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Abstract: Unmanned aerial vehicle (UAV) systems are widely used in many forest-related fields owing to their 
cost-intensive and precise surveying technology. This study classified erosion susceptibility (ES) in a timber 
harvesting area using machine learning (ML) and statistical approaches. In dataset generation for the training 
and testing process, the digital surface model (DSM) of difference (DoD) for July–June was utilized as a 
dependent variable, and six terrain maps of the DSM for June were used as independent variables. The ES 
threshold was set at 5 cm for the binary classification of ES pixels while processing using ML (e.g., random 
forest and extra gradient boost [XGB]) and statistical (e.g., logistic regression) algorithms for model 
development. The overall accuracy (OA), receiver operating characteristics, and area under the curve (AUC) 
were calculated for model accuracy and validation. Although the AUC of all models did not appear acceptable 
(AUC > 0.7), the XGB model showed the best performance regarding time duration, OA, and AUC by 2 h, 64%, 
and 0.63, respectively. Despite the low AUC and accuracy of the XGB model, the wheel tracks and edges of the 
operation road were determined to be susceptible areas in the ES map of the XGB.  

Keywords: machine learning; remote sensing; timber harvesting; soil erosion susceptibility; extra gradient 
boost (XGB); UAV; wheel track 
 

1. Introduction 

Unmanned aerial vehicle (UAV) surveys have demonstrated the efficiency and precision of data 
acquisition in many forest-related fields [1–4]. However, only a few studies have conducted UAV 
surveys for the environmental analysis of forest soil [5–7]. These studies detected and monitored soil 
surface deformation (SSD) in timber harvesting areas. Despite the application of UAV-sensor in 
forestry, developing a prediction model for micro-SSDs has not been attempted in forest 
environmental fields, unlike in biomass prediction studies [8–10]. Like macro-SSD studies, predicting 
macro-SSD, such as landslides, remains challenging in many recent landslide susceptibility studies 
[11–13]. 

Recent study revealed that the UAV system has a capability of detecting SSD in timber 
harvesting area [7]. The UAV photogrammetric approach was utilized to acquire point cloud data 
(PCD). 2D images were collected monthly by UAV surveys and were processed in structure from 
motion (SfM). The airborne PCD were geo-referenced to align all acquired PCD by correcting the 
coordinate data of stump installed ground control points (GCPs). Hence to the PCD alignment, the 
elevation differences of each pixel w calculated by subtracting each monthly acquired digital surface 
models (DSMs). The height difference indicated the SSD that acquired in the timber harvesting area, 
and 3D SSDs were validated precisely with ground truths to monitor the seasonal effects of timber 
harvesting. 

Factors such as soil texture, precipitation, vegetation, topography, and surface cover are related 
to displacement generation, as revealed by the revised universal soil loss equation utilized in studies 
[14,15]. Despite the well-known factors of SSD occurrence, modeling studies have focused on 
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predicting landslides at the meter-class digital elevation model (DEM) resolution, which is 
inappropriate for detecting and analyzing micro-SSD in three-dimensional (3D) images [11,16–18]. In 
landslide studies, for decades, the landslide susceptibility model has been analyzed using data 
derived from remote sensing platforms such as satellites and aircrafts [19–21]. These previous 
landslide studies sampled landslides from 3D images derived from remote sensing technology, 
which were used for independent variables such as terrain, vegetation, and land use maps to classify 
landslide-susceptible areas from meter-class resolution images. Terrain variables consist of slopes, 
aspects, topographic wetness index (TWI), terrain roughness index (TRI), and curvatures related to 
the physical rainfall energy resulting in landslides [22–24]. vegetation covering the soil surfaces is 
also related to landslide occurrence by mitigating rainfall energy and was used as the normalized 
difference vegetation index (NDVI) in the landslide susceptibility models [24,25]. Moreover, 
classification maps such as soil texture and land use were utilized as nominal variables to assess 
erosion vulnerability caused by human activity, which may accelerate landslides.  

Most preceding gully erosion and landslide susceptibility modeling studies selected algorithms 
such as machine learning (ML) and statistical algorithms for classification processes [22,24,26–30]. 
Landslide modeling studies have utilized landslide samples for supervised learning, such as random 
forest (RF) [27,31], extra gradient boost (XGB) [32], logistic regression (LR) [30], support vector 
machine [26], and artificial neural network (ANN) [22,24,28]. During the classification process, the 
sampled landslide cells were trained and tested as target data, also known as independent variables, 
and the variables from the terrain, vegetation, and cover maps were prepared and tested as 
dependent variables. Moreover, to overcome the overfitting issues of the micro-target data, cross-
validation methods were utilized in the training and testing processes to enhance the classification 
performance. Subsequently, the hyperparameters were tuned to develop a model suitable for the 
dataset. The overall accuracy (OA) was calculated from the classification results, which were derived 
from a confusion matrix, and the verification of the model performance was scored with F1 and the 
receiver operating characteristic area under the curve (ROC-AUC) [21,27,31]. Related studies mapped 
the classification results to a GIS environment in the final stages.  

Despite the challenging tasks of detecting micro-SSD from UAV-derived data [7], we performed 
further steps to classify the erosion susceptibility (ES) pixels from the UAV photogrammetric DSM. 
In this study, we investigated the feasibility of classifying micro-SSD from 3D soil surface data by 
developing a classification model with an ES threshold of 5 cm. Moreover, the training and testing of 
millions of 3D data were optimized by tuning the amounts and splitting datasets in the stratified 
cross-validation (SCV) process. Finally, the performances of the developed models were compared 
and subsequently mapped to the best-performing model. 

2. Materials and Methods 

2.1. Over All Process of the Study 

The goal of this study is to develop an ES model from UAV photogrammetry of timber 
harvesting effect. To develop the ES model, a schematic of the study is presented in this section 
(Figure 1). The UAV surveys were conducted monthly to collect 2D images for UAV photogrammetry 
in post-timber harvesting area. Monthly PCD were built in structure by motion (SfM) algorithm, 
hence GCP-based geo-referencing was preprocessed to align each of monthly PCD for DoD 
calculations. DSMs of each month were then generated and elevation differences of each DSMs 
calculated to target data of the ES model. DSM of pre-month was used to generate the terrain features 
for predicting target data which is the ES pixels in the dataset. The dataset was trained and tested on 
classification algorithms such as XGB, RF, and LR, and the model performances were calculated as 
OA, F1, and AUC. The best ES model were selected by comparing each model performances and 
mapped to identify the ES of the timber harvesting area. 
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Figure 1. An overall flow of the erosion susceptible (ES) model. 

2.2. Study Area 

The timber harvesting site, situated in the research forest of Kangwon National University, 
Republic of Korea (37°46′34.4′′ N, 127°49′41.1′′ E; Figure 2), was cleared before employing UAV 
photogrammetry to detect SDD in the canopy-opened site. In March 2022, timber was harvested on 
a 3-ha total area. The area has a temperate climate, with summer (June to August) being the wettest 
season. During the study period, the monthly precipitation averaged 300 mm during the heavy rainy 
season, and according to the climate, the wettest months were June through August. With elevations 
ranging from roughly 508 to 628 m above sea level, the site has an average slope of 47%. According 
to American soil taxonomy, the region's soils are dark brown sandy loam, and the soil type 
corresponds to the Mui series (coarse loamy, mixed, Typic Humudepts). Logging trails were formed 
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on the center and right sides of the study area. The area's surface is covered in rocks, logging waste, 
forest soil, and a little less flora from March through June. The steep slopes and abundant rainfall at 
the research site provide optimal conditions for runoff and SSD. 

 
Figure 2. Location and panoramic view of timber harvesting area in experiment forest of Kangwon 
National University. 

2.3. 2D Image Collection from UAV System on Timber Harvesting Site 

Prior to conducting UAV surveys, GCP installation must take place in order to geo-reference the 
3D data. Due to difficulty in finding undeforming objects in the forests, we prepared 40 × 40 cm 
Fomex texture plate for GCPs to install at stumps. A total of 29 GCPs were installed on the 
recognizable stumps, hence the Trimble R12i GNSSs collected the center coordinates of the installed 
GCPs (Figure 3). Parallel to the GCP installation, we also prepared ruler attached polyvenyl chloride 
pipes for VPs. A total of 24 VPs were installed to validate the DoD which is used for independent 
variable in the ML models. 

 

Figure 3. DSM of June 10 and July 9 from UAV photogrammetry method.; (a) DSM derived from the 
UAV survey on Jun 10; (b) DSM derived from the UAV survey on July 9th. 

The aerial 2D images were collected using Matice 300 (7 kg) of Da Jiang industry (DJI) for 
platform and Zemuse H20T (0.82 kg) for the sensor, respectively. To avoid risks of crashing while the 
airborne 2D image collection without real-time kinematic, a GPS-based vertically parallel flight 
method was performed to acquire high-resolution DSM of the steep slopes (Kim et al., 2023). The 
overlaps, margin, flight speed for automatic UAV flights were set at 90% for side, 80% for front, 5 
m/sec, respectively. Especially, considering the slope degree of the study area, the flight heights were 
set at 100 m and 140 m, respectively. All of the UAV surveys were able to collect over 200 images per 
surveys for the total study site. 
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2.4. Variable Generation for ES Model 

To analyze 3D data using a ML model, it is necessary to generate terrain variables from the 3D 
DSM. In previous gully erosion and landslide susceptibility studies, terrain variables were generated 
from space- and airborne-derived DEMs, and the models developed from preceding studies were 
able to accurately classify macro-SSD (e.g., gully erosion and landslides) [21,22,28,33,34]. 

However, the classification modeling process in this study should be performed with 
centimeter-class resolution to classify micro-SSDs. Thus, the UAV photogrammetric method was 
utilized to acquire centimeter-class resolution. In this process, all images collected by the automatic 
flight method were aligned with embedded coordinate data from the collected images in Agisoft 
Metashape Professional version 1.5.1 (Agisoft LLC., Petersburg, Russia). Hence, images generate the 
PCD using the structure from the motion (SfM) algorithm. The Metashape software provides 
photogrammetric options that can be customized for each process (Table 1). 

Table 1. Parameters used in each process to generate 3D data. 

Process Parameter Setting 

Align Photos 2D images input 140 m +100 m 
 Accuracy Highest 
 Reference preselection On 
 Key point limit 40,000 
 Tie point limit 4,000 

Build Dense Cloud Quality Ultra-high 
 Depth filtering Aggressive 

Build DSM Projection WGS 84 (EPSG: 4326) 
 Source data Dense cloud 
 Point classes All 

Build Orthomosaic Projection WGS 84 (EPSG: 4326) 
 Surface DEM 

In photo alignment, feature points calculated the correlation between each image through SfM, 
and tie points and depth maps were generated. In dense cloud generation, PCD are generated from 
tie points. 

Each monthly acquired PCD must be aligned at the lowest possible spatial root mean square 
error (RMSE) for the SSD calculation. In landslide-related UAV studies, GCPs have been used to geo-
reference XYZ coordinates in PCD [35–37]. The coordinates collected from the centers of all 29 GCPs 
using global navigation satellite system (GNSS) surveyed during fieldwork were imported into the 
PCD in shapefile format. These GCPs were used to apply the coordinate data and validate the spatial 
error throughout the process. 

Height differences per pixel were calculated using ArcGIS Pro (ESRI Inc., Redlands, CA, USA) 
from the spatially aligned DSMs. In ArcGIS Pro, the raster calculator tool was used to calculate the Z 
(height) values. In this method, the pixels from the pre-DSM and DSM on June 10, 2022 were 
subtracted from the pixels of the post-DSM DSM on July 9, 2022, and the resolution was considered 
during the calculation. 

As the DSM of the difference (DoD) was calculated from the height differences at each pixel, 
validation from the DoD was required. To validate the precision of the SSD in DoD, the height values 
at each installed validation point (VP) were compared to the point values that appeared in the DoD 
file. The coordinate data acquired from the VPs by GNSS was imported as points in shapefile format 
on the DoD map. The pixel values calculated using the DoD method were then compared with the 
ground truth data, which were recorded from the field survey and were calculated as the RMSE for 
their assessments. Moreover, the data conditions of slope degree, precipitation, and alignment error 
revealed that the most precise and understandable average erosion of the total monitoring was the 
average erosion height from the DoD in October–September. The threshold of the ES height for 
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reclassification was set at 5 cm, which resulted from the average erosion level in the DoD during 
October–September [7]. 

To predict ES from terrain 3D data, the DSM must be converted to its morphological features for 
analysis. This process was conducted using ArcGIS Pro, and slope, aspect, TWI, profile curvature 
(PRC), plan curvature (PLC), and TRI were calculated using the DSM. However, unlike other 
independent variables calculated using ArcGIS tools, the TWI and TRI should be generated using 
semi-manual calculations. The TWI indicates the water flow on the upper slopes, which may 
contribute to erosion. Therefore, the equation for TWI is as follows: 𝑇𝑊𝐼 = ln ( 𝛼tan 𝛽) ⁡, (1) 

where 𝛼 is the contributing upper slope pixels and 𝛽 is the slope gradient of the neighboring pixels 
of the slope.  

Moreover, the TRI indicates the morphological influence of water flow. In ArcGIS, the 
maximum, mean, and minimum of each input pixel by neighboring pixels of the input pixels in DSM 
were antecedently calculated using the “focal statistics tool.” Hence, the TRI equation is as follows: 𝑇𝑅𝐼 = 𝐹𝑆𝑀𝑒𝑎𝑛−𝐹𝑆𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝐹𝑆𝑀𝑎𝑥𝑖𝑚𝑢𝑚−𝐹𝑆𝑀𝑖𝑛𝑖𝑚𝑢𝑚 ⁡, (2) 

where 𝐹𝑆𝑀𝑒𝑎𝑛 is the mean elevation of focal statistics, 𝐹𝑆𝑀𝑖𝑛𝑖𝑚𝑢𝑚 is the minimum elevation of focal 
statistics, and⁡𝐹𝑆𝑀𝑎𝑥𝑖𝑚𝑢𝑚 is the maximum elevation of the focal statistics. 

All the terrain variables were masked and adjusted appropriately for exact pixel numbers and 
values at the appropriate pixel locations. Subsequently, all maps were exported in the raster format 
to generate the data frame. 

Georeferencing was conducted using GCPs in the Metashape environment. Initially, the GCPs 
were manually registered in the PCD, and the program automatically selected the corresponding 2D 
images. The exact centers of the GCPs were manually selected from the 2D images. The center points 
were manually adjusted and deleted, where relevant, before calculating the GCP centers (distance in 
cm), which represented the GCP georeference errors from June, July, September, and October. 

2.5. Development of the ES Model Using a Classification Algorithm 

All dependent and independent variable maps were uploaded to the R environment for 
stacking. The stacked pixel data from the maps was extracted and transformed into the CSV format. 
Moreover, the datasets for ES analysis were tested by setting an ES threshold of 5 cm for each pixel 
of the data. The datasets generated from the stacking maps were transferred to the Python 3.10.6 
environment for faster analysis using the Numpy package. In total, 34,088,223 stacked pixel data 
points were imported from the total dataset (10% of the total data), scaled using the min-max method, 
and randomly sampled without replacement for training and testing. The sample data were trained 
and tested using the SCV in each of the three classification algorithms during the training and testing 
processes. First, in the SCV process, three sets of trials (5, 10, and 100 splits) were trained and tested 
using the ML- and statistic-based models. Subsequently, classification models were developed, and 
the performance of each model was verified using precision and recall values. In the binary 
classification process, ML must include an algorithm for classification. To classify a large amount of 
34-million-pixel DoD SSD data, which is convolutional and has small terrain features in contrast to 
landslides, strong and precise ML algorithms such as RF and XGB are required. In addition, to assess 
the applicability of ML models in ER analysis, a statistical algorithm, LR, was used to compare the 
performance of ML-based models. 

Table 2. Hyperparameters utilized in the classification models. 

XGB RF LR 

Max depth 5 Max depth 100 C 100 
N estimators 1000 Max_features 3 Max_iteration 500 
Learning rate 0.1 Min_samples_leaf 5 Solver liblinear 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 September 2023                   doi:10.20944/preprints202309.1803.v1

https://doi.org/10.20944/preprints202309.1803.v1


 7 

 

Min_child_wei
ght 

1 Min_samples_split 12 Penalty l1 

subsample 0.8 N estimators 500   
colsample_bytr

ee 
0.8     

objective 
binary: 
logistic 

    

2.6. Assessments of the ES Models 

To evaluate and compare model performances, universal indicators such as F1 and ROC-AUC 
were used for the classification results [38–40]. The OA, recall, and precision were calculated using 
the confusion matrix derived from the classification results (Table 3). OAs were calculated as the sum 
of true negatives (TN) and true positives (TP) divided by the sum of TN, TP, false negatives (FN), 
and false positives (FP). Recall and precision can be calculated as F1 scores from the harmonic means. 
The ROC was calculated for each classification result and performance using line plots to confirm 
whether the results were fitted correctly. The true positive rate (TPR) and false positive rate (FPR) 
were used to plot the ROC plot with a size of 1 × 1, and the AUC was calculated to determine the 
success rate of the ES models. Finally, the total classification results were applied to the coordinate 
data and mapped using ArcGIS Pro for visualization. 

Table 3. Confusion matrix of classification results analyzed by erosion susceptibility models. 

  Predicted 

  X'1 (None-Erosion Susceptible) X'0 (Erosion Susceptible) 

Observed 
X'1 (none-erosion occurred) True positive False negative 

X'0 (erosion occurred) False positive True negative 

3. Results 

3.1. Dataset for Training and Testing 

From the UAV surveys conducted on June 10 and July 9, 235 and 233 2D images were collected, 
respectively. The PCD for June and July were generated from the UAV-derived 2D images via a 
photogrammetric process using SfM. These PCD were geo-referenced using 29 GCPs to align the June 
and July DSM and then filtered manually using the Agisoft software. The alignment of each PCD was 
processed from the GCP centers of the PCD with a spatial error of 11.1 cm. In the final data processing, 
DSMs of <2.7-cm resolution were generated from the preprocessed PCD for June and July (Figure 3). 
From the validation of the DoD map, the precision of the SSD was calculated for 24 VPs with an 
RMSE of 8.8 cm, which was the difference between the 3D data and ground truth measurements. 

The DoD of Jul-Jun were firstly calculated as numerical data from the process, hence, to classify 
in the algorithm, the maps were reclassified as according to the threshold of 5cm (Figures 4 and 8b). 
The ES model used the reclassified DoD as the dependent variable. Parallel to the independent 
variable generation, six terrain variables (slope, aspect, TWI, PRC, PLC, and TRI) were generated 
from the DSM of June and stacked for ES analysis (Figure 5). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 September 2023                   doi:10.20944/preprints202309.1803.v1

https://doi.org/10.20944/preprints202309.1803.v1


 8 

 

 

Figure 4. DSM of difference (DoD) calculated from the subtraction of DSM acquired in July and 
June. 
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Figure 5. Terrain independent variables in maps for stacking processes and ES analysis; (a) terrain 
topographic index (TWI), (b) slope, (c) terrain roughness index (TRI), (d) profile curvature (PRC), e) 
plan curvature (PLC), and (f) aspect. 
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3.2. Model Comparisons 

Classifications were performed with 10,000 samples during training and testing attempts using 
5, 10, and 100 split sets of SCV. In the 5-split SCV sets, the XGB model could not properly classify ES 
cells from the total target data. Moreover, because none of the ES cells accounted for most of the target 
data, overfitting issues occurred mainly in classifying ES cells as none. These issues constantly 
occurred in the 10 split SCV sets, where the early classification performance from the AUC was lower 
than 0.6, and the performance was not enhanced at the end of the SCV process. Furthermore, the 100-
split SCV set showed that the final model performances were slightly improved by 0.03 compared 
with the 5 split SCV set. 

The SCV results of XGB from 10% of the total dataset showed significantly different 
performances from the 10,000 samples, and the AUC scores were enhanced by almost 0.1. Moreover, 
the AUC results from the 5-, 10-, and 100-split SCV sets showed no significant differences in model 
performance; thus, the SCV process was almost meaningless (Figure 6). 

 
Figure 6. AUC of stratified cross-validation (SCV) results from the XGB model with 10% sample 
dataset of the total dataset; (a) 5 SCV split set, and (b) 10 SCV split set. 

The 10% sample dataset of RF and LR also showed a significant difference in AUC compared to 
the 10,000 samples. The AUC from 5, 10, and 100 splits of both models showed no significant 
difference in the training and testing of each 10% of the sampled data (Figure 7). However, the 
processing durations of RF and LR were significantly slower than that of the 10,000-samples model 
at 14 h and 21 h, respectively. 
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Figure 7. Stratified cross-validation (SCV) results of LR and RF model at 5-split SCV set from 10% of 
the total dataset; (a) AUC-LR from the 5-split SCV set; (b) AUC-RF from 5-split SCV set. 

The OAs of all models were over 64% for classification accuracy; however, by confirming the F1 
score, overfitting issues were found in the developed models. The confirmed F1 scores for the RF, 
XGB, and LR groups were 0.53, 0.54, and 0.49, respectively. Based on the confirmed issues with the 
confusion matrix, the ES values were classified as much lower than the non-ES values, revealing that 
all models had difficulties in classifying erosion-occurring cells. Despite classification accuracy of 
64% at LR model, it was confirmed that the LR model had a lower F1 score than did the RF and XGB 
models. The SCV durations for each model were 14, 2, and 21 h for RF, XGB, and LR, respectively. 
As expected, XGB had the shortest duration for the total analysis, whereas LR had the longest. 
Moreover, the differences in AUC between XGB and RF and XGB and LR were 0.03 and 0.07, 
respectively (Figures 6a and 7). XGB was confirmed appropriate for ES analysis and mapping by 
comparing the three developed models. 

3.3. ES Mapping of the Study Site 

Based on the model performance, mapping was conducted with the best ES model—XGB. 
Because overfitting issues were focused on none of the ES cells, none of the ES areas were determined 
more from XGB than the reference map, which is the DoD (Figure 5). The lower slope of the site was 
determined by the much smaller ES area than that in the reference map. However, the XGB model 
could determine the ES area on the edges of the operational roads in the center and on the left side 
(Figure 8a). The left sides of the map were also determined to be ES areas where the surfaces were 
covered by rocks (Figure 8a). The total ES area was calculated to be approximately 40 m2, which was 
different from the reference erosion area of approximately 104 m2 (Figure 8). Furthermore, in the ES 
analysis of the micro-SSD, XGB could determine the wheel tracks detected on the reference DoD 
(Figure 9). 
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Figure 8. Comparison of extra gradient boost model (XGB) and target data; DoD by mapping; (a) 
mapping of enhanced XGB model; (b) DoD map of ES threshold at 5 cm. 
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Figure 9. Identification of ES at wheel tracks and logging tracks in the timber harvesting area from 
the XGB map. 

4. Discussion 

4.1. 3D Surface Model Generated from the UAV System 

Herbaceous plants grew throughout the monitoring period. Despite the comparable alignment 
errors in the DSMs from July and June to the steep slope studies, the verifications of SSDs at each plot 
were only available in the DoD from July to June because of vegetation growth. Moreover, distortion 
occurred in the DSM on July 9, which was shown as a geo-referencing error of 23 cm and was revealed 
to be relatively high compared to the geo-referencing error of 12 cm on June 10 [7]. These spatial 
issues may not be comparable to the landslide susceptibility studies because the sampling methods 
of those studies were not derived from the DoD but from landslide cells [24,41]. Thus, this relatively 
high spatial error should have caused the AUC to remain at 0.6, even in the 100 -split SCV set tests 
with 10% of the total data. Moreover, we assume that DoD quality is essential for enhancing model 
performance. 

The use of independent variables in this study was based on a case study of landslide 
susceptibility. In a LiDAR data-based landslide susceptibility case study, variables were generated 
from a LiDAR-derived DEM [22]. The DEM generated six terrain-independent variables: slope, solar 
radiation, PRC, PLC, TWI, and upslope drainage area. It was difficult to compare the performances 
with validated scores (i.e., AUC), similar to the landslide susceptibility modeling studies, because the 
AUC from the ANN model was not shown in this study. However, this approach may be called the 
DEM and DSM generated from the PCD because the LiDAR and photogrammetric data have the 
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same features, resulting in a digital surface model. Moreover, terrain-independent variables were 
also generated from the 3D model, comparable to the independent variables in this study. 

In contrast to this study, recent studies [25,27,31,42–44] utilized more 3D maps of vegetation 
features (NDVI), land cover features (land use), classified features (precipitation), and distance maps 
(distance from water sources). However, owing to the classification of the ES of the 2.5-ha area of the 
photogrammetric data, utilizing the vegetation, land cover, and distance features has limitations in 
generating features from 2D images. Moreover, it is impossible to generate precipitation features 
because the measurement from the station covers almost a kilometer, which is incomparably over-
scaled from our site area of 2.5 ha.  

4.2. Performances from ES Models 

The XGB models could not perform the classification well compared to the landslide 
susceptibility models categorized in the ML approach study [40]. The AUC performances from the 
recent landslide study were presented as AUC and OA of 0.86 and 78%, respectively, for the k-nearest 
neighbor model; AUC and OA of 0.87 and 79%, respectively, for the ANN model; and AUC and OA 
of 0.89 and 80%, respectively, for the RF model, which are comparably higher than those of our XGB 
models. However, these preceding models consisted of 4–18 more variables than did the XGB model. 
Furthermore, the variables used in the previous study were mainly NDVI, land cover, lithology, 
distance maps from roads, and hydrology. However, the UAV photogrammetry process used in this 
study did not generate these variables. Thus, it is more appropriate to compare our attempts with the 
terrain variables derived from the LiDAR-DEM study [22,45]. The DEM-adopted studies attempted 
to investigate landslide susceptibility using slope, TWI, PRC, PLC, and solar radiation variables. The 
model performance is not shown for the variables derived from the LiDAR-DEM. 

Despite the resolution of original data used in the ML studies were meter-class, ML-based spatial 
classification studies were not able to perform excellent validation scores [22,45,46]. Thus, the 
resolution of the 3D data may not be the reason for low model performances. However, according to 
Lidberg, W.; Nilsson, M.; Ågren, A [46] which varied the resolution of variables and developed model 
showed significant difference on variable importance. The study showed that the 24 m resolution 
DEM-based TWI impacted the OA of the model by ~50%, while 48 m resolution DEM-based TWI 
showed 30% which is lower than the 24 m resolution DEM-based TWI. To compare our model to 
Lidberg, W.; Nilsson, M.; Ågren, A [46], the results may indicate that the variables derived from 3 cm 
class DSM used in this study may have impacted the model performances. We suggest that further 
researches should be conducted to confirm the applicability of micro resolution DEM derived 
variables on training and testing the high-resolution ES models. 

Consequently, the research direction of the ES analysis in this study was appropriate because 
the terrain variable selections and generations were similar to those in previous studies. Despite 
utilizing the SCV method, the limitation of this study was that the variables used in the classification 
process were insufficient for analyzing ES (AUC of 0.63). Thus, the AUC of XGB did not correspond 
to the acceptable model standard, which required an AUC of 0.7 or higher. It may also be speculated 
that the number of target ES cells was too small to be trained and tested using the algorithm, even 
when a powerful algorithm was used in the model. 

The LR model, which is a statistical model, could not properly process binary classification from 
the trained target data. The average AUC from the LR model was 0.56, a poor model for ML studies 
[40,43]. This result may be attributed to the characteristics of the LR algorithm. Previous ML studies 
revealed that single-regulated training and testing in the LR algorithm may not be appropriate for 
verifying a large dataset. The RF models, which are ML models, could process binary classification 
better than the LR models because of the multi-decision tree process in the RF algorithm. In most RF 
studies using GIS, the bagging process enhances model performance through training and testing 
several times by tuning the main hyperparameter and the number of trees [47–49]. However, 
comparing the LR and RF performances from previous studies, the RF results showed better 
performances than the LR results, with a maximum of 15% and 0.06 at the OA and AUC, respectively 
[49–51]. From this and previous studies, it may be assumed that the LR algorithm processes the 
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dataset only once by regulating the classification process in the sigmoid function. Based on this 
characteristic of the LR algorithm, we assumed that the LR model has a theoretical limitation in 
classifying a large spatial dataset compared with the RF model. 

The duration issues were probably due to the characteristics of the RF and LR algorithms. In the 
theoretical approach of each algorithm in RF studies, the algorithm processes a multi-decision tree at 
each bagging process without a boosting process, unlike the XGB model. Moreover, previous studies 
have shown that XGB has better model performance than RF. Thus, in comparison with this study 
and related studies, we assumed that the boosting process in the XGB algorithm may have resulted 
in better performance in terms of the duration and AUC of the XGB model than those of the RF model 
in large spatial data processing. 

4.3. Erosion Susceptible Area Classified by the XGB Model 

Here, we were able to perform the whole process of data acquisition using UAV 
photogrammetry to prediction of ES using ML-based classification models. The threshold was based 
on the average erosion of a precise DoD map from September to October [7]. In previous research, 
the DoD map for September-October was acquired with the lowest alignment error of 3 cm using 24 
GCP centers. Moreover, the reliable average 1-month erosion level was calculated as 5.13 cm on the 
total slope. Thus, a threshold of 5 cm was appropriately considered based on the DoD for September–
July [7]. The XGB model properly analyzes and detects high ES regions related to topographic 
features similar to landslide models [22,27,52]. However, the AUC of our XGB model was lower than 
that of previous studies. We assumed that spatial distortion occurred during the data acquisition in 
July. 

Moreover, the training and testing samples were derived from the total area, which differed 
from the landslide samples. The sampling method used to classify landslide susceptibility was based 
on selecting areas where landslides occurred and non-occurring regions, which differs from that used 
in this study. Thus, we postulate that the sampling method can be improved by selecting specific 
erosion-occurring pixels for appropriate samples in future studies. 

5. Conclusions 

In this study, we mainly investigated the feasibility of classifying ES, similar to the results from 
the DoD. Although the DoD was calculated from the high alignment error of the DSM to develop the 
ES model, the ML models could classify the ES from the terrain variables to the target data. The ML 
models, XGB and RF, performed better than the LR statistical model when comparing the AUC and 
time duration results. However, utilizing the SCV method for classifying the target data did not 
enhance the model at an acceptable performance level. Moreover, despite using 10% of the total data, 
the AUCs from XGB and RF were only over 0.6, which is unsuitable for classification model 
performance and should be enhanced for necessary applications. Regardless of the confirmed issues, 
XGB mapping sensitively classified the actual ES area of the wheel tracks and the edges of the logging 
tracks at the study site. In future work, we assume the model should be enhanced by adding 
vegetation maps from multispectral sensors and a lithology map from soil texture analysis. Moreover, 
the target data should be significantly improved by utilizing RTK to reduce alignment errors and 
distortions or enhanced sensors such as LiDAR. 
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