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Article 

Recognition of Arabic Air-Written Letters: Machine 
Learning, Convolutional Neural Networks, and 
Optical Character Recognition (OCR) Techniques 

Abstract: It is a challenging problem that air-written Arabic letters has received a lot of attention in the past 

decades when compared to commonly spoken languages like English languages. To fill this gap, we propose a 

strong model that brings together machine learning (ML) and optical character recognition (OCR) methods. 

The model applied several ML methods, (i.e., Neural Networks (NN), Random Forest (RF), K-Nearest 

Neighbors (KNN), and Support Vector Machine (SVM), with deep convolutional neural networks (CNNs) such 

as VGG16, VGG19, and SqueezeNet for effective feature extraction. Our study utilizes the AHAWP dataset, 

which consists of varied writing styles and variations in hand signs, to train and evaluate the model. 

Preprocessing systems are applied to improve data quality by reduction bias. Besides, OCR methods are 

combined into our model to sequestrate individual letters from continuous air-written gestures and refine 

recognition results. Results of this study show that the proposed model has achieved the extreme accuracy of 

88.8% using NN with VGG16. This study presents an inclusive approach that combines ML, deep CNNs, and 

OCR methods to address the issue of Arabic in air writing recognition research. 

Keywords: Arabic air writing recognition; machine learning; OCR; recognition; deep learning 

 

1. Introduction 

Advances in information technology have reshaped how humans interact with machines and 

programs, as well as how they communicate within their environment and language. The concept of 

writing in the air has emerged as a mode of communication between humans and their intelligent 

applications and devices, aligning with the flexibility of human mobility and surroundings [1]. This 

air-writing modality finds utility across diverse fields, including human-robot communication, 

children's education, aiding individuals with sensory challenges, and even in the realm of meta-

verses [2]. The recognition of air-written Arabic letters introduces a tapestry of intricate challenges 

necessitating inventive solutions. Diverging from traditional written scripts, the fluid nature of air-

written gestures introduces layers of complexity that warrant specialized approaches. The dynamic 

essence of air-written letters transcends the confined spatial boundaries of conventional paper or 

screens, engendering a rich spectrum of letter formations and trajectories. Unraveling and 

deciphering these ever-evolving spatial-temporal patterns emerges as a formidable hurdle. Further 

intricacy arises from the plethora of writing styles and hand sign variations that individuals employ. 

This myriad of expressions compounds the intricacies tied to precise interpretation and recognition 

of air-written Arabic letters. Furthermore, the task of demarcating distinct individual letters within 

the continuum of air-written gestures mandates meticulous segmentation techniques for unwavering 

recognition accuracy. Amplifying the challenge is the absence of predetermined reference points or 

demarcated start and end strokes in the realm of air-writing, necessitating ingenious algorithms 

capable of impeccably detecting letters despite the absence of conventional structural cues. 

While the recognition of air-written English letters has undergone thorough exploration through 

a range of machine learning techniques, including LSTM [3], 2D-CNN , Faster RCNN [4], and 3D 

Reset [5], a notable gap exists in the realm of recognizing air-written Arabic letters. Despite the 

extensive research on English counterparts, no study has ventured into the domain of deciphering 

air-written Arabic letters. To surmount this complex landscape, our approach orchestrates a holistic 

methodology harmonizing the strengths of machine learning (ML) methods, deep convolutional 

neural networks (CNNs) [6], and the finesse of optical character recognition (OCR) techniques [7]. 

OCR, a process that transforms images of handwritten or typewritten text into machine-readable text, 
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forms a key component of our strategy. This aligns with broader endeavors to process handwritten 

text from electronic devices, such as paper forms, invoices, and legal documents. However, grappling 

with a blend of machine-generated and human-written text poses distinct challenges, particularly in 

the public or governmental sectors. Effective handling and storage of such diverse inputs remain an 

ongoing concern, wherein OCR plays a pivotal role by converting text images into machine-readable 

text data. 

The driving force behind this research is rooted in the inherent capability of air-writing 

recognition to bridge the divide between genuine human gestures and digital interfaces. As 

intelligent systems weave more intricately into our daily lives and the demand for seamless 

interaction burgeons, the capacity to decode and comprehend air-written letters assumes a pivotal 

significance. Moreover, the allure of Arabic script, epitomized by its intricate elegance, confers an 

additional layer of allure to this quest, impelling us to embark on a profound exploration within this 

uncharted territory. This research efforts to make a meaningful contribution by not only teaching 

Arabic to non-native speakers but also by providing interactive training for young learners to master 

the art of drawing Arabic letters. The intention is to foster an engaging experience with technology 

that stimulates curiosity and ignites creativity. Moreover, this technology carries the potential to 

assist individuals with speech challenges. Many individuals who struggle with speech are still 

capable of writing, and this application could be harnessed to track hand movements and convert 

them into synthesized human speech. It opens new avenues of communication and expression for 

those facing obstacles in traditional verbal interaction. The main objective of this research is to 

construct an intricate model that seamlessly intertwines machine learning and optical character 

recognition techniques. This model is particularly engineered to not only accurately identify 

individual Arabic characters, but also entire words formed in the air. Through achieving this 

ambitious target, the research has the potential to significantly enhance Arabic language education 

and to foster more inclusive and efficient modes of communication.  

The rest of the paper is constituted as follows: Section 2 requires the existing literature on air-written 

Arabic letter recognition. Section 3 presents a methodology for the development and evaluation of 

the recognition model.  Section 4 give to the results and analysis of the recognition model. Section 5 

concludes the paper by discussing the implications of the research findings.  

2. Related work 

Researchers have shown considerable interest in the field of air writing recognition, extending 

beyond just numerical digits and symbols to encompass various languages. In this segment, we delve 

into prior investigations that have delved into the realm of air writing recognition, specifically 

focusing on numbers, symbols, and linguistic diversity. 

2.1. Air Writing with Numbers and Symbols  

A particularly noteworthy investigation [2] utilized radar-based methodologies to track the 

trajectories of hand motions while individuals engaged in the act of air-writing numerical digits. A 

multi-stream convolutional neural network (MS-CNN), coupled with continuous wave radar 

frequency, was enlisted to distinguish numbers ranging from 0 to 9. Impressively, this model 

achieved an impressive accuracy of 95% when tested with numerals air-written by 12 volunteers, 

shedding light on the potential of radar-based approaches in the realm of air-writing recognition. 

Expanding beyond numbers, the realm of air writing encompasses hand-drawn symbols, 

holding significance across various applications such as encrypted codes and authentication systems. 

Another study [8] introduced an algorithm to extract the trajectories traced during air writing, 

accompanied by the development of deep CNN networks that encompass both 1D-CNN and 2D-

CNN architectures for deciphering hand-drawn symbols. Diligent parameter optimization 

contributed to achieving a high discrimination rate of 99% using their CNN models. The dataset 

employed in their investigation covered numeric symbols (0-9) drawn in both clockwise and 

counterclockwise directions, along with a set of 16 directional symbols. The models underwent 

training and testing on well-segmented datasets, utilizing K-fold cross-validation to determine the 
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optimal K value. A recognition rate of 5 yielded the most favorable results, underscoring the 

effectiveness of deep CNNs in symbol recognition. 

Given the increasing ubiquity of smart devices, the realm of gesture-based communication has 

gained prominence in interactions with these devices. Addressing this trend, another study [3] 

directed their attention towards enhancing hand gesture communication through air writing. They 

devised a system for recognizing air-typed gestures, combining 3D trajectories with a fusion of long-

term memory (LSTM) and convolutional neural networks (CNN). Preprocessing techniques such as 

normalization and root point translation were applied to the trajectory data. The evaluation was 

conducted using a dataset consisting of 2100 numerals, gathered by the authors themselves, resulting 

in an impressive accuracy rate of 99.32%. 

While these studies represent significant progress in the realm of air-writing recognition 

concerning numbers and symbols, the exploration of air-writing recognition within the Arabic 

language remains relatively uncharted. This study takes on the challenge of bridging this gap by 

developing a model carefully tailored to distinguish air-written Arabic letters. Through a synergy of 

machine learning techniques and optical character recognition, our objective is to establish a 

benchmark of precise and robust recognition performance within the domain of Arabic air writing. 

2.2. Exploring Air-Written Letters 

Deciphering air-written letters presents a unique set of challenges, particularly when 

considering gesture recognition and handwriting analysis. Various research endeavors have delved 

into methods aimed at identifying and deconstructing handwritten or typed letters in the air. These 

efforts focus on achieving accurate segmentation of words and recognition of individual characters 

within air writing. A notable attempt by [9] involved employing hashing techniques and a CNN 

model to fragment letters, resulting in an impressive 92.91% accuracy on the NIST dataset. This 

achievement showcases promising strides in accurately recognizing fragmented letters. Similarly, in 

a study conducted by [1], a 2D-CNN model excelled in identifying letters and numbers written in the 

air, outperforming alternative methods. This highlights the efficacy of deep learning techniques in 

the realm of recognizing air-written letters and numbers. Another research initiative led by [4] 

compiled a dataset featuring hand movement videos in diverse settings and devised a recognition 

system for air-written letters. To train their dataset, they harnessed pre-trained models like Single 

Shot Detector (SSD) and Faster RCNN, achieving remarkable accuracies of up to 99%. Their work 

aimed to enhance the diversity and performance of prior datasets. 

Within the domain of optical character recognition (OCR), [10] implemented a CNN and RNN-

based OCR system for recognizing diacritics and Ottoman font in Arabic script. This effort yielded 

remarkable outcomes, with a validation accuracy of 98%, a word recognition rate (WRR) of 95%, and 

a character recognition rate (CRR) of 99% on the test dataset. Furthermore, endeavors have been 

directed towards recognizing handwritten Arabic letters in specific contexts. [11] introduced a 

segmentation algorithm for handwritten Urdu script lines, achieving accuracies of 96.7% for 

handwritten text and 98.3% for printed text. [12] proposed a technique grounded in the Faster RCNN 

framework for detecting and segmenting hand postures during air typing initiation, leading to a 

96.11%-character recognition accuracy. Additional studies have tackled the recognition of Arabic 

letters in varied scenarios. [13] presented an optical system for character recognition that utilized the 

learning vector algorithm and classification techniques to discern well-written and poorly written 

Arabic letters, with recognition rates of 86.95% and 54.55%, respectively. [14] constructed a 

comprehensive OCR system relying on CNN and SVM, achieving a recognition rate of 99.25% for 

Arabic letters and numbers. [15] compared diverse classifiers, including SVM, kNN, Naïve Bayes, 

ANN, and ELM, to classify an array of gestures, attaining the highest accuracy of 96.95% with SVM. 

Nevertheless, despite these strides, certain gaps persist in the literature concerning air-written 

Arabic letter recognition. A prevalent issue arises from researchers employing their own distinct 

datasets, which complicates model evaluation due to the lack of comparable benchmarks. 

Additionally, numerous studies have evaluated models on limited sample sizes, potentially 

inadequately reflecting real-world conditions. Further research is also warranted in the exploration 
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of advanced deep learning algorithms, such as Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs), to enhance accuracy and resilience in recognizing air-written 

Arabic letters. While traditional machine learning techniques like SVM, Naïve Bayes, and ANN have 

been explored, there is room for further investigation. 

The overarching objective of this research is to contribute practically to the advancement of 

gesture-based interaction, Arabic language education, and communication systems for individuals 

with disabilities. This pursuit aims to devise a scheme that facilitates effective and precise 

communication between humans and computer systems through air-written Arabic letters. By 

achieving these goals, the research seeks to enhance the identification of Arabic air-written letters by 

amalgamating machine learning, deep CNNs, and OCR approaches. Ultimately, the development of 

a reliable and accurate system capable of detecting and comprehending air-written Arabic characters 

across diverse applications holds the potential to enhance human-machine interaction and broaden 

access to learning and interacting in Arabic. 

3. Arabic Air-Writing to Image Conversion and Recognition: Methodology 

In this study, by identifying the hand's boundaries and turning the writing into an image, we 

present a model to recognize writing in the air. In our experiments, we used the AHAWP dataset [16] 

.Two models were created; the first relies on writing a single letter, and the second relies on writing 

a word in its whole. We tested extracting the crucial features from the photos for a single word using 

deep learning methods and training models like VGG16, VGG19, and SqueezeNet.Then, 

normalization is used to enhance performance, lessen sensitivity, and increase model stability. 

Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbors (KNN) and Neural 

Networks (NN) are then employed as classification techniques for handwritten messages, as well as 

I2OCR for verification. The second model is based on predicting the completed handwritten word 

with the aid of I2OCR. displays the architecture of the proposed model. Error! Reference source not 

found. presentations architecture of proposed approach 

 

Figure 1. Architecture of Proposed Approach. 
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3.1. AHAWP Dataset 

In this research we utilized the AHAWP dataset [16] which consists of letters, words, and 

paragraphs. The dataset was gathered from 82 individuals. Includes 9,000 images of alphabets. These 

images display letters, in positions within words, such as at the beginning, middle or end. The dataset 

encompasses a total of 18 letters. To conduct our experiments, we split the dataset into a training set 

comprising 80% of the data and a testing set comprising the remaining 20%. This division allowed us 

to train our models on a portion of the data while also preserving a set for evaluating their 

performance. Error! Reference source not found. visually represents a sample, from the AHAWP 

dataset. 

 

Figure 2. Sample of Dataset. 

3.2. Data Pre-Processing:  

Preprocessing is a step in enhancing the data sets’ quality by eliminating data and preparing it 
for model development. In our study we focused on the processing steps for recognizing Arabic air 

written letters. These steps play a role in preparing the dataset for analysis and classification. 

Specifically, we carried out the following processing steps. 

3.2.1. Image Resizing: 

To ensure consistency among all samples we resized the thinned characters to a size like (224, 

224). This resizing process guarantees that all character images have dimensions and facilitates 

feature extraction and analysis. We utilized libraries such as OpenCV or PIL to efficiently perform 

this image resizing operation. 

3.2.2. Feature Extraction 

Moving forward in our study, we delved into the task of drawing out pertinent details from the 

meticulously prepared character images. To accomplish this, we embraced a widely recognized 

method known as discrete cosine transformation (DCT), which holds a solid reputation for feature 

extraction. The DCT takes hold of the image by translating it into an ensemble of frequency 

coefficients that manage to encapsulate the crucial patterns and alterations inherent in the characters. 

The aim behind this feature extraction was to capture discerning cues that could serve as valuable 

guides in the forthcoming classification endeavor. 

3.2.3. Dimensionality Reduction 

With the features in hand, our next stride involved trimming down the complexity of the feature 

space through the art of dimensionality reduction. A reliable go-to in this realm is Principal 

Component Analysis (PCA) [17] , a technique celebrated for lighting the computational load and 

excising less informative features. In our exploration, we streamlined the feature count to a concise 

99 for the VGG16, VGG19, and SqueezeNet models. This deft reduction in dimensionality crafts an 

avenue for streamlined analysis and the deft classification of our data. 
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3.2.4. Data Normalization 

Concrete the way for data that's on the same playing field and setting the stage for optimal 

machine learning performance, we delved into the realm of data normalization. Our strategy homed 

in on refining our reduced feature vectors, ensuring they marched in harmony within a shared range, 

perhaps straddling the confines of -1 and 1. This normalization choreographed a balancing act, 

achieved through techniques like the tried-and-true min-max scaling or the trustworthy 

standardization. By taking this stride, we bid farewell to any biases stemming from dissimilar feature 

scales, ushering in a level ground for judicious comparisons as we transition into the eagerly awaited 

classification phase. 

3.3. Building the Air Writing Components 

The proposed method consists of several stages for building the Air Writing components, 

namely: (1) the development of Air Writing tools, (2) the implementation of i2OCR, (3) feature 

extraction, and (4) classification. 

3.3.1. Air writing tools 

The proposed approach expects the user to start by drawing on a canvas using hand gestures, 

which can be detected by a webcam and Google’s Mediapipe library used for body key point 
detection. It initializes four arrays (bpoints, gpoints, rpoints, ypoints) to store points of different 

colors (e.g., blue, green, red, and yellow). These arrays are implemented as deques with a fixed 

maximum length of 1024. It also initializes four variables (blue index, green index, red index, and 

yellow index) to keep track of the current index in each array. The kernel (a morphological image 

processing operation for dilation and an array of color tuples) is then defined. A variable color index 

is initialized to store the current color index. Canvas is then constructed by creating a blank image 

and displaying it in a window called Paint as shown in Error! Reference source not found. . 

 

Figure 3. Example Shows Type of Writing in Left and Stopping Writing in Right. 

The next step is to initialize the Media pipe hands, draw modules, and set up the webcam for 

capturing frames. In the main loop of the script, each frame is read from the webcam, flipped 

vertically, and converted to RGB color space.  
UI elements are then drawn on the frame, including rectangles and text labels for the different 

colors and a 'CLEAR' button as shown in Error! Reference source not found.. The RGB frame is then 

passed to the Media pipe hands module to detect the hand gestures. If a hand is detected, the code 

draws a bounding box around the hand and gets the hand's key points (joints). The system then needs 

to check if the user has selected a color by clicking on one of the color buttons. If a color has been 

selected, the code gets the coordinates of the hand's palm and appends them to the appropriate color 

array. It also dilates the points in the color array to make them thicker on the canvas, start writing 

and in (B) side signs to stop writing. Error! Reference source not found. shows result of writing. 
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After completing the writing, the result of the final appears on a white screen as shown in Error! 

Reference source not found. The next step is to draw the points on the canvas and display the 

updated canvas and frame in their respective windows. If the user clicks the 'CLEAR' button, the 

code clears all the points from the arrays and the canvas.  

 

Figure 4. Result of Writing. 

3.4. Optical character recognition (OCR) 

In our study, we turn our attention to Error! Reference source not found., where we delve into 

the intricate design of the Optical Character Recognition (OCR) system's underlying structure [18]. 

This methodology unfolds in a carefully choreographed sequence, with each stage performing a 

distinct role: image acquisition, pre-processing, text recognition, and post-processing. This primary 

stage aids as the cornerstone, involving the conversion of the image into binary data. This 

transformative process acts as the pivotal mechanism that empowers the OCR system's interpretive 

prowess.  

 

Figure 5. Architecture of the OCR. 

In the subsequent phase, known as pre-processing, a suite of techniques is harnessed, 

encompassing image alignment, noise reduction, and language identification. These endeavors 

collectively aim to refine the image by eliminating imperfections and enhancing its readiness for 

subsequent recognition. Moving forward, the third stage, text recognition, unfolds. Here, the OCR 

system diligently employs a combination of pattern matching and feature extraction algorithms. This 

concerted effort enables the system to discern and identify the intricate characters that compose the 

image. As we reach the culmination of this multi-stage endeavor, the post-processing stage comes to 

the forefront. Within this domain, the OCR system undertakes crucial tasks, including necessary 
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rectifications and format adjustments. The overarching goal is to bestow a mantle of accuracy and 

uniformity upon the recognized text, ensuring its fidelity. In the context of our study, a prominent 

role is assumed by the freely accessible online tool, i2OCR . This tool is adept at extracting text from 

a diverse array of sources, spanning images to scanned documents, encompassing materials such as 

books, faxes, contracts, invoices, mail, passports, and ID cards. An impressive spectrum of linguistic 

diversity, spanning over 100 languages, can be effectively deciphered by i2OCR. 

3.5. Arabic Air Writing Letter Recognition System Using Deep Convolutional Neural  

This research employed Deep Convolutional Networks and Machine Learning models to 

achieve superior performance and accuracy compared to using them individually. The study 

specifically focused on combining Convolutional Neural Network (CNN) models for Arabic letter 

image classification with Machine Learning algorithms, such as Support Vector Machines (SVM) 

Neural Network (NN), Random Forest (RF) and K nearest neighbor (KNN), to enhance the overall 

system performance and accuracy. Three different models were applied in this study, namely 

VGG16, VGG19, and SqueezeNet, with the aim of assessing their effectiveness in achieving the 

desired outcomes. By leveraging the strengths of both Deep Convolutional Networks and Machine 

Learning models, this study provides a comprehensive approach to Arabic letter recognition that can 

have significant implications across various domains and applications as follows. 

3.5.1. The VGGNet CNN architecture 

The graph known as VGG19 [19] presents a refined iteration of VGG16, incorporating a 

thoughtful modification. This enhancement introduces two supplementary convolutional layers, 

each boasting 512 filters and adhering to a kernel size of (3x3), all while maintaining a stride of 1. The 

activation function employed in these layers remains consistent, embracing the ReLU framework. 

[20] A visual representation of both the VGG16 and VGG19 architectures shown in Error! Reference 

source not found. and Error! Reference source not found.. 

 

Figure 6. Architecture of VGG19. 

Within the confines of this study, our focus zeroed in on the assessment of two distinct iterations 

of the VGGNet architecture: VGG16 and VGG19. The lineage of both VGG16 and VGG19 is traced 

back to their initial training on the extensive ImageNet dataset. This vast collection boasts a 
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remarkable array of over a million meticulously annotated images, spanned across an impressive 

gamut of 1000 classes. Their debut marked a watershed moment in the realm of image classification, 

as their performance soared to the zenith of the ImageNet classification task, setting a formidable 

benchmark at the time of their inception. 

 

Figure 7. Architecture of VGG16. 

The graph shows VGG16 as a profound convolutional neural network meticulously tailored for 

the domain of image classification tasks. The inception of this network commences with the input 

layer, primed to accommodate an image of dimensions 224x224x3. Here, the width and height unfurl 

across a span of 224 pixels, while the prism of color channels remains RGB. The intricate lattice of this 

network is woven with an array of layers, spanning the domains of convolutional, max pooling, and 

fully connected counterparts. The inaugural duo is comprised of convolutional layers, wherein each 

layer boasts a complement of 64 filters. These filters are cast over a kernel expanse of 3x3, 

harmoniously guided by a stride of 1. As the network forges ahead, the seventh and eighth strata don 

the attire of 512 filters, with the ninth and tenth layers echoing this design. In parallel, the VGG19 

architecture emerges as a distinguished variant of VGG16, charting its course with an augmentation. 

This enhancement unfurls through the incorporation of two supplementary convolutional layers, 

each underpinned by a suite of 512 filters. Like kindred spirits, these layers reverberate with a kernel 

realm of 3x3, coupled with a stride attuned to the pulse of 1. United by the ReLU activation function, 

these layers amplify the expressive capacity of the architecture. Illustrative renderings of both the 

VGG16 and VGG19 in Error! Reference source not found. and Error! Reference source not found., 

each epitomizing a formidable embodiment of convolutional mastery. 

3.5.2. SqueezeNet architecture 

The SqueezeNet architecture as shown in Error! Reference source not found., introduce [21] , 

represents a convolutional neural network (CNN) tailored to excel in image classification tasks while 

being highly efficient. Its design incorporates multiple layers, including fully connected layers, 

convolutional and pooling layers, and fire modules, serving as compact and efficient building blocks 

to streamline the network's size. At the input layer, raw images are fed into the network, and the 

convolutional layers play a crucial role in extracting distinctive features from these input images. To 

achieve this, a combination of 3x3 and 1x1 convolutional filters is utilized. Furthermore, the pooling 
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layers come into play, effectively reducing the size of the feature maps and exercising control over 

the risk of overfitting. This judicious combination of architectural elements empowers SqueezeNet to 

deliver exceptional performance while maintaining remarkable efficiency, making it an ideal choice 

for a wide range of image classification applications. 

 

Figure 8. Architecture of SqueezeNet. 

Max pooling is employed to downsize the feature maps, effectively reducing their size. The 

SqueezeNet architecture hinges on the pivotal fire modules, serving as its fundamental building 

blocks. These modules encompass a squeeze layer, which decreases the number of filters in the 

feature maps, and an expanded layer, which elevates the filter count using 1x1 and 3x3 convolutional 

layers. This ingenious design enables the network to maintain superior accuracy while being 

significantly smaller and faster compared to other CNNs. The ultimate classification decision is made 

by the fully connected layers, which comprise dense layers with a SoftMax activation function at the 

output layer. Error! Reference source not found. illustrates the architecture of SqueezeNet, 

demonstrating how its diverse layers and building blocks collaborate harmoniously to classify input 

images. Remarkably, the SqueezeNet architecture has been proven to excel in image classification 

tasks with remarkable efficiency. Its adept usage of fire modules, coupled with a combination of 3x3 

and 1x1 convolutional filters, grants it the ability to achieve high accuracy while maintaining a 

compact network size, rendering it an ideal choice for scenarios where computational resources are 

limited. 

3.6. Hyperparameters Tuning 

Hyperparameter tuning plays a pivotal role in the realm of machine learning, especially when 

dealing with intricate models endowed with numerous parameters. Hyperparameters, being 

adjustable configurations, govern the learning process of a machine learning algorithm, standing 

apart from model parameters acquired during training. They directly influence the model's 

performance and its aptitude to generalize effectively. The process of hyperparameter tuning entails 

methodically exploring and identifying the optimal combination of hyperparameters to optimize the 

model's performance. The ultimate objective is to pinpoint the hyperparameter values that yield the 

highest accuracy, minimize error, or attain the best performance metric for a specific task. Among the 

various techniques for hyperparameter tuning, Grid Search and Random Search are two commonly 

employed methodologies.  
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3.6.1. Grid Search 

Grid Search serves as a fundamental technique for optimizing hyperparameters in machine 

learning [22] . Leveraging the power of cross-validation, this method enables us to train our models 

using various hyperparameter combinations, subsequently evaluating their performance to discover 

the most promising configurations. 

Algorithm.1 Pseudo Code of Grid Search  

Function Grid Search (): 1 

     Hyperparameter Grid Search = Define Hyperparameter Grid Search 2 

     Best Hyperparameters = None 

     Best Performance = Select 

3 

4 

     for Hyperparameter in Hyperparameter Grid Search 5 

 Model = Set Hyperparameters in Model  6 

 Performance = Evaluate Model  7 

if Performance > Best Performance    8 

Best Performance = Performance  9 

Best Hyperparameters = Hyperparameters  10 

END  11 

    

end 

 

The process commences by selecting a specific set of hyperparameters for the model, which is 

then used in training and cross-validation. Through systematic exploration of the hyperparameter 

space, Grid Search identifies configurations that exhibit the highest performance during validation. 

These superior hyperparameter combinations are then seamlessly integrated into the model, 

guaranteeing optimal performance. In our implementation, we opt for K=5 in cross-validation, 

dividing the dataset into five subsets for thorough evaluation. Algorithm 2 provides a detailed 

illustration of Grid Search's operation. This sophisticated approach proves to be a powerful tool in 

attaining finely tuned hyperparameters, thereby significantly boosting the performance and 

efficiency of our machine learning model. By methodically exploring diverse hyperparameter 

combinations, Grid Search empowers us to pinpoint the best set of hyperparameters, leading to 

optimal model performance. 

3.6.2. Random Search 

Based on the experiments conducted by [23] , random search has been shown to outperform grid 

search in hyperparameter optimization. This method demonstrates exceptional efficiency in finding 

optimal models while minimizing computational time. Unlike grid search, random search explores 

broader areas by employing random sampling of hyperparameter combinations. Each set of 

hyperparameters is then evaluated, allowing the method to efficiently discover promising 

configurations. The key advantage of random search lies in its ability to explore hyperparameter 

spaces randomly, which often leads to the discovery of valuable configurations quickly. This 

streamlined approach presents a compelling alternative to grid search, showcasing its effectiveness 

in optimizing hyperparameters for machine learning models. Researchers and data scientists can 

benefit from adopting random search as a powerful tool to fine-tune their models and achieve 

enhanced performance with reduced computational overhead. 
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3.7. Supervised Machine learning Models 

In this paper, machine learning (ML) methods were leveraged to train and assess models 

dedicated to character image classification. To achieve peak performance, meticulous optimization 

of the model's parameters took place during its developmental phase. Through 10-fold cross-

validation, the training set, comprising 80% of the original dataset, was subjected to rigorous 

evaluation alongside the testing set (20%). Optimal parameters yielding the highest accuracy were 

then incorporated into the final model. The study explored four renowned ML classification 

techniques, namely Support Vector Machines (SVM), Neural Networks (NN), Random Forests (RF), 

and K-Nearest Neighbors (KNN). Each of these methods received comprehensive scrutiny as part of 

the study's endeavors. 

3.7.1. Support Vector Machines (SVM) 

SVM, short for Support Vector Machine, stands as a widely favored machine learning algorithm 

suitable for both classification and regression tasks. The core concept behind SVM revolves around 

identifying the hyperplane that optimally separates the various classes within the dataset. The SVM 

architecture is relatively straightforward and comprises a few fundamental components. To begin, 

SVM is trained on a set of labeled data, which serves as the basis for determining the hyperplane that 

best segregates the different classes. In pursuit of superior performance, we employed two 

optimization techniques: grid search and random search, both of which helped us find the most 

optimal hyperparameters. The kernel, an essential part of SVM [24], plays a crucial role in mapping 

the data to higher dimensions, allowing for better class separation. We experimented with various 

kernel types, including linear, polynomial, and sigmoid kernels, evaluating their effectiveness 

through search-based optimization algorithms. Finally, the best kernel among these options was 

chosen to optimize the model's performance [25] . 

3.7.2. Neural Network (NNs)  

The Neural Network, also known as Artificial Neural Network (ANN), is a widely utilized 

machine learning model for classification tasks. This sophisticated model consists of three layers of 

nodes: input, hidden, and output. Each node applies a transfer function to the weighted sum of the 

nodes from the previous layer, along with a bias term. During the training process, the network's 

weights and parameters are iteratively updated using the provided dataset. Given our study's 

specific context involving multiple classifications among 18 classes, we employed the SoftMax 

activation function. This function's primary objective is to convert the network's output into 

predictive probabilities for each class, enhancing its ability to handle multiclass classification 

scenarios [26]. 

3.7.3. Random Forest (RF) 

Random Forest (RF) is an important classifier in the field of machine learning and is known for 

its effectiveness and versatility. It belongs to the category of group learning methods, in which it 

constructs multiple decision trees by selecting random samples from a data set, and the accuracy is 

increased through the random construction of trees. And based on our study of the multiple 

classification between letters, the voting method was used, and the result is obtained based on the 

highest number of votes [27] . 

3.7.4. K-Nearest Neighbors (KNN) 

KNN, or K-Nearest Neighbors, is a versatile learning algorithm used for both classification and 

regression tasks [28]. Its foundation lies in assessing the similarity between data points, and it 

operates by determining the value of K, a positive number representing the number of nearest 

neighbors to consider when calculating distances. By iterating between K and new data points, the 

algorithm identifies the closest neighbors and assigns the category based on their votes. Choosing the 

appropriate value of K is crucial in KNN. A small K value may result in overfitting, where the model 
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becomes too sensitive to noise and specific data points, leading to reduced generalization. On the 

other hand, a large K value can cause underfitting, where the model oversimplifies and fails to 

capture intricate patterns in the data. In our study, we determine the class of each letter based on the 

majority vote of its nearest neighbors, considering their proximity. The class with the highest vote 

becomes the predicted class for the letter under consideration. 

3.8. Evaluation of Models 

When it comes to assessing the performance of both Deep Learning (DL)  and traditional 

Machine Learning (ML) models for classification, a range of metrics comes into play, and accuracy 

holds a pivotal position among them. The confusion matrix emerges as a key player, furnishing vital 

details about both actual and predicted labels, thereby facilitating an in-depth analysis of the model's 

efficacy. To comprehensively evaluate the model's performance, the confusion matrix yields 

invaluable insights by breaking down the counts of True Negatives (TNs), True Positives (TPs), False 

Negatives (FNs), and False Positives (FPs). These metrics play a critical role in measuring the model's 

adeptness at making accurate distinctions across various classes. The accuracy is computed as 

depicted in equation (1):                                    𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁                                                        (1) 

4. Result and discussion 

4.1. Performance of Classifier of Algorithms 

Error! Reference source not found. outlines the performance outcomes achieved by employing 

various classifiers on both CNN models (VGG19, VGG16, and SqueezeNet) and ML models (SVM, 

NN, RF, and KNN), employing three distinct optimization techniques: Grid Search, Random Search, 

and Default Parameters. The algorithms undergo thorough evaluation under different optimization 

approaches, namely Grid Search, Random Search, and Default Parameters. A closer examination of 

the performance disparities across diverse optimization strategies reveals noteworthy fluctuations in 

accuracy across different models and classifiers, as demonstrated in Error! Reference source not 

found.. The comparison of accuracy among ML classifiers yields intriguing insights. Notably, Grid 

Search yields an accuracy of 0.888 for the NN classifier when applied to the VGG16 model, closely 

followed by SVM with an accuracy of 0.855. However, the accuracy decreases to 0.843 when default 

parameters are employed. 

Table 1. Performance of Classifier of Algorithms. 

CNN models 
ML models Accuracy of Optimization methods 

ML Grid Search Random Search Default Parameters 

VGG19 

SVM 0.855 0.853 0.816 

NN 0.847 0.851 0.825 

RF 0.744 0.735 0.706 

KNN 0.727 0.727 0.692 

VGG16 

SVM 0.855 0.853 0.816 

NN 0.888 0.847 0.843 

RF 0.757 0.752 0.719 

KNN 0.751 0.751 0.699 

SqueezeNet 

SVM 0.819 0.799 0.770 

NN 0.825 0.823 0.813 

RF 0.729 0.724 0.695 

KNN 0.712 0.712 0.632 
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For the NN classifier, all optimization techniques yielded remarkable results, consistently 

achieving accuracies above 0.847 in VGG19. Both SVM and NN classifiers exhibited outstanding 

precision when applied to the VGG16 model. Specifically, the NN classifier attained the highest 

accuracy under Grid Search, registering 0.888, followed SVM at 0.855, and Default Parameters at 

0.843. The comparison of performance across various optimization methods provides valuable 

insights into the efficacy of different approaches in fine-tuning the models for improved accuracy 

and precision. The NN classifier exhibited commendable performance with accuracy values of 0.888, 

0.847, and 0.843 under Grid Search, Random Search, and Default Parameters, respectively. In the 

SqueezeNet model, the NN classifier achieved accuracies of 0.813 using default parameters, 0.823 

with random searches, and 0.825. Particularly, the NN classifier consistently showcased outstanding 

results across all optimization techniques, maintaining accuracies surpassing 0.888. Comparing ML 

models, the SVM classifier consistently outperformed CNN models, particularly VGG19 and VGG16. 

Across every model and optimization technique for the AHAWP dataset, the neural network 

classification consistently outshined other classifiers. The RF and KNN classifiers generally 

demonstrated lower accuracy levels compared to the SVM and NN classifiers. 

 

Figure 9. Comparison accuracy of the ML classifier performed. 

4.2. Compared mean accuracy scores between models. 

For Arabic handwritten recognition on the AHAWP dataset, the NN classifier continuously 

demonstrated the highest accuracy rates, reaffirming its potential in this domain. Results from the 

SVM classifier were also promising, particularly when used with the VGG16 model. However, future 

research should explore areas for improvement, as the RF and KNN classifiers exhibited lower 

accuracy results. The optimization approach significantly impacted accuracy, with Grid Search and 

Random Search consistently outperforming Default Parameters. The t-tests conducted in this 

investigation compared mean accuracy scores of several pairs of models, providing insights into their 

statistical significance. The calculated p-values indicated the likelihood of observed differences in 

mean accuracy being genuine, with a lower significance level indicating stronger evidence against 

the null hypothesis. In comparing the SVM classifier with other classifiers (NN, RF, and KNN) using 

the VGG16 CNN model, the p-value of 0.861 exceeded the conventional significance threshold of 0.05. 

The p-values as shown in Error! Reference source not found. for the comparisons between SVM 

and RF and SVM and KNN are less than 0.05 which shows that the accuracy achieved by the SVM 

classifier differs significantly the p-values from the t-tests give us important information about the 

statistical significance of the variations in mean accuracy between the models.  
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Table 2. Comparison of ML T-test and P-value. 

T-test P-value 

SVM vs NN 0. 86123788 

SVM vs RF  0.00280216 

SVM vs KNN 0.00495305 

These results add to our comprehension of the related Figure 10 results allow us to conclude that 

the SVM classifier performs similarly to the NN classifier, but that when utilizing the VGG16 CNN 

model, it greatly surpasses the RF and KNN classifiers when it comes to of accuracy. The Tukey's 

Honestly Significant Difference (HSD) test results yield significant insights regarding the pairwise 

differences in mean accuracy among the models being examined as shown in Error! Reference source 

not found.. Comparing the KNN model to the NN model, we observe a mean difference of 0.1173. 

The associated p-value is 0.0006, which falls below the significant threshold of 0.05. Consequently, 

we can conclude that there is a statistically significant difference in mean accuracy between the KNN 

and NN models. Specifically, the KNN model exhibits a higher mean accuracy compared to the NN 

model. 

 

Figure 10. Comparison Box plot of ML models. 

Table 3. The Tukey's Honestly Significant Difference (HSD) test results. 

reject upper lower p-adj Mean diff Group2 Group1 

True 0.1728 0.0619 0.0006 0.1173 NN KNN 

True 0.0644 -0.0464 0.009519 0.09 RF KNN 

True 0.1704 0.0596 0.0007 0.115 SVM KNN 

True -0.0529 -0.1638 0.0011 -0.1083 RF NN 

False 0.531 -0.0578 0.999 -0.0023 SVM NN 

True 0.1614 0.0506 0.0013 0.106 SVM RF 

However, when comparison the KNN and RF models, we discover a mean difference of 0.09 

with a p-value of 0.009519. As the p-value goes above 0.05, we lack enough evidence to support a 

significant difference in mean accuracy among the KNN and RF models.  
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Additionally, upon closer examination of the KNN and SVM models, a mean difference of 0.115 

with a p-value of 0.0007 becomes evident. Given that the p-value is below the significance threshold 

of 0.05, it indicates a statistically significant divergence in mean accuracy between the KNN and SVM 

models. Specifically, the KNN model showcases a notably higher mean accuracy in comparison to 

the SVM model. 

Turning our attention to the contrast between the NN and RF models, a mean difference of -

0.1083, denoted by the negative sign, emerges. This suggests that the NN model displays a slightly 

lower mean accuracy compared to the RF model. The corresponding p-value of 0.0011 further 

emphasizes a significant dissimilarity in mean accuracy between these two models, with the RF 

model demonstrating superior performance. 

Conversely, the mean difference between the NN and SVM models is -0.0023, a value proximate 

to zero. The associated p-value of 0.999 implies that the mean accuracy of the NN and SVM models 

is essentially indistinguishable. As such, any observed fluctuations in accuracy between these models 

are more likely attributable to chance than a substantive performance variance. 

Shifting our focus to the mean variance analysis between the RF and SVM models, a mean 

variance of 0.106 is identified, accompanied by a p-value of 0.0013. This p-value corroborates a 

significant discrepancy in mean accuracy. The outcomes of the Tukey's HSD test illuminate the 

nuances of the dissimilarities among the evaluated models in terms of mean accuracy. Error! 

Reference source not found. graphically elucidates the superiority of the NN model in mean 

accuracy, surpassing the other models. However, a discernible discrepancy in mean accuracy 

between the NN and SVM models is not discerned. 

When juxtaposed with the alternative models, the NN model, the top performer, demonstrates 

enhanced accuracy in accurately classifying air-written letters as shown in Error! Reference source 

not found.. This suggests that the model possesses a greater capacity to adeptly detect and assign 

appropriate labels to the letters. Error! Reference source not found. illustrates the confusion matrix 

for the NN models, definitively identifying the NN model as the most proficient contender. The 

confusion matrix provides insightful revelations into the model's predictions, empowering us to 

gauge the precision of classifying air-written letters. Through the confusion matrix, we can 

meticulously assess the model's classification accuracy, identify any errors or zones of uncertainty, 

and decode the matrix where anticipated letter labels align with the columns, while actual letter labels 

align with the rows. 
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Figure 11. Comparison Accuracy of Models. 

 

Figure 12. Confusion Matrix for All Models. 

4.3. Sample of lettering writing by Experimental Setup 

The aim of the experiment was to develop a model that combines machine learning (ML) with 

optical character recognition (OCR) methods to accurately identify Arabic letters written in the air. 

For the experimental setup, air writing was recorded using a laptop equipped with a Core i5 10th 

generation camera. The Python coding language and PyCharm development environment were 

employed for the implementation. To enhance computing speed, a NVIDIA GeForce GT graphics 

card was utilized. Error! Reference source not found. showcases a sample of the air-written lettering 

captured during the experiment. 
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Figure 13. Sample of lettering writing. 

4.4. Validation of our model  

Validation of our model involved an elaborate process specifically designed for air-written 

Arabic letters in Error! Reference source not found.. The procedure commenced with capturing the 

letter as an image, which was then saved for further processing. To ensure optimal performance, the 

image underwent a series of preprocessing steps aimed at enhancing clarity and eliminating any 

unwanted artifacts. Among these steps were resizing the image and employing smoothing 

techniques to refine the letter's edges and visibility. Once the preprocessing phase was complete, the 

letter image was fed into a machine learning algorithm that had been meticulously trained on a 

dataset containing images of Arabic letters. This algorithm was purpose-built to leverage the 

knowledge gained from the training dataset's patterns and features, enabling it to predict and classify 

the input letter effectively. During the validation phase, the model employed a trained algorithm to 

make precise predictions for the air-written letter. By comparing the input letter with the patterns 

and characteristics it had internalized during training, the model skillfully identified its 

corresponding Arabic character. This prediction process proved invaluable in accurately recognizing 

and classifying the air-written letters, showcasing the robustness and efficacy of our developed 

approach. 
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Figure 14. validation process for the air-written Arabic letters. 

The validation results were evaluated based on the accuracy of the model's predictions as shown 

in Error! Reference source not found.. The accuracy represented the percentage of correctly 

identified letters out of the total validation set. This metric served as an indicator of the model's 

performance and its ability to accurately recognize air-written Arabic letters. The validation process 

played a crucial role in assessing the reliability and effectiveness of the developed model. It allowed 

us to verify the model's ability to accurately recognize individual Arabic characters based on air 

writing input. By comparing the model's predictions with the ground truth labels, we could 

determine the level of accuracy achieved and identify any areas for improvement. Our model's 

performance in recognizing air-written Arabic letters was assessed using predicted letter pairs. The 

true/false category was verified based on whether the model correctly detected the letter or not. The 

results Error! Reference source not found. . indicate that the model achieved a high level of accuracy 

in some cases, correctly predicting the letters Beh ( ب), Ain ( ع), Heh ( ه), Jeem ( ج), Kaf ( ك), Meem (م), 
Noon (ن), Raa (ر), Sad ( ص), Seen (س), and  

Table 4. Actual and Prediction of our Model. 

Actual Prediction True/False 

Beh ( ب) Beh ( ب) T 

Dal(د) Ain(ع) F 

Ain(ع) Ain(ع) T 

Feh(ف) Qaf(ق) F 

Heh(ه) Heh(ه) T 

Jeem (ج) Jeem (ج) T 

Kaf  (ك) Kaf  (ك) T 

Lam ( ل) Dal(د) F 

Meem(م) Meem(م) T 

Noon( ن) Noon( ن) T 

Qaf(ق) Feh(ف) F 

Raa( ر) Raa( ر) T 

Sad(ص) Sad(ص) T 

Seen( س) Seen( س) T 
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Tah( ت) Tah( ت) T 

Waw(و) Heh(ه) F 

Yaa( ي) Beh ( ب) F 

Tah (ت). However, there were instances where the model made incorrect predictions, such as misclassifying Dal 

 .(ه) as Heh (و) and Waw ,(د) as Dal (ل) Lam ,(ق) as Qaf (ف) Feh ,(ع) as Ain (د)

4.5. Comparison of the proposed model with Preview Work. 

Error! Reference source not found. offers a thorough comparison of the approaches and 

findings from earlier studies in the field of air writing recognition. In our study, we have suggested 

a model that combines machine learning (ML) and optical character recognition (OCR) methods to 

recognize Arabic air writing specially. Even if our model's accuracy might not be as high as some of 

the earlier research included in the table, it's crucial to consider the particulars of the Arabic script 

and its difficulties. Our study stands out as the first to concentrate especially on the recognition of 

Arabic air writing. This demonstrates its substantial impact on the industry. Although an 88% 

accuracy rate may seem lower in comparison to research focusing on English or other. The accuracy 

levels presented in the table should be interpreted with caution, as direct comparisons may not be 

appropriate due to variations in datasets, techniques, and language-specific characteristics. Each 

study examines a different language and writing system, necessitating unique methodologies and 

considerations. Despite these differences, our model's effectiveness in identifying Arabic air-written 

letters is evident through its impressive performance, demonstrating its value within the context of 

Arabic script. 

Table 5. Comparison of the proposed model with Preview Work. 

Paper Languages Method Result 

[1] Air writing English 2D-CNN accuracy: 91.24% 

[3] Air-writing English LSTM accuracy: 99.32%  

[4] English Faster RCNN accuracy: 94%  

[5] 
Air writing Korean and 

English 
3D ResNet 

Character error rate (CER):  

Korean: 33.16% 

English: 29.24% 

[12] Air-writing English Faster RCNN mean accuracy: 96.11 % 

[29] Air writing English - error rate: 0.8% 

[30] Air writing English MS-CNN accuracy: 95% 

[31] Air writing Hindi PointNet recognition rate: >97% 

 Our Model  Air writing Arabic 
 Hybrid Model 

VGG16+NN 
Accuracy :88% 

Our research addresses a significant gap in the field of air writing identification by focusing on 

Arabic script, which paves the way for future advancements and practical applications. This 

highlights the importance of devising tailored strategies that address the specific challenges posed 

by various writing systems and languages. Moreover, our study contributes not only to the 

knowledge base of Arabic air writing but also establishes itself as the first investigation into Arabic 

air writing recognition. While previous studies have primarily focused on English or other languages, 

we recognized the importance of understanding the unique complexities and characters within 

Arabic script. By exploring this specific context, our study enriches the knowledge of air writing 

recognition techniques for Arabic. Our model effectively combines Machine Learning (ML) and 

Optical Character Recognition (OCR) methods to accurately recognize Arabic air-written letters, 

offering a comprehensive solution that leverages the strengths of both approaches. As pioneers in 

Arabic air writing recognition, our research lays a solid foundation for future investigations in this 

area. This opens new avenues for researchers to explore additional methods and techniques that can 

further enhance recognition accuracy in Arabic air writing. As we move forward, these findings will 
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undoubtedly spur further advancements and innovations in the realm of air writing recognition for 

Arabic and other languages. 

5. Conclusions and future work  

This paper presented a novel approach for recognizing air-written Arabic letters using Machine 

Learning (ML) and DNNs, and OCR methods models. The results demonstrated that the NN method, 

along with the features extracted from VGG19, achieved high accuracy and low error rates in 

recognizing Arabic letters. Additionally, the study explored the use of optical character recognition 

as an alternative method for identifying air-written letters, showing comparable outcomes to ML 

models. Notably, our model performed exceptionally well on the AHAWP dataset and exhibited 

promising results when compared to other models. This research contributes to the expanding body 

of knowledge in Arabic handwriting recognition and machine learning, offering potential 

applications in education and aiding individuals with physical disabilities in communication. Future 

studies should consider investigating hybrid ML and their purpose in the recognition of air-written 

Arabic letters. The utilized model can discover practical use in several applications involving the 

recognition of children's Arabic air writing. 
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