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Abstract: White oak mortality is a significant concern in forest ecosystems due to its impact on biodiversity 
and ecosystem functions. Understanding the factors influencing white oak mortality, particularly the soil 
properties, is crucial for effective forest management and conservation efforts. In this study, we aimed to 
investigate the spatial pattern of white oak mortality and examine the influence of soil properties on mortality 
rates. Multicycle Forest Inventory and Analysis data were compiled to capture white oak plots across the 
eastern US. White oak mortality data were collected across plot systems that utilized Diameter at Breast Height 
between two periods. Soil variables were analyzed to assess soil properties. Spatial analysis techniques, 
including geostatistics and regression modeling, were used to analyze the relationship between white oak 
mortality and soil characteristics. Results found clustered spatial patterns of white oak mortality across a broad 
scale depicting the significant effects of coarser soil textures, nutrient-deficient sites, and extreme soil moisture 
levels. Our findings demonstrated the importance of soil properties in shaping the spatial pattern of the white 
oak mortality rate. This idea can inform forest management practices for the conservation of white oak 
populations. Future research is needed for comprehensive soil assessment including biotic and abiotic factors 
for forest management strategies at a broader scale aimed at mitigating white oak mortality. 

Keywords: white oak mortality; soil properties; soil moisture; spatial patterns; clustered 
 

1. Introduction 

White oak (Quercus alba) is an important tree species both for ecological significance and 
economic importance across the eastern United States. White oaks are dominating canopy that serves 
a vital role in forming stand structures and composition in forests. For a wide variety of creatures, 
including nesting birds and arboreal animals, it's wide, spreading crown provides a friendly 
microhabitat [1,2]. Acorns and fallen leaves provide a wealth of food for wildlife, supporting complex 
food chains and promoting biodiversity [3,4]. Furthermore, white oaks’ vast root systems create 
essential symbiotic connections with mycorrhizal fungi that aid in nutrient cycling and uptake. The 
tree’s capacity to store large amounts of carbon helps to reduce greenhouse gas emissions and 
mitigate the effects of climate change [5,6]. The white oak’s vital function in the forest ecosystems of 
the eastern United States is further demonstrated by its patterns of succession and regeneration. 
Because of its effective acorn dispersal, the tree offers a plentiful supply of seeds for spontaneous 
growth, guaranteeing the continuation of its lineage for future generations. However, white oaks 
population is in danger due to the increased declining situation associated with changes in forest 
stand dynamics. 

Oak mortality is among the most observed phenomenon in oak forests in Eastern U.S. [7–10]. 
The mortality starts with the oak tree browning of leaf, turning black, curl-up, and finally falling to 
the ground [11–15]. Factors responsible for the oak decline are suspected long-term predisposing, 
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short-term inciting, and contributing factors[13,15]. Predisposing factors are related to stand 
longevity and maturity, which are responsible for a tree's natural ability to growth inhibition and 
lead to injury-inducing agents. The inciting factors are related to physical or biological conditions, 
which are related to defoliating insects, hail, frost, and drought. Reports from inciting factors showed 
typical crown dieback, browning, and new leaf emergence in dying trees, which eventually leads to 
deaths[16]. The contributing factors are related to pathogenic fungi and boring insects that ultimately 
kill the trees. This decline has grappled with notable drought outbreaks, late spring frost, the 
emergence of saprophytic fungus due to climate change [17], and oak borer attacks on the most 
vulnerable sites.  

Typically, oak mortality has been targeted in red oak group species. More recently, white oak 
mortality (WOM) becomes a prominent target across the eastern US. It seems that the spatial 
distribution pattern of WOM is not uniform. Poor resource site such as droughty, poor drainage, and 
soil nutrient deficiency are more prone to WOM [18]. It is because low resources had led to declining 
and widespread regeneration failure in white oaks. Scientists also reported WOM in higher-quality 
mesic sites where the forest has gone through a high stand density and maturity stage [19,20]. The 
mortality is more prevalent in the self-thinning stage, as the tree species under high stand density 
struggle to utilize maximum resources [21]. WOM has been observed in different topographies, from 
low-lying lands to valley floors (Abrams, 2003). North-facing slopes where sunlight is low are more 
prone to high oak mortality[22]. Besides, ecological stressors such as browsing, heavy shade, and 
disturbances have influenced white oaks in many parts of eastern hardwood forests [23]. 

The impacts of white oak mortality are not only limited to individual tree species but also affect 
entire forest ecosystems and ecological processes. For instance, white oaks were dying in greater 
numbers i.e., 30% of healthy crowns, which were less than 4m in width across the 516-ha of Ozark 
Highlands [24]. Similarly, some 900-ha area of Baskett Wildlife Research and Education Center across 
the Ozark Border of Central Missouri depicted 10% of white oaks killed by drought-pathogen 
interactions [25]. White oak mortality across forest ecosystems can lead to changes in nutrient cycling, 
water regulation, and carbon sequestration [26–28]. White oak is a long-lived species and can 
sequester large amounts of carbon during its lifetime [29,30]. The decline of mature white oaks can 
disrupt carbon sinks and worsen the situation for climate change and carbon management [31,32]. 
Researchers found that a lack of plant-soil interactions may result in the decreased intensity of carbon 
sequestration and increase the carbon emissions in the atmosphere [33]. It is also known that white 
oak is a dominant canopy species across the eastern US that shape forest structure and composition 
influencing soil processes, species interactions, and light availability [34]. Its loss can lead to a change 
in forest dynamics such as impacting the recruitment of new individuals to alterations of the 
competitive relationship among plant species [35,36]. The decline in white oaks can impact numerous 
wildlife species and their microhabitats that rely upon shelter and foraging [37]. Moreover, the white 
oak decline can have adverse effects on wildlife by altering species distribution and food chain 
interactions as well [38].  

Soil conditions play an important role in tree species' survival. The study on tree species at local 
scales may not represent an actual pattern that can be best reflected at the regional level [39]. While 
numerous factors influence white oak's spatial pattern and survival, soil properties emerged as 
significant factors that influence forest ecosystem dynamics [16]. Eastern US covers a diverse range 
of soil types and landscapes, which offers a unique opportunity to study the influence of soil 
properties on WOM patterns. By examining the spatial heterogeneity of soil types and their 
interactions with stand characteristics, we can understand how soil properties contribute to the 
spatial patterns of WOM across a broad scale[40,41]. The survival and establishment of white oaks as 
well as their susceptibility to various stressors and disturbance factors can be affected by variations 
in soil qualities, such as texture, soil moisture, and organic matter [42]. Therefore, it is necessary to 
incorporate data from multiple sites from the eastern US and study regional variations in soil types 
that influence the spatial pattern of WOM. 

The aim of this study is (1) to assess the spatial distribution pattern of WOM rate across the 
eastern US and (2) to evaluate the influence of soil properties (soil texture, organic matter, and total 
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available water) on spatial distribution patterns of WOM rate. The hypothesis was that the observed 
spatial pattern of the WOM rate is random across the eastern US. 

2. Materials and Methods 

2.1. Study Area 

We selected the eastern United States as our study area, which predominantly covers oak forests 
[43]. It is comprised of ten states that cover a land area of 1,273,420,251.33 hectares (Figure 1). It 
consists of varied tree species, and a wide range of climate, soil, and terrains [44–46]. The land 
structure in the eastern part of the study area is significantly Appalachian plateaus with low 
mountains, narrow valleys, and sharp edges. On the western portion, the area varies from highly flat 
central till plains to interior low plateau along with Ozark highlands. The area consists of a variety of 
ecological regions such as the Ouachita Mountains of Arkansas to the Northern Cumberland 
Mountains in West Virginia. In the south, central till plains Oak-Hickory of Illinois to Interior Low 
Plateau Highland Riff of Alabama.  

The climate in this region is long, hot summers and cool winters. The mean annual temperature 
ranges from 4 degrees to 18 degrees Celsius in the east-west gradient with warmer temperatures in 
the south. The precipitation ranges from 500 mm in the northwest to 1,650 mm in the southeast. Some 
Appalachian Mountains precipitation goes up to 2,000 mm during spring and fall. The soil types are 
mostly mollisols, inceptisols, alfisol, and ultisols. These areas consist of xeric gradient characterized 
by thin, rocky soils, exposed south, southwest, and wet slopes [47]. Our study area was historically 
dominated by oaks, hickories, and pines. Today, most of the forest areas have been replaced by 
agriculture and rapid urbanization [44,48]. In our study area, there are deciduous types of forests 
such as oaks (Quercus spp.), hickory (Carya spp.), american beech (Fagus grandifolia), ash (Fraxinus 
spp.), and maple (Acer spp.). 

Several research concentrated on the spatial patterns of white oaks that utilized climate, 
topography, and several other factors combined as well as individually [49,50]. There is very little 
research done on spatial patterns of white oaks but those are focused on local level studies. The 
evidence did not find clear spatial patterns for white oaks across broader scales, which highlights the 
unique approach for our study [39]. We incorporated forest inventory data, soil properties, and 
statistical analysis using point patterns analysis to make it possible to find broad patterns, 
distinctions, or parallels in several contexts. Other reasons could be to open a new research direction 
and expand knowledge, the study may develop research areas that have not yet been thoroughly 
studied. 
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Figure 1. Study area showing ten states of the eastern US [110]. 

2.2. Data Acquisition and Processing 

2.2.1. Forest Inventory and Analysis Program 

FIA program has been monitoring national forest resources across all ownerships in the US 
[51,52]. The inventory data are collected and processed on a relational database based on 
categorization into multiple phases. The relational database structure facilitates the integration of 
data from a variety of sources including historical records, satellite imaging, and remote sensing, 
which adds depth and diversity to the forest inventory dataset. This approach allows for efficient 
data querying which is required for the development of reports, analysis, and summary statistics 
where data are organized, accessible, and made consistent for long term forest management planning 
[28,51]. Stratified estimations are used to estimate population parameters for most of the variables 
depending on the scale and level of information [53]. The inventoried data have an advantage over 
other databases as the plots are evenly distributed without any geospatial bias [54]. In the astern US, 
FIA plots are recorded with at least one forested condition, which is remeasured again every five 
years. Each plot measures key attributes of all tree species including plots, surveyed years, and others 
[55]. The plot designs in FIA are permanent samples with a fixed radius. The sampling plots are 
designed with the hexagonal grid having one plot per 2,428 ha (6,000 ac). This plot is based on phase 
2 and 3 ground plots, which are clusters of four points. Phases 2 (contains ground plots) and 3 (subsets 
of phase 2 with the addition of tree health-related attributes such as crown width) are the subplots 
that can be new plots, remeasured plots with nationally standard and fixed radius plots of 0.40 
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hectares. The four points i.e., 1,2,3, and 4 is in central, 0 degree, 120 degrees, and 240 degrees azimuth, 
respectively away from point 1. 

Each point is called a subplot, which is surrounded by a 7.32 m (24 feet) fixed radius. The sub 
plots are used to measure trees of DBH 0.13 m (5 inches) or greater. The total measurement of all four 
subplots is 0.07 hectares (1/6 acre). In every subplot, there is a micro plot of a fixed radius of 2.07 m 
(6.8 feet) where saplings and seedlings of 1 to 0.12 m (4.9 inches) DBH are measured. The four micro 
plots measure a total of approximately 0.0053 hectares (1/75 acre). These micro plots are exactly offset 
at 3.66 m (12 feet) with a 90-degree azimuth from subplot centers. Each subplot is surrounded by a 
macro plot with a fixed radius of 17.95 m (58.9 feet) and used to measure a larger tree or mortality of 
DBH 1.02 m (40 inches) and greater. Hence, all four macro plot measures 0.40 hectares (1 acre). As 
combined, they possess tri-areal plots. However, the area where macro plots are not possible can be 
operated as a bi-areal plot. 

FIA also records condition-level information from the sampled data. A condition is based on 
changes in land use or vegetation that fall inside a plot. Furthermore, it is also determined by the ten 
percent crown or canopy cover of live tally trees [56]. A condition is designed in such a way that 
arbitrary numbers are assigned and defined using discrete variables such as forest type, stand size, 
species composition, stand structure, stand origin, ownership group, and disturbance history [56].  

The periodic and annual inventory is recorded approximately every ten and five years, 
respectively. However, both periodic and annual inventories contained differences in plot design, 
sampling, and measurement protocols. Hence, it is not possible to combine both periodic and annual 
data with dissimilar samples, and this is the reason we utilized our data only from annualized survey 
years. For instance, our farthest annual data goes back to 1998 from Virginia, which is the oldest 
annual inventory among ten states. Also, most of the plot inventories of hardwood forests, especially 
white oaks, are fully recorded until 2019. Therefore, we chose our timeframe from 1998 to 2019 to 
investigate WOM spatial patterns across the Eastern US.  

2.2.2. Plot Selection for Live and Declining White Oaks 

Plot data were acquired from USDA Forest Service DataMart [111] that had already been 
assigned to a stratum by forest inventory program across all states. A stratum refers to a set of plots 
that have similar classifications captured from remotely sensed imagery. Within the estimation unit 
of plot sampling, the weight of the stratum is based on the proportion of the stratum [51,56]. In the 
same set of plot data, geographic coordinates (latitudes and longitudes) were recorded that captured 
a 0.40 ha (1 acre) sample area but not for all trees. The plot was located within one mile of the original 
location that were recorded by the Forest Service. It is because landowners prefer not to disclose their 
property publicly due to security reasons associated with it [56,57]. We utilized sampled i.e., forested 
conditions for the plot data which captured most of the white oak trees in ten states. 

Our data covers only white oak (Quercus alba). The reason for this is the dearth of study on the 
regional pattern analysis of white oak in the eastern United States in particular. There are numerous 
oak species in the sample plot as well, but we limited our selection to plots with white oak trees, and 
we conducted our analysis from the oldest survey year 1998 up through 2019. The white oak tree data 
were extracted from USDA Forest Service [111] in which we utilized attributes such as inventory year 
(INVYR) as surveyed year, county code (COUNTYCD) refers to a particular county number for a 
particular state, unique plot number (PLOT) assigned to each white oak, species code (SPCD) 
representing particular tree species (in our case, we captured white oak trees only), tree status code 
(STATUSCD) representing live tree (1) assigned by FIA, trees per acre unadjusted (TPA_UNADJ) 
refers to the number of trees per acre that the sample tree theoretically represents based on the sample 
design, cycles (CYCLE) refers to a number assigned to a set of plots measured over a particular time; 
and current diameter (DIA) refers to diameter at breast height i.e., 4.5 feet above the ground line of 
the sample tree. 
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2.2.3. Soil Properties Data 

We acquired soil variables such as soil texture, soil organic matter, and total available water from 
Gridded National Soil Survey Geographic Database (gNATSGO) data, initially a resolution of 10 m 
was acquired which was later resampled to a 1km grid as our spatial pattern analysis covers broader 
scale, provided by USDA Natural Resources Conservation Service [113]. Our preliminary analysis 
included several stand characteristics such as stand age and DBH; and soil variables such as PH, C, 
N, and soil depth that brought model complexity reducing the performance of important variables. 
Therefore, the use of soil texture, soil organic matter, and total available water brought a more 
significant practical impact on white oak mortality rate. Hence, including soil texture is vital in soil 
characteristics which identify the proportion of sand, silt, and clay affecting organic matter content 
and water-holding capacity as well [58,59].  

The soil texture classifications from SSURGO tabular data were combined with the spatial soil 
data provided with GIS shapefiles. Some regions were null for soil texture classification, which was 
addressed by obtaining information from the FAO dataset [112]. We used Soil Texture Triangle as a 
reference to fill all null values for soil texture by placing SSURGO and FAO spatial soil data into the 
ArcGIS [60]. By doing this, we obtained eighteen types of soil texture classification (including inland 
water) that were common in our study area (Table 1). We also calculated soil organic matter and total 
available water using soil horizon thickness; and classified them into five classes. 

Table 1. Soil texture with symbols, soil organic matter (SOM) percentage, and total available water 
(TAW) percentage classification with plot numbers (separated by semicolon) across the eastern US. 

Soil Texture SOM (%) TAW (%) 

Clay (C); 109  Loam (L); 151 
Sandy Loam (SL); 

207 
No (0); 1,697 

Very Low (0 - 

20); 682 

Clay Loam (CL); 328 
Loamy Fine Sand 

(LFS); 3 
Silt (SI); 2 

Low (0.01); 

439 

Low (21 - 40); 

36 

Coarse Sand (COS); 

3 

Loamy Sand (LS); 

42 

Silt Loam (SIL); 

352 

Medium 

(0.02 -0.03); 

17 

Medium (41 - 

60); 438 

Fine Sand (FS); 2 Sand (S); 6 
Silty Clay (SIC); 

55 

High (0.04 -

0.1); 12 

High (61 - 80); 

394 

Fine Sandy Loam 

(FSL); 102 

Sandy Clay (SC); 

2 

Silty Clay Loam 

(SICL); 118 

Very High 

(1.1 -3.7); 1 

Very High (81 

- 100); 670 

Inland Water (WR); 

11 

Sandy Clay Loam 

(SCL); 723 

Very Fine Sandy 

Loam (VFSL); 4 
  

2.3. Data Processing and Analysis 

2.3.1. Selection of Live and Declining White Oak Plots 

Annualized data from 1998 to 2019 were processed to locate white oak plots (Table 2). After data 
cleaning and processing for different tables i.e., plot, forest condition, and tree, we selected a plot 
table to narrow our criteria i.e., locating white oaks’ plots across accessible forest land. For instance, 
Missouri had a plot table that contained useful attributes such as unique plot numbers related to each 
county, and each cycle, locations (latitudes and longitudes) with surveyed years for a particular date. 
We selected sampled plots that contained at least one accessible forest land condition on the plot. The 
condition table consisted of similar attributes except for locations that are useful to link with the plot 
table. We also processed the condition and tree table with similar criteria i.e., selecting accessible 
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forest land. The tree table has important attributes such as unique plot number, county code, tree 
species code, diameter, trees per acre, and cycle.  

We selected white oak trees identified with species code 802 from the tree table. From the same 
tree table containing white oaks only, we calculated the basal area i.e., Basal area of white oak = 
0.005454 *(Current Diameter)2 * trees per acre unadjusted. We linked the forest condition table and 
tree table based on unique plot numbers. Then, all the plot numbers from the combined tree and 
forest condition table were summarized by basal area. Later, we converted the basal area into the 
standard unit as a square meter per hectare. Then, we joined summarized basal area and plot tables 
based on unique plot numbers. The combined plot tables now contained white oaks, plot locations, 
basal area, survey cycles, etc. Our annual data were grouped into multicycles based on a five-survey-
year cycle. We selected an annual cycle that contained a specific time frame. For instance, Missouri 
had cycle 5 which consisted of inventory years grouped from 1999 to 2003 (usually year-wise data). 
Similarly, other cycles had a set of inventory years that goes until 2019 which was grouped as cycle 6 
(2004 to 2008), cycle 7 (2009 to 2013), and cycle 8 (2014 to 2019). We did the same process with other 
states and extracted individual plot cycles of white oaks based on surveyed years. We created an 
appropriate formula using county and plot number i.e., COUNTYCD + (PLOT)/100,000 to link with 
other white oaks’ cycle. We joined each cycle one by one. For instance, Missouri cycle 5 is joined with 
cycle 6 and we subtracted cycle 5 basal area from cycle 6 which gave us declining plots in terms of 
negative basal area. We did the same with other cycles as joining 6 to 7, and 7 to 8. From all these 
cycles, we get common as well as extra declining plots. However, we only utilized the basal area from 
a single plot so that we can avoid repetition. All these linking processes for spatial tables and 
calculations were done in ArcGIS. On utilizing basal areas, we extracted 2,220 declining white oak 
plots from 7,405 live white oak plots across ten states. 

Table 2. Ten states with inventory years, cycles, number of live white oak (WO) plots, and declining 
WO plots. 

State Inventory Years Cycles Live WO plots Declining WO plots 
Alabama 2001-2019 8,9, &10 716 166 
Arkansas 2000-2019 8,9,10, &11 1,158 400 
Illinois 2001-2019 5,6,7, & 8 244 63 
Indiana 1999-2019 5,6,7, & 8 206 43 
Kentucky 2000-2017 5,6,7, & 8 775 207 
Missouri 1999-2019 5,6,7, & 8 1,544 527 
Ohio 2001-2019 5,6,7, & 8 337 67 
Tennessee 2000-2017 7,8,9, &10 909 305 
Virginia 1998-2019 7,8,9,10, &11 855 314 
West Virginia 2004-2019 6,7, & 8 661 128 
Total   7,405 2,220 

2.3.2. White Oak Mortality Rate Analysis 

The mortality rate was calculated by using basal areas of surveyed cycles, which were grouped 
into five years. Some of the white oak plots were remeasured in the period from 1998 to 2019. Hence, 
we omitted those repeated plots to have accurate results. However, we summed up all those 
remeasured plots’ basal areas to obtain the true basal area. We selected all the basal areas from 
declining plots of white oaks concerning surveyed years. The declining plots were chosen based on 
reduced or basal area change. Reduced basal area refers to the decrease in basal area over given 
timeframe referring to white oak plots.     As the eastern US forest has been gone for self-thinning 
stage because of forest clearing and agricultural abandonment from last century [23,61]. As the trees 
continue growing, the basal area increases while the number of trees decreases. Therefore, basal area 
change considers factors such as size and the contribution of individual trees in addition to the 
quantity of trees present. Using basal area change over time reveal the decline of white oak stands 
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whereas individual lost ignores sizes differences, provides incomplete picture of competition [62,63]. 
For instance, we calculated basal area change as: 𝐵𝑎𝑠𝑎𝑙 𝑎𝑟𝑒𝑎 𝑐ℎ𝑎𝑛𝑔𝑒 (𝑚ଶℎ𝑎ିଵ) = 𝐵𝑎𝑠𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒 6 − 𝐵𝑎𝑠𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒 5 (1)

We did the same with all remaining cycles and chose decreased basal areas that directly referred 
to the declining white oak plots. We calculated the mortality rate in terms of the reduced basal area 
of white oaks divided by the differences in the surveyed year between two extreme cycles. All those 
declining plots representing mortality rates were extracted and compiled the results. We calculated 
the mortality rate as: 𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑟𝑎𝑡𝑒( 𝑚ଶℎ𝑎ିଵ 𝑦ିଵ) = 𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝑏𝑎𝑠𝑎𝑙 𝑎𝑟𝑒𝑎 (𝑅𝑒𝑐𝑒𝑛𝑡 𝑐𝑦𝑐𝑙𝑒 𝑠𝑢𝑟𝑣𝑒𝑦 𝑦𝑒𝑎𝑟 −  𝑂𝑙𝑑 𝑐𝑦𝑐𝑙𝑒 𝑠𝑢𝑟𝑣𝑒𝑦 𝑦𝑒𝑎𝑟) (2)

We assumed oak forests in this region have mostly gone through the self-thinning stage [64–66], 
and thus reduction of the white oak basal area can be attributed to WOM. 

2.3.3. Spatial Distribution Analysis of WOM by univariate Ripley’s K function 

The data for white oak mortality is based on specific point events. Ripley’s K function does a 
comparison of observed spatial patterns against those expected under complete spatial randomness 
(CSR) that provides information for clustering, random, and uniform [67]. The map patterns do not 
justify the specific patterns such as CSR. Another reason is that edge effects are ignored and 
significantly impact map patterns that bring biased results [68,69]. However, the K function 
incorporates edge effects and produces valid results mitigating these issues. The use of Ripley’s K 
function highlights the visualization of spatial patterns at various scales i.e., small scales, larger scales, 
and their statistical significance whereas map patterns only highlight higher or lower concentrations 
without indicating particular patterns and statistical significance at varying scales. 

We used Multi-Distance Spatial Cluster Analysis-Ripley’s K function tool [70], which uses 
nearest neighbor distance to process spatial distribution patterns. ArcMap version 10.7.1 was used 
for Ripley's K function which defines whether our spatial pattern is cluster, random, or uniform on 
each analysis scale [71,72]. All 2,220 WOM points from 1998 to 2019 were compiled that contained 
point locations i.e., longitudes and latitudes. In Ripley's k function tool, the initial distance was 2,000 
m and the increment distance is 20,000 m. Edge correction was done by using Ripley's edge correction 
formula [70], which automatically counts and measures points inside the study area. To test our null 
hypothesis of CSR, we formed upper and lower confidence envelopes of 99.9% generated from 
randomizations of 999 plot points using the default random generator in ArcGIS. We examined 
whether our theoretical curve (Ktheo) deviates from CSR or not. If the observed curve (Kobs) is above 
the theoretical curve and upper envelope, then there is spatial clustering. If it is below the theoretical 
curve and lower envelope, then WOM points follow spatial dispersion (uniform). There is also a 
greater chance that both observed and theoretical curves could line up denoting complete spatial 
randomness or random pattern. We used the transformed K function (L(d)) to represent the graphical 
interpretation of Ripley's K function. 

2.3.4. WOM Rate, Stand Density, and Size Distribution among Soil Variables 

We did a log transformation for the WOM rate and stand density of white oaks so that our data 
distribution could achieve normality. Basal area per area was calculated for stand density from the 
dying plots of white oak. Soil textures were classified (18 classes in our study area) taking a reference 
from Food and Agriculture Organization Soils Portal based on World Reference Base (WRB) soil 
classification system [70]. We interpolated soil organic matter and total available water and use the 
interpolated results to compare them with the spatial pattern of the WOM rate. Soil organic matter 
and total available water percentage were classified into five classes i.e., very low, low, medium, high, 
and very high using natural breaks (Jenks) from ArcGIS. Our data were analyzed using R studio [73]. 
In it, we fitted a linear model (lm) to find the relationship between WOM rate and soil variables; and 
between the stand density of WOM and soil variables using significance levels at α = 0.1 and α = 0.05, 
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respectively. The linear regression model equation for WOM rate concerning soil variables can be 
expressed by:   𝑦 = 𝛽଴  +  𝛽ଵ ∗  𝑋ଵ   + 𝛽ଶ ∗  𝑋ଶ   +  𝛽ଷ ∗  𝑋ଷ + 𝑒 (3)

Where, y = logarithm of WOM rate (dependent variable); β0 = y-intercept; β1, β2, β3 = slope 
coefficient of each independent variable X; X1 = soil texture class; X2 = soil organic matter class; X3 = 
total available water class; e = error term. 

Similarly, the linear regression model equation for the stand density of WOM across declining 
plots concerning soil variables can be expressed by:   𝑤 = 𝛽଴  +  𝛽ଵ ∗  𝑍ଵ   + 𝛽ଶ ∗  𝑍ଶ   +  𝛽ଷ ∗  𝑍ଷ + 𝑒 (4)

Where, w = logarithm of stand density (dependent variable); β0 = y-intercept; β1, β2, β3 = slope 
coefficient of each independent variable Z; Z1 = soil texture class; Z2 = soil organic matter class; Z3 = 
total available water class; e = error term. 

3. Results 

3.1. White Oak Mortality Spatial Distribution Patterns 

The spatial distribution pattern of the WOM rate showed random patterns up to 3000 m, as the 
observed K value was inside the confidence envelopes, and we accept the null hypothesis (Figure 2). 
Beyond this point, we reject our null hypothesis, the spatial distribution of WOM rate showed 
clustered until 20,000 m is statistically significant. It is due to the spatial clustering of WOM rates, as 
indicated by the observed K value being significantly larger than the expected K function and falling 
outside the confidence envelopes. This clustering pattern of the WOM rate increases as the distance 
increases. Most of our pattern analysis for the WOM rate depicted clustered (non-random) patterns 
at a larger distance across the eastern US. Thus, our spatial distribution pattern analysis of WOM 
showed more clustering patterns than the random pattern as distance increases.  

The kernel density maps for white oaks showed the cluster spatial distribution across the 
declining plots of white oaks (Figure 2). This density distribution indicated areas for higher, medium, 
or lower concentration across the eastern US. 
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Figure 2. Observed spatial patterns through Ripley's K L(d) as a transformed function of WOM rate 
across the eastern US. The red line indicates the observed K function. The blue line indicates the 
expected K function. The gray envelope indicates 99.9% confidence level for the CSR hypothesis. 

3.2. Relationship between WOM rate and Soil Variables 

The relationship between logarithmic WOM rate and soil variables was also explained based on 
central tendency (Figure 3). Results showed that there was a higher variation among soil texture 
classes concerning WOM rate. However, the silt (SI) had less variability as compared with other 
texture classes. We did not see any statistically significant relationship between WOM rate and soil 
variables other than at p value < 0.1. Hence, we selected those soil variables whose parameters 
estimates are significant at p value < 0.1 (Table 3). This significant level is appropriate because of the 
high complexity of white oak mortality in the eastern U.S. such as effects of several environmental 
factors on white oak mortality might be subtle. By choosing higher threshold, we were able to address 
the ecological and anthropogenic factors associated with white oak mortality to explain the patterns 
of white oak mortality across the eastern U.S. Several studies have used p value <0.1 to address the 
effects of numerous environmental factors on larger landscape and sample size of plant species 
[74,75]. Our results showed significant effects with a negative linear relationship between silty clay 
loam (SICL) class and WOM rate (β = -0.39; p = 0.06). This indicates that the content of silt clay loam 
is negatively related to WOM.  

Results from the central tendency of total available water class showed greater variation in 
WOM rate. The total available water classes were more or less similar in the data distribution with 
respect to the WOM rate. However, there was a significant and positive linear relationship between 
very high total available water class and WOM rate (β = 0.20; p= 0.05) indicating that the content of 
total available water is positively related to WOM rate.  
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Our results showed that a very high class of soil organic matter had a higher variation 
concerning the WOM rate. However, the data variation was much higher for the rest of the soil 
organic matter classes except for very high soil organic matter. Other soil variables such as very low 
and low organic matter classes were significant and showed a negative linear relationship with WOM 
rate i.e., β = -0.81, p = 0.08, and β = -0.83, p = 0.07, respectively. These indicate that the content of low 
and very low organic matter is negatively related to the WOM rate. 

 
Figure 3. Box plots representing the central tendency of WOM rate based on soil texture, organic 
matter, and total available water classes. 

Table 3. Different classes of soil organic matter, total available water, and soil texture along with their 
respective p-values indicate a significant relationship with the WOM rate. 

Variable class Coefficient        Std. Error   Pr(>|t|) 

Intercept -1.11                   0.49   0.02 ** 

Soil organic matter (Low) -0.83                   0.47  0.07 * 

Soil organic matter (Very low) -0.81           0.46  0.08 * 

Total available water (Very high) 0.20           0.10  0.05 * 

Soil texture (Silty clay loam) -0.39           0.21  0.06 * 
Note: ** is 5%, * is 10%. 

3.3. Relationship between Density Distribution of WOM and Soil Variables 

The relationship between the density distribution of WOM and most of the soil variables i.e., 
texture, organic matter, and total available water were significant (p < 0.05; Table 4). In this regard, 
the density distribution of soil properties i.e., texture, soil organic matter, and total available water 
concerning WOM rate was successful in interpreting the spatial pattern of WOM across the eastern 
US.  

The result showed a significant and a negative linear relationship between loamy fine sand and 
the stand density of WOM (β = -1.50; p = 0.04), indicating that the content of loamy fine sand is 
negatively related to the density distribution of WOM. Also, fine sandy loam and clay loam showed 
a significant and a negative relationship with stand density i.e., β = -0.39, p = 0.02; and β = -0.29, p = 
0.04, respectively. This indicates that the content of fine sandy loam and clay loam is negatively 
related to the density distribution of WOM. 

Our result did not show a statistically significant relationship between soil organic matter and 
stand density of WOM. However, there was a variation of organic matter class along with the stand 
density of WOM across the eastern US (Figure 4). The central tendency analysis showed that very 
high organic matter class played a significant role in the stand density distribution of WOM i.e., 2 
m2/ha. However, the rest of the organic matter class i.e., high, medium, low, and very low classes 
were positively related to the density distribution of WOM but not quite greater in comparison to 
very high organic matter.  

Our results showed a statistically significant linear relationship between the stand density of 
white oaks and very low total available water class (β = 0.28 and p = 0.001). However, results showed 
that a very high total available water class (β = 0.32, p = 0.00) is highly significant with the stand 
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density of white oaks. Our central tendency analysis showed that there was a variation among total 
available water classes concerning the stand density of WOM (Figure 6). Result showed that very 
high total available water class had a greater variation concerning the stand density of WOM. We 
also found that very low total available water class had significant variation in the distribution of 
stand density of WOM. 

 
Figure 4. Box plots representing the central tendency of stand density of WOM based on soil texture, 
soil organic matter, and total available water classes. 

Table 4. Different classes of total available water and soil texture and their respective p-values 
indicate a significant relationship with the stand density of WOM. 

Variable class Coefficient Std. Error     Pr(>|t|) 

Intercept 1.62         0.38   3.01e-05 *** 

Total available water (Very high) 0.32         0.08   6.74e-05 *** 

Total available water (Very low) 0.28         0.08     0.001 ** 

soil texture (Clay loam) -0.29         0.14     0.04 **  

Soil texture (Fine sandy loam) -0.39         0.17     0.02 **   

Soil texture (Loamy Fine sand) -1.50         0.73     0.04 **   
Note: *** is 1 %, ** is 5%. 

4. Discussion 

The present study showed that the spatial distribution patterns of white oak mortality in the 
eastern US are influenced by soil properties, such as texture, organic matter, and soil moisture. The 
distribution patterns from the K-function indicated that the WOM rate at site scales was random. This 
confirmed with findings that WOM is reported at various site conditions including poor and good 
resources sites as well as various topographic and hydrological conditions [16,76,77]. WOM rate 
showed increasing clustered distribution pattern at broad scales, indicating that mid-level controls 
such as topography and soil, and regional-scale controls such as climate, drought in particular, may 
exert some dominant roles over the WOM rate [25,78,79]. The method and analysis used in this study 
are in accordance with other similar findings that aggregation factors were responsible for the spatial 
distribution of the WOM rate [16,80]. It also appears that site-scale processes such as self-thinning in 
white oak stands may accumulate across the region, which may result in a region-wide WOM since 
most white oak stands were regenerated after forest clearing and the subsequent agricultural 
abandonment nearly a century ago[81–83]. 

The spatial pattern of WOM has been influenced by edaphic factors such as soil variables 
responsible for clustering. It is because soil conditions determine species establishment and can 
influence resource availability and forest disturbance [84,85]. [86] found finer soil textures were 
responsible for oak decline associated with higher levels of soil moisture in the Colombian Amazon. 
However, our study found coarser soil texture (e.g., silty clay loam) had significant effects on white 
oaks decline, suggesting a clustered spatial pattern of WOM rate at a larger scale. This may be due to 
coarser soil textures such as fine sandy loam, clay loam, and loamy fine sand, across our study area, 
had a higher infiltration rate where water movement occurs through the soil profile resulting 
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reduction in water retention and availability [30,87]. Others found that the oak growth was 
unfavorable across the coarser textured soils due to low water holding capacity and these types of 
soils may dry out despite the abundant precipitation [88,89]. White oaks have vast and frequently 
deep-reaching root systems. Larger particles and more air spaces in coarser soils can make it difficult 
for roots to penetrate them[90]. This may restrict the tree’s access to vital supplies such as water and 
minerals. In this case, the oak tree may result in stunted growth and can decrease in stand density 
leading to mortality. 

The results of this work showed a strong connection between soil organic matter and tree 
mortality influencing spatial patterns [91,92]. Our study follows similar findings that white oaks 
exhibited reduced growth [93], that were dying in clusters across organic matter deficient areas on a 
larger scale. Another study from [94] on tree survival and growth in mixed soil types reported that 
WOM rates were higher in organic matter-scarce areas where the soil was extremely dry. Our results 
reported low i.e., 0.01%, and very low i.e., no soil organic matter class had significant impacts on 
WOM rate and shaping the spatial patterns. It is because low or no soil organic matter had combined 
effects such as reduced nutrient availability, increased susceptibility to insect pests and diseases, and 
stress from drought that may have contributed to clustered patterns [58,95]. Also, our results showed 
that white oaks are declining randomly at local scales that were associated with low soil fertility. It is 
because poor nutrient soils do not provide anchorage and nutrient variations can have a significant 
impact on the oak forest stand dynamics at shorter scales [96]. However, other research reported 
differences from our findings that tree mortality across the local scale (e.g., the boreal forest and 
seasonal rainforest) depicted uniform and somewhat clustered patterns across low nutrient gradients 
[97,98]. 

Our findings show that the spatial pattern of WOM rate was influenced by variations in soil 
moisture content. It is because previous studies have found that soil moisture plays a critical role in 
tree health due to excessive or insufficient moisture levels leading to increased stress and 
susceptibility to diseases and pests [99,100]. For instance, our findings indicated that clustered pattern 
of WOM rate in low moisture areas (e.g., very low class of total available water), suggesting extremely 
dry conditions resulting in white oak decline. In contrast to our findings, [101] found that tree 
mortality was decreased over an increase in soil moisture that occurred across the driest site during 
El Nino year in the eastern and central United States. However, our results found compelling 
evidence suggesting elevated soil moisture levels (e.g., very high class of total available water) are 
associated with higher mortality rates in white oaks. Elevated soil moisture has adverse conditions 
on white oaks due to reduced soil aeration and increased waterlogging.[102] and [103] reported 
similar patterns of increased mortality in areas with poor drainage and high soil moisture levels. 

The study of the spatial patterns of white oak mortality, specifically in relation to soil texture, 
soil organic matter, and total available water adds up fresh perspectives to contribute novel insights 
to the existing body of literature. However, similar relationships have been explored in the past, our 
study stands out because of its distinctive methodology, large dataset, and insightful dynamics. 
Unlike earlier studies that often focused on one or two factors, our research employs an integrative 
strategy focusing on soil properties solely. For instance, [72] studied spatial patterns of six managed 
tree species in the central Amazon that were affected by topographic variables such as elevation, 
slope percentage, and stream distance, and most of the species possessed clustered patterns at smaller 
scales. However, our study focused on soil properties that influenced white oak mortality and found 
to be random patterns at shorter scales. While some previous studies depended on finer scales and 
our study focused on the coarser scale. This coarser scale helped us to identify the overall picture of 
spatial patterns across the wider landscapes that might have been overlooked. For instance, [104] 
studied patterns of oak mortality across the Ozark highlands that did not find any clear white oak 
declining patterns on a site scale. However, our research found differences in the mortality patterns 
on the varied scale. Moreover, others have concentrated the oak mortality patterns in the mesic 
habitats, or dry, upland valleys [23,89,105]. None of these studies considered the larger landscapes 
across the eastern US. This approach is made more complex by this variety because it lets us 
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investigate how spatial patterns may alter across various types of landscapes. This idea differs from 
some past research that concentrated on more uniform surroundings. 

The practical implication in forestry that soil textures were important factors for white oak 
mortality can be optimized by selecting white oak declining areas that are better suited to the 
prevailing soil textures across the eastern US. By utilizing successful forest management practices, 
forest managers can enhance the establishment and growth of white oaks reducing the risk of 
mortality [106,107]. Areas of white oak mortality associated with particular soil textures can be 
managed through soil amendments, soil aeration, and fertilization to improve soil structure and 
nutrient availability reducing mortality [108,109]. The information from the influence of soil textures 
can help in the predictive modeling and assessment tool that can identify areas with higher mortality 
and spatial patterns based on soil characteristics and management can be done to mitigate white oak 
losses. 

Overall, the influence of soil textures in white oak mortality and its spatial patterns can address 
the need for a site-specific and holistic approach by incorporating forestry practices to enhance forest 
health, resilience, and ecosystem services of the white oak-dominated forest across the eastern United 
States. 

5. Conclusions 

Our study examined the WOM rate and its spatial patterns across the eastern United States using 
annual forest inventories and soil variables. The spatial pattern of the WOM rate was clustered at a 
larger distance and random at a shorter distance. And these patterns were influenced by various sizes 
of soil variables. Mostly, silty clay loam, fine sandy loam, loamy fine sand, very high and low class 
of total available water, and very low and low class of soil organic matter played a significant role in 
the spatial distribution of WOM rate.  

The information from WOM rate, stand density of WOM, soil texture, soil organic matter, and 
total available water revealed mostly clustered spatial patterns, and the patterns differed on the size 
of scales. Except for some soil textures and total available water, other sizes of organic matter did not 
show any significant role in the spatial pattern of WOM rate. However, we found that the coarser 
textured soils are responsible for white oak mortality. The white oak mortality and its spatial pattern 
are affected by low soil fertility which does not favor white oaks growths and development. High as 
well as low soil moisture impacted white oak across varied scales and played a role in the spatial 
patterns. Our study highlighted that the regional pattern analysis of the WOM rate had been 
influenced by soil characteristics across varying scales. The observed relationship signifies the 
importance of soil variables in determining the random as well as the clustered spatial pattern of the 
WOM rate. However, further research is needed to investigate the specific mechanism underlying 
these relationships and to assess the long-term impacts on oak forest ecosystems. Future studies could 
explore the effects of multiple factors such as biotic and abiotic factors as well as land use practices, 
to obtain a more comprehensive understanding of the spatial pattern of WOM. 

While our study mainly focused on the relationship between soil variables and WOM rate. It is 
important to consider other potential factors that can contribute to white oak decline such as climate, 
topography, stand structure, terrains, insect pest attacks, and others. We were not able to include all 
these variables because these data required extensive preprocessing and cleaning since we covered 
ten states from the eastern United States. For instance, our study is based on plot-level analysis that 
needs to line up with a multi-level dataset of white oak trees, their diameter, forested condition, and 
surveyed years with respect to all other variables mentioned above. And processing these data 
required several mathematical calculations and data linkages. We also encountered decreased model 
performance due to a large number of variables that brought no significant results for spatial patterns 
of white oak mortality. Similarly, while conducting this research we have limited time and 
computational power and need to make a choice about which variables to be included based on these 
constraints. Finally, our study was conducted on specific geographic regions, mainly the eastern US, 
and the conclusion drawn from our findings to other tree species should be investigated further. 
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