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Abstract: Recently, the focus of entity linking research has centered on the zero-shot scenario, where

the entity mention to be labeled at the time of testing was never observed during the training phase

or may belong to a different domain than the source domain. Current studies have used BERT as the

base encoder as it effectively establishes distributional links between source and target domains. The

currently available negative sampling methods all use an extractive approach, which makes it difficult

for the models to learn diverse and more challenging negative samples. To address this problem,

we propose a generative negative sampling method, Adaptive_mixup_hard, which generates more

difficult negative entities by fusing the features of both positive and negative samples on top of hard

negative sampling and introduces a transformable adaptive parameter W to increase the diversity

of negative samples. Next, we fuse our method with the Biencoder architecture and evaluate its

performance under three different score functions. Ultimately, experimental results on the standard

benchmark dataset Zeshel demonstrate the effectiveness of our method.

Keywords: zero-shot; BERT; Adaptive_mixup_hard; Biencoder; Zeshel

1. Introduction

Entity Linking(EL) is a critical task in the field of Natural Language Processing (NLP), whose

core goal is to associate entity mentions appearing in a document (e.g., names of people, places,

organizations, etc.) with their referent entity in a knowledge base (e.g., Wikipedia, Freebase, etc.). The

EL task generally consists of the following main steps: entity detection, candidate entity generation,

and candidate entity ranking. It should be noted that the specific steps and methods of EL tasks

may vary in different application scenarios and tasks. In some tasks, entity detection may not be

necessary because the entities in the text are already explicitly labeled. However, in an end-to-end EL

task[1,2], it is usually necessary to include all these steps to complete the entity linking process. EL has

received much attention due to its wide range of applications in various tasks, including information

retrieval[3], content analysis[4], etc. However, significant progress has been made in building EL

systems, and most of the existing research works[5,6] are based on the assumption that entity sets are

shared between the train and test sets. However, in practice, textual data may come from different

domains, topics, and sources, thus presenting diversity and heterogeneity in the data distribution.

It also means that the train and test sets may come from different domain distributions, ultimately

leading to disjoint entity sets in different domains. This situation highlights the need and importance

of zero-shot entity linking[7,8].

The main goal of zero-shot EL is to address two aspects of the problem. Firstly, it aims to deal

with unknown entities, having the ability to successfully link entities that have never been seen in

the training data to the correct entities in the knowledge graph or entity repository. Secondly, it aims
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to build EL models that are more general so that they can be adapted to the challenges of different

domains, topics, and data distributions, thus increasing the generality and robustness of the models to

satisfy the information needs of multiple domains. However, labeled data is often costly to produce

or difficult to access in certain specialist areas (e.g., legal). To delve deeper into this problem, [8]

constructed the Zeshel dataset, containing 16 specialized domains, divided into 8 domains for training

and 4 domains each for validation and testing, which covers rich textual content for mentions and

entities. Without adopting resources (e.g., structured knowledge base) or assumptions (e.g., labeled

mentions, a shared entity set), they expand the scope of zero-shot EL to promote the generalizability of

the EL system on unseen domains.

To date, a body of work[9–13] has emerged on zero-shot EL, most of which uses BERT[14] as the

base encoder. These research efforts have mainly focused on the candidate generation phase, which

has a crucial impact on the candidate ranking in EL systems. [11] was based on encoding mentions and

entities using a Biencoder[9] architecture, followed by a Sum-Of-Max(SOM) score function to compute

the similarity between them and training the model using either hard negative sampling or mixed-p

negative sampling. [13] proposed a Transformational Biencoder, which introduced a transformation

into the Biencoder to encode mentions and entities and adopted an In-Domain negative sampling

strategy, which they sorted all entities in the golden entity domain over a training period to take the

top-k entities as hard negatives.

Concerning current negative sampling methods in the field of zero-shot EL, we note that they

generally employ an extractive strategy, resulting in a lack of diversity in the selected negative samples,

thus limiting the ability of the model to acquire richer knowledge. Furthermore, hard negative

sampling aims to select more challenging negative samples to expose the model to more challenging

tasks. However, the negative samples selected by the current hard negative sampling strategy are not

yet challenging enough. Another problem is that the current zero-shot EL task is usually divided into

two phases: candidate entity generation and ranking. These two phases of the task usually take a

significant amount of time. Therefore, in the candidate entity generation phase, we believe that not

only do we need to improve the recall of candidate entities to provide a richer pool of candidates for

the candidate entity ranking phase, but we also need to improve the accuracy so that the model can

match the ultimately correct entities in the candidate entity generation phase. These improvements

will help to increase the performance and efficiency of the zero-shot EL system.

In this paper, we propose an Adaptive_mixup_hard generative negative sampling method based

on the hard negative sampling method. The main innovation of the method is to generate more

difficult negative samples by fusing the positive sample features of the current mention with negative

sample features. In the generation process, a transformable adaptivity parameter W is introduced,

which enables the model to generate rich and diverse negative samples during the training process to

compensate for the shortcomings of the existing extractive negative sampling methods. In addition,

this method inherits the feature that the negative entities selected by hard negative sampling are

semantically different from the golden entities but closer in the embedding space, which helps to

improve the differentiation between the golden entity and the negative entities. Therefore, we combine

this negative sampling method with the Biencoder architecture to form a new model Biencoder_AMH.

In the model, we adopt three different score functions (DUAL, Pooling Mean, and SOM) for similarity

calculation. Through the validation of a large number of experiments, our model achieves a certain

amount of improvement in the top-64 recalls and accuracy compared to previous work, which makes

an essential contribution to the research of matching to the final correct entity in the candidate entity

generation stage. Notably, our model achieves different degrees of improvement in each of the r@k(k=4,

8, 16, 32, 64) metrics, which indicates that our approach not only improves the performance but also

provides a strong support for the research in the candidate entity ranking stage. More importantly, we

show results at a finer granularity, demonstrating that the improvement in model performance is not

limited to a single domain in the test set but grows on multiple domains, which is more in line with

the context and goal of zero-shot entity linking.
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Our contributions can be summarized as follows:

• We propose an Adaptive_mixup_hard negative sampling, a method variant on hard negative

sampling that enables the model to cope with more demanding challenges. Subsequently, we

merge this method with the Biencoder[9] architecture to construct a new model Biencoder_AMH.
• Our negative sampling method is a generative approach that generates a diversity of negative

samples, which helps the model learn the data distribution more comprehensively and reduces

the potential risk of overfitting, improving the model’s generalization performance.
• After extensive experimental validation, our method achieves not only a significant improvement

in top-64 recalls but also a certain degree of improvement in accuracy when compared with other

negative sampling strategies (Random, Hard, Mixed-p) under three different score functions

(DUAL, Pooling Mean, SOM).

2. Related Works

We discuss related work to better contextualize our contributions. The entity linking task can be

divided into candidate generation and ranking. Previous work has used frequency information, alias

tables, and TF-IDF-based methods to generate candidates. For candidate ranking, [15], [16], [17], [5],

and [18] have established state-of-the-art(SOTA) results using neural networks to model context word,

span and entity. It has also been shown that fine-grained entity type information helps to link[19–21].

In the EL domain, negative sampling strategies aim to efficiently select negative samples to

optimize the performance of EL tasks. [8] proposed the zero-shot entity linking task. Recently, the

strategy of negative sampling has been widely used in the candidate generation phase in the domain

of zero-shot entity linking. [9] followed [22] by using hard negatives in training. They obtained

hard negatives by finding the top 10 predicted entities for each training example and added these

extra hard negatives to the random in-batch negatives. [11] demonstrated the results obtained with

different negative sampling strategies(Random, Hard, and Mixed-p) on different architectures and

showed theoretically and empirically that hard negative mining always improves performance for all

architectures. [13] thought that negatives that are lexically similar, semantically different, and close

to the golden entity representation are more difficult. As a result, they considered the domain of the

golden entity. They sorted all entities in the golden entity domain over a training period to take the

top-k entities as hard negatives. However, the negatives generated by the above methods are not

difficult enough. Therefore, we generate more difficult negatives based on hard negative sampling by

incorporating the features of the golden entity, allowing the model to face more difficult challenges.

In the candidate generation, [8] used BM25, a variant of TF-IDF, to measure the similarity between

mentions with their contexts and candidate entities with their descriptions. Numerous applications

to the Zeshel dataset have sprung up following this work. Among them, BERT[14] is found to be

a highly regarded encoder. [9] proposed a Biencoder architecture in which textual descriptions of

mentions and entities are encoded using two independent BERT encoders. Then, the dot product is

used as a scorer and is referred to by [11] as DUAL. Due to BERT, the Biencoder provides a robust

baseline for the task. In the study by [10], they used repeated location embedding based on the

BERT architecture to address the problem of remote modeling in entity text description. [11] used the

Biencoder framework. However, they used the more expressive SOM[23] score function to measure

the correlation between mentions and entities and, as a result, achieved better results on the task. [13]

proposed a Transformational Biencoder, which introduced a transformation into the Biencoder[9] to

improve the generalization performance of zero-shot EL over unknown domains. Accordingly, we

also combined our negative sampling approach with the Biencoder architecture and notably achieved

some improvements on three different score functions(DUAL, Pooling Mean, and SOM).
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Figure 1. Biencoder_AMH consists of three main parts: Biencoder, Adaptive_mixup_hard and Score

Function.

3. Methodology

In this section, we describe our adaptive_mixup_hard negative sampling strategy, a method

variant on hard negative sampling, inspired via [24]. We then combine our negative sampling approach

with the Biencoder[9] and multiple similarity calculations(DUAL, Pooling Mean, and SOM) to propose

our model Biencoder_AMH. First, we formally present the task definition in Section 3.1. Next, in

Section 3.2 we introduce the Biencoder. Then, we describe our adaptive_mixup_hard negative sampling

strategy in Section 3.3. Finally, we present our model Biencoder_AMH in Section 3.4.

3.1. Task Definition

The entity linking task is expressed as follows. Given a mention m in a document and a set

of entities Ψ = {ei}i=1,...,n, EL aims to identify the referring entity e ∈ Ψ that corresponds to the

mention m. The goal is to obtain an EL model on the train set of mention-entity pairs DTrain =

{(mi, ei) |ei ∈ Ψ}i∈[1,n], that correctly labels mentions in the test set DTest. DTrain and DTest are usually

assumed to be from the same domain. We assume that the title and description of the entities are

available, which is a common setting in entity linking[5,8].

In this paper, we focus on the study of the zero-shot EL[8], where both DTrain =
{

Di
src

}

i=1,...,nsrc

and DTest =
{

Di
tgt

}

i=1,...,ntgt

are found to contain multiple sub-datasets from different domains. At the

same time, the knowledge base is separated into training and test time. Formally, denote κtrain and

κtest to be the knowledge base in training and test, we require κtrain ∩ κtest = φ. The collection of text

documents, mentions, and entity dictionaries are separated for training and testing, so linked entities

are not visible during the test.

Below, we will describe the three negative sampling methods that are already available.
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• Random: The negatives are sampled uniformly at random from all entities of a batch in training

data. It can help the model deal with unknown entities in various situations but may lead to a

training process that lacks guidance for specific textual contexts.
• Hard: It is a more challenging strategy that tries to select semantically similar negatives to positive

examples. In this way, the model will face more incredible difficulty in learning and will need a

better understanding of the meaning of the entity in different contexts. It aims to help models

capture semantic information better, but it can also lead to a more strenuous training process.
• Mixed-p: p percent of the negatives are hard, the rest are random. It maintains a degree of

diversity in the training process while introducing a degree of challenge. Previous works have

shown that such a combination of random and hard negatives can be effective. [11] finds the

performance is not sensitive to the value of p, In this paper, We choose a p-value of 50%.

3.2. Biencoder

Our model is based on the Biencoder[9], which independently embeds mentions and

corresponding entities into the same representation space. As shown in Figure 2, the Biencoder

comprises a text encoder EPm for encoding mentions, a text encoder EPe for encoding entities, and a

score function f for calculating the relevant scores for mention-entity pairs. EPm and EPe share the same

architecture but have independent parameters, Pmand Pe and BERT[14] is employed to model EPm and

EPe . This approach allows for real-time reasoning because candidate representations can be cached.

 

 

 

 

 

 

Score Function 

Figure 2. Architecture of Biencoder

Given a pair of the mention-entity(m, e), the representation of mention m is composed of the left

context (ctxtl) and right context (ctxtr) of the mention, as well as the mention itself. Specifically, we

construct the input for each mention m as:

m = [CLS] ctxtl [Ms] mention [Me] ctctr [SEP] (1)

Likewise, the entity representation e is also composed of word pieces of the entity title and

description. Therefore, the input to our entity e is:

e = [CLS] title [ENT] description [SEP] (2)

Where [CLS], [Ms], [Me], [ENT], and [SEP] are special tokens to mark the boundaries of the

different pieces of information. For instance, [ENT] is a special token to separate entity title and

description representation. More specifically, the input of mention m is represented after tokenization

as Tm = {mt}t=1,...,nm
and the entity e is denoted as Te = {et}t=1,...,ne

. Then, both input context Tm and

candidate entity Te are encoded into vectors Vm ∈ Rnm×d and Ve ∈ Rne×d.
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Vm = EPm (Tm)

Ve = EPe (Te)
(3)

where d denotes the dimension of representations.

The problem of the entity linking is then reduced to using a score function f , i.e., f (Vm, Ve) to

quantify the similarity between Vm and Ve. In the current mention-entity pair (m, e), if the entity e is

the golden entity, the score f (Vm, Ve) should be high, or low if otherwise.

As shown in Figure 3, we will introduce the three existing score functions. [9] defines a DUAL

score function that chooses the [CLS] representations vm
[CLS]

∈ R1×d and ve
[CLS]

∈ R1×d of the respective

representations Vm and Ve to compute the score f (Vm, Ve).

 

 

 

 

Score

 

 

 

 

Score

 

 

 

 

max maxmax

Score

DUAL

Pooling Mean

SOM

Figure 3. Architecture of Score Function

DULA:

f (Vm, Ve) = vm
[CLS]

(

ve
[CLS]

)T
(4)

Pooling Mean can be used to average pool the embeddings in a text fragment of the mention and

entity to obtain an overall representation of the text fragment. Doing so allows the text snippet to be

represented as a vector, reflecting the average features. Pooling Mean computes f (Vm, Ve) as follows.
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Pooling Mean:

f (Vm, Ve) =
1

nm

nm

∑
t=1

vm
t

(

1

ne

ne

∑
t=1

ve
t

)T

(5)

In addition, [11] followed the architecture of [9] and presented that the SOM scorer[23] produces better

results than DUAL. However, it is worth noting that the SOM scorer comes at the cost of increased

computational cost due to considering all hidden states of Vm and Ve in the scorer. It means SOM

takes more time than DUAL and Pooling Mean in the training and prediction phases. SOM computes

f (Vm, Ve) as follows.

SOM:

f (Vm, Ve) =
nm

∑
t=1

ne
max
t
′=1

vm
t

(

ve
t
′

)T
(6)

Eventually, train the network to maximize the score of the correct entity relative to the (randomly

sampled) entities of the same batch([25], [26]). Concretely, the total loss L is computed as:

L (Pm, Pe) =
1

B

B

∑
i=1

(− f
(

EPm (Tmi
) , EPe

(

Tei,1

))

+

1

B

B

∑
i=1

(

log
B

∑
j=1

exp
(

f
(

EPm (Tmi
) , EPe

(

Tei,j

)))

) (7)

Where {(mi, ei,1)}i=1,...,B are golden mention-entity pairs in the training set, and {ei,2, ..., ei,B} are

B − 1 negative entities for the i-th mention in a batch.

3.3. Adaptive_mixup_hard

It is known that hard negative sampling makes it more difficult for the model to learn, allowing

it better to understand the meaning of entities in different contexts. However, the negative samples

obtained under this sampling are still not challenging enough for zero-shot entity linking. Therefore,

as shown in Figure 4, we propose the adaptive_mixup_hard(AMH) negative sampling, a method

variant on hard negative sampling following a two-stage pipeline: choosing and mixing. This method

improves the robustness of the model by fusing the features of positive entity V
p

e and negative entities

Vn
e to obtain more difficult negative samples(strong hard negatives), enabling the model to face more

complicated tasks.

Below, we will describe the two-stage process of the AMH negative sampling.

Choosing: For the mention-entity pairs (mi, ei)i=1,...,B in a batch, they are encoded into vectors

(Vmi
, Vei

)i=1,...,B. Then, for each mention m in a batch, there is one positive entity V
p

e,1 and the rest are its

corresponding negative entities
(

Vn
e,i

)

i=2,...,B
. Next, we use the scoring function f to compute the scores

of the mentions with their corresponding negative entities. According to hard negative sampling, we

select the top k highest scores among the negative entities as the hard negative entities
(

Vn
e,i

)

i=1,...,K
.

The hard negative entities are computed as:

(

Vn
e,i

)

i=1,...,K
= Topk

{

f
(

Vm, Vn
e,2

)

, ... , f
(

Vm, Vn
e,B

)}

(8)

Mixing: This process is crucial to our approach and aims to synthesize strong, hard negative entities

to improve the robustness of the model. Considering that it may be counterproductive to train the

model if it is too difficult to fuse the negative entities of the positive entity features at the beginning,

we introduce an adaptive parameter W ∈ [0, 1]. Its calculation is as follows:

W =
exp( f (Vm, V

p
e,1))

exp( f (Vm, V
p

e,1)) + ∑
K
i=1 exp( f (Vm, Vn

e,i))
(9)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 September 2023                   doi:10.20944/preprints202309.1779.v1

https://doi.org/10.20944/preprints202309.1779.v1


8 of 15

During the training process, W will increase to progressively increase the difficulty of negative entities,

which allows the model to learn more diverse representations. It is worth noting that W will eventually

increase to 1. Therefore, we also introduce an additional hyper-parameter α ∈ (0, 1] to control the

difficulty of synthesizing new negative entities. The strong hard negative entity V
strong
e,i ∈ Rne×d is

computed as:

V
strong
e,i = α · W · V

p
e,1 + Vn

e,i (10)

It is worth noting that for different score functions, different α values cause the model to perform

differently and that there is a critical value at which the model performs best. We will describe this in

more detail in Section 4.5.

positive entity

hard negative entity 1

hard negative entity 2

hard negative entity k

Score Function

 

 

 

 

 

 

Choosing: select k hard negative entities

Mixing: get strong hard negative entities

k strong hard negative entities

Figure 4. Architecture of adaptive_mixup_hard

3.4. Biencoder_AMH

Eventually, we combine Biencoder, Adaptive_mixup_hard, and Score Function to form our new

model Biencoder_AMH. More specifically, we form the new model Biencoder_AMH_DUAL using

DUAL as the score function. Similarly, depending on the different score functions Pooling Mean and

SOM, we will also form Biencoder_AMH_Pooling_Mean and Biencoder_AMH_SOM, respectively.

Because, depending on the scoring function f , our negative sampling strategy AMH has different rules

for the first stage of choosing.

As shown in Figure 1, first, we follow the Biencoder architecture and use BERT[14] to encode

mentions with their contexts and entities with their descriptive information to obtain their encoded

representations Vm and Ve, respectively. Then according to our method AMH, we first filter a batch

to get K hard negative entities
(

Vn
e,i

)

i=1,...,K
and one positive entity V

p
e,1 corresponding to the current

mention m, and finally fuse the features of each negative entity with those of the positive entity to get

K strong hard negative entities
(

V
strong
e,i

)

i=1,...,K
. Finally, we input Vm, V

p
e,1 and

(

V
strong
e,i

)

i=1,...,K
into

the scoring function f and use BCEWithLogitsLoss to calculate the loss L. Concretely, for each training

pair (mi, ei) in a batch of B pairs, the loss is computed as:

L (mi, ei) = − log (sigmoid( f (Vmi
, V

p
ei,1

)))−

K

∑
j=1

log (1 − sigmoid( f (Vmi
, V

strong
ei,j

)))
(11)
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where Vmi
indicates the code corresponding to the current mention m. V

p
ei,1

and V
strong
ei,j

denote

the coding of the positive entity and strong hard negative entity corresponding to m respectively.

sigmoid(·) is a function that maps the model’s output to the probability space, facilitating probability

estimation and the computation of cross-entropy loss.

4. Experiments

In this section, we only empirically investigate our model on the Zeshel[8], a challenging dataset

for zero-shot entity linking. We have conducted in-depth research and experiments on all three

similarity calculations(DUAL, Pooling Mean, and SOM)[23].

4.1. Dataset

Zeshel is a prevailing benchmark dataset for zero-shot entity linking and contains 16 specialized

domains from Wikia, divided into 8 domains for training and 4 domains each for validation and testing.

The train, validation, and test sets have 49K, 10K, and 10K examples, respectively. Table 1 shows the

details of this dataset, including the number of entities and mentions.

Table 1. Statistic of the Zeshel dataset.

Domains Entities Mentions

Train Evaluation

Training

American Football 31929 3898 743
Doctor Who 40281 8334 1521

Fallout 16992 3286 593
Final Fantasy 14044 6041 1156

Military 104520 13063 2764
Pro Wrestling 10133 1392 262

Star Wars 87056 11824 2706
World of Warcraft 27677 1437 255

Validation

Coronation Street 17809 0 1464
Muppets 21344 0 2028

Ice Hockey 28684 0 2233
Elder Scrolls 21712 0 4275

Testing

Forgotten Realms 15603 0 1200
Lego 10076 0 1199

Star Trek 34430 0 4227
YuGiOh 10031 0 3374

4.2. Evaluation Protocol

EL systems typically follow a two-stage pipeline: (1) a candidate generation stage, training an

entity retriever to select the top-k candidate entities for each mention; (2) a candidate ranking stage,

training a ranker to identify the golden entity among selected candidate entities. Candidate generation

is critical to the performance of candidate ranking because if no golden entity is retrieved in the top-k

candidates, the model can never recover the golden entity during the candidate ranking process. So, we

follow the evaluation protocol of the previous work[8,9,11] and evaluate at the candidate generation

stage. We report accuracy and top-64 recall for models on the validation and testing sets.
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4.3. Implementation Details

We experiment with BERT-base[14] for our models. We directly use the preprocessed dataset

provided by [9]. We tune the models over {5, 10, 15, 30} epochs using a batch size of 64 for

mention-entity pairs. We only consider the learning rate as 2e-5. We perform a grid search to select the

best set of hyper-parameters: α in [0.1, 0.2, 0.3,...,1] for DUAL and Pooling Mean and K in [1, 2, 4, 6, 8,

10, 12, 14, 16, 18] for SOM. Our models are implemented in PyTorch and optimizied with Adam[27].

All models are trained on one NVIDIA 3090 24GB, and the results are the average over 3 runs using

different random seeds.

4.4. Performance Comparison

In this section, we compare our model against recent work[8,9] and different negative sampling

methods for candidate generation. In addition, we consider the comparison of accuracy rates. These

works use the Biencoder and generate negative entities for optimization. DUAL, Pooling Mean, and

SOM scorers are employed in this work.

4.4.1. Main Results

The model comparison results are shown in Table 2. Hard and mixed negative examples for all

architectures always yield considerable improvements over random negative examples. It is worth

noting that for top-64 recalls, our negative sampling strategy performs better than these three negative

sampling strategies. More specifically, regarding the DUAL scorer on the test, We find that our negative

sampling strategy improves over random negative sampling by 3.65%, over hard negative sampling by

1.31%, and over mixed negative sampling by 1.36%. Concerning the Pooling Mean scorer on the test,

We observe that our method improves over random negative sampling by 3.69%, over hard negative

sampling by 1.81%, and over mixed negative sampling by 2.76%. The final average improvement in

SOM scorer on the test is particularly significant, being 2.04% over random negative sampling, 1.28%

over hard negative sampling, and 2.21% over mixed negative sampling, respectively. These results

indicate the effectiveness of our sampling strategy. We also find that SOM yields better results over

DUAL and Pooling Mean, while hard sampling leads to better optimization. However, SOM is more

expensive and time-consuming to compute.

Table 2. Accuracy and top-64 recalls over different choices of architecture and negative examples

Model Negatives Val Test

r@1 r@64 r@1 r@64

BM25 - - 76.22 - 69.13
Wu et al. (2020) - 42.79 89.36 40.82 79.13

DUAL Random 40.47 87.73 38.20 77.82
Hard 42.94 89.48 40.45 80.16

Mixed-50 43.10 89.29 40.75 80.11
ours 45.30 90.01 42.90 81.47

Pooling Mean Random 36.22 86.04 35.71 77.70
Hard 40.19 88.14 39.09 79.58

Mixed-50 40.42 88.25 38.65 78.63
ours 43.93 89.36 43.10 81.39

SOM Random 23.19 90.10 19.45 83.01
Hard 30.55 91.14 32.74 83.77

Mixed-50 15.91 91.34 24.84 82.84
ours 25.56 91.83 31.19 85.05

Interestingly, We also take accuracy into account. We observe that our method achieves better

performance compared to other negative sampling strategies concerning DUAL and Pooling Mean.
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However, to the SOM, hard negative sampling performs better. In addition, in terms of accuracy,

DUAL and Pooling Mean yield better results over SOM, and Pooling Mean is slightly better on the test.

4.4.2. Domain Zero-Shot Performance

Our main results show that we achieved the best performance on both validation and testing sets with

respect to the top-64 recalls. To show that this improvement is actual for all test domains and not a

result of a specific test domain, we show more fine-grained results. Specifically, we report the domain

zero-shot performance on the testing sets over different choices of architecture and negative examples.

Table 3 shows the results for the different testing domains.

Table 3. Top-64 recalls on Different Domains over different choices of architecture and negative

examples

Model Negatives Domains

Forgotten Realms Lego Star Trek YuGiOh

DUAL Random 89.42 88.82 80.32 66.66
Hard 91.25 89.24 83.06 69.35

Mixed-50 91.08 88.99 83.04 69.38
ours 91.83 89.49 85.05 70.45

Pooling Mean Random 89.50 88.24 79.87 67.04
Hard 91.33 89.66 82.11 68.64

Mixed-50 91.00 88.49 81.90 66.63
ours 92.00 88.99 84.36 71.19

SOM Random 94.33 92.99 82.49 76.08
Hard 94.25 92.91 83.84 76.70

Mixed-50 93.67 92.58 82.38 76.11
ours 94.25 93.08 85.07 78.25

Obviously, the results on the test domains "Forgotten Realms" and "Lego" are better than the other

two domains. For the DUAL, our method exhibits the best performance in all domains. However,

our method is 0.67% lower than hard negative sampling for Pooling Mean on the domain "Lego" and

0.08% lower than random negative sampling for SOM on the domain "Forgotten Realms". Overall,

our method has shown better results on the different ways of calculating similarity, and the results on

domains "Star Trek" and "YuGiOh" gain a significant boost, 85.07% and 78.25%, respectively.

4.5. Impact of α

In this section, we investigate the sensitivity of DUAL and Pooling Mean in terms of the

hyper-parameter α. Recall α indicates the corresponding restriction after a strong hard negative

sample is produced by fusing the current negative sample with the positive sample, where the range

of α is set between 0 and 1. A smaller α means this strong hard negative sample is slightly weaker and

vice versa. However, this does not mean that the stronger this strong negative sample is, the better, and

at the same time, it is not the weaker, the better, but rather, for different similarity calculation structures,

there exists an intermediate value in the range of settings that makes the current performance optimal.

Tables 4 and 5 contend to show the results obtained under different α for DUAL and Pooling Mean,

which will be analyzed in the following.

Table 4. Accuracy and top-64 recalls for different α under adaptive_mixup_hard for DUAL

α=0.1 α=0.2 α=0.3 α=0.4 α=0.5 α=0.6 α=0.7 α=0.8 α=0.9 α=1

Val r@1 44.37 43.96 45.30 45.33 45.70 45.19 46.57 45.37 46.59 44.68
r@64 90.18 89.68 90.01 89.75 89.76 89.71 89.61 89.47 89.90 89.22

Test r@1 42.46 42.56 42.90 42.60 43.38 43.24 43.80 42.76 43.69 42.43
r@64 80.94 81.06 81.47 80.95 81.46 81.13 80.98 80.55 80.73 80.57
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Table 5. Accuracy and top-64 recalls for different α under adaptive_mixup_hard for Pooling Mean

α=0.1 α=0.2 α=0.3 α=0.4 α=0.5 α=0.6 α=0.7 α=0.8 α=0.9 α=1

Val r@1 43.28 44.74 43.93 43.67 43.28 42.82 44.80 45.79 45.35 44.16
r@64 89.43 89.40 89.36 89.30 89.02 88.92 89.12 89.28 89.57 89.00

Test r@1 41.41 42.36 43.10 42.69 42.23 42.05 43.02 44.09 43.47 42.31
r@64 80.70 80.88 81.39 80.91 80.75 80.17 80.19 80.65 80.37 80.20

In Table 4, we find that DUAL achieves the best performance for top-64 recalls with α of 0.3 and

for accuracy with α of 0.7 on the test. Meanwhile, with increasing α, the performance of top-64 recalls

decreases. In Table 5, we observe that Pooling Mean achieves the best performance for top-64 recalls

with α of 0.3 and for accuracy with α of 0.8 on the test. By adjusting the α, we still find that Pooling

Mean performs better than DUAL in terms of accuracy, being 0.29% higher, while for top-64 recalls,

DUAL is better by 0.08%. At the same time, at some value of α, the α will show a difference of about 1%

compared to the α in the case that shows the best performance, indicating the importance of controlling

α. Considering the time and computational cost, we do not analyze the results presented by SOM

under different α.

4.6. Impact of K

In this section, we investigate the sensitivity of SOM in terms of the hyper-parameters K. K in our

method denotes the number of negative samples formed after fusion with positive sample features. We

have selected only some of the K to compare the results of the test. Table 6 illustrates the specific results.

As with the hyper-parameter α introduced in the previous section, there also exists an intermediate

value for the number of strongly negative samples K after fusing the positive sample features, allowing

the current model to exhibit optimal performance to the SOM. It is also predicted that this should be

true for the other two similarity computation structures(DUAL and Pooling Mean).

Table 6. Accuracy and top-64 recalls for different K under adaptive_mixup_hard for SOM

K=1 K=2 K=4 K=6 K=8 K=10 K=12 K=14 K=16 K=18

Test
r@1 29.98 28.89 31.70 32.47 31.00 31.19 32.90 31.36 34.15 31.81
r@64 82.65 83.39 84.11 84.70 83.91 85.05 83.83 83.28 84.83 83.59

In Table 6, we find that SOM achieves the best performance for top-64 recalls with K of 10 and

for accuracy with K of 16 on the test. In addition, comparing with Table 2 for the highest accuracy of

32.74% on the test demonstrated for SOM in hard negative sampling, the model achieves a result of

34.15% at a K of 16, a 1.41% improvement. Thus, by adjusting the value of K on the SOM, our method

will also show better performance in terms of accuracy than other negative sampling strategies. It

follows that controlling the value of K is also particularly important for our approach.

4.7. Analyzing the number of candidates

In a two-stage entity linking system, the choice of the number of candidates retrieved influences

the overall model performance. Previous work has typically used a fixed number of k candidates

where k ranges from 5 to 100(for instance, [17] and [5] choose k = 30, [8] choose k = 64). According to

[9] and Table 7, When k is larger, the recall accuracy increases; however, the ranking stage accuracy

will likely decrease. Further, increasing k would often increase the run-time on the ranking stage.

In the following, we will analyze the importance of the number of candidate entities k in three

aspects.

(i) Accuracy: A smaller number of candidate entities improves the accuracy of the system in

selecting the correct entity. If there are too many candidate entities, the system may experience
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difficulties because there may be many similar entities, making it difficult for the model to make

the correct selection.
(ii) Coverage: An increase in the number of candidate entities can increase the coverage of the

system. In zero-shot entity linking, certain entities may not be covered in the candidate entity set,

which can result in those entities not being linked correctly. A more comprehensive candidate

entity set can improve the chances of successful linking, especially for rare or nonexistent entities

in the training data.
(iii) Efficiency: The number of candidate entities is also related to the efficiency of the linking process.

Fewer candidate entities mean the system needs less time and computational resources for entity

linking.

However, increasing the number of candidate entities may also lead to problems such as increased

noise and interference and reduced entity linking accuracy. Therefore, a balance needs to be found

between the number of candidate entities and the accuracy of entity linking. As shown in Table 7, our

method shows better performance for r@k(k=4, 8, 16, 32, 64) compared to other negative sampling

strategies to the SOM, which lays a solid foundation for future research on the number of candidate

entities k in the entity ranking stage.

Table 7. Top-k recalls over different choices of negative examples for SOM

Model Negatives r@k

r@4 r@8 r@16 r@32 r@64

SOM Random 50.92 62.28 71.41 77.69 83.01
Hard 62.61 70.30 76.18 80.02 83.77

Mixed-50 54.22 65.03 72.97 78.38 82.84
ours 62.94 71.08 76.76 80.81 84.83

5. Conclusion

We introduce the adaptive_mixup_hard(AMH) negative sampling, a method variant on hard

negative sampling to obtain more difficult negative samples to improve the robustness and

performance of the model on the task of zero-shot entity linking. Furthermore, we also combine our

negative sampling method with the Biencoder architecture to form our new model Biencoder_AMH

and test its performance on three different score functions(DULA, Pooling Mean, and SOM). Our

work shows the performance of our method compared to other negative sampling methods(Random,

Hard, and Mixed-p) under the same score function. Our experimental analysis demonstrates that

our approach generally performs better on both validation and testing sets. More importantly, this

improvement is genuine for essentially all test domains and not as a result of a specific test domain. In

addition, we conduct extensive experiments to optimize the hyper-parameters α and K in our method

and demonstrate that our method provides a solid foundation for the subsequent entity ranking stage.

However, in the fusion of features of positive and negative samples, we currently only consider the

control of the weights of features of positive samples, so we are thinking about whether we need to

control the weights of negative samples simultaneously. We leave this thought for future work.
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