2021. 

12. J. Manero, J. Béjar, and U. Cortés, “‘Dust in the wind...’, deep learning application to wind energy time 
series forecasting,” Energies, vol. 12, no. 12, p. 2385, 2019. 

13. Z. Peng et al., “A novel deep learning ensemble model with data denoising for short-term wind speed 

forecasting,” Energy Convers. Manag., vol. 207, p. 112524, 2020. 

14. M. Alhussein, S. I. Haider, and K. Aurangzeb, “Microgrid-level energy management approach based on 

short-term forecasting of wind speed and solar irradiance,” Energies, vol. 12, no. 8, p. 1487, 2019. 

15. A. Lawal, S. Rehman, L. M. Alhems, and M. M. Alam, “Wind speed prediction using hybrid 1D CNN and 
BLSTM network,” IEEE Access, vol. 9, pp. 156672–156679, 2021. 

16. Y. P. Faniband and S. M. Shaahid, “Univariate Time Series Prediction of Wind speed with a case study of 
Yanbu, Saudi Arabia,” Int. J., vol. 10, no. 1, pp. 257–264, 2021. 

17. Y. Zheng et al., “New ridge regression, artificial neural networks and support vector machine for wind 

speed prediction,” Adv. Eng. Softw., vol. 179, p. 103426, 2023. 

18. U. T. Salman, S. Rehman, B. Alawode, and L. M. Alhems, “Short term prediction of wind speed based on 
long-short term memory networks,” FME Trans., vol. 49, no. 3, pp. 643–652, 2021. 

19. H. Huang, S. Castruccio, and M. G. Genton, “Forecasting high-frequency spatio-temporal wind power with 

dimensionally reduced echo state networks,” arXiv Prepr. arXiv2102.01141, 2021. 

20. F. R. Alharbi and D. Csala, “Wind speed and solar irradiance prediction using a bidirectional long short-

term memory model based on neural networks,” Energies, vol. 14, no. 20, Oct. 2021, doi: 

10.3390/en14206501. 

21. F. R. Alharbi and D. Csala, “Short-Term Wind Speed and Temperature Forecasting Model Based on Gated 

Recurrent Unit Neural Networks,” in 2021 3rd Global Power, Energy and Communication Conference 

(GPECOM), 2021, pp. 142–147. 

22. T. Brahimi, “Using Artificial Intelligence to Predict Wind Speed for Energy Application in Saudi Arabia,” 
Energies, vol. 12, no. 24, p. 4669, 2019. 

23. Y. P. Faniband and S. M. Shaahid, “Forecasting Wind Speed using Artificial Neural Networks–A Case 

Study of a Potential Location of Saudi Arabia,” in E3S Web of Conferences, 2020, vol. 173, p. 1004. 

24. T. Liang, G. Xie, S. Fan, and Z. Meng, “A Combined Model Based on CEEMDAN, Permutation Entropy, 
Gated Recurrent Unit Network, and an Improved Bat Algorithm for Wind Speed Forecasting,” IEEE Access, 

vol. 8, pp. 165612–165630, 2020. 

25. Z. Jiang, J. Che, M. He, and F. Yuan, “A CGRU multi-step wind speed forecasting model based on multi-

label specific XGBoost feature selection and secondary decomposition,” Renew. Energy, vol. 203, pp. 802–
827, 2023. 

26. S.-X. Lv and L. Wang, “Deep learning combined wind speed forecasting with hybrid time series 
decomposition and multi-objective parameter optimization,” Appl. Energy, vol. 311, p. 118674, 2022. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 September 2023                   doi:10.20944/preprints202309.1966.v1

https://doi.org/10.20944/preprints202309.1966.v1


 51 

 

27. C. Yildiz, H. Acikgoz, D. Korkmaz, and U. Budak, “An improved residual-based convolutional neural 

network for very short-term wind power forecasting,” Energy Convers. Manag., vol. 228, p. 113731, 2021. 

28. L. Wang, R. Tao, H. Hu, and Y.-R. Zeng, “Effective wind power prediction using novel deep learning 
network: Stacked independently recurrent autoencoder,” Renew. Energy, vol. 164, pp. 642–655, 2021. 

29. H. Hu, L. Wang, and R. Tao, “Wind speed forecasting based on variational mode decomposition and 
improved echo state network,” Renew. Energy, vol. 164, pp. 729–751, 2021. 

30. M. Sengupta, A. Habte, Y. Xie, A. Lopez, and G. Buster, “National Solar Radiation Database (NSRDB).” 
United States, 2018, doi: https://doi.org/10.25984/1810289. 

31. G. Petneházi, “Recurrent neural networks for time series forecasting,” arXiv Prepr. arXiv1901.00069, 2019. 

32. Z. Qian, Y. Pei, H. Zareipour, and N. Chen, “A review and discussion of decomposition-based hybrid 

models for wind energy forecasting applications,” Appl. Energy, vol. 235, pp. 939–953, 2019. 

33. H. Liu and C. Chen, “Data processing strategies in wind energy forecasting models and applications: A 

comprehensive review,” Appl. Energy, vol. 249, pp. 392–408, 2019. 

34. T. Peng, C. Zhang, J. Zhou, and M. S. Nazir, “An integrated framework of Bi-directional Long-Short Term 

Memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting,” Energy, vol. 221, 

p. 119887, 2021. 

35. H. Zhou, Y. Zhang, L. Yang, Q. Liu, K. Yan, and Y. Du, “Short-term photovoltaic power forecasting based 

on long short term memory neural network and attention mechanism,” IEEE Access, vol. 7, pp. 78063–
78074, 2019. 

36. M. C. Sorkun, C. Paoli, and Ö. D. Incel, “Time series forecasting on solar irradiation using deep learning,” 
in 2017 10th International Conference on Electrical and Electronics Engineering (ELECO), 2017, pp. 151–155. 

37. H. M. Lynn, S. B. Pan, and P. Kim, “A deep bidirectional GRU network model for biometric 
electrocardiogram classification based on recurrent neural networks,” IEEE Access, vol. 7, pp. 145395–
145405, 2019. 

38. H. D. Nguyen, K. P. Tran, S. Thomassey, and M. Hamad, “Forecasting and Anomaly Detection approaches 
using LSTM and LSTM Autoencoder techniques with the applications in supply chain management,” Int. 

J. Inf. Manage., vol. 57, p. 102282, 2021. 

39. A. Sagheer and M. Kotb, “Unsupervised pre-training of a deep LSTM-based stacked autoencoder for 

multivariate time series forecasting problems,” Sci. Rep., vol. 9, no. 1, pp. 1–16, 2019. 

40. T. H. T. Nguyen and Q. B. Phan, “Hourly day ahead wind speed forecasting based on a hybrid model of 
EEMD, CNN-Bi-LSTM embedded with GA optimization,” Energy Reports, vol. 8, pp. 53–60, 2022. 

41. R. E. Caraka et al., “Employing best input SVR robust lost function with nature-inspired metaheuristics in 

wind speed energy forecasting,” IAENG Int. J. Comput. Sci, vol. 47, no. 3, pp. 572–584, 2020. 

42. G. V Drisya, K. Asokan, and K. S. Kumar, “Wind speed forecast using random forest learning method,” 
arXiv Prepr. arXiv2203.14909, 2022. 

43. S. Barhmi, O. Elfatni, and I. Belhaj, “Forecasting of wind speed using multiple linear regression and 
artificial neural networks,” Energy Syst., vol. 11, pp. 935–946, 2020. 

44. G. Li, S. Xie, B. Wang, J. Xin, Y. Li, and S. Du, “Photovoltaic Power Forecasting With a Hybrid Deep 
Learning Approach,” IEEE Access, vol. 8, pp. 175871–175880, 2020. 

45. M. S. Hossain and H. Mahmood, “Short-term photovoltaic power forecasting using an LSTM neural 

network and synthetic weather forecast,” IEEE Access, vol. 8, pp. 172524–172533, 2020. 

46. C. Voyant et al., “Machine learning methods for solar radiation forecasting: A review,” Renew. Energy, vol. 

105, pp. 569–582, 2017. 

47. M. A. M. Ramli, S. Twaha, and Z. Al-Hamouz, “Analyzing the potential and progress of distributed 

generation applications in Saudi Arabia: The case of solar and wind resources,” Renew. Sustain. Energy Rev., 

vol. 70, pp. 287–297, 2017. 

48. X. Yan, Y. Liu, Y. Xu, and M. Jia, “Multistep forecasting for diurnal wind speed based on hybrid deep 

learning model with improved singular spectrum decomposition,” Energy Convers. Manag., vol. 225, p. 

113456, 2020. 

49. D. Wang, H. Luo, O. Grunder, and Y. Lin, “Multi-step ahead wind speed forecasting using an improved 

wavelet neural network combining variational mode decomposition and phase space reconstruction,” 
Renew. Energy, vol. 113, pp. 1345–1358, 2017. 

50. H. Liu, X. Mi, and Y. Li, “Smart multi-step deep learning model for wind speed forecasting based on 

variational mode decomposition, singular spectrum analysis, LSTM network and ELM,” Energy Convers. 

Manag., vol. 159, pp. 54–64, 2018. 

51. X. Wang, Q. Yu, and Y. Yang, “Short-term wind speed forecasting using variational mode decomposition 

and support vector regression,” J. Intell. Fuzzy Syst., vol. 34, no. 6, pp. 3811–3820, 2018. 

52. G. Alkhayat, S. H. Hasan, and R. Mehmood, “SENERGY: A Novel Deep Learning-Based Auto-Selective 

Approach and Tool for Solar Energy Forecasting,” Energies, vol. 15, no. 18, p. 6659, 2022. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 September 2023                   doi:10.20944/preprints202309.1966.v1

https://doi.org/10.20944/preprints202309.1966.v1


 52 

 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 

products referred to in the content. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 September 2023                   doi:10.20944/preprints202309.1966.v1

https://doi.org/10.20944/preprints202309.1966.v1

