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Abstract: Recently, the focus of entity linking research has centered on the zero-shot scenario, where
the entity mention to be labeled at the time of testing was never observed during the training phase
or may belong to a different domain than the source domain. Current studies have used BERT as the
base encoder as it effectively establishes distributional links between source and target domains. The
currently available negative sampling methods all use an extractive approach, which makes it difficult
for the models to learn diverse and more challenging negative samples. To address this problem,
we propose a generative negative sampling method, Adaptive_mixup_hard, which generates more
difficult negative entities by fusing the features of both positive and negative samples on top of hard
negative sampling and introduces a transformable adaptive parameter W to increase the diversity
of negative samples. Next, we fuse our method with the Biencoder architecture and evaluate its
performance under three different score functions. Ultimately, experimental results on the standard
benchmark dataset Zeshel demonstrate the effectiveness of our method.

Keywords: zero-shot; BERT; Adaptive_mixup_hard; Biencoder; Zeshel

1. Introduction

Entity Linking(EL) is a critical task in the field of Natural Language Processing (NLP), whose
core goal is to associate entity mentions appearing in a document (e.g., names of people, places,
organizations, etc.) with their referent entity in a knowledge base (e.g., Wikipedia, Freebase, etc.). The
EL task generally consists of the following main steps: entity detection, candidate entity generation,
and candidate entity ranking. It should be noted that the specific steps and methods of EL tasks
may vary in different application scenarios and tasks. In some tasks, entity detection may not be
necessary because the entities in the text are already explicitly labeled. However, in an end-to-end EL
task[1,2], it is usually necessary to include all these steps to complete the entity linking process. EL has
received much attention due to its wide range of applications in various tasks, including information
retrieval[3], content analysis[4], etc. However, significant progress has been made in building EL
systems, and most of the existing research works|[5,6] are based on the assumption that entity sets are
shared between the train and test sets. However, in practice, textual data may come from different
domains, topics, and sources, thus presenting diversity and heterogeneity in the data distribution.
It also means that the train and test sets may come from different domain distributions, ultimately
leading to disjoint entity sets in different domains. This situation highlights the need and importance
of zero-shot entity linking[7,8].

The main goal of zero-shot EL is to address two aspects of the problem. Firstly, it aims to deal
with unknown entities, having the ability to successfully link entities that have never been seen in
the training data to the correct entities in the knowledge graph or entity repository. Secondly, it aims

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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to build EL models that are more general so that they can be adapted to the challenges of different
domains, topics, and data distributions, thus increasing the generality and robustness of the models to
satisfy the information needs of multiple domains. However, labeled data is often costly to produce
or difficult to access in certain specialist areas (e.g., legal). To delve deeper into this problem, [8]
constructed the Zeshel dataset, containing 16 specialized domains, divided into 8 domains for training
and 4 domains each for validation and testing, which covers rich textual content for mentions and
entities. Without adopting resources (e.g., structured knowledge base) or assumptions (e.g., labeled
mentions, a shared entity set), they expand the scope of zero-shot EL to promote the generalizability of
the EL system on unseen domains.

To date, a body of work[9-13] has emerged on zero-shot EL, most of which uses BERT[14] as the
base encoder. These research efforts have mainly focused on the candidate generation phase, which
has a crucial impact on the candidate ranking in EL systems. [11] was based on encoding mentions and
entities using a Biencoder[9] architecture, followed by a Sum-Of-Max(SOM) score function to compute
the similarity between them and training the model using either hard negative sampling or mixed-p
negative sampling. [13] proposed a Transformational Biencoder, which introduced a transformation
into the Biencoder to encode mentions and entities and adopted an In-Domain negative sampling
strategy, which they sorted all entities in the golden entity domain over a training period to take the
top-k entities as hard negatives.

Concerning current negative sampling methods in the field of zero-shot EL, we note that they
generally employ an extractive strategy, resulting in a lack of diversity in the selected negative samples,
thus limiting the ability of the model to acquire richer knowledge. Furthermore, hard negative
sampling aims to select more challenging negative samples to expose the model to more challenging
tasks. However, the negative samples selected by the current hard negative sampling strategy are not
yet challenging enough. Another problem is that the current zero-shot EL task is usually divided into
two phases: candidate entity generation and ranking. These two phases of the task usually take a
significant amount of time. Therefore, in the candidate entity generation phase, we believe that not
only do we need to improve the recall of candidate entities to provide a richer pool of candidates for
the candidate entity ranking phase, but we also need to improve the accuracy so that the model can
match the ultimately correct entities in the candidate entity generation phase. These improvements
will help to increase the performance and efficiency of the zero-shot EL system.

In this paper, we propose an Adaptive_mixup_hard generative negative sampling method based
on the hard negative sampling method. The main innovation of the method is to generate more
difficult negative samples by fusing the positive sample features of the current mention with negative
sample features. In the generation process, a transformable adaptivity parameter W is introduced,
which enables the model to generate rich and diverse negative samples during the training process to
compensate for the shortcomings of the existing extractive negative sampling methods. In addition,
this method inherits the feature that the negative entities selected by hard negative sampling are
semantically different from the golden entities but closer in the embedding space, which helps to
improve the differentiation between the golden entity and the negative entities. Therefore, we combine
this negative sampling method with the Biencoder architecture to form a new model Biencoder_ AMH.
In the model, we adopt three different score functions (DUAL, Pooling Mean, and SOM) for similarity
calculation. Through the validation of a large number of experiments, our model achieves a certain
amount of improvement in the top-64 recalls and accuracy compared to previous work, which makes
an essential contribution to the research of matching to the final correct entity in the candidate entity
generation stage. Notably, our model achieves different degrees of improvement in each of the r@k(k=4,
8, 16, 32, 64) metrics, which indicates that our approach not only improves the performance but also
provides a strong support for the research in the candidate entity ranking stage. More importantly, we
show results at a finer granularity, demonstrating that the improvement in model performance is not
limited to a single domain in the test set but grows on multiple domains, which is more in line with
the context and goal of zero-shot entity linking.
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Our contributions can be summarized as follows:

*  We propose an Adaptive_mixup_hard negative sampling, a method variant on hard negative
sampling that enables the model to cope with more demanding challenges. Subsequently, we
merge this method with the Biencoder[9] architecture to construct a new model Biencoder_ AMH.

¢ Our negative sampling method is a generative approach that generates a diversity of negative
samples, which helps the model learn the data distribution more comprehensively and reduces
the potential risk of overfitting, improving the model’s generalization performance.

*  After extensive experimental validation, our method achieves not only a significant improvement
in top-64 recalls but also a certain degree of improvement in accuracy when compared with other
negative sampling strategies (Random, Hard, Mixed-p) under three different score functions
(DUAL, Pooling Mean, SOM).

2. Related Works

We discuss related work to better contextualize our contributions. The entity linking task can be
divided into candidate generation and ranking. Previous work has used frequency information, alias
tables, and TF-IDF-based methods to generate candidates. For candidate ranking, [15], [16], [17], [5],
and [18] have established state-of-the-art(SOTA) results using neural networks to model context word,
span and entity. It has also been shown that fine-grained entity type information helps to link[19-21].

In the EL domain, negative sampling strategies aim to efficiently select negative samples to
optimize the performance of EL tasks. [8] proposed the zero-shot entity linking task. Recently, the
strategy of negative sampling has been widely used in the candidate generation phase in the domain
of zero-shot entity linking. [9] followed [22] by using hard negatives in training. They obtained
hard negatives by finding the top 10 predicted entities for each training example and added these
extra hard negatives to the random in-batch negatives. [11] demonstrated the results obtained with
different negative sampling strategies(Random, Hard, and Mixed-p) on different architectures and
showed theoretically and empirically that hard negative mining always improves performance for all
architectures. [13] thought that negatives that are lexically similar, semantically different, and close
to the golden entity representation are more difficult. As a result, they considered the domain of the
golden entity. They sorted all entities in the golden entity domain over a training period to take the
top-k entities as hard negatives. However, the negatives generated by the above methods are not
difficult enough. Therefore, we generate more difficult negatives based on hard negative sampling by
incorporating the features of the golden entity, allowing the model to face more difficult challenges.

In the candidate generation, [8] used BM25, a variant of TF-IDF, to measure the similarity between
mentions with their contexts and candidate entities with their descriptions. Numerous applications
to the Zeshel dataset have sprung up following this work. Among them, BERT[14] is found to be
a highly regarded encoder. [9] proposed a Biencoder architecture in which textual descriptions of
mentions and entities are encoded using two independent BERT encoders. Then, the dot product is
used as a scorer and is referred to by [11] as DUAL. Due to BERT, the Biencoder provides a robust
baseline for the task. In the study by [10], they used repeated location embedding based on the
BERT architecture to address the problem of remote modeling in entity text description. [11] used the
Biencoder framework. However, they used the more expressive SOM[23] score function to measure
the correlation between mentions and entities and, as a result, achieved better results on the task. [13]
proposed a Transformational Biencoder, which introduced a transformation into the Biencoder[9] to
improve the generalization performance of zero-shot EL over unknown domains. Accordingly, we
also combined our negative sampling approach with the Biencoder architecture and notably achieved
some improvements on three different score functions(DUAL, Pooling Mean, and SOM).
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Figure 1. Biencoder_ AMH consists of three main parts: Biencoder, Adaptive_mixup_hard and Score
Function.

3. Methodology

In this section, we describe our adaptive_mixup_hard negative sampling strategy, a method
variant on hard negative sampling, inspired via [24]. We then combine our negative sampling approach
with the Biencoder[9] and multiple similarity calculations(DUAL, Pooling Mean, and SOM) to propose
our model Biencoder_ AMH. First, we formally present the task definition in Section 3.1. Next, in
Section 3.2 we introduce the Biencoder. Then, we describe our adaptive_mixup_hard negative sampling
strategy in Section 3.3. Finally, we present our model Biencoder_AMH in Section 3.4.

3.1. Task Definition

The entity linking task is expressed as follows. Given a mention m in a document and a set
of entities ¥ = {¢;};_; _, EL aims to identify the referring entity e € Y that corresponds to the
mention m. The goal is to obtain an EL model on the train set of mention-entity pairs D" =
{(mi,e;) le; € ¥}icpy ), that correctly labels mentions in the test set DTest. DTrain and DTet are usually
assumed to be from the same domain. We assume that the title and description of the entities are
available, which is a common setting in entity linking]5,8].

In this paper, we focus on the study of the zero-shot EL[8], where both D" = {Di }izl,_"’nm

and DTest = {Digt

same time, the knowledge base is separated into training and test time. Formally, denote #;,,;, and
Kiest to be the knowledge base in training and test, we require .45, N test = ¢. The collection of text
documents, mentions, and entity dictionaries are separated for training and testing, so linked entities
are not visible during the test.

Below, we will describe the three negative sampling methods that are already available.

} - are found to contain multiple sub-datasets from different domains. At the
1= ,...,ﬂtgt
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* Random: The negatives are sampled uniformly at random from all entities of a batch in training
data. It can help the model deal with unknown entities in various situations but may lead to a
training process that lacks guidance for specific textual contexts.

e  Hard: Itis a more challenging strategy that tries to select semantically similar negatives to positive
examples. In this way, the model will face more incredible difficulty in learning and will need a
better understanding of the meaning of the entity in different contexts. It aims to help models
capture semantic information better, but it can also lead to a more strenuous training process.

®  Mixed-p: p percent of the negatives are hard, the rest are random. It maintains a degree of
diversity in the training process while introducing a degree of challenge. Previous works have
shown that such a combination of random and hard negatives can be effective. [11] finds the
performance is not sensitive to the value of p, In this paper, We choose a p-value of 50%.

3.2. Biencoder

Our model is based on the Biencoder[9], which independently embeds mentions and
corresponding entities into the same representation space. As shown in Figure 2, the Biencoder
comprises a text encoder Ep,, for encoding mentions, a text encoder Ep, for encoding entities, and a
score function f for calculating the relevant scores for mention-entity pairs. Ep, and Ep, share the same
architecture but have independent parameters, P,and P, and BERT[14] is employed to model Ep, and
Ep,. This approach allows for real-time reasoning because candidate representations can be cached.

‘ L(P,, P,) ]
Score Function f ]

! ! ’ ’ ! ’ ! ’ 1 ’ ’ ’ ’ ! ! ’ ’ ’ ! I
My My« Mi_3 My o My 1 My My My g Mg o My €1 € €3 €9 €1 € €11 €y €43 ‘1 €y
[ EPm ’ ‘ EPE ’
|m1 My = v s M3 M2 Myi—1 My M1 M2 M3 = -+ My €1 €2 - €;-3 €2 €i—1 € €i1] €j12 €43 - €n

Figure 2. Architecture of Biencoder

Given a pair of the mention-entity(m, ¢), the representation of mention m is composed of the left
context (ctxt;) and right context (ctxt,) of the mention, as well as the mention itself. Specifically, we
construct the input for each mention m as:

m = [CLS] ctxt; [Ms] mention [Me] ctct, [SEP] 1)

Likewise, the entity representation e is also composed of word pieces of the entity title and
description. Therefore, the input to our entity e is:

e = [CLS] title [ENT] description [SEP)] ()

Where [CLS], [Ms], [Me], [ENT], and [SEP] are special tokens to mark the boundaries of the
different pieces of information. For instance, [ENT] is a special token to separate entity title and
description representation. More specifically, the input of mention m is represented after tokenization
as Tyy = {mt},_; _, and the entity e is denoted as To = {et};,_; _, . Then, both input context T;, and
candidate entity T, are encoded into vectors V;, € R *d and V, € Rexd,
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Vm = EPm (Tm)

‘/6 = Epe (T3> (3)

where d denotes the dimension of representations.

The problem of the entity linking is then reduced to using a score function f, i.e., f (Viy, Ve) to
quantify the similarity between V,, and V.. In the current mention-entity pair (m, ¢), if the entity e is
the golden entity, the score f (Vj,, V.) should be high, or low if otherwise.

As shown in Figure 3, we will introduce the three existing score functions. [9] defines a DUAL
score function that chooses the [CLS] representations vif., € R4 and Vicrs) € R4 of the respective
representations V;, and V, to compute the score f (Vin, Ve).

! ! ! ! ! ’ ! ! !
€1 € " €3 € 9 €1 € €1 €g €43 €y

______________________________________________________________________________________________________________________________________

Pooling Mean

! ! ! ! ! ’ ! ’ !
€1 € "' €3 € 9 €1 € €1 €g €43 €y

Figure 3. Architecture of Score Function

DULA: T
f(VmIVe) = U?éLs] (foLS]) (4)
Pooling Mean can be used to average pool the embeddings in a text fragment of the mention and

entity to obtain an overall representation of the text fragment. Doing so allows the text snippet to be
represented as a vector, reflecting the average features. Pooling Mean computes f (V;,, V) as follows.
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Pooling Mean:

T
1 N e
f(Vn, Vo) ——Z ( Y v ) ©)
e 15
In addition, [11] followed the architecture of [9] and presented that the SOM scorer[23] produces better
results than DUAL. However, it is worth noting that the SOM scorer comes at the cost of increased
computational cost due to considering all hidden states of V,;; and V, in the scorer. It means SOM
takes more time than DUAL and Pooling Mean in the training and prediction phases. SOM computes
f (Vin, Ve) as follows.
SOM:
T
f(Vi, Vi) Z mix of! (vt,) (6)
=1t =1

Eventually, train the network to maximize the score of the correct entity relative to the (randomly

sampled) entities of the same batch([25], [26]). Concretely, the total loss £ is computed as:

B
_ % ,Z(_f (Ep, (Tw,;), Ep, (Te,)) +

s

Where {(m;,e;1)};_, g are golden mention-entity pairs in the training set, and {e;», ...,¢; g} are
B — 1 negative entities for the i-th mention in a batch.

@)

3.3. Adaptive_mixup_hard

It is known that hard negative sampling makes it more difficult for the model to learn, allowing
it better to understand the meaning of entities in different contexts. However, the negative samples
obtained under this sampling are still not challenging enough for zero-shot entity linking. Therefore,
as shown in Figure 4, we propose the adaptive_mixup_hard(AMH) negative sampling, a method
variant on hard negative sampling following a two-stage pipeline: choosing and mixing. This method
improves the robustness of the model by fusing the features of positive entity V/ and negative entities
V;* to obtain more difficult negative samples(strong hard negatives), enabling the model to face more
complicated tasks.

Below, we will describe the two-stage process of the AMH negative sampling.

Choosing:  For the mention-entity pairs (m;,¢;);_; _p in a batch, they are encoded into vectors
(Vin;» Ve,) i=1,.B" Then, for each mention m in a batch, there is one positive entity Ve{] 1 and the rest are its

corresponding negative entities (Ve’fi) o g Next, we use the scoring function f to compute the scores
of the mentions with their corresponding negative entities. According to hard negative sampling, we
select the top k highest scores among the negative entities as the hard negative entities( V', LK
The hard negative entities are computed as:

(VI i = Topk {F (Vs VI) s oo f (Vin, Vi'5) } ®)

Mixing: This process is crucial to our approach and aims to synthesize strong, hard negative entities
to improve the robustness of the model. Considering that it may be counterproductive to train the
model if it is too difficult to fuse the negative entities of the positive entity features at the beginning,
we introduce an adaptive parameter W € [0, 1]. Its calculation is as follows:

exp(f (Vin, V1))
exp(f (Vin, V1)) + Ly exp(f (Vin, V25))

W =

©)
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During the training process, W will increase to progressively increase the difficulty of negative entities,
which allows the model to learn more diverse representations. It is worth noting that W will eventually
increase to 1. Therefore, we also introduce an additional hyper-parameter « € (0, 1] to control the
i - . iy . . strong d .
difficulty of synthesizing new negative entities. The strong hard negative entity V,; € R"™*% is
computed as:
strong 14
VIS = WV 4V (10)

e,i
It is worth noting that for different score functions, different a values cause the model to perform
differently and that there is a critical value at which the model performs best. We will describe this in
more detail in Section 4.5.

k strong hard negative entities

" T G
e €1 € v €3 €3 €1 & €41 €42 €43 " €

-

v W w o n "
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Figure 4. Architecture of adaptive_mixup_hard

3.4. Biencoder _ AMH

Eventually, we combine Biencoder, Adaptive_mixup_hard, and Score Function to form our new
model Biencoder_ AMH. More specifically, we form the new model Biencoder AMH_DUAL using
DUAL as the score function. Similarly, depending on the different score functions Pooling Mean and
SOM, we will also form Biencoder_ AMH_Pooling Mean and Biencoder_ AMH_SOM, respectively.
Because, depending on the scoring function f, our negative sampling strategy AMH has different rules
for the first stage of choosing.

As shown in Figure 1, first, we follow the Biencoder architecture and use BERT[14] to encode
mentions with their contexts and entities with their descriptive information to obtain their encoded

representations V,, and V,, respectively. Then according to our method AMH, we first filter a batch
to get K hard negative entities (Ve’fi) 1K and one positive entity Vfl corresponding to the current
mention m, and finally fuse the features of each negative entity with those of the positive entity to get
K strong hard negative entities (VeS ﬁmng )i:l < Finally, we input V;,, V;jl and (V; imng )i: « into
the scoring function f and use BCEWithLogitsLoss to calculate the loss £. Concretely, for each training

pair (m;, e;) in a batch of B pairs, the loss is computed as:
L (m;, e;) = —log (sigmoid (f (Vm,, V&)~

K
Y log (1 — sigmoid(f(Vi,, Ve "))
j=1

(11)


https://doi.org/10.20944/preprints202309.1779.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 September 2023 doi:10.20944/preprints202309.1779.v1

9of 15

where V,;, indicates the code corresponding to the current mention m. Vef’ , and V;Z.rong denote
the coding of the positive entity and strong hard negative entity corresponding to m respectively.
sigmoid(-) is a function that maps the model’s output to the probability space, facilitating probability
estimation and the computation of cross-entropy loss.

4. Experiments

In this section, we only empirically investigate our model on the Zeshel[8], a challenging dataset
for zero-shot entity linking. We have conducted in-depth research and experiments on all three
similarity calculations(DUAL, Pooling Mean, and SOM)[23].

4.1. Dataset

Zeshel is a prevailing benchmark dataset for zero-shot entity linking and contains 16 specialized
domains from Wikia, divided into 8 domains for training and 4 domains each for validation and testing.
The train, validation, and test sets have 49K, 10K, and 10K examples, respectively. Table 1 shows the
details of this dataset, including the number of entities and mentions.

Table 1. Statistic of the Zeshel dataset.

Domains Entities Mentions

Train  Evaluation

Training
American Football ~ 31929 3898 743
Doctor Who 40281 8334 1521
Fallout 16992 3286 593
Final Fantasy 14044 6041 1156
Military 104520 13063 2764
Pro Wrestling 10133 1392 262
Star Wars 87056 11824 2706
World of Warcraft 27677 1437 255
Validation
Coronation Street 17809 0 1464
Muppets 21344 0 2028
Ice Hockey 28684 0 2233
Elder Scrolls 21712 0 4275
Testing
Forgotten Realms 15603 0 1200
Lego 10076 0 1199
Star Trek 34430 0 4227
YuGiOh 10031 0 3374

4.2. Evaluation Protocol

EL systems typically follow a two-stage pipeline: (1) a candidate generation stage, training an
entity retriever to select the top-k candidate entities for each mention; (2) a candidate ranking stage,
training a ranker to identify the golden entity among selected candidate entities. Candidate generation
is critical to the performance of candidate ranking because if no golden entity is retrieved in the top-k
candidates, the model can never recover the golden entity during the candidate ranking process. So, we
follow the evaluation protocol of the previous work[8,9,11] and evaluate at the candidate generation
stage. We report accuracy and top-64 recall for models on the validation and testing sets.
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4.3. Implementation Details

We experiment with BERT-base[14] for our models. We directly use the preprocessed dataset
provided by [9]. We tune the models over {5, 10, 15, 30} epochs using a batch size of 64 for
mention-entity pairs. We only consider the learning rate as 2e-5. We perform a grid search to select the
best set of hyper-parameters: « in [0.1, 0.2, 0.3,...,1] for DUAL and Pooling Mean and Kin [1, 2, 4, 6, 8,
10, 12, 14, 16, 18] for SOM. Our models are implemented in PyTorch and optimizied with Adam[27].
All models are trained on one NVIDIA 3090 24GB, and the results are the average over 3 runs using
different random seeds.

4.4. Performance Comparison

In this section, we compare our model against recent work[8,9] and different negative sampling
methods for candidate generation. In addition, we consider the comparison of accuracy rates. These
works use the Biencoder and generate negative entities for optimization. DUAL, Pooling Mean, and
SOM scorers are employed in this work.

4.4.1. Main Results

The model comparison results are shown in Table 2. Hard and mixed negative examples for all
architectures always yield considerable improvements over random negative examples. It is worth
noting that for top-64 recalls, our negative sampling strategy performs better than these three negative
sampling strategies. More specifically, regarding the DUAL scorer on the test, We find that our negative
sampling strategy improves over random negative sampling by 3.65%, over hard negative sampling by
1.31%, and over mixed negative sampling by 1.36%. Concerning the Pooling Mean scorer on the test,
We observe that our method improves over random negative sampling by 3.69%, over hard negative
sampling by 1.81%, and over mixed negative sampling by 2.76%. The final average improvement in
SOM scorer on the test is particularly significant, being 2.04% over random negative sampling, 1.28%
over hard negative sampling, and 2.21% over mixed negative sampling, respectively. These results
indicate the effectiveness of our sampling strategy. We also find that SOM yields better results over
DUAL and Pooling Mean, while hard sampling leads to better optimization. However, SOM is more
expensive and time-consuming to compute.

Table 2. Accuracy and top-64 recalls over different choices of architecture and negative examples

Model Negatives Val Test
r@l r@4 1@l r@64
BM25 - - 76.22 - 69.13
Wu et al. (2020) - 4279 8936 40.82 79.13
DUAL Random 4047 87.73 3820 77.82

Hard 4294 89.48 4045 80.16
Mixed-50 43.10 89.29 40.75 80.11
ours 45.30 90.01 4290 81.47

Pooling Mean Random 36.22 86.04 3571 77.70
Hard 40.19 88.14 39.09 79.58

Mixed-50 40.42 8825 38.65 78.63

ours 4393 89.36 43.10 81.39

SOM Random  23.19 90.10 1945 83.01
Hard 30.55 91.14 32.74 83.77

Mixed-50 1591 9134 2484 82.84

ours 25.56 91.83 31.19 85.05

Interestingly, We also take accuracy into account. We observe that our method achieves better
performance compared to other negative sampling strategies concerning DUAL and Pooling Mean.
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However, to the SOM, hard negative sampling performs better. In addition, in terms of accuracy,
DUAL and Pooling Mean yield better results over SOM, and Pooling Mean is slightly better on the test.

4.4.2. Domain Zero-Shot Performance

Our main results show that we achieved the best performance on both validation and testing sets with
respect to the top-64 recalls. To show that this improvement is actual for all test domains and not a
result of a specific test domain, we show more fine-grained results. Specifically, we report the domain
zero-shot performance on the testing sets over different choices of architecture and negative examples.
Table 3 shows the results for the different testing domains.

Table 3. Top-64 recalls on Different Domains over different choices of architecture and negative

examples
Model Negatives Domains
Forgotten Realms Lego Star Trek YuGiOh
DUAL Random 89.42 88.82 80.32 66.66
Hard 91.25 89.24 83.06 69.35
Mixed-50 91.08 88.99 83.04 69.38
ours 91.83 89.49 85.05 70.45
Pooling Mean =~ Random 89.50 88.24 79.87 67.04
Hard 91.33 89.66 82.11 68.64
Mixed-50 91.00 88.49 81.90 66.63
ours 92.00 88.99 84.36 71.19
SOM Random 94.33 92.99 82.49 76.08
Hard 94.25 9291 83.84 76.70
Mixed-50 93.67 92.58 82.38 76.11
ours 94.25 93.08 85.07 78.25

Obviously, the results on the test domains "Forgotten Realms" and "Lego" are better than the other
two domains. For the DUAL, our method exhibits the best performance in all domains. However,
our method is 0.67% lower than hard negative sampling for Pooling Mean on the domain "Lego" and
0.08% lower than random negative sampling for SOM on the domain "Forgotten Realms". Overall,
our method has shown better results on the different ways of calculating similarity, and the results on
domains "Star Trek" and "YuGiOh" gain a significant boost, 85.07% and 78.25%, respectively.

4.5. Impact of &

In this section, we investigate the sensitivity of DUAL and Pooling Mean in terms of the
hyper-parameter a. Recall « indicates the corresponding restriction after a strong hard negative
sample is produced by fusing the current negative sample with the positive sample, where the range
of « is set between 0 and 1. A smaller « means this strong hard negative sample is slightly weaker and
vice versa. However, this does not mean that the stronger this strong negative sample is, the better, and
at the same time, it is not the weaker, the better, but rather, for different similarity calculation structures,
there exists an intermediate value in the range of settings that makes the current performance optimal.
Tables 4 and 5 contend to show the results obtained under different « for DUAL and Pooling Mean,
which will be analyzed in the following.

Table 4. Accuracy and top-64 recalls for different « under adaptive_mixup_hard for DUAL

a=0.1 «a=02 «a=03 «a=04 «a=05 «a=0.6 «a=0.7 «=0.8 «a=0.9 a=1
Val r@l 4437 4396 4530 4533 4570 4519 4657 4537 46.59 44.68
r@64  90.18 89.68 90.01 89.75 89.76 89.71 89.61 89.47 8990 89.22
Test r@l1 4246 4256 4290 42.60 4338 4324 4380 4276 4369 4243
r@e4 8094 81.06 8147 8095 8146 81.13 80.98 80.55 80.73 80.57
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Table 5. Accuracy and top-64 recalls for different « under adaptive_mixup_hard for Pooling Mean

a=0.1 «a=0.2 «a=03 «a=04 «a=05 «a=0.6 «a=0.7 «=0.8 «a=0.9 a=1
Val r@l 43.28 44.74 4393 43.67 4328 4282 4480 45.79 4535 44.16
r@64 8943 8940 89.36 89.30 89.02 88.92 89.12 89.28 89.57 89.00
Test r@l1 4141 4236 43.10 42.69 4223 42.05 43.02 44.09 4347 4231
r@e4 80.70 80.88 81.39 8091 80.75 80.17 80.19 80.65 80.37 80.20

In Table 4, we find that DUAL achieves the best performance for top-64 recalls with « of 0.3 and
for accuracy with « of 0.7 on the test. Meanwhile, with increasing «, the performance of top-64 recalls
decreases. In Table 5, we observe that Pooling Mean achieves the best performance for top-64 recalls
with « of 0.3 and for accuracy with « of 0.8 on the test. By adjusting the a, we still find that Pooling
Mean performs better than DUAL in terms of accuracy, being 0.29% higher, while for top-64 recalls,
DUAL is better by 0.08%. At the same time, at some value of «, the « will show a difference of about 1%
compared to the « in the case that shows the best performance, indicating the importance of controlling
«. Considering the time and computational cost, we do not analyze the results presented by SOM
under different .

4.6. Impact of K

In this section, we investigate the sensitivity of SOM in terms of the hyper-parameters K. K in our
method denotes the number of negative samples formed after fusion with positive sample features. We
have selected only some of the K to compare the results of the test. Table 6 illustrates the specific results.
As with the hyper-parameter a introduced in the previous section, there also exists an intermediate
value for the number of strongly negative samples K after fusing the positive sample features, allowing
the current model to exhibit optimal performance to the SOM. It is also predicted that this should be
true for the other two similarity computation structures(DUAL and Pooling Mean).

Table 6. Accuracy and top-64 recalls for different K under adaptive_mixup_hard for SOM

K=1 K=2 K=4 K=6 K=8 K=10 K=12 K=14 K=l6 K=18
r@l 2998 2889 3170 3247 31.00 3119 3290 3136 3415 31.81
r@64 8265 8339 8411 8470 8391 85.05 83.83 8328 84.83 83.59

Test

In Table 6, we find that SOM achieves the best performance for top-64 recalls with K of 10 and
for accuracy with K of 16 on the test. In addition, comparing with Table 2 for the highest accuracy of
32.74% on the test demonstrated for SOM in hard negative sampling, the model achieves a result of
34.15% at a K of 16, a 1.41% improvement. Thus, by adjusting the value of K on the SOM, our method
will also show better performance in terms of accuracy than other negative sampling strategies. It
follows that controlling the value of K is also particularly important for our approach.

4.7. Analyzing the number of candidates

In a two-stage entity linking system, the choice of the number of candidates retrieved influences
the overall model performance. Previous work has typically used a fixed number of k candidates
where k ranges from 5 to 100(for instance, [17] and [5] choose k = 30, [8] choose k = 64). According to
[9] and Table 7, When k is larger, the recall accuracy increases; however, the ranking stage accuracy
will likely decrease. Further, increasing k would often increase the run-time on the ranking stage.

In the following, we will analyze the importance of the number of candidate entities k in three
aspects.

(i) Accuracy: A smaller number of candidate entities improves the accuracy of the system in
selecting the correct entity. If there are too many candidate entities, the system may experience
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difficulties because there may be many similar entities, making it difficult for the model to make
the correct selection.

(ii) Coverage: An increase in the number of candidate entities can increase the coverage of the
system. In zero-shot entity linking, certain entities may not be covered in the candidate entity set,
which can result in those entities not being linked correctly. A more comprehensive candidate
entity set can improve the chances of successful linking, especially for rare or nonexistent entities
in the training data.

(iii)  Efficiency: The number of candidate entities is also related to the efficiency of the linking process.
Fewer candidate entities mean the system needs less time and computational resources for entity
linking.

However, increasing the number of candidate entities may also lead to problems such as increased
noise and interference and reduced entity linking accuracy. Therefore, a balance needs to be found
between the number of candidate entities and the accuracy of entity linking. As shown in Table 7, our
method shows better performance for r@k(k=4, 8, 16, 32, 64) compared to other negative sampling
strategies to the SOM, which lays a solid foundation for future research on the number of candidate
entities k in the entity ranking stage.

Table 7. Top-k recalls over different choices of negative examples for SOM

Model Negatives r@k
@4 r@8 r@l6 r@32 @64
SOM Random 5092 6228 7141 7769 83.01
Hard 62.61 7030 76.18 80.02 83.77
Mixed-50 5422 65.03 7297 7838 82.84
ours 6294 71.08 76.76 80.81 84.83

5. Conclusion

We introduce the adaptive_mixup_hard(AMH) negative sampling, a method variant on hard
negative sampling to obtain more difficult negative samples to improve the robustness and
performance of the model on the task of zero-shot entity linking. Furthermore, we also combine our
negative sampling method with the Biencoder architecture to form our new model Biencoder_ AMH
and test its performance on three different score functions(DULA, Pooling Mean, and SOM). Our
work shows the performance of our method compared to other negative sampling methods(Random,
Hard, and Mixed-p) under the same score function. Our experimental analysis demonstrates that
our approach generally performs better on both validation and testing sets. More importantly, this
improvement is genuine for essentially all test domains and not as a result of a specific test domain. In
addition, we conduct extensive experiments to optimize the hyper-parameters « and K in our method
and demonstrate that our method provides a solid foundation for the subsequent entity ranking stage.
However, in the fusion of features of positive and negative samples, we currently only consider the
control of the weights of features of positive samples, so we are thinking about whether we need to
control the weights of negative samples simultaneously. We leave this thought for future work.

Author Contributions: Conceptualization, S.C. and X.W.; methodology, S.C.; software, S.C.; validation, S.C.,
XW, Y.C. and Z.W.; formal analysis, S.C.; investigation, X.W.; resources, S.C.; data curation, Y.C. and ZW.;
writing—original draft preparation, S.C.; writing—review and editing, S.C.; visualization, X.W., Y.C. and ZW.;
supervision, M.M. and ].Z.; project administration, M.M; funding acquisition, M.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the Natural Science Foundation of Xinjiang Uyghur Autonomous Region
under Grant No.2021D01C079.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable


https://doi.org/10.20944/preprints202309.1779.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 September 2023 doi:10.20944/preprints202309.1779.v1

14 0f 15

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can be found here:
https:/ / github.com/lajanugen/zeshel

Acknowledgments: The authors would like to thank the anonymous reviewers for their contribution to this
paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Li,B.Z;Min, S; Iyer, S.;; Mehdad, Y,; tau Yih, W. Efficient One-Pass End-to-End Entity Linking for Questions,
2020, [arXiv:cs.CL/2010.02413].

2. Ayoola, T,; Tyagi, S.; Fisher, J.; Christodoulopoulos, C.; Pierleoni, A. ReFinED: An Efficient Zero-shot-capable
Approach to End-to-End Entity Linking. In Proceedings of the Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies:
Industry Track; Association for Computational Linguistics: Hybrid: Seattle, Washington + Online, 2022; pp.
209-220. https://doi.org/10.18653/v1/2022.naacl-industry.24.

3. Lin, T,; Etzioni, O.; et al. Entity linking at web scale. In Proceedings of the Proceedings of the joint workshop
on automatic knowledge base construction and web-scale knowledge extraction (AKBC-WEKEX), 2012, pp.
84-88.

4. Weng, J.; Lim, E.P; Jiang, J.; He, Q. TwitterRank: Finding Topic-Sensitive Influential Twitterers. In
Proceedings of the Proceedings of the Third ACM International Conference on Web Search and Data
Mining; Association for Computing Machinery: New York, NY, USA, 2010; WSDM "10, p. 261-270. https:
//doi.org/10.1145/1718487.1718520.

5. Ganea, O.E; Hofmann, T. Deep Joint Entity Disambiguation with Local Neural Attention, 2017,
[arXiv:cs.CL/1704.04920].

6. Cao, Y,;Hou, L;Li, ], Liu, Z. Neural collective entity linking. arXiv preprint arXiv:1811.08603 2018.

7. Sil, A; Cronin, E.; Nie, P; Yang, Y.; Popescu, A.M.; Yates, A. Linking Named Entities to Any Database. In
Proceedings of the Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning; Association for Computational Linguistics: Jeju
Island, Korea, 2012; pp. 116-127.

8.  Logeswaran, L.; Chang, M.W,; Lee, K; Toutanova, K.; Devlin, J.; Lee, H. Zero-shot entity linking by reading
entity descriptions. arXiv preprint arXiv:1906.07348 2019.

9. Wu, L.; Petroni, F.; Josifoski, M.; Riedel, S.; Zettlemoyer, L. Scalable Zero-shot Entity Linking with Dense
Entity Retrieval, 2020, [arXiv:cs.CL/1911.03814].

10. Yao, Z; Cao, L.; Pan, H. Zero-shot Entity Linking with Efficient Long Range Sequence Modeling. In
Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2020. Association for
Computational Linguistics, 2020. https://doi.org/10.18653/v1/2020.findings-emnlp.228.

11. Zhang, W.; Stratos, K. Understanding hard negatives in noise contrastive estimation. arXiv preprint
arXiv:2104.06245 2021.

12. Tang, H.; Sun, X;; Jin, B.; Zhang, F. A bidirectional multi-paragraph reading model for zero-shot entity
linking. In Proceedings of the Proceedings of the AAAI conference on artificial intelligence, 2021, Vol. 35, pp.
13889-13897.

13.  Sun, K,; Zhang, R.; Mensah, S.; Mao, Y.; Liu, X. A Transformational Biencoder with In-Domain Negative
Sampling for Zero-Shot Entity Linking. In Proceedings of the Findings of the Association for Computational
Linguistics: ACL 2022; Association for Computational Linguistics: Dublin, Ireland, 2022; pp. 1449-1458.
https://doi.org/10.18653/v1/2022.findings-acl.114.

14. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805 2018.

15. He, Z,; Liu, S,; Li, M.; Zhou, M.; Zhang, L.; Wang, H. Learning Entity Representation for Entity
Disambiguation. In Proceedings of the Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers); Association for Computational Linguistics: Sofia,
Bulgaria, 2013; pp. 30-34.


https://github.com/lajanugen/zeshel
http://xxx.lanl.gov/abs/2010.02413
https://doi.org/10.18653/v1/2022.naacl-industry.24
https://doi.org/10.1145/1718487.1718520
https://doi.org/10.1145/1718487.1718520
http://xxx.lanl.gov/abs/1704.04920
http://xxx.lanl.gov/abs/1911.03814
https://doi.org/10.18653/v1/2020.findings-emnlp.228
https://doi.org/10.18653/v1/2022.findings-acl.114
https://doi.org/10.20944/preprints202309.1779.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 September 2023 doi:10.20944/preprints202309.1779.v1

150f 15

16. Sun, Y,; Lin, L.; Tang, D.; Yang, N.; Ji, Z.; Wang, X. Modeling mention, context and entity with neural
networks for entity disambiguation. In Proceedings of the Twenty-fourth international joint conference on
artificial intelligence, 2015.

17.  Yamada, I.; Shindo, H.; Takeda, H.; Takefuji, Y. Joint Learning of the Embedding of Words and Entities
for Named Entity Disambiguation. In Proceedings of the Proceedings of the 20th SIGNLL Conference on
Computational Natural Language Learning; Association for Computational Linguistics: Berlin, Germany,
2016; pp. 250-259. https://doi.org/10.18653/v1/K16-1025.

18. Kolitsas, N.; Ganea, O.E.; Hofmann, T. End-to-end neural entity linking. arXiv preprint arXiv:1808.07699
2018.

19. Raiman, J.; Raiman, O. Deeptype: multilingual entity linking by neural type system evolution. In Proceedings
of the Proceedings of the AAAI Conference on Artificial Intelligence, 2018, Vol. 32.

20. Onoe, Y,; Durrett, G. Fine-grained entity typing for domain independent entity linking. In Proceedings of
the Proceedings of the AAAI Conference on Artificial Intelligence, 2020, Vol. 34, pp. 8576-8583.

21. Khalife, S.; Vazirgiannis, M. Scalable graph-based individual named entity identification. arXiv preprint
arXiv:1811.10547 2018.

22. Gillick, D.; Kulkarni, S.; Lansing, L.; Presta, A.; Baldridge, J.; Ie, E.; Garcia-Olano, D. Learning Dense
Representations for Entity Retrieval, 2019, [arXiv:cs.CL/1909.10506].

23.  Khattab, O.; Zaharia, M. Colbert: Efficient and effective passage search via contextualized late interaction
over bert. In Proceedings of the Proceedings of the 43rd International ACM SIGIR conference on research
and development in Information Retrieval, 2020, pp. 39-48.

24. Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. mixup: Beyond empirical risk minimization. arXiv
preprint arXiv:1710.09412 2017.

25. Lerer, A.; Wu, L; Shen, J.; Lacroix, T.; Wehrstedt, L.; Bose, A.; Peysakhovich, A. PyTorch-BigGraph: A
Large-scale Graph Embedding System, 2019, [arXiv:cs.LG/1903.12287].

26. Humeau, S.; Shuster, K.; Lachaux, M.A.; Weston, J. Poly-encoders: Transformer Architectures and
Pre-training Strategies for Fast and Accurate Multi-sentence Scoring, 2020, [arXiv:cs.CL/1905.01969].

27. Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. Computer Science 2014.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and /or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.18653/v1/K16-1025
http://xxx.lanl.gov/abs/1909.10506
http://xxx.lanl.gov/abs/1903.12287
http://xxx.lanl.gov/abs/1905.01969
https://doi.org/10.20944/preprints202309.1779.v1

	Introduction
	Related Works
	Methodology
	Task Definition
	Biencoder
	Adaptive_mixup_hard
	Biencoder_AMH

	Experiments
	Dataset
	Evaluation Protocol
	Implementation Details
	Performance Comparison
	Main Results
	Domain Zero-Shot Performance

	Impact of 
	Impact of K
	Analyzing the number of candidates

	Conclusion
	References

