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Article

Recognition of Arabic Air-Written Letters: Machine
Learning, Convolutional Neural Networks, and
Optical Character Recognition (OCR) Techniques

Abstract: It is a challenging problem that air-written Arabic letters has received a lot of attention in the past
decades when compared to commonly spoken languages like English languages. To fill this gap, we propose a
strong model that brings together machine learning (ML) and optical character recognition (OCR) methods.
The model applied several ML methods, (i.e., Neural Networks (NN), Random Forest (RF), K-Nearest
Neighbors (KNN), and Support Vector Machine (SVM), with deep convolutional neural networks (CNNs) such
as VGGI16, VGG19, and SqueezeNet for effective feature extraction. Our study utilizes the AHAWP dataset,
which consists of varied writing styles and variations in hand signs, to train and evaluate the model.
Preprocessing systems are applied to improve data quality by reduction bias. Besides, OCR methods are
combined into our model to sequestrate individual letters from continuous air-written gestures and refine
recognition results. Results of this study show that the proposed model has achieved the extreme accuracy of
88.8% using NN with VGG16. This study presents an inclusive approach that combines ML, deep CNNs, and
OCR methods to address the issue of Arabic in air writing recognition research.

Keywords: Arabic air writing recognition; machine learning; OCR; recognition; deep learning

1. Introduction

Advances in information technology have reshaped how humans interact with machines and
programs, as well as how they communicate within their environment and language. The concept of
writing in the air has emerged as a mode of communication between humans and their intelligent
applications and devices, aligning with the flexibility of human mobility and surroundings [1]. This
air-writing modality finds utility across diverse fields, including human-robot communication,
children's education, aiding individuals with sensory challenges, and even in the realm of meta-
verses [2]. The recognition of air-written Arabic letters introduces a tapestry of intricate challenges
necessitating inventive solutions. Diverging from traditional written scripts, the fluid nature of air-
written gestures introduces layers of complexity that warrant specialized approaches. The dynamic
essence of air-written letters transcends the confined spatial boundaries of conventional paper or
screens, engendering a rich spectrum of letter formations and trajectories. Unraveling and
deciphering these ever-evolving spatial-temporal patterns emerges as a formidable hurdle. Further
intricacy arises from the plethora of writing styles and hand sign variations that individuals employ.
This myriad of expressions compounds the intricacies tied to precise interpretation and recognition
of air-written Arabic letters. Furthermore, the task of demarcating distinct individual letters within
the continuum of air-written gestures mandates meticulous segmentation techniques for unwavering
recognition accuracy. Amplifying the challenge is the absence of predetermined reference points or
demarcated start and end strokes in the realm of air-writing, necessitating ingenious algorithms
capable of impeccably detecting letters despite the absence of conventional structural cues.

While the recognition of air-written English letters has undergone thorough exploration through
a range of machine learning techniques, including LSTM [3], 2D-CNN , Faster RCNN [4], and 3D
Reset [5], a notable gap exists in the realm of recognizing air-written Arabic letters. Despite the
extensive research on English counterparts, no study has ventured into the domain of deciphering
air-written Arabic letters. To surmount this complex landscape, our approach orchestrates a holistic
methodology harmonizing the strengths of machine learning (ML) methods, deep convolutional
neural networks (CNNs) [6], and the finesse of optical character recognition (OCR) techniques [7].
OCR, a process that transforms images of handwritten or typewritten text into machine-readable text,
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forms a key component of our strategy. This aligns with broader endeavors to process handwritten
text from electronic devices, such as paper forms, invoices, and legal documents. However, grappling
with a blend of machine-generated and human-written text poses distinct challenges, particularly in
the public or governmental sectors. Effective handling and storage of such diverse inputs remain an
ongoing concern, wherein OCR plays a pivotal role by converting text images into machine-readable
text data.

The driving force behind this research is rooted in the inherent capability of air-writing
recognition to bridge the divide between genuine human gestures and digital interfaces. As
intelligent systems weave more intricately into our daily lives and the demand for seamless
interaction burgeons, the capacity to decode and comprehend air-written letters assumes a pivotal
significance. Moreover, the allure of Arabic script, epitomized by its intricate elegance, confers an
additional layer of allure to this quest, impelling us to embark on a profound exploration within this
uncharted territory. This research efforts to make a meaningful contribution by not only teaching
Arabic to non-native speakers but also by providing interactive training for young learners to master
the art of drawing Arabic letters. The intention is to foster an engaging experience with technology
that stimulates curiosity and ignites creativity. Moreover, this technology carries the potential to
assist individuals with speech challenges. Many individuals who struggle with speech are still
capable of writing, and this application could be harnessed to track hand movements and convert
them into synthesized human speech. It opens new avenues of communication and expression for
those facing obstacles in traditional verbal interaction. The main objective of this research is to
construct an intricate model that seamlessly intertwines machine learning and optical character
recognition techniques. This model is particularly engineered to not only accurately identify
individual Arabic characters, but also entire words formed in the air. Through achieving this
ambitious target, the research has the potential to significantly enhance Arabic language education
and to foster more inclusive and efficient modes of communication.

The rest of the paper is constituted as follows: Section 2 requires the existing literature on air-written
Arabic letter recognition. Section 3 presents a methodology for the development and evaluation of
the recognition model. Section 4 give to the results and analysis of the recognition model. Section 5
concludes the paper by discussing the implications of the research findings.

2. Related work

Researchers have shown considerable interest in the field of air writing recognition, extending
beyond just numerical digits and symbols to encompass various languages. In this segment, we delve
into prior investigations that have delved into the realm of air writing recognition, specifically
focusing on numbers, symbols, and linguistic diversity.

2.1. Air Writing with Numbers and Symbols

A particularly noteworthy investigation [2] utilized radar-based methodologies to track the
trajectories of hand motions while individuals engaged in the act of air-writing numerical digits. A
multi-stream convolutional neural network (MS-CNN), coupled with continuous wave radar
frequency, was enlisted to distinguish numbers ranging from 0 to 9. Impressively, this model
achieved an impressive accuracy of 95% when tested with numerals air-written by 12 volunteers,
shedding light on the potential of radar-based approaches in the realm of air-writing recognition.

Expanding beyond numbers, the realm of air writing encompasses hand-drawn symbols,
holding significance across various applications such as encrypted codes and authentication systems.
Another study [8] introduced an algorithm to extract the trajectories traced during air writing,
accompanied by the development of deep CNN networks that encompass both 1D-CNN and 2D-
CNN architectures for deciphering hand-drawn symbols. Diligent parameter optimization
contributed to achieving a high discrimination rate of 99% using their CNN models. The dataset
employed in their investigation covered numeric symbols (0-9) drawn in both clockwise and
counterclockwise directions, along with a set of 16 directional symbols. The models underwent
training and testing on well-segmented datasets, utilizing K-fold cross-validation to determine the
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optimal K value. A recognition rate of 5 yielded the most favorable results, underscoring the
effectiveness of deep CNNss in symbol recognition.

Given the increasing ubiquity of smart devices, the realm of gesture-based communication has
gained prominence in interactions with these devices. Addressing this trend, another study [3]
directed their attention towards enhancing hand gesture communication through air writing. They
devised a system for recognizing air-typed gestures, combining 3D trajectories with a fusion of long-
term memory (LSTM) and convolutional neural networks (CNN). Preprocessing techniques such as
normalization and root point translation were applied to the trajectory data. The evaluation was
conducted using a dataset consisting of 2100 numerals, gathered by the authors themselves, resulting
in an impressive accuracy rate of 99.32%.

While these studies represent significant progress in the realm of air-writing recognition
concerning numbers and symbols, the exploration of air-writing recognition within the Arabic
language remains relatively uncharted. This study takes on the challenge of bridging this gap by
developing a model carefully tailored to distinguish air-written Arabic letters. Through a synergy of
machine learning techniques and optical character recognition, our objective is to establish a
benchmark of precise and robust recognition performance within the domain of Arabic air writing.

2.2. Exploring Air-Written Letters

Deciphering air-written letters presents a unique set of challenges, particularly when
considering gesture recognition and handwriting analysis. Various research endeavors have delved
into methods aimed at identifying and deconstructing handwritten or typed letters in the air. These
efforts focus on achieving accurate segmentation of words and recognition of individual characters
within air writing. A notable attempt by [9] involved employing hashing techniques and a CNN
model to fragment letters, resulting in an impressive 92.91% accuracy on the NIST dataset. This
achievement showcases promising strides in accurately recognizing fragmented letters. Similarly, in
a study conducted by [1], a 2D-CNN model excelled in identifying letters and numbers written in the
air, outperforming alternative methods. This highlights the efficacy of deep learning techniques in
the realm of recognizing air-written letters and numbers. Another research initiative led by [4]
compiled a dataset featuring hand movement videos in diverse settings and devised a recognition
system for air-written letters. To train their dataset, they harnessed pre-trained models like Single
Shot Detector (SSD) and Faster RCNN, achieving remarkable accuracies of up to 99%. Their work
aimed to enhance the diversity and performance of prior datasets.

Within the domain of optical character recognition (OCR), [10] implemented a CNN and RNN-
based OCR system for recognizing diacritics and Ottoman font in Arabic script. This effort yielded
remarkable outcomes, with a validation accuracy of 98%, a word recognition rate (WRR) of 95%, and
a character recognition rate (CRR) of 99% on the test dataset. Furthermore, endeavors have been
directed towards recognizing handwritten Arabic letters in specific contexts. [11] introduced a
segmentation algorithm for handwritten Urdu script lines, achieving accuracies of 96.7% for
handwritten text and 98.3% for printed text. [12] proposed a technique grounded in the Faster RCNN
framework for detecting and segmenting hand postures during air typing initiation, leading to a
96.11%-character recognition accuracy. Additional studies have tackled the recognition of Arabic
letters in varied scenarios. [13] presented an optical system for character recognition that utilized the
learning vector algorithm and classification techniques to discern well-written and poorly written
Arabic letters, with recognition rates of 86.95% and 54.55%, respectively. [14] constructed a
comprehensive OCR system relying on CNN and SVM, achieving a recognition rate of 99.25% for
Arabic letters and numbers. [15] compared diverse classifiers, including SVM, kNN, Naive Bayes,
ANN, and ELM, to classify an array of gestures, attaining the highest accuracy of 96.95% with SVM.

Nevertheless, despite these strides, certain gaps persist in the literature concerning air-written
Arabic letter recognition. A prevalent issue arises from researchers employing their own distinct
datasets, which complicates model evaluation due to the lack of comparable benchmarks.
Additionally, numerous studies have evaluated models on limited sample sizes, potentially
inadequately reflecting real-world conditions. Further research is also warranted in the exploration
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of advanced deep learning algorithms, such as Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs), to enhance accuracy and resilience in recognizing air-written
Arabic letters. While traditional machine learning techniques like SVM, Naive Bayes, and ANN have
been explored, there is room for further investigation.

The overarching objective of this research is to contribute practically to the advancement of
gesture-based interaction, Arabic language education, and communication systems for individuals
with disabilities. This pursuit aims to devise a scheme that facilitates effective and precise
communication between humans and computer systems through air-written Arabic letters. By
achieving these goals, the research seeks to enhance the identification of Arabic air-written letters by
amalgamating machine learning, deep CNNs, and OCR approaches. Ultimately, the development of
a reliable and accurate system capable of detecting and comprehending air-written Arabic characters
across diverse applications holds the potential to enhance human-machine interaction and broaden
access to learning and interacting in Arabic.

3. Arabic Air-Writing to Image Conversion and Recognition: Methodology

In this study, by identifying the hand's boundaries and turning the writing into an image, we
present a model to recognize writing in the air. In our experiments, we used the AHAWP dataset [16]
.Two models were created; the first relies on writing a single letter, and the second relies on writing
a word in its whole. We tested extracting the crucial features from the photos for a single word using
deep learning methods and training models like VGG16, VGG19, and SqueezeNet.Then,
normalization is used to enhance performance, lessen sensitivity, and increase model stability.
Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbors (KNN) and Neural
Networks (NN) are then employed as classification techniques for handwritten messages, as well as
I20CR for verification. The second model is based on predicting the completed handwritten word
with the aid of [20CR. displays the architecture of the proposed model. Error! Reference source not
found. presentations architecture of proposed approach
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Figure 1. Architecture of Proposed Approach.
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3.1. AHAWP Dataset

In this research we utilized the AHAWP dataset [16] which consists of letters, words, and
paragraphs. The dataset was gathered from 82 individuals. Includes 9,000 images of alphabets. These
images display letters, in positions within words, such as at the beginning, middle or end. The dataset
encompasses a total of 18 letters. To conduct our experiments, we split the dataset into a training set
comprising 80% of the data and a testing set comprising the remaining 20%. This division allowed us
to train our models on a portion of the data while also preserving a set for evaluating their
performance. Error! Reference source not found. visually represents a sample, from the AHAWP

dataset.
_4_ _8 (3
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Figure 2. Sample of Dataset.

3.2. Data Pre-Processing:

Preprocessing is a step in enhancing the data sets” quality by eliminating data and preparing it
for model development. In our study we focused on the processing steps for recognizing Arabic air
written letters. These steps play a role in preparing the dataset for analysis and classification.
Specifically, we carried out the following processing steps.

3.2.1. Image Resizing;:

To ensure consistency among all samples we resized the thinned characters to a size like (224,
224). This resizing process guarantees that all character images have dimensions and facilitates
feature extraction and analysis. We utilized libraries such as OpenCV or PIL to efficiently perform
this image resizing operation.

3.2.2. Feature Extraction

Moving forward in our study, we delved into the task of drawing out pertinent details from the
meticulously prepared character images. To accomplish this, we embraced a widely recognized
method known as discrete cosine transformation (DCT), which holds a solid reputation for feature
extraction. The DCT takes hold of the image by translating it into an ensemble of frequency
coefficients that manage to encapsulate the crucial patterns and alterations inherent in the characters.
The aim behind this feature extraction was to capture discerning cues that could serve as valuable
guides in the forthcoming classification endeavor.

3.2.3. Dimensionality Reduction

With the features in hand, our next stride involved trimming down the complexity of the feature
space through the art of dimensionality reduction. A reliable go-to in this realm is Principal
Component Analysis (PCA) [17], a technique celebrated for lighting the computational load and
excising less informative features. In our exploration, we streamlined the feature count to a concise
99 for the VGG16, VGG19, and SqueezeNet models. This deft reduction in dimensionality crafts an
avenue for streamlined analysis and the deft classification of our data.
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3.2.4. Data Normalization

Concrete the way for data that's on the same playing field and setting the stage for optimal
machine learning performance, we delved into the realm of data normalization. Our strategy homed
in on refining our reduced feature vectors, ensuring they marched in harmony within a shared range,
perhaps straddling the confines of -1 and 1. This normalization choreographed a balancing act,
achieved through techniques like the tried-and-true min-max scaling or the trustworthy
standardization. By taking this stride, we bid farewell to any biases stemming from dissimilar feature
scales, ushering in a level ground for judicious comparisons as we transition into the eagerly awaited
classification phase.

3.3. Building the Air Writing Components

The proposed method consists of several stages for building the Air Writing components,
namely: (1) the development of Air Writing tools, (2) the implementation of i20CR, (3) feature
extraction, and (4) classification.

3.3.1. Air writing tools

The proposed approach expects the user to start by drawing on a canvas using hand gestures,
which can be detected by a webcam and Google’s Mediapipe library used for body key point
detection. It initializes four arrays (bpoints, gpoints, rpoints, ypoints) to store points of different
colors (e.g., blue, green, red, and yellow). These arrays are implemented as deques with a fixed
maximum length of 1024. It also initializes four variables (blue index, green index, red index, and
yellow index) to keep track of the current index in each array. The kernel (a morphological image
processing operation for dilation and an array of color tuples) is then defined. A variable color index
is initialized to store the current color index. Canvas is then constructed by creating a blank image
and displaying it in a window called Paint as shown in Error! Reference source not found. .

Figure 3. Example Shows Type of Writing in Left and Stopping Writing in Right.

The next step is to initialize the Media pipe hands, draw modules, and set up the webcam for
capturing frames. In the main loop of the script, each frame is read from the webcam, flipped
vertically, and converted to RGB color space.

Ul elements are then drawn on the frame, including rectangles and text labels for the different
colors and a 'CLEAR' button as shown in Error! Reference source not found.. The RGB frame is then
passed to the Media pipe hands module to detect the hand gestures. If a hand is detected, the code
draws a bounding box around the hand and gets the hand's key points (joints). The system then needs
to check if the user has selected a color by clicking on one of the color buttons. If a color has been
selected, the code gets the coordinates of the hand's palm and appends them to the appropriate color
array. It also dilates the points in the color array to make them thicker on the canvas, start writing
and in (B) side signs to stop writing. Error! Reference source not found. shows result of writing.
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After completing the writing, the result of the final appears on a white screen as shown in Error!
Reference source not found. The next step is to draw the points on the canvas and display the
updated canvas and frame in their respective windows. If the user clicks the 'CLEAR' button, the
code clears all the points from the arrays and the canvas.

# ! Outpan

LS )

Figure 4. Result of Writing.

3.4. Optical character recognition (OCR)

In our study, we turn our attention to Error! Reference source not found., where we delve into
the intricate design of the Optical Character Recognition (OCR) system's underlying structure [18].
This methodology unfolds in a carefully choreographed sequence, with each stage performing a
distinct role: image acquisition, pre-processing, text recognition, and post-processing. This primary
stage aids as the cornerstone, involving the conversion of the image into binary data. This
transformative process acts as the pivotal mechanism that empowers the OCR system's interpretive

prowess.
m

- Feature Extraction

';'
b, "

Figure 5. Architecture of the OCR.

In the subsequent phase, known as pre-processing, a suite of techniques is harnessed,
encompassing image alignment, noise reduction, and language identification. These endeavors
collectively aim to refine the image by eliminating imperfections and enhancing its readiness for
subsequent recognition. Moving forward, the third stage, text recognition, unfolds. Here, the OCR
system diligently employs a combination of pattern matching and feature extraction algorithms. This
concerted effort enables the system to discern and identify the intricate characters that compose the
image. As we reach the culmination of this multi-stage endeavor, the post-processing stage comes to
the forefront. Within this domain, the OCR system undertakes crucial tasks, including necessary
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rectifications and format adjustments. The overarching goal is to bestow a mantle of accuracy and
uniformity upon the recognized text, ensuring its fidelity. In the context of our study, a prominent
role is assumed by the freely accessible online tool, 2OCR . This tool is adept at extracting text from
a diverse array of sources, spanning images to scanned documents, encompassing materials such as
books, faxes, contracts, invoices, mail, passports, and ID cards. An impressive spectrum of linguistic
diversity, spanning over 100 languages, can be effectively deciphered by i2OCR.

3.5. Arabic Air Writing Letter Recognition System Using Deep Convolutional Neural

This research employed Deep Convolutional Networks and Machine Learning models to
achieve superior performance and accuracy compared to using them individually. The study
specifically focused on combining Convolutional Neural Network (CNN) models for Arabic letter
image classification with Machine Learning algorithms, such as Support Vector Machines (SVM)
Neural Network (NN), Random Forest (RF) and K nearest neighbor (KNN), to enhance the overall
system performance and accuracy. Three different models were applied in this study, namely
VGG16, VGG19, and SqueezeNet, with the aim of assessing their effectiveness in achieving the
desired outcomes. By leveraging the strengths of both Deep Convolutional Networks and Machine
Learning models, this study provides a comprehensive approach to Arabic letter recognition that can
have significant implications across various domains and applications as follows.

3.5.1. The VGGNet CNN architecture

The graph known as VGG19 [19] presents a refined iteration of VGGI16, incorporating a
thoughtful modification. This enhancement introduces two supplementary convolutional layers,
each boasting 512 filters and adhering to a kernel size of (3x3), all while maintaining a stride of 1. The
activation function employed in these layers remains consistent, embracing the ReLU framework.
[20] A visual representation of both the VGG16 and VGG19 architectures shown in Error! Reference
source not found. and Error! Reference source not found..

224x224x64
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36x36x256
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Figure 6. Architecture of VGG19.

Within the confines of this study, our focus zeroed in on the assessment of two distinct iterations
of the VGGNet architecture: VGG16 and VGG19. The lineage of both VGG16 and VGGI9 is traced
back to their initial training on the extensive ImageNet dataset. This vast collection boasts a
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remarkable array of over a million meticulously annotated images, spanned across an impressive
gamut of 1000 classes. Their debut marked a watershed moment in the realm of image classification,
as their performance soared to the zenith of the ImageNet classification task, setting a formidable
benchmark at the time of their inception.

224x724%64

112x112x128
5Gxo6x236

7 2Bx28x512

sty | | 6L
113403 101000

| — — — —

@ Convolution +Relu
\j Max pooling

S0
=]

Figure 7. Architecture of VGG16.

The graph shows VGG16 as a profound convolutional neural network meticulously tailored for
the domain of image classification tasks. The inception of this network commences with the input
layer, primed to accommodate an image of dimensions 224x224x3. Here, the width and height unfurl
across a span of 224 pixels, while the prism of color channels remains RGB. The intricate lattice of this
network is woven with an array of layers, spanning the domains of convolutional, max pooling, and
fully connected counterparts. The inaugural duo is comprised of convolutional layers, wherein each
layer boasts a complement of 64 filters. These filters are cast over a kernel expanse of 3x3,
harmoniously guided by a stride of 1. As the network forges ahead, the seventh and eighth strata don
the attire of 512 filters, with the ninth and tenth layers echoing this design. In parallel, the VGG19
architecture emerges as a distinguished variant of VGG16, charting its course with an augmentation.
This enhancement unfurls through the incorporation of two supplementary convolutional layers,
each underpinned by a suite of 512 filters. Like kindred spirits, these layers reverberate with a kernel
realm of 3x3, coupled with a stride attuned to the pulse of 1. United by the ReLU activation function,
these layers amplify the expressive capacity of the architecture. Illustrative renderings of both the
VGG16 and VGG19 in Error! Reference source not found. and Error! Reference source not found.,
each epitomizing a formidable embodiment of convolutional mastery.

3.5.2. SqueezeNet architecture

The SqueezeNet architecture as shown in Error! Reference source not found., introduce [21],
represents a convolutional neural network (CNN) tailored to excel in image classification tasks while
being highly efficient. Its design incorporates multiple layers, including fully connected layers,
convolutional and pooling layers, and fire modules, serving as compact and efficient building blocks
to streamline the network's size. At the input layer, raw images are fed into the network, and the
convolutional layers play a crucial role in extracting distinctive features from these input images. To
achieve this, a combination of 3x3 and 1x1 convolutional filters is utilized. Furthermore, the pooling
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layers come into play, effectively reducing the size of the feature maps and exercising control over
the risk of overfitting. This judicious combination of architectural elements empowers SqueezeNet to
deliver exceptional performance while maintaining remarkable efficiency, making it an ideal choice
for a wide range of image classification applications.
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Figure 8. Architecture of SqueezeNet.

Max pooling is employed to downsize the feature maps, effectively reducing their size. The
SqueezeNet architecture hinges on the pivotal fire modules, serving as its fundamental building
blocks. These modules encompass a squeeze layer, which decreases the number of filters in the
feature maps, and an expanded layer, which elevates the filter count using 1x1 and 3x3 convolutional
layers. This ingenious design enables the network to maintain superior accuracy while being
significantly smaller and faster compared to other CNNs. The ultimate classification decision is made
by the fully connected layers, which comprise dense layers with a SoftMax activation function at the
output layer. Error! Reference source not found. illustrates the architecture of SqueezeNet,
demonstrating how its diverse layers and building blocks collaborate harmoniously to classify input
images. Remarkably, the SqueezeNet architecture has been proven to excel in image classification
tasks with remarkable efficiency. Its adept usage of fire modules, coupled with a combination of 3x3
and 1x1 convolutional filters, grants it the ability to achieve high accuracy while maintaining a
compact network size, rendering it an ideal choice for scenarios where computational resources are
limited.

3.6. Hyperparameters Tuning

Hyperparameter tuning plays a pivotal role in the realm of machine learning, especially when
dealing with intricate models endowed with numerous parameters. Hyperparameters, being
adjustable configurations, govern the learning process of a machine learning algorithm, standing
apart from model parameters acquired during training. They directly influence the model's
performance and its aptitude to generalize effectively. The process of hyperparameter tuning entails
methodically exploring and identifying the optimal combination of hyperparameters to optimize the
model's performance. The ultimate objective is to pinpoint the hyperparameter values that yield the
highest accuracy, minimize error, or attain the best performance metric for a specific task. Among the
various techniques for hyperparameter tuning, Grid Search and Random Search are two commonly
employed methodologies.
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3.6.1. Grid Search

Grid Search serves as a fundamental technique for optimizing hyperparameters in machine
learning [22] . Leveraging the power of cross-validation, this method enables us to train our models
using various hyperparameter combinations, subsequently evaluating their performance to discover
the most promising configurations.

Algorithm.1 Pseudo Code of Grid Search

Function Grid Search ():
Hyperparameter Grid Search = Define Hyperparameter Grid Search
Best Hyperparameters = None

Best Performance = Select

1
2
3
4
5 for Hyperparameter in Hyperparameter Grid Search
6 Model = Set Hyperparameters in Model

7 Performance = Evaluate Model

8 if Performance > Best Performance

9 Best Performance = Performance

10 Best Hyperparameters = Hyperparameters
11 END

end

The process commences by selecting a specific set of hyperparameters for the model, which is
then used in training and cross-validation. Through systematic exploration of the hyperparameter
space, Grid Search identifies configurations that exhibit the highest performance during validation.
These superior hyperparameter combinations are then seamlessly integrated into the model,
guaranteeing optimal performance. In our implementation, we opt for K=5 in cross-validation,
dividing the dataset into five subsets for thorough evaluation. Algorithm 2 provides a detailed
illustration of Grid Search's operation. This sophisticated approach proves to be a powerful tool in
attaining finely tuned hyperparameters, thereby significantly boosting the performance and
efficiency of our machine learning model. By methodically exploring diverse hyperparameter
combinations, Grid Search empowers us to pinpoint the best set of hyperparameters, leading to
optimal model performance.

3.6.2. Random Search

Based on the experiments conducted by [23], random search has been shown to outperform grid
search in hyperparameter optimization. This method demonstrates exceptional efficiency in finding
optimal models while minimizing computational time. Unlike grid search, random search explores
broader areas by employing random sampling of hyperparameter combinations. Each set of
hyperparameters is then evaluated, allowing the method to efficiently discover promising
configurations. The key advantage of random search lies in its ability to explore hyperparameter
spaces randomly, which often leads to the discovery of valuable configurations quickly. This
streamlined approach presents a compelling alternative to grid search, showcasing its effectiveness
in optimizing hyperparameters for machine learning models. Researchers and data scientists can
benefit from adopting random search as a powerful tool to fine-tune their models and achieve
enhanced performance with reduced computational overhead.
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3.7. Supervised Machine learning Models

In this paper, machine learning (ML) methods were leveraged to train and assess models
dedicated to character image classification. To achieve peak performance, meticulous optimization
of the model's parameters took place during its developmental phase. Through 10-fold cross-
validation, the training set, comprising 80% of the original dataset, was subjected to rigorous
evaluation alongside the testing set (20%). Optimal parameters yielding the highest accuracy were
then incorporated into the final model. The study explored four renowned ML classification
techniques, namely Support Vector Machines (SVM), Neural Networks (NN), Random Forests (RF),
and K-Nearest Neighbors (KNN). Each of these methods received comprehensive scrutiny as part of
the study's endeavors.

3.7.1. Support Vector Machines (SVM)

SVM, short for Support Vector Machine, stands as a widely favored machine learning algorithm
suitable for both classification and regression tasks. The core concept behind SVM revolves around
identifying the hyperplane that optimally separates the various classes within the dataset. The SVM
architecture is relatively straightforward and comprises a few fundamental components. To begin,
SVM is trained on a set of labeled data, which serves as the basis for determining the hyperplane that
best segregates the different classes. In pursuit of superior performance, we employed two
optimization techniques: grid search and random search, both of which helped us find the most
optimal hyperparameters. The kernel, an essential part of SVM [24], plays a crucial role in mapping
the data to higher dimensions, allowing for better class separation. We experimented with various
kernel types, including linear, polynomial, and sigmoid kernels, evaluating their effectiveness
through search-based optimization algorithms. Finally, the best kernel among these options was
chosen to optimize the model's performance [25] .

3.7.2. Neural Network (NNs)

The Neural Network, also known as Artificial Neural Network (ANN), is a widely utilized
machine learning model for classification tasks. This sophisticated model consists of three layers of
nodes: input, hidden, and output. Each node applies a transfer function to the weighted sum of the
nodes from the previous layer, along with a bias term. During the training process, the network's
weights and parameters are iteratively updated using the provided dataset. Given our study's
specific context involving multiple classifications among 18 classes, we employed the SoftMax
activation function. This function's primary objective is to convert the network's output into
predictive probabilities for each class, enhancing its ability to handle multiclass classification
scenarios [26].

3.7.3. Random Forest (RF)

Random Forest (RF) is an important classifier in the field of machine learning and is known for
its effectiveness and versatility. It belongs to the category of group learning methods, in which it
constructs multiple decision trees by selecting random samples from a data set, and the accuracy is
increased through the random construction of trees. And based on our study of the multiple
classification between letters, the voting method was used, and the result is obtained based on the
highest number of votes [27] .

3.7.4. K-Nearest Neighbors (KNN)

KNN, or K-Nearest Neighbors, is a versatile learning algorithm used for both classification and
regression tasks [28]. Its foundation lies in assessing the similarity between data points, and it
operates by determining the value of K, a positive number representing the number of nearest
neighbors to consider when calculating distances. By iterating between K and new data points, the
algorithm identifies the closest neighbors and assigns the category based on their votes. Choosing the
appropriate value of K is crucial in KNN. A small K value may result in overfitting, where the model
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becomes too sensitive to noise and specific data points, leading to reduced generalization. On the
other hand, a large K value can cause underfitting, where the model oversimplifies and fails to
capture intricate patterns in the data. In our study, we determine the class of each letter based on the
majority vote of its nearest neighbors, considering their proximity. The class with the highest vote
becomes the predicted class for the letter under consideration.

3.8. Evaluation of Models

When it comes to assessing the performance of both Deep Learning (DL) and traditional
Machine Learning (ML) models for classification, a range of metrics comes into play, and accuracy
holds a pivotal position among them. The confusion matrix emerges as a key player, furnishing vital
details about both actual and predicted labels, thereby facilitating an in-depth analysis of the model's
efficacy. To comprehensively evaluate the model's performance, the confusion matrix yields
invaluable insights by breaking down the counts of True Negatives (TNs), True Positives (TPs), False
Negatives (FNs), and False Positives (FPs). These metrics play a critical role in measuring the model's
adeptness at making accurate distinctions across various classes. The accuracy is computed as
depicted in equation (1):

TP+TN

A - 1
CeUraCY = TP ¥ TN + FP + FN @)

4., Result and discussion

4.1. Performance of Classifier of Algorithms

Error! Reference source not found. outlines the performance outcomes achieved by employing
various classifiers on both CNN models (VGG19, VGG16, and SqueezeNet) and ML models (SVM,
NN, RF, and KNN), employing three distinct optimization techniques: Grid Search, Random Search,
and Default Parameters. The algorithms undergo thorough evaluation under different optimization
approaches, namely Grid Search, Random Search, and Default Parameters. A closer examination of
the performance disparities across diverse optimization strategies reveals noteworthy fluctuations in
accuracy across different models and classifiers, as demonstrated in Error! Reference source not
found.. The comparison of accuracy among ML classifiers yields intriguing insights. Notably, Grid
Search yields an accuracy of 0.888 for the NN classifier when applied to the VGG16 model, closely
followed by SVM with an accuracy of 0.855. However, the accuracy decreases to 0.843 when default
parameters are employed.

Table 1. Performance of Classifier of Algorithms.

CNN models ML models Accuracy of Optimization methods

ML Grid Search Random Search Default Parameters

SVM 0.855 0.853 0.816

NN 0.847 0.851 0.825

VGG19 RF 0.744 0.735 0.706

KNN 0.727 0.727 0.692

SVM 0.855 0.853 0.816

NN 0.888 0.847 0.843

VGGle RF 0.757 0.752 0.719

KNN 0.751 0.751 0.699

SVM 0.819 0.799 0.770

SqueezeNet NN 0.825 0.823 0.813

RF 0.729 0.724 0.695

KNN 0.712 0.712 0.632
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For the NN classifier, all optimization techniques yielded remarkable results, consistently
achieving accuracies above 0.847 in VGG19. Both SVM and NN classifiers exhibited outstanding
precision when applied to the VGG16 model. Specifically, the NN classifier attained the highest
accuracy under Grid Search, registering 0.888, followed SVM at 0.855, and Default Parameters at
0.843. The comparison of performance across various optimization methods provides valuable
insights into the efficacy of different approaches in fine-tuning the models for improved accuracy
and precision. The NN classifier exhibited commendable performance with accuracy values of 0.888,
0.847, and 0.843 under Grid Search, Random Search, and Default Parameters, respectively. In the
SqueezeNet model, the NN classifier achieved accuracies of 0.813 using default parameters, 0.823
with random searches, and 0.825. Particularly, the NN classifier consistently showcased outstanding
results across all optimization techniques, maintaining accuracies surpassing 0.888. Comparing ML
models, the SVM classifier consistently outperformed CNN models, particularly VGG19 and VGG16.
Across every model and optimization technique for the AHAWP dataset, the neural network
classification consistently outshined other classifiers. The RF and KNN classifiers generally
demonstrated lower accuracy levels compared to the SVM and NN classifiers.

Accuracy with Grid Search i Accuracy with Random Search i Accuracy with Default Parameters

I SV
W
M FF
N

06

Accuracy
=
Accuracy

VG619 \GG16 SqueezeNet l VG619 VG616 SqueezeNet I VG619 VG616 SqueezeNet
CNN Model CNN bodel CNN Model

Figure 9. Comparison accuracy of the ML classifier performed.

4.2. Compared mean accuracy scores between models.

For Arabic handwritten recognition on the AHAWP dataset, the NN classifier continuously
demonstrated the highest accuracy rates, reaffirming its potential in this domain. Results from the
SVM classifier were also promising, particularly when used with the VGG16 model. However, future
research should explore areas for improvement, as the RF and KNN classifiers exhibited lower
accuracy results. The optimization approach significantly impacted accuracy, with Grid Search and
Random Search consistently outperforming Default Parameters. The t-tests conducted in this
investigation compared mean accuracy scores of several pairs of models, providing insights into their
statistical significance. The calculated p-values indicated the likelihood of observed differences in
mean accuracy being genuine, with a lower significance level indicating stronger evidence against
the null hypothesis. In comparing the SVM classifier with other classifiers (NN, RF, and KNN) using
the VGG16 CNN model, the p-value of 0.861 exceeded the conventional significance threshold of 0.05.

The p-values as shown in Error! Reference source not found. for the comparisons between SVM
and RF and SVM and KNN are less than 0.05 which shows that the accuracy achieved by the SVM
classifier differs significantly the p-values from the t-tests give us important information about the
statistical significance of the variations in mean accuracy between the models.
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Table 2. Comparison of ML T-test and P-value.

T-test P-value
SVM vs NN 0. 86123788
SVM vs RF 0.00280216

SVM vs KNN 0.00495305

These results add to our comprehension of the related Figure 10 results allow us to conclude that
the SVM classifier performs similarly to the NN classifier, but that when utilizing the VGG16 CNN
model, it greatly surpasses the RF and KNN classifiers when it comes to of accuracy. The Tukey's
Honestly Significant Difference (HSD) test results yield significant insights regarding the pairwise
differences in mean accuracy among the models being examined as shown in Error! Reference source
not found.. Comparing the KNN model to the NN model, we observe a mean difference of 0.1173.
The associated p-value is 0.0006, which falls below the significant threshold of 0.05. Consequently,
we can conclude that there is a statistically significant difference in mean accuracy between the KNN
and NN models. Specifically, the KNN model exhibits a higher mean accuracy compared to the NN
model.

Comparison of Models
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Figure 10. Comparison Box plot of ML models.

Table 3. The Tukey's Honestly Significant Difference (HSD) test results.

Groupl Group2 Mean diff p-adj lower upper reject
KNN NN 0.1173 0.0006 0.0619 0.1728 True
KNN RF 0.09 0.009519 -0.0464 0.0644 True
KNN SVM 0.115 0.0007 0.0596 0.1704 True

NN RF -0.1083 0.0011 -0.1638 -0.0529 True
NN SVM -0.0023 0.999 -0.0578 0.531 False
RF SVM 0.106 0.0013 0.0506 0.1614 True

However, when comparison the KNN and RF models, we discover a mean difference of 0.09
with a p-value of 0.009519. As the p-value goes above 0.05, we lack enough evidence to support a
significant difference in mean accuracy among the KNN and RF models.
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Additionally, upon closer examination of the KNN and SVM models, a mean difference of 0.115
with a p-value of 0.0007 becomes evident. Given that the p-value is below the significance threshold
of 0.05, it indicates a statistically significant divergence in mean accuracy between the KNN and SVM
models. Specifically, the KNN model showcases a notably higher mean accuracy in comparison to
the SVM model.

Turning our attention to the contrast between the NN and RF models, a mean difference of -
0.1083, denoted by the negative sign, emerges. This suggests that the NN model displays a slightly
lower mean accuracy compared to the RF model. The corresponding p-value of 0.0011 further
emphasizes a significant dissimilarity in mean accuracy between these two models, with the RF
model demonstrating superior performance.

Conversely, the mean difference between the NN and SVM models is -0.0023, a value proximate
to zero. The associated p-value of 0.999 implies that the mean accuracy of the NN and SVM models
is essentially indistinguishable. As such, any observed fluctuations in accuracy between these models
are more likely attributable to chance than a substantive performance variance.

Shifting our focus to the mean variance analysis between the RF and SVM models, a mean
variance of 0.106 is identified, accompanied by a p-value of 0.0013. This p-value corroborates a
significant discrepancy in mean accuracy. The outcomes of the Tukey's HSD test illuminate the
nuances of the dissimilarities among the evaluated models in terms of mean accuracy. Error!
Reference source not found. graphically elucidates the superiority of the NN model in mean
accuracy, surpassing the other models. However, a discernible discrepancy in mean accuracy
between the NN and SVM models is not discerned.

When juxtaposed with the alternative models, the NN model, the top performer, demonstrates
enhanced accuracy in accurately classifying air-written letters as shown in Error! Reference source
not found.. This suggests that the model possesses a greater capacity to adeptly detect and assign
appropriate labels to the letters. Error! Reference source not found. illustrates the confusion matrix
for the NN models, definitively identifying the NN model as the most proficient contender. The
confusion matrix provides insightful revelations into the model's predictions, empowering us to
gauge the precision of classifying air-written letters. Through the confusion matrix, we can
meticulously assess the model's classification accuracy, identify any errors or zones of uncertainty,
and decode the matrix where anticipated letter labels align with the columns, while actual letter labels
align with the rows.

Comparison of Models

Accuracy

SVM NN RF EMNM
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Figure 11. Comparison Accuracy of Models.
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Figure 12. Confusion Matrix for All Models.

4.3. Sample of lettering writing by Experimental Setup

The aim of the experiment was to develop a model that combines machine learning (ML) with
optical character recognition (OCR) methods to accurately identify Arabic letters written in the air.
For the experimental setup, air writing was recorded using a laptop equipped with a Core i5 10th
generation camera. The Python coding language and PyCharm development environment were
employed for the implementation. To enhance computing speed, a NVIDIA GeForce GT graphics
card was utilized. Error! Reference source not found. showcases a sample of the air-written lettering
captured during the experiment.
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Figure 13. Sample of lettering writing.

4.4. Validation of our model

Validation of our model involved an elaborate process specifically designed for air-written
Arabic letters in Error! Reference source not found.. The procedure commenced with capturing the
letter as an image, which was then saved for further processing. To ensure optimal performance, the
image underwent a series of preprocessing steps aimed at enhancing clarity and eliminating any
unwanted artifacts. Among these steps were resizing the image and employing smoothing
techniques to refine the letter's edges and visibility. Once the preprocessing phase was complete, the
letter image was fed into a machine learning algorithm that had been meticulously trained on a
dataset containing images of Arabic letters. This algorithm was purpose-built to leverage the
knowledge gained from the training dataset's patterns and features, enabling it to predict and classify
the input letter effectively. During the validation phase, the model employed a trained algorithm to
make precise predictions for the air-written letter. By comparing the input letter with the patterns
and characteristics it had internalized during training, the model skillfully identified its
corresponding Arabic character. This prediction process proved invaluable in accurately recognizing
and classifying the air-written letters, showcasing the robustness and efficacy of our developed
approach.
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Figure 14. validation process for the air-written Arabic letters.

The validation results were evaluated based on the accuracy of the model's predictions as shown
in Error! Reference source not found.. The accuracy represented the percentage of correctly
identified letters out of the total validation set. This metric served as an indicator of the model's
performance and its ability to accurately recognize air-written Arabic letters. The validation process
played a crucial role in assessing the reliability and effectiveness of the developed model. It allowed
us to verify the model's ability to accurately recognize individual Arabic characters based on air
writing input. By comparing the model's predictions with the ground truth labels, we could
determine the level of accuracy achieved and identify any areas for improvement. Our model's
performance in recognizing air-written Arabic letters was assessed using predicted letter pairs. The
true/false category was verified based on whether the model correctly detected the letter or not. The
results Error! Reference source not found. . indicate that the model achieved a high level of accuracy
in some cases, correctly predicting the letters Beh (<), Ain (g), Heh (¢), Jeem (z), Kaf (&), Meem (p),
Noon (), Raa (L), Sad (u=), Seen (u#), and

Table 4. Actual and Prediction of our Model.

Actual Prediction True/False
Beh (%) Beh (<) T
Dal(3) Ain(g) F
Ain(g) Ain(g) T
Feh(<) Qaf(3) F
Heh(e) Heh(e) T
Jeem (z) Jeem (z) T
Kaf (&) Kaf (&) T
Lam (J) Dal(2) F
Meem(p) Meem(p) T
Noon(v) Noon(v) T
Qaf(3) Feh(<) F
Raa(L) Raa(L) T
Sad(u=) Sad(u=) T
Seen(c») Seen() T
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Tah(<) Tah(<) T
Waw(s) Heh(:) F
Yaa(y) Beh (<) F

Tah (<). However, there were instances where the model made incorrect predictions, such as misclassifying Dal
() as Ain (&), Feh (<) as Qaf (&), Lam (d) as Dal (), and Waw () as Heh (o).

4.5. Comparison of the proposed model with Preview Work.

Error! Reference source not found. offers a thorough comparison of the approaches and
findings from earlier studies in the field of air writing recognition. In our study, we have suggested
a model that combines machine learning (ML) and optical character recognition (OCR) methods to
recognize Arabic air writing specially. Even if our model's accuracy might not be as high as some of
the earlier research included in the table, it's crucial to consider the particulars of the Arabic script
and its difficulties. Our study stands out as the first to concentrate especially on the recognition of
Arabic air writing. This demonstrates its substantial impact on the industry. Although an 88%
accuracy rate may seem lower in comparison to research focusing on English or other. The accuracy
levels presented in the table should be interpreted with caution, as direct comparisons may not be
appropriate due to variations in datasets, techniques, and language-specific characteristics. Each
study examines a different language and writing system, necessitating unique methodologies and
considerations. Despite these differences, our model's effectiveness in identifying Arabic air-written
letters is evident through its impressive performance, demonstrating its value within the context of
Arabic script.

Table 5. Comparison of the proposed model with Preview Work.

Paper Languages Method Result
[1] Air writing English 2D-CNN accuracy: 91.24%
[3] Air-writing English LSTM accuracy: 99.32%
[4] English Faster RCNN accuracy: 94%
. o Character error rate (CER):
5] Air writing Koreanand - oy p 1o Korean: 33.16‘%() )
English English: 29.24%
[12] Air-writing English Faster RCNN mean accuracy: 96.11 %
[29] Air writing English - error rate: 0.8%
[30] Air writing English MS-CNN accuracy: 95%
[31] Air writing Hindi PointNet recognition rate: >97%
Our Model Air writing Arabic Hybrid Model Accuracy :88%

VGG16+NN

Our research addresses a significant gap in the field of air writing identification by focusing on
Arabic script, which paves the way for future advancements and practical applications. This
highlights the importance of devising tailored strategies that address the specific challenges posed
by various writing systems and languages. Moreover, our study contributes not only to the
knowledge base of Arabic air writing but also establishes itself as the first investigation into Arabic
air writing recognition. While previous studies have primarily focused on English or other languages,
we recognized the importance of understanding the unique complexities and characters within
Arabic script. By exploring this specific context, our study enriches the knowledge of air writing
recognition techniques for Arabic. Our model effectively combines Machine Learning (ML) and
Optical Character Recognition (OCR) methods to accurately recognize Arabic air-written letters,
offering a comprehensive solution that leverages the strengths of both approaches. As pioneers in
Arabic air writing recognition, our research lays a solid foundation for future investigations in this
area. This opens new avenues for researchers to explore additional methods and techniques that can
further enhance recognition accuracy in Arabic air writing. As we move forward, these findings will
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undoubtedly spur further advancements and innovations in the realm of air writing recognition for
Arabic and other languages.

5. Conclusions and future work

This paper presented a novel approach for recognizing air-written Arabic letters using Machine
Learning (ML) and DNNs, and OCR methods models. The results demonstrated that the NN method,
along with the features extracted from VGG19, achieved high accuracy and low error rates in
recognizing Arabic letters. Additionally, the study explored the use of optical character recognition
as an alternative method for identifying air-written letters, showing comparable outcomes to ML
models. Notably, our model performed exceptionally well on the AHAWP dataset and exhibited
promising results when compared to other models. This research contributes to the expanding body
of knowledge in Arabic handwriting recognition and machine learning, offering potential
applications in education and aiding individuals with physical disabilities in communication. Future
studies should consider investigating hybrid ML and their purpose in the recognition of air-written
Arabic letters. The utilized model can discover practical use in several applications involving the
recognition of children's Arabic air writing.

Funding: This research was funded by the Deanship of Scientific Research, King Khalid University,
Kingdom of Saudi Arabia, under grant number KKU-IFP2-H-14. The authors extend their
appreciation to the Ministry of Education in KSA for funding this research work through the project
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