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Abstract: With the rapid development of artificial intelligence, machine learning is gradually
becoming popular in predictions in all walks of life. In meteorology, It is gradually competing with
traditional climate predictions dominated by physical models. This survey aims to consolidate the
current understanding of Machine Learning (ML) applications in weather and climate prediction—a
field of growing importance across multiple sectors including agriculture and disaster management.
Building upon an exhaustive review of more than 20 methods highlighted in existing literature,
this survey pinpointed eight techniques that show particular promise for improving the accuracy
of both short-term weather and medium-to-long-term climate forecasts. According to the survey,
while ML demonstrates significant capabilities in short-term weather prediction, its application in
medium-to-long-term climate forecasting remains limited, constrained by factors such as intricate
climate variables and data limitations. Current literature tends to focus narrowly on either short-term
weather or medium-to-long-term climate forecasting, often neglecting the relationship between the
two, as well as general neglect of modelling structure and recent advances. By providing an integrated
analysis of models spanning different time scales, this survey aims to bridge these gaps, thereby
serving as a meaningful guide for future interdisciplinary research in this rapidly evolving field.

Keywords: Machine learning; Weather prediction; Climate prediction; Meteorological Forecasting;
Survey

1. Introduction

Weather and climate prediction play an important role in human history. Weather
forecasting serves as a critical tool that underpins various facets of human life and soci-
etal operations, permeating everything from individual decision-making to large-scale
industrial planning. Its significance at the individual level is manifested in its capacity
to guide personal safety measures, from avoiding hazardous outdoor activities during
inclement weather to taking health precautions in extreme temperatures. This decision-
making extends into the agricultural realm, where forecasts inform the timing for planting,
harvesting, and irrigation, ultimately contributing to maximized crop yields and stable
food supply chains [1]. The ripple effect of accurate forecasting also reaches the energy
sector, where it aids in efficiently managing demand fluctuations, allowing for optimized
power generation and distribution. This efficiency is echoed in the transportation industry,
where the planning and scheduling of flights, train routes, and maritime activities hinge on
weather conditions. Precise weather predictions are key in mitigating delays and enhancing
safety protocols [2]. Beyond these sectors, weather forecasting plays an integral role in
the realm of construction and infrastructure development. Adverse conditions can cause
project delays and degrade quality, making accurate forecasts a cornerstone of effective
project management. Moreover, the capacity to forecast extreme weather events like hur-
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ricanes and typhoons is instrumental in disaster management, offering the possibility of
early warnings and thereby mitigating loss of life and property [3].

Although climate prediction often is ignored by human beings in the short term, it has
a close relationship with Earth’s life. Global warming and the subsequent rise in sea levels
constitute critical challenges with far-reaching implications for the future of our planet.
Through sophisticated climate modelling and forecasting techniques, we stand to gain
valuable insights into the potential ramifications of these phenomena, thereby enabling
the development of targeted mitigation strategies. For instance, precise estimations of
sea-level changes in future decades could inform rational urban planning and disaster
prevention measures in coastal cities. On an extended temporal scale, climate change is
poised to instigate considerable shifts in the geographical distribution of numerous species,
thereby jeopardizing biodiversity. State-of-the-art climate models integrate an array of
variables—encompassing atmospheric conditions, oceanic currents, terrestrial ecosystems,
and biospheric interactions—to furnish a nuanced comprehension of environmental trans-
formations [4]. This integrative approach is indispensable for the formulation of effective
global and regional policies aimed at preserving ecological diversity. Economic sectors
such as agriculture, fisheries, and tourism are highly susceptible to the vagaries of climate
change. Elevated temperatures may precipitate a decline in crop yields, while an upsurge
in extreme weather events stands to impact tourism adversely. Longitudinal climate fore-
casts are instrumental in guiding governmental and business strategies to adapt to these
inevitable changes. Furthermore, sustainable resource management, encompassing water,
land, and forests, benefits significantly from long-term climate projections. Accurate pre-
dictive models can forecast potential water scarcity in specific regions, thereby allowing for
the preemptive implementation of judicious water management policies. Climate change
is also implicated in a gamut of public health crises, ranging from the proliferation of
infectious diseases to an uptick in heatwave incidents. Comprehensive long-term climate
models can equip public health agencies with the data necessary to allocate resources and
devise effective response strategies.

Time Scale Domains Applications
. The timing for sowing and harvesting;

Agriculture Irrigation and fertilization plans. [5]

Energy Predicts output for wind and solar energy. [6]

T tati Road traffic safety; Rail transport;

ransportation Aviation and maritime industries. [7]

Construction Project plans and timelines; Safe operations. [8]

Short Term Retail and Sales Adjusts inventory based on weather forecasts. [9]

Tourism and
Entertainment

Operations of outdoor activities
and tourist attractions. [16]

Environment and
Disaster Management

Early warnings for floods, fires,
and other natural disasters. [10]

Medium - Long Term

Agriculture Long-term land management and planning. [11]
Insurance Preparations for future increases in
types of disasters, such as floods and droughts. [12]
Real Estate Assessment of future sea-level rise or other
climate-related factors. [13]
Urban Planning Water resource management. [14]
Long-term investments and planning,
Tourism such as deciding which regions may become
popular tourist destinations in the future. [15]
Public Health Long-term climate changes may impact the

spread of diseases. [17]

Table 1. Applications of Short term and medium-long term weather/climate forecasting in daily life.
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Table 1 elucidates the diverse applications of weather forecasting across multiple
sectors and time frames. In the short-term context, weather forecasts are instrumental for
agricultural activities such as determining the optimal timing for sowing and harvesting
crops, as well as formulating irrigation and fertilization plans. In the energy sector, short-
term forecasts facilitate accurate predictions of output levels for wind and solar energy
production. For transportation, which encompasses road, rail, aviation, and maritime
industries, real-time weather information is vital for operational decisions affecting safety
and efficiency. Similarly, construction projects rely on short-term forecasts for planning and
ensuring safe operations. In the retail and sales domain, weather forecasts enable businesses
to make timely inventory adjustments. For tourism and entertainment, particularly those
involving outdoor activities and attractions, short-term forecasts provide essential guidance
for day-to-day operations. Furthermore, short-term weather forecasts play a pivotal role
in environment and disaster management by providing early warnings for floods, fires,
and other natural calamities. In the medium-to-long-term scenario, weather forecasts
have broader implications for strategic planning and risk assessment. In agriculture, these
forecasts are used for long-term land management and planning. The insurance industry
utilizes medium-to-long-term forecasts to prepare for prospective increases in specific
types of natural disasters, such as floods and droughts. Real estate sectors also employ
these forecasts for evaluating the long-term impact of climate-related factors like sea-level
rise. Urban planning initiatives benefit from these forecasts for effective water resource
management. For the tourism industry, medium-to-long-term weather forecasts are integral
for long-term investments and for identifying regions that may become popular tourist
destinations in the future. Additionally, in the realm of public health, long-term climate
changes projected through these forecasts can inform strategies for controlling the spread
of diseases. In summary, weather forecasts serve as a vital tool for both immediate and
long-term decision-making across a diverse range of sectors.

Short-term weather prediction. Short-term weather forecasting primarily targets weather
conditions that span from a few hours up to seven days, aiming to deliver highly accu-
rate and actionable information that empowers individuals to make timely decisions like
carrying an umbrella or postponing outdoor activities. These forecasts typically decrease
their reliability as they stretch further into the future. Essential elements of these forecasts
include maximum and minimum temperatures, the likelihood and intensity of various
forms of precipitation like rain, snow, or hail, wind speed and direction, levels of relative
humidity or dew point temperature, and types of cloud cover such as sunny, cloudy, or
overcast conditions [18]. Visibility distance in foggy or smoky conditions and warnings
about extreme weather events like hurricanes or heavy rainfall are also often included. The
methodologies for generating these forecasts comprise numerical simulations run on high-
performance computers, the integration of observational data from multiple sources like
satellites and ground-based stations, and statistical techniques that involve pattern recogni-
tion and probability calculations based on historical weather data. While generally more
accurate than long-term forecasts, short-term predictions are not without their limitations,
often influenced by the quality of the input data, the resolution of the numerical models,
and the sensitivity to initial atmospheric conditions. These forecasts play a crucial role in
various sectors including decision-making processes, transportation safety, and agriculture,
despite the inherent complexities and uncertainties tied to predicting atmospheric behavior.

Medium-to-long term climate prediction. Medium to Long-term Climate Forecasting
(MLTF) concentrates on projecting climate conditions over periods extending from several
months to multiple years, standing in contrast to short-term weather forecasts which focus
more on immediate atmospheric conditions. The time frame of these climate forecasts can be
segmented into medium-term, which generally ranges from a single season up to a year, and
long-term, that could span years to decades or even beyond[19]. Unlike weather forecasts,
which may provide information on imminent rainfall or snowfall, MLTF centers on the
average states or trends of climate variables, such as average temperature and precipitation,
ocean-atmosphere interactions like El Nifio or La Nifia conditions, and the likelihood of
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extreme weather events like droughts or floods, as well as anticipated hurricane activities
[20]. The projection also encompasses broader climate trends, such as global warming or
localized climatic shifts. These forecasts employ a variety of methods, including statistical
models based on historical data and seasonal patterns, dynamical models that operate on
complex mathematical equations rooted in physics, and integrated models that amalgamate
multiple data sources and methodologies. However, the accuracy of medium- to long-term
climate forecasting often falls short when compared to short-term weather predictions
due to the intricate, multi-scale, and multi-process interactions that constitute the climate
system, not to mention the lack of exhaustive long-term data. The forecasts’ reliability
can also be influenced by socio-economic variables, human activities, and shifts in policy.
Despite these complexities, medium- to long-term climate projections serve pivotal roles in
areas such as resource management, agricultural planning, disaster mitigation, and energy
policy formulation, making them not only a multi-faceted, multi-disciplinary challenge but
also a crucial frontier in both climate science and applied research.

Survey Scope. In recent years, machine learning has emerged as a potent tool in meteorol-
ogy, displaying strong capabilities in feature abstraction and trend prediction. Numerous
studies have employed machine learning as the principal methodology for weather forecast-
ing [21-23]. Our survey extends this current understanding by including recent advances in
the application of machine learning techniques such as High-Resolution Neural Networks
and 3D neural networks representing the state-of-the-art in this multidisciplinary domain.
This survey endeavours to serve as a comprehensive review of machine learning tech-
niques applied in the realms of meteorology and climate prediction. Previous studies have
substantiated the efficacy of machine learning methods in short-term weather forecasting
[24]. However, there exists a conspicuous dearth of nuanced research in the context of
medium-to-long-term climate predictions [25]. The primary objective of this survey is to
offer a comprehensive analysis of nearly 20 diverse machine-learning methods applied in
meteorology and climate science. It is worth noting that our selection criteria are twofold:
we include classic models in the application of machine learning to meteorology, as well as,
from a computer science perspective, represent recent state-of-the-art complex models. We
categorize these methods based on their temporal applicability: short-term weather fore-
casting and medium-to-long-term climate predictions. This dual focus uniquely situates
our survey as a bridge between immediate weather forecasts and longer climatic trends,
thereby filling existing research gaps summarized as follows:

*  Limited Scope: Existing surveys predominantly focus either on short-term weather
forecasting or medium-to-long-term climate predictions. There is a notable absence of
comprehensive surveys that endeavour to bridge these two-time scales. In addition,
current investigations tend to focus narrowly on specific methods, such as simple
neural networks, thereby neglecting some combination of methods.

¢ Lack of Model details: Many extant studies offer only generalized viewpoints and
lack a systematic analysis of the specific model employed in weather and climate
prediction. This absence creates a barrier to researchers aiming to understand the
intricacies and efficacy of individual methods.

*  Neglect of Recent Advances: Despite rapid developments in machine learning and
computational techniques, existing surveys have not kept pace with these advance-
ments. The paucity of information on cutting-edge technologies stymies the progres-
sion of research in this interdisciplinary field.

By addressing these key motivations, this survey aims to serve as a roadmap for future

research endeavours in this rapidly evolving, interdisciplinary field.

Contributions of the Survey. The contributions of this paper are as follows.

¢ Comprehensive scope: Unlike research endeavors that restrict their inquiry to a singu-
lar temporal scale, our survey provides a comprehensive analysis that amalgamates
short-term weather forecasting with medium- and long-term climate predictions. In
total, 20 models were surveyed, from which a select subset of eight were chosen for an
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in-depth scrutiny. These models are discerned as the industry’s avant-garde, thereby
serving as invaluable references for researchers. For instance, the PanGu model ex-
hibits a remarkable congruence with actual observational results, thereby illustrating
the caliber of models included in our analysis

¢ In-Depth Analysis: Breaking new ground, this study delves into the intricate op-
erational mechanisms of the eight focal models. We have dissected the operating
mechanisms of these eight models, distinguishing the differences in their approaches
and summarizing the commonalities in their methods through comparison. This com-
parison helps readers gain a deeper understanding of the efficacy and applicability of
each model and provides a reference for choosing the most appropriate model for a
given scenario.

¢ Identification of Contemporary Challenges and Future Work: The survey identifies
pressing challenges currently facing the field, such as limited dataset of chronological
seasons and complex climate change effects, and suggests directions for future work,
including simulating dataset and physics-Based Constraint model. These recommen-
dations not only add a forward-looking dimension to our research but also act as a
catalyst for further research and development in climate prediction.

Outline of the paper. This paper consists of six sections. Section 1 describes our motivation
and innovations compared to other weather prediction surveys. Section 2 introduces some
weather-related background knowledge. Section 3 broadly introduces relevant methods
for weather prediction other than machine learning. Section 4 highlights the milestones
of forecasting models using machine learning and their categorization. Sections 5 and 6
analyze representative methods in both short-term and medium- and long-term time scales.
Sections 7 and 8 summarize the challenges faced and present promising future work and
conclude the paper.

2. Background

In this section, the objective is to provide a thorough understanding of key meteo-
rological principles, tailored to be accessible even to readers outside the meteorological
domain. The section commences with an overview of Reanalysis Data, the cornerstone for
data inputs in weather forecasting and climate projection models. Following this, the focus
shifts to the vital aspect of model output validation. It is necessary to identify appropriate
benchmarks and key performance indicators for assessing the model’s predictive accuracy.
Without well-defined standards, the evaluation of a model’s effectiveness remains nebulous.
Further, three essential concepts bias-correction; down-scaling and emulation are introduced.
These become particularly relevant when discussing the role of machine learning in aug-
menting physical models. Finally, the text offers an in-depth explanation of predicting
extreme events, clearly defining “extreme event” and differentiating them from routine
occurrences.

Data source. Observed data undergoes a series of rigorous processing steps before it enters
the predictive model (or what is known as the reanalysis data generation process). They are
amassed from heterogeneous sources, such as ground-based networks like the Global Histor-
ical Climatology Network (GHCN), atmospheric tools like Next-Generation Radar (NEXRAD),
and satellite systems like the Geostationary Operational Environmental Satellites (GOES).
Oceanic measurements are captured through the specialized ARGO float network, focusing
on key parameters like temperature and salinity. These raw datasets are further audited
with quality control, spatial and temporal interpolation, and unit standardization.Despite
meticulous preprocessing, observational data exhibit challenges such as spatial-temporal
heterogeneity, inherent measurement errors, and discrepancies with numerical models. To
mitigate these issues, data assimilation techniques are employed. These techniques syner-
gize observations with model forecasts using mathematical and statistical algorithms like
Kalman filtering, Three-Dimensional Variational Analysis (3D-Var), and Four-Dimensional
Variational Analysis (4D-Var) [26]. Additionally, data assimilation can be utilized to en-
hance the initial model conditions and correct systemic model biases.The scope of data
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assimilation extends beyond singular meteorological models to complex Earth System
Models that integrate dynamics from atmospheric, oceanic, and terrestrial subsystems.
Post-assimilation where the model state is updated, leads to the generation of "reanalysis
data". Popular reanalysis datasets include ERA5 from the European Centre for Medium-
Range Weather Forecasts (ECMWEF), NCEP/NCAR Reanalysis from the National Centers
for Environmental Prediction and the National Center for Atmospheric Research, JRA-55
from the Japan Meteorological Agency, and MERRA-2 from NASA.

Result evaluation. Result evaluation serves as a critical stage in the iterative process of
predictive modeling. It involves comparing forecasted outcomes against observed data to
gauge the model’s reliability and accuracy. The temporal dimension is a critical factor in
result evaluation. Short-term predictive models, like those used in weather forecasting,
benefit from near-real-time feedback, which allows for frequent recalibration using machine
learning algorithms like Ensemble Kalman Filters. On the other hand, long-term models,
such as climate projections based on General Circulation Models (GCMs), are constrained
by the absence of an immediate validation period.In weather forecasting, meteorologists
employ a variety of numerical models like the Weather Research and Forecasting (WRF)
model, which are evaluated based on short-term observational data. Standard metrics for
evaluation include Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and
Skill Scores. The high-frequency availability of data, from sources like weather radars
and satellites, facilitates rapid iterations and refinements.In contrast, climate models are
scrutinized using different methodologies. Given their long-term nature, climate models
are often validated using historical and paleoclimatic data. Statistical techniques like
Empirical Orthogonal Functions (EOF) and Principal Component Analysis (PCA) are
employed to identify and validate overarching climatic patterns. These models often
have to account for high levels of uncertainty and are cross-validated against geological
or even astronomical records, making immediate validation impractical. For weather
forecasts, predictive accuracy within the scope of hours to days is paramount. Climate
models, conversely, are evaluated based on their ability to accurately reproduce decadal
and centennial patterns.

Bias correction. In the context of meteorology, climate science, machine learning, and
statistical modeling, bias correction (or bias adjustment) refers to a set of techniques used to
correct systematic errors (biases) in model simulations or predictions. These biases may
arise due to various factors such as model limitations, uncertainties in parameterization,
or discrepancies between model assumptions and real-world data. Bias Correction (Bias
Adjustment) can be formally defined as the process of modifying the output of predictive
models to align more closely with observed data. The primary objective is to minimize the
difference between the model’s estimates and the observed values, thereby improving the
model’s accuracy and reliability.

In more formal terms, let M represent the model output, and O represent the observed data.
Bias B is defined as:

B=M-0 )

The aim of bias correction is to find a function f such that:

f(M)~0 @)

Various methods can be employed for bias correction, including simple linear adjustments,
quantile mapping, and more complex machine-learning techniques. The choice of method
often depends on the specific characteristics of the data and the overarching objectives of
the study.

Emulation. The term emulation is utilized here to denote the approach where machine
learning models are employed to simulate or approximate components and processes
of the original physical model. In meteorology, physical models are devised based on a
comprehensive understanding of atmospheric dynamics, often entailing intricate hydro-
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dynamic equations to elucidate atmospheric motions and interactions. However, to attain
high computational efficiency in practical operations, direct resolution of these equations is
frequently computationally demanding, particularly when high spatial and temporal reso-
lution simulations are requisite. To alleviate these issues, modellers are already using fast
and accurate ML simulations to simulate existing time-consuming parameterizations [27-
29]. Machine learning methods are capable of delivering fast and precise approximations of
complex physical processes by learning patterns and relationships from historical data or
high-precision model runs. For instance, neural networks or other machine learning algo-
rithms can be deployed to deal with Longwave and shortwave radiation parameterization
[30,31] and emulate nonlinear wave interactions in wind wave models [32]. Consequently,
machine learning models can substitute traditional physical parameterization schemes in
prediction models, significantly alleviating the computational burden while preserving or
even augmenting the accuracy of predictions.

Down-scaling. Down-scaling in meteorology and climate science is a computational tech-
nique employed to bridge the gap between the spatial and temporal resolutions offered by
General Circulation Models (GCMs) or Regional Climate Models (RCMs) and the scale at
which specific applications, such as local weather predictions or hydrological assessments,
operate. Given that GCMs and RCMs typically operate at a coarse resolution—spanning
tens or hundreds of kilometres—downscaling aims to refine these projections to a more
localized level, potentially down to single kilometres or less.

Extreme events. In meteorology, an "extreme event" refers to a rare occurrence within a
statistical distribution of a particular weather variable. These events can be extreme high
temperatures, heavy precipitation, severe storms, or high winds, among others. These
phenomena are considered "extreme" due to their rarity and typically severe impact on
ecosystems, infrastructure, and human life.

Symbol definition. Since many formulas are involved in weather and climate prediction
methods, we have defined a table that summarizes all the common symbols and their
definition.

In standard meteorological models, precipitation is usually represented as a three-
dimensional array containing latitude, longitude, and elevation. Each cell in this array
contains a numerical value that represents the expected precipitation for that particular
location and elevation during a given time window. This data structure allows for straight-
forward visualization and analysis, such as contour maps or time series plots. Unlike
standard precipitation forecasts, which focus primarily on the water content of the at-
mosphere, extreme events may require tracking multiple variables simultaneously. For
example, hurricane modeling may include variables such as wind speed, atmospheric pres-
sure, and sea surface temperature. Given the higher uncertainty associated with extreme
events, the output may not be a single deterministic forecast, but rather a probabilistic one.
An integration approach can be used to generate multiple model runs to capture a range
of possible outcomes. Both types of predictions are typically evaluated using statistical
metrics; however, for extreme events, more sophisticated measures such as event detection
rates, false alarm rates, or skill scores associated with probabilistic predictions can be used.

3. Related work

This study principally centers on the utilization of machine learning techniques in the
realm of climate prediction. However, to furnish a comprehensive perspective, we also
elucidate traditional forecasting methodologies—statistical and physical methods—within
this section. Historically speaking, the evolution of predictive models in climate science has
undergone three distinct phases. Initially, statistical methods were prevalently deployed;
however, their limited accuracy led to their gradual supplantation by physical models.
While the role of statistical methods has dwindled in terms of standalone application, they
are frequently amalgamated with other techniques to enhance predictive fidelity. Subse-
quently, physical models ascended to become the prevailing paradigm in climate prediction.
Given the current predominance of physical models in the field of climate prediction, they
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Symbol Definition

v velocity vector

t time

0 fluid density

p pressure

U dynamic viscosity

g gravitational acceleration vector

L intensity of radiation at frequencyv

s distance along the ray path

oy absorption coefficient at frequency v

ju emission coefficient at frequency v

Ky absorption coefficient at frequency v

0 density of the medium

B, Planck function at frequencyv

E;(z/x) expectation under the variational distribution q(z | x)

z latent variable

X observed data

p(x, z) joint distribution of observed and latent variables

q(z | x) variational distribution

A variational parameters

G, F Generators for mappings from simulated to real domain
and vice versa.

Dy, Dy Discriminators for real and simulated domains.

Leye, LGaN Cycle consistency loss and Generative Adversarial Net-
work loss.

XY Data distributions for simulated and real domains.

A Weighting factor for the cycle consistency loss.

Table 2. Commonly used symbols and definitions
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serve as the natural benchmarks against which we evaluate the performance of emerging
machine learning approaches. Finally, our focus on machine learning methods, exploring
their potential to mitigate the limitations intrinsic to their historical predecessors.

3.1. Statistical method

Statistical or empirical forecasting methods have a rich history in meteorology, serving
as the initial approach to weather prediction before the advent of computational models.
Statistical prediction methodologies serve as the linchpin for data-driven approaches
in meteorological forecasting, focusing on both short-term weather patterns and long-
term climatic changes. These methods typically harness powerful statistical algorithms,
among which Geographically Weighted Regression (GWR) and Spatio-Temporal Kriging
(ST-Kriging) stand out as particularly effective [33,34].

GWR is instrumental in adjusting for spatial heterogeneity, allowing meteorologi-
cal variables to exhibit different relationships depending on their geographical context.
ST-Kriging extends this spatial consideration to include the temporal domain, thereby cap-
turing variations in weather and climate that are both location-specific and time-sensitive.
Such spatio-temporal modeling is especially pertinent in a rapidly changing environment,
where traditional stationary models often fail to capture the dynamism inherent in meteo-
rological systems.

Forecasting using inter-annual increments is now a statistically based forecasting
method with better results.The interannual increment of a variable such as precipitation is
calculated as:

Interannual Increment = Valueyear — Valueyear-1

Through meticulous analysis of variables correlating with the inter-annual growth rate of
the predictive variable, five key predictive factors have been identified. A multivariate
linear regression model was developed, employing these selected key predictive factors
to estimate the inter-annual increment for future time units. The estimated inter-annual
increment is subsequently aggregated with the actual variable value from the preceding
year to generate a precise prediction of the total quantity for the current time frame.

However, these statistical models operate on a critical assumption cited in literature
[35,36], which posits that the governing laws influencing past meteorological events are
consistent and thus applicable to future events as well. While this assumption generally
holds for many meteorological phenomena, it confronts limitations when dealing with
intrinsically chaotic systems. The Butterfly Effect serves as a prime example of such chaotic
behavior, where minuscule perturbations in initial conditions can yield dramatically diver-
gent outcomes. This implies that the reliability of statistical models could be compromised
when predicting phenomena susceptible to such chaotic influences.

3.2. Physical Models

Physical models were the predominant method for meteorological forecasting before
the advent of Artifical intelligence (AI) and generally produce more accurate results com-
pared to statistical methods. Physical models are predicated upon a foundational set of
physical principles, including but not limited to Newton’s laws of motion, the laws of
conservation of energy and mass, and the principles of thermodynamics. These governing
equations are commonly expressed in mathematical form, with the Navier-Stokes equa-
tions serving as a quintessential example for describing fluid dynamics. At the core of
these models lies the objective of simulating real-world phenomena in a computational
setting with high fidelity. To solve these intricate equations, high-performance computing
platforms are typically employed, complemented by specialized numerical methods and
techniques such as Computational Fluid Dynamics (CFD) and Finite Element Analysis
(FEA).

In the context of atmospheric science, these physical models are especially pivotal
for Numerical Weather Prediction (NWP) and climate modeling. NWP primarily focuses
on short-to-medium-term weather forecasting, striving for highly accurate meteorological
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predictions within a span of days or weeks. In contrast, climate models concentrate on
long-term changes and predictions, which can span months, years, or even longer time
scales. Owing to their rigorous construction based on physical laws, physical models offer
a high degree of accuracy and reliability, providing researchers with valuable insights into
the underlying mechanisms of weather and climate variations.

As mentioned before, Statistical-based methods can analyze past weather data to make
predictions, but they may often fail to accurately predict future weather trends [37], and
physic-based models, despite being computationally intensive [38], help us understand
atmospheric, oceanic, and terrestrial processes in detail. Recently, machine learning methods
have begun to be applied to the field of meteorology [39], offering new ways to analyze
and predict weather patterns and climate change [40]. Machine learning methods are
increasingly being utilized in meteorology for forecasting. Compared to physical models,
they offer faster predictions, and compared to statistical methods, they provide more
accurate results [41]. Additionally, machine learning can be employed for error correction
and downscaling, further enhancing its applicability in weather and climate predictions.

In the critical fields of weather forecasting and climate prediction, achieving accu-
racy and efficiency is of paramount importance. Traditional methods, while foundational,
inevitably present limitations, creating a compelling need for innovative approaches. Ma-
chine learning has emerged as a promising solution, demonstrating significant potential in
enhancing prediction outcomes.

4. Taxonomy of climate prediction applications.

In this section, we primarily explore the historical trajectory of machine learning
applications within the field of meteorology. We categorize the surveyed methods according
to distinct criteria, facilitating a more lucid understanding for the reader.

4.1. Climate prediction Milestone based on machine-learning.

In this subsection, we surveyed almost 20 methods of machine learning applications
for weather prediction and climate prediction. These methods are representative and
common. We listed them in the following timeline. The journey of machine learning
applications in climate and weather prediction has undergone significant transformations
since its inception.

Climate prediction methods before 2010. The earliest model in this context is the Pre-
cipitation Neural Network prediction model published in 1998. This model serves as an
archetype of Basic DNN Models, leveraging Artificial Neural Networks to offer short-
term forecasts specifically for precipitation in the Middle Atlantic Region. Advancing
to the mid-2000s, the realm of medium-to-long-term predictions saw the introduction of
ML-Enhanced Non-Deep-Learning Models, exemplified by KNN-Downscaling in 2005
and SVM-Downscaling in 2006. These models employed machine learning techniques
like K-Nearest Neighbors and Support Vector Machines, targeting localized precipitation
forecasts in the United States and India, respectively. In 2009, the field welcomed another
medium-to-long-term model, CRF-Downscaling, which used Conditional Random Fields
to predict precipitation in the Mahanadi Basin.

Climate prediction methods from 2010 - 2019. During the period from 2010 to 2019, the
field of weather prediction witnessed significant technological advancements and diversifi-
cation in modeling approaches. Around 2015, a notable shift back to short-term predictions
was observed with the introduction of Hybrid DNN Models, exemplified by ConsvLSTM.
This model integrated Long Short-Term Memory networks with Convolutional Neural
Networks to provide precipitation forecasts specifically for Hong Kong. As the decade
progressed, models became increasingly specialized. For instance, the 2017 Precipitation
Convolution prediction model leveraged Convolutional Neural Networks to focus on
localized precipitation forecasts in Guang Dong, China. The following year saw the emer-
gence of the Stacked-LSTM-Model, which utilized Long Short-Term Memory networks for
temperature predictions in Amsterdam and Eindhoven.
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Figure 1. Applications of machine-learning on climate prediction milestone

Climate prediction methods from 2020. Fast forward to 2020, the CapsNet model, a
Specific Model, leveraged a novel architecture known as Capsule Networks to predict
extreme weather events in North America. By 2021, the scope extended to models like
RF-bias-correction and the Sea-ice prediction model, focusing on medium-to-long-term
predictions. The former employed Random Forests for precipitation forecasts in Iran, while
the latter utilized probabilistic deep learning techniques for forecasts in the Arctic region.
Recent advancements as of 2022 and 2023 incorporate more complex architectures. Cycle
GAN, a 2022 model, utilized Generative Adversarial Networks for global precipitation
prediction. PanGu, a 2023 release, employed 3D Neural Networks for predicting extreme
weather events globally. Another recent model, FourCastNet, leveraged a technique known
as AFNO to predict extreme global events. And in 2022, this year also witnessed the
introduction of DeepESD-Downscaling and CNN-Bias-correction models, both utilizing
Convolutional Neural Networks to predict local temperature scales and perform global
bias correction, respectively.

4.2. Classification of climate prediction methods

To provide a deeper level of understanding regarding the various weather prediction
methods discussed, we have organized them into classifications in Table 3. These classifi-
cations are made according to multiple criteria that encompass Time Scale, Type, Model,
Technique, Name, Region, and Event. This structured approach aims to offer readers an
easy way to compare and contrast different methods, as well as to gain insights into the
specific contexts where each method is most applicable.

do0i:10.20944/preprints202309.1764.v2
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Time Scale Spational scale  Type Model Technology Name Event
AFNO FourCastNet [48] Extreme Events
3D Neural Network PanGu[50]
Temperature& Extreme
Special DNN Models Vision Transformers ClimaX[51]
Event
Global SwinTransformer SwinVRNN][63] Temperature& Precipitation
U-Transformer FuXi[64]
GNN CLCRN [65] Temperature

GraphCast [49]

Extreme Events

Short-term weather prediction Transformer FengWu [66]
ML Single DNNs Model CapsNet [46]
Precipitation Convolution
CNN
prediction [44] Precipitation
Precipitation Neural
Regional ANN
Network prediction [42]
LSTM Stacked-LSTM-Model [45] Temperature
Hybrid DNNs Model LSTM+CNN ConsvLSTM [43]

Precipitation
MetNet [47]

Conditional Generative
Probalistic deep learning Temperature&Precipitation

Forecasting [62]

CNN-Bias-correction Temperature& Extreme
Global CNN
model [61] Event
Single DNN models GAN Cycle GAN [60]
NN Hybrid-GCM-Emulation [54] Precipitation
Medium-to-long-term climate prediction ResDNN NNCAM-emulation [58]
ML DeepESD-Downscaling
CNN Temperature
Enhanced model [59]
Random forest(RF) RF-bias-correction model [56]
Support vector
Regional SVM-Downscaling model [53]
machine(SVM)
Non-Deep-Leamning K-nearest Precipitation
KNN-Downscaling model [52]
Model neighbor(KNN)

Conditional random
CRF-Downscaling model [55]

field(CRF)

Table 3. Classification of models

Time Scale. Models in weather and climate prediction are initially divided based on
their temporal range into ‘Short-term” and "Medium-to-long-term’. Short-term weather
prediction focuses on the state of the atmosphere in the short term, usually the weather
conditions in the next few hours to days; Medium-to-long term climate prediction focuses
on longer time scales, usually the average weather trends over months, years or decades.
Weather forecasts focus on specific weather conditions in the near term, such as temperature,
precipitation, humidity, wind speed and direction; Climate prediction: focuses on long-term
weather patterns and trends, such as seasonal or inter-annual variations in temperature and
precipitation. In the traditional approach, weather forecasting usually utilizes numerical
weather prediction models that predict weather changes in the short term by resolving
the equations of atmospheric dynamics; climate prediction usually utilizes climate models
that incorporate more complex interacting feedback mechanisms and longer-term external
drivers, such as greenhouse gas emissions and changes in solar radiation.

Spatial Scale. Regional meteorology concerns a specified geographic area, such as a
country or a continent, and aims to provide detailed insights into the weather and climate
phenomena within that domain. The finer spatial resolution of regional models allows
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for a more nuanced understanding of local geographical and topographical influences on
weather patterns, which in turn can lead to more accurate forecasts within that particular
area. On the other hand, global meteorology encompasses the entire planet’s atmospheric
conditions, providing a broader yet less detailed view of weather and climate phenomena.
The spatial resolution of global models is generally coarser compared to regional models. As
such, global forecasts might not capture localized weather events as accurately as regional
forecasts. However, global models are crucial for understanding large-scale atmospheric
dynamics and providing the boundary conditions necessary for regional models.

ML and ML-Enhanced Types. We categorize models into ML and ML-Enhanced types. In
ML type, algorithms are directly applied to climate data for pattern recognition or predic-
tive tasks. These algorithms typically operate independently of traditional physical models,
relying instead on data-driven insights garnered from extensive climate datasets. Contrast-
ingly, ML-Enhanced type integrate machine learning techniques into conventional physical
models to optimize or enhance their performance. Fundamentally, these approaches still
rely on physical models for prediction. However, machine learning algorithms serve as aux-
iliary tools for parameter tuning, feature engineering, or addressing specific limitations in
the physical models, thereby improving their overall predictive accuracy and reliability. In
this survey, ML-enhanced was divided into three catalogues: bias correction; down-scaling;
emulation [67].

Model. Within each time scale, models are further categorized by their type. These models
include: Specific Models: These are unique or specialized neural network architectures
developed for particular applications.

Specific DNN Models: Unique or specialized neural network architectures developed for
particular applications.

Hybrid DNN Models: These models use a combination of different neural network architec-
tures, such as LSTM+CNN.

Single DNN Models: These models employ foundational Deep Neural Network architectures
like ANNSs (Artificial Neural Networks), CNNs (Convolutional Neural Networks), and
LSTMs (Long Short-Term Memory networks).

Non-Deep-Learning Models: These models incorporate machine learning techniques that do
not rely on deep learning, such as Random Forests and Support Vector Machines.
Technique. This category specifies the underlying machine learning or deep learning
technique used in a particular model, for example, CNN, LSTM, Random Forest Probalistic
deep learning and GAN.

CNN. A specific type of ANN is the Convolutional Neural Network (CNN), designed to
automatically and adaptively learn spatial hierarchies from data [68]. CNNs comprise three
main types of layers: convolutional, pooling, and fully connected [69]. The convolutional
layer applies various filters to the input data to create feature maps, identifying spatial
hierarchies and patterns. Pooling layers reduce dimensionality, summarizing features in
the previous layer [70]. Fully connected layers then perform classification based on the
high-level features identified [71].CNNs are particularly relevant in meteorology for tasks
like satellite image analysis, with their ability to recognize and extract spatial patterns [72].
Their unique structure allows them to capture local dependencies in the data, making them
robust against shifts and distortions [73].

LSTM. Long Short-Term Memory (LSTM) units, a specialized form of recurrent neural net-
work architecture [43]. Purposefully designed to mitigate the vanishing gradient problem
inherent in traditional RNNs, LSTM units manage the information flow through a series
of gates, namely the input, forget, and output gates. These gates govern the retention,
forgetting, and output of information, allowing LSTMs to effectively capture long-range
dependencies and temporal dynamics in sequential data [43]. In the context of meteorolog-
ical forecasting, the utilization of LSTM contributes to a nuanced understanding of weather
patterns, as it retains relevant historical information and discards irrelevant details over
various time scales [43]. The pioneering design of LSTMs and their ability to deal with
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nonlinear time dependencies have led to their outstanding robustness, adaptability, and
efficiency, making them an essential part of modern predictive models. [43].

Random forest. A technique used to adjust or correct biases in predictive models, particularly
in weather forecasting or climate modeling. Random Forest (RF) is a machine learning
algorithm used for various types of classification and regression tasks. In the context of
bias correction, the Random Forest algorithm would be trained to identify and correct
systematic errors or biases in the predictions made by a primary forecasting model.

Probabilistic deep learning. Probabilistic deep learning models in weather forecasting aim
to provide not just point estimates of meteorological variables but also a measure of
uncertainty associated with the predictions. By leveraging complex neural networks, these
models capture intricate relationships between various features like temperature, humidity,
and wind speed. The probabilistic aspect helps in quantifying the confidence in predictions,
which is crucial for risk assessment and decision-making in weather-sensitive industries.

Generative adversarial networks. Generative Adversarial Networks (GANSs) are a class of
deep learning models composed of two neural networks: a Generator and a Discriminator.
The Generator aims to produce data that closely resembles a genuine data distribution,
while the Discriminator’s role is to distinguish between real and generated data. During
training, these networks engage in a kind of "cat-and-mouse" game, continually adapting
and improving—ultimately with the goal of creating generated data so convincing that the
Discriminator can no longer tell it apart from real data.

Graph Neural Network. Graph Neural Network( GNN ) are designed to work with graph-
structured data, capturing the relationships between connected nodes effectively. They
operate by passing messages or aggregating information from neighbors and then updating
each node’s representation accordingly. This makes GNNs exceptionally good at handling
problems like social network analysis, molecular structure analysis, and recommendation
systems.

Transformer. Transformer consists of an encoder and a decoder, but its most unique feature
is the attention mechanism. This allows the model to weigh the importance of different
parts of the input data, making it very efficient for tasks like text summarization, question
answering, and language generation.

Name. Some models are commonly cited or recognized under a specific name, such as
PanGu or FourCastNet. Some models are named after their technical features.

Event. The type of weather or climatic events that the model aims to forecast is specified
under this category. This could range from generalized weather conditions like temperature
and precipitation to more extreme weather events.

Selection Rationale. In the next section, we will discuss the related reasons. In the short
term, we choose three specific ones(PanGu; GraphCast and FourCastNet) as analysis
targets according to the model type. And we also analyze the MetNet which is a hybrid
DNNs Model. The other hybrid DNNs Model (ConsLSTM) is one part of MetNet. In
the medium-to-long term, we choose the probabilistic deep learning model(Conditional
Generative Forecasting). It has more extensive applicability compared to the other one in
Probabilistic deep learning category. Probabilistic deep learning method is also minority
machine learning method which could be used in medium-to-long-term prediction. In
addition, we also selected three machine learning-enhanced methods for downscaling; bias
correction and emulation. In general, our survey includes established models recognized
for their utility in applying machine learning to meteorological tasks and cutting-edge
complex models viewed from a computer science standpoint as state-of-the-art.

5. Short-term weather forecast

Weather forecasting aims to predict atmospheric phenomena within a short time-
frame, generally ranging from one to three days. This information is crucial for a multitude
of sectors, including agriculture, transportation, and emergency management. Factors
such as precipitation, temperature, and extreme weather events are of particular interest.
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Forecasting methods have evolved over the years, transitioning from traditional numerical
methods to more advanced hybrid and machine-learning models. This section elucidates
the working principles, methodologies, and merits and demerits of traditional numerical
weather prediction models, MetNet, FourCastNet, and PanGu.

5.1. Model Design

Numerical Weather Model. Numerical Weather Prediction (NWP) stands as a cornerstone
methodology in the realm of meteorological forecasting, fundamentally rooted in the
simulation of atmospheric dynamics through intricate physical models. At the core of NWP
lies a set of governing physical equations that encapsulate the holistic behaviour of the
atmosphere:

¢  The Navier-Stokes Equations [74]: Serving as the quintessential descriptors of fluid
motion, these equations delineate the fundamental mechanics underlying atmospheric

flow.
V-v=0 3)

0
p(a;,vhv-Vv) :—Vp+yV2v+pg 4)

¢  The Thermodynamic Equations [75]: These equations intricately interrelate the tem-
perature, pressure, and humidity within the atmospheric matrix, offering insights into
the state and transitions of atmospheric energy.

3—6 + V - (pv) = 0 (Continuity equation) )
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The model is fundamentally based on a set of time-dependent partial differential equations,
which require sophisticated numerical techniques for solving. The resolution of these
equations enables the simulation of the inherently dynamic atmosphere, serving as the
cornerstone for accurate and predictive meteorological insights. Within this overarching
framework, a suite of integral components is embedded to address specific physical inter-
actions that occur at different resolutions, such as cloud formation, radiation, convection,
boundary layers, and surface interactions. Each of these components serves a pivotal role:

*  The Cloud Microphysics Parameterization Scheme is instrumental for simulating
the life cycles of cloud droplets and ice crystals, thereby affecting [78,79] and the
atmospheric energy balance.

*  Shortwave and Longwave Radiation Transfer Equations elucidate the absorption,
scattering, and emission of both solar and terrestrial radiation, which in turn influence
atmospheric temperature and dynamics.

e  Empirical or Semi-empirical Convection Parameterization Schemes simulate vertical
atmospheric motions initiated by local instabilities, facilitating the capture of weather
phenomena like thunderstorms.

*  Boundary-Layer Dynamics concentrate on the exchanges of momentum, energy, and
matter between the Earth’s surface and the atmosphere, which are crucial for the
accurate representation of surface conditions in the model.

* Land Surface and Soil/Ocean Interaction Modules simulate the exchange of energy,
moisture, and momentum between the surface and the atmosphere, while also ac-
counting for terrestrial and aquatic influences on atmospheric conditions.
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These components are tightly coupled with the core atmospheric dynamics equations,
collectively constituting a comprehensive, multi-scale framework. This intricate integration
allows for the simulation of the complex dynamical evolution inherent to the atmosphere,
contributing to more reliable and precise weather forecasting.

In Numerical Weather Prediction (NWP), a critical tool for atmospheric dynamics fore-

casting, the process begins with data assimilation, where observational data is integrated
into the model to reflect current conditions. This is followed by numerical integration,
where governing equations are meticulously solved to simulate atmospheric changes over
time. However, certain phenomena, like microphysics of clouds, cannot be directly resolved
and are accounted for through parameterization to approximate their aggregate effects.
Finally, post-processing methods are used to reconcile potential discrepancies between
model predictions and real-world observations, ensuring accurate and reliable forecasts.
This comprehensive process captures the complexity of weather systems and serves as a
robust method for weather prediction [80]. While the sophistication of NWP allows for
detailed simulations of global atmospheric states, one cannot overlook the intensive com-
putational requirements of such models. Even with the formidable processing capabilities
of contemporary supercomputers, a ten-day forecast simulation can necessitate several
hours of computational engagement.
MetNet. MetNet [47] is a state-of-the-art weather forecasting model that integrates the
functionality of CNN, LSTM, and auto-encoder units. The CNN component conducts a
multi-scale spatial analysis, extracting and abstracting meteorological patterns across vari-
ous spatial resolutions. In parallel, the LSTM component captures temporal dependencies
within the meteorological data, providing an in-depth understanding of weather transitions
over time [43]. Autoencoders are mainly used in weather prediction for data preprocessing,
feature engineering and dimensionality reduction to assist more complex prediction models
in making more accurate and efficient predictions.This combined architecture permits a
dynamic and robust framework that can adaptively focus on key features in both spatial
and temporal dimensions, guided by an embedded attention mechanism [81,82].

MetNet is consist of three core components: Spatial Downsampler, Temporal Encoder
(ConvLSTM), and Spatial Aggregator. In this architecture, the Spatial Downsampler acts
as an efficient encoder that specializes in transforming complex, high-dimensional raw
data into a more compact, low-dimensional, information-intensive form. This process
helps in feature extraction and data compression. The Temporal Encoder, using the Con-
vLSTM (Convolutional Long Short-Term Memory) model, is responsible for processing
this dimensionality-reduced data in the temporal dimension. One of the major highlights
of ConvLSTM is that it combines the advantages of CNNs and LSTM. The advantage of
ConvLSTM is that it combines the advantages of CNN and LSTM, and is able to consider
the localization of space in time series analysis simultaneously, increasing the model’s
ability to perceive complex time and space dependencies. The Spatial Aggregator plays
the role of an optimized, high-level decoder. Rather than simply recovering the raw data
from its compressed form, it performs deeper aggregation and interpretation of global and
local information through a series of axial self-attentive blocks, thus enabling the model to
make more accurate weather predictions. These three components work in concert with
each other to form a powerful and flexible forecasting model that is particularly well suited
to handle meteorological data with a high degree of spatio-temporal complexity.

The operational workflow of MetNet begins with the preprocessing of atmospheric
input data, such as satellite imagery and radar information [83]. Spatial features are then
discerned through the CNN layers, while temporal correlations are decoded via the LSTM
units. This information is synthesized, with the attention mechanism strategically empha-
sizing critical regions and timeframes, leading to short-term weather forecasts ranging
from 2 to 12 hours [82]. MetNet’s strength lies in its precise and adaptive meteorological
predictions, blending spatial and temporal intricacies, and thus offers an indispensable tool
for refined weather analysis [47].
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Figure 2. MetNet Structure

FourCastNet. In response to the escalating challenges posed by global climate changes
and the increasing frequency of extreme weather phenomena, the demand for precise and
prompt weather forecasting has surged. High-resolution weather models serve as pivotal
instruments in addressing this exigency, offering the ability to capture finer meteorological
features, thereby rendering more accurate predictions [84,85]. Against this backdrop,
FourCastNet [48] has been conceived, employing ERA5, an atmospheric reanalysis dataset.
This dataset is the outcome of a Bayesian estimation process known as data assimilation,
fusing observational results with numerical models” output [87]. FourCastNet leverages
the Adaptive Fourier Neural Operator (AFNO), uniquely crafted for high-resolution inputs,
incorporating several significant strides within the domain of deep learning.

The essence of AFNO resides in its symbiotic fusion of the Fourier Neural Operator
(FNO) learning strategy with the self-attention mechanism intrinsic to Vision Transformers
(ViT) [88]. While FNO, through Fourier transforms, adeptly processes periodic data and has
proven efficacy in modeling complex systems of partial differential equations, the computa-
tional complexity for high-resolution inputs is prohibitive. Consequently, AFNO deploys
the Fast Fourier Transform (FFT) in the Fourier domain, facilitating continuous global
convolution. This innovation reduces the complexity of spatial mixing to O(N log N), thus
rendering it suitable for high-resolution data [89]. The workflow of AFNO encompasses
data preprocessing, feature extraction with FNO, feature processing with ViT, spatial mix-
ing for feature fusion, culminating in prediction output, representing future meteorological
conditions such as temperature, pressure, and humidity.

Tailoring AFNO for weather prediction, FourCastNet introduces specific adaptations.
Given its distinct application scenario—predicting atmospheric variables utilizing the ERA5
dataset—a dedicated precipitation model is integrated into FourCastNet, predicting six-
hour accumulated total precipitation [87]. Moreover, the training paradigm of FourCastNet
includes both pre-training and fine-tuning stages. The former learns the mapping from
weather state at one time point to the next, while the latter forecasts two consecutive
time steps. The advantages of FourCastNet are manifested in its unparalleled speed—
approximately 45,000 times swifter than conventional NWP models—and remarkable
energy efficiency—consuming about 12,000 times less energy compared to the IFS model
[88]. The model’s architectural innovations and its efficient utilization of computational
resources position it at the forefront of high-resolution weather modeling.
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Figure 3. (a) The multi-layer transformer architecture (b) two-step fine-tuning (c) backbone model (d)
forecast model in free-running autoregressive inference mode.

GraphCast. GraphCast represents a notable advance in weather forecasting, melding
machine learning with complex dynamical system modelling to pave the way for more
accurate and efficient predictions. It leverages machine learning to model complex dy-
namical systems and showcases the potential of machine learning in this domain. It’s an
autoregressive model, built upon graph neural networks (GNNs) and a novel multi-scale
mesh representation, trained on historical weather data from the European Centre for
Medium-Range Weather Forecasts (ECMWEF)’s ERA5 reanalysis archive.

The structure of GraphCast employs an "encode-process-decode” configuration utilizing
GNNss to autoregressively generate forecast trajectories. In detail:

*  Encoder: The encoder component maps the local region of the input data (on the origi-
nal latitude-longitude grid) onto the nodes of the multigrid graphical representation.
It maps two consecutive input frames of the latitude-longitude input grid, with nu-
merous variables per grid point, into a multi-scale internal mesh representation. This
mapping process helps the model better capture and understand spatial dependencies
in the data, allowing for more accurate predictions of future weather conditions.

*  Processor: This part performs several rounds of message-passing on the multi-mesh,
where the edges can span short or long ranges, facilitating efficient communication
without necessitating an explicit hierarchy. More specifically, the section uses a multi-
mesh graph representation. It refers to a special graph structure that is able to represent
the spatial structure of the Earth’s surface in an efficient way. In a multi-mesh graph
representation, nodes may represent specific regions of the Earth’s surface, while
edges may represent spatial relationships between these regions. In this way, models
can capture spatial dependencies on a global scale and are able to utilize the power of
GNNs;s to analyze and predict weather changes.
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Figure 4. (a) The encoder component of the GraphCast architecture maps the input local regions
(green boxes) to the nodes of the multigrid graph.(b) The processor component uses learned message
passing to update each multigrid node. (c) The decoder component maps the processed multigrid
features (purple nodes) to the grid representation. (d) A multi-scale grid set

*  Decoder: It then maps the multi-mesh representation back to the latitude-longitude
grid as a prediction for the next time step.

The workflow of GraphCast begins with the input of weather state(s) defined on a high-
resolution latitude-longitude-pressure-levels grid. The encoder processes these inputs
into a multi-scale internal mesh representation, which then undergoes many rounds of
message-passing in the processor to capture spatio-temporal relationships in the weather
data. Finally, the decoder translates the multi-mesh representation back to the latitude-
longitude grid to generate predictions for subsequent time steps. It is worth noting that, as
shown in the d part, due to the multi-scale mesh mapping property, the model is able to
capture both localized weather features on a high-resolution mesh and large-scale weather
features on a low-resolution mesh at the same time.

In essence, GraphCast encapsulates a pioneering stride in enhancing weather forecast-
ing accuracy and efficiency through the amalgamation of machine learning and complex
dynamical system modelling. It uniquely employs an autoregressive model structure un-
derpinned by graph neural networks and a multi-scale mesh representation. The model’s
"encode-process-decode" configuration, executed through a novel multi-mesh graphical
representation, adeptly captures spatial dependencies and facilitates global-scale weather
prediction. By processing high-resolution weather data inputs through a systematic work-
flow of encoding, message-passing, and decoding, GraphCast not only generates precise
weather predictions for subsequent time intervals but also exemplifies the profound poten-
tial of machine learning in advancing meteorological forecasting methodologies.

PanGu. In the rapidly evolving field of meteorological forecasting, PanGu emerges as
a pioneering model, predicated on a three-dimensional neural network that transcends
traditional boundaries of latitude and longitude. Recognizing the intrinsic relationship
between meteorological data and atmospheric pressure, PanGu incorporates a neural
network structure that accounts for altitude in addition to latitude and longitude. The
initiation of the PanGu model’s process involves Block Embedding, where the dataset is
parsed into smaller subsets or blocks. This operation not only mitigates spatial resolution
and complexity but also facilitates the subsequent data management within the network.

Following block embedding, the PanGu model integrates the data blocks into a 3D
cube through a process known as 3D Cube Fusion, thereby enabling data processing within
a tri-dimensional space. Swin Encoding [90], a specialized Transformer encoder utilized in
the deep learning spectrum, applies a self-attention mechanism for data comprehension
and processing. This encoder, akin to the Autoencoder, excels in extracting and encoding
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essential information from the dataset. The ensuing phases include Decoding, which strives
to unearth salient information, and Output Splitting, which partitions data into atmospheric
and surface variables. Finally, Resolution Restoration reinstates the data to its original
spatial resolution, making it amenable for further scrutiny and interpretation.

PanGu [50]’s innovative 3D neural network architecture [91] offers a groundbreaking
perspective for integrating meteorological data, and its suitability for three-dimensional
data is distinctly pronounced. Moreover, PanGu introduces a hierarchical time-aggregation
strategy, an advancement that ensures the network with the maximum lead time is con-
sistently invoked, thereby curtailing errors. In juxtaposition with running a model like
FourCastNet [48] multiple times, which may accrue errors, this approach exhibits superior-
ity in both speed and precision. Collectively, these novel attributes and methodological
advancements position PanGu as a cutting-edge tool in the domain of high-resolution
weather modeling, promising transformative potential in weather analysis and forecasting.
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Figure 5. Network training and inference strategies. a. 3DEST architecture. b. Hierarchical temporal
aggregation. We use FM1, FM3, FM6 and FM24 to indicate the forecast models with lead times being
1h,3h, 6hor24h, respectively.

MetNet, FourCastNet, GraphCast and PanGu are state-of-the-art methods in the field of
weather prediction, and they share some architectural similarities that can indicate converg-
ing trends in this field. All four models initiate the process by embedding or downsampling
the input data. FourCastNet uses AFNO, MetNet employs a Spatial Downsampler, and PanGu
uses Block Embedding to manage the spatial resolution and complexity of the datasets, while
GraphCast maps the input data from the original latitude-longitude grid into a multi-scale
internal mesh representation. Spatio-temporal coding is an integral part of all networks;
FourCastNet uses pre-training and fine-tuning phases to deal with temporal dependencies,
MetNet uses ConvLSTM, and PanGu introduces a hierarchical temporal aggregation strategy
to manage temporal correlations in the data, while GraphCast employs GNNs to capture
and address spatio-temporal dependencies in weather data. Each model employs a special-
ized approach to understand the spatial relationships within the data. FourCastNet uses
AFNO along with Vision Transformers, MetNet utilizes Spatial Aggregator blocks, and PanGu
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integrates data into a 3D cube via 3D Cube Fusion while GraphCast translates data into
multi-scale internal mesh . Both FourCastNet and PanGu employ self-attention mechanisms,
derived from the Transformer architecture, for better capturing long-range dependencies in
the data. FourCastNet combines FNO with ViT, and PanGu uses Swin Encoding.

5.2. Result Analysis

MetNet: According to MetNet experiment part,at the threshold of 1 millimeter/hour
precipitation rate, both MetNet and NWP predictions have high similarity to ground condi-
tions.Evidently, MetNet exhibits a forecasting capability that is commensurate with NWP,
distinguished by an accelerated computational proficiency that generally surpasses NWP’s
processing speed.

FourCastNet: According to FourCastNet experiment, FourCastNet can predict wind speed
96 hours in advance, with extremely high fidelity and accurate fine-scale features. In the
experiment, the FourCastNet forecast accurately captured the formation and path of the
super typhoon Shanzhu, as well as its intensity and trajectory over four days. It also
has a high resolution and demonstrates excellent skills in capturing small-scale features.
Particularly noteworthy is the performance of FourcastNet, in forecasting meteorological
phenomena within a 48-hour horizon, has transcended the predictive accuracy intrinsic to
conventional numerical weather forecasting methodologies. This constitutes a significant
stride in enhancing the veracity and responsiveness of short-term meteorological projec-
tions.

GraphCast: According to the GraphCast experiment, GraphCast demonstrates superior
performance in tracking weather patterns, substantially outperforming NWP in various
forecasting horizons, notably from 18 hours to 4.75 days, as depicted in Figure 3b. It excels
in predicting atmospheric river behaviours and extreme climatic events, with significant
improvement seen in longer-term forecasts of 5 and 10 days. The model’s prowess extends
to accurately capturing extreme heat and cold anomalies, showcasing not just its forecast-
ing capability, but a nuanced understanding of meteorological dynamics, thereby holding
promise for more precise weather predictions with contemporary data.

PanGu: According to PanGu experiment, PanGu can almost accurately predict typhoon
trajectories during the tracking of strong tropical cyclones Kong Lei and Yu Tu, and is 48
hours faster than NWP.The advent of 3D Net further heralds a momentous advancement
in weather prediction technology. This cutting-edge model outperforms numerical weather
prediction models by a substantial margin and possesses the unprecedented ability to repli-
cate reality with exceptional fidelity. It's not merely a forecasting tool but a near-precise
reflection of meteorological dynamics, allowing for a nearly flawless reconstruction of
real-world weather scenarios.

In table 4, "Forecast-timeliness" represents the forecasting horizon of each model,
indicating their ability to predict weather up to certain future days. In meteorology, z500
refers to the height at the 500 hPa isobaric level, critical for understanding atmospheric
structures and weather systems. Model evaluation often employs RMSE (Root Mean
Square Error) and ACC (Anomaly Correlation Coefficient) to gauge prediction accuracy
and correlation with actual observations. Lower RMSE and higher ACC values indicate
better model performance. Among GraphCast, PanGu, and IFS, PanGu exhibits the highest
accuracy with an ACC of 0.872 for a 7-day forecast timeliness. GraphCast, while having a
longer forecast timeliness of 9.75 days, has an ACC of 0.825 and an RMSE of 460, showing
a balance between a longer forecasting duration and decent accuracy. Apart from this,
Introducing GPU data and prediction speed can provide crucial reference information for
model selection, especially in scenarios with limited resources or where rapid responses
are required. This aids in finding a balance between efficiency and effectiveness, offering
support for successful forecasting.
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Model Forecast- 7500 7500 Training- Forecasting-
timeliness RMSE(7| ACC(7 | complexity speed
days) days)

MetNet [47] 8 hours - - 256 Google- | Fewer seconds

TPU-

accelerators(16-

days-training)
FourCastNet [48] | 7 days 595 0.762 4 A100-GPU 24-hour forecast

for 100 members
in 7 seconds

GraphCast [49] 9.75 days 460 0.825 32 Cloud-TPU- | 10-days-
V4(21-days- predication
training) within 1 minute

PanGu [50] 7 days 510 0.872 192 V100- | 24-hours-
GPU(16-days- | global-
training) prediction

in 1.4s for each
GPU
IFS [92] 8.5 days 439 0.85 - -

Table 4. Short-term weather forecast model result comparison

6. Medium-to-long-term climate prediction

Medium to long-term climate predictions are usually measured in decadal quarters.
In the domain of medium to long-term climate forecasting, the focal point extends beyond
immediate meteorological events to embrace broader, macroscopic elements such as long-
term climate change trends, average temperature fluctuations, and mean precipitation
levels. This orientation is critical for a wide array of sectors, spanning from environmental
policy planning to infrastructure development and agricultural projections. Over time,
the forecasting methodologies have experienced significant advancements, evolving from
conventional climate models to cutting-edge computational methods such as Probabilistic
Deep Learning for Climate Forecasting (CGF), Machine Learning for Model Downscaling
(DeepESD), and Machine Learning for Result Bias Correction (CycleGAN).

6.1. Model Design

Climate Model. Climate models, consisting of fundamental atmospheric dynamics and
thermodynamics equations, focus on simulating Earth’s long-term climate system [93].
Unlike NWP which targets short-term weather patterns, climate models address broader
climatic trends. These models encompass Global Climate Models (GCMs), which provide a
global perspective but often at a lower resolution, and Regional Climate Models (RCMs),
designed for detailed regional analysis [94]. The main emphasis is on the average state
and variations rather than transient weather events. The workflow of climate modelling
begins with initialization by setting boundary conditions, possibly involving centuries
of historical data. Numerical integration follows, using the basic equations to model the
long-term evolution of the climate system [95]. Parameterization techniques are employed
to represent sub-grid scale processes like cloud formation and vegetation feedback. The
model’s performance and uncertainties are then analyzed and validated by comparing
them with observational data or other model results [96]. The advantages of climate models
lie in their ability to simulate complex climate systems, providing forecasts and insights
into future climate changes, thereby informing policy and adaptation strategies. However,
they also present challenges such as high computational demands, sensitivity to boundary
conditions, and potential uncertainties introduced through parameterization schemes. The
distinction between GCMs and RCMs, and their integration in understanding both global
and regional climate phenomena, underscores the sophistication and indispensable role of
these models in advancing meteorological studies [97].


https://doi.org/10.20944/preprints202309.1764.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 October 2023 doi:10.20944/preprints202309.1764.v2

23 of 38

Conditional Generative Forecasting [62]. In the intricate arena of medium to long-term
seasonal climate prediction, the scarcity of substantial datasets since 1979 poses a significant
constraint on the rigorous training of complex models like CNNs, thus limiting their
predictive efficacy. To navigate this challenge, a pioneering approach of transfer learning
has been embraced, leveraging the simulated climate data drawn from CMIP5 (Coupled
Model Intercomparison Project Phase 5) [98]to enhance modeling efficiency and accuracy.
The process begins with a pre-training phase, where the CNN is enriched with CMIP5
data to comprehend essential climatic patterns and relationships. This foundational insight
then transfers seamlessly to observational data without resetting the model parameters,
ensuring a continuous learning trajectory that marries simulated wisdom with empirical
climate dynamics. The methodology culminates in a fine-tuning phase, during which the
model undergoes subtle refinements to align more closely with the real-world intricacies
of medium to long-term ENSO forecasting [99]. This innovative strategy demonstrates
the transformative power of transfer learning in addressing the formidable challenges
associated with limited sample sizes in medium to long-term climate science.

Leveraging 52,201 years of climate simulation data from CMIP5/CMIP6, which serves
to increase the sample size, the method for medium-term forecasting employs CNNs and
Temporal Convolutional Neural Networks (TCNNs) to extract essential features from high-
dimensional geospatial data. This feature extraction lays the foundation for probabilistic
deep learning, which determines an approximate distribution of the target variables, cap-
turing the data’s structure and uncertainty [100]. The model’s parameters are optimized
through maximizing the Evidence Lower Bound (ELBO) within the variational inference
framework. The integration of deep learning techniques with probabilistic modeling en-
sures accuracy, robustness to sparse data, and flexibility in assumptions, enhancing the
precision of forecasts and offering valuable insights into confidence levels and expert
knowledge integration.

Leveraging advanced techniques in variational inference and neural networks, the
method described seeks to approximate the complex distribution p(Y | X, M), where Y is
the target variable, and X and M are predictor and GCM index information, respectively.
The process is outlined as follows:

1. Problem Definition: The goal is to approximate p(Y | X, M), a task challenged by
high-dimensional geospatial data, data inhomogeneity, and a large dataset.
2. Model Specification:

*  Random Variable z: A latent variable with a fixed standard Gaussian distribution.

e Parametric Functions pg, g4, py: Neural networks for transforming z and approx-
imating target and posterior distributions.

*  Objective Function: Maximization of the Evidence Lower Bound (ELBO).

3. Training Procedure:

e Initialize: Define random variable z ~ N(0,1) [101] [102] [103]
parametric functions py(z, X, M),q¢(z | X, Y, M), py(Y | X, M,z).
*  Training Objective (Maximize ELBO) [104]: The ELBO is defined as:

ELBO = E:~y, (log py(Y | X, M, z)) — Dxr(4glp(z | X, M)) = Dx1(q¢llp(z | X, Y, M))
8)
with terms for reconstruction, regularization, and residual error.
*  Optimization: Utilize variational inference, Monte Carlo reparameterization, and
Gaussian assumptions.

4. Forecasting: Generate forecasts by sampling p(z | X, M), the likelihood of py, and
using the mean of py for an average estimate.
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Figure 6. Conditonal Generative Forecasting (CGF) model.

This method embodies a rigorous approach to approximating complex distributions,
bridging deep learning and probabilistic modeling to enhance forecasting accuracy and
insights.

ELBO(A) = E,(,|x)[log p(x,z) — log q(z|x)] (Evidence Lower Bound) )

In summary, the combination of deep learning and probabilistic insights presents a
unique and potent method for spatial predictive analytics. The approach is marked by scal-
ability, flexibility, and an ability to learn complex spatial features, even though challenges
persist such as intrinsic complexity in computational modeling and the requirement for
profound statistical and computer science background. Its potential in handling large data
settings and adapting to varying scenarios highlights its promising applicability in modern
spatial predictive analytics, representing an advanced tool in the arena of seasonal cli-
mate prediction. Cycle-Consistent Generative Adversarial Networks. Cycle-Consistent
Generative Adversarial Networks (CycleGANSs) have been ingeniously applied to the
bias correction of high-resolution Earth System Model (ESM) precipitation fields, such as
GFDL-ESM4 [105]. This model includes two generators responsible for translating between
simulated and real domains, and two discriminators to differentiate between generated
and real observations. A key component of this approach is the cycle consistency loss,
ensuring a reliable translation between domains, coupled with a constraint to maintain
global precipitation values for physical consistency. By framing bias correction as an image-
to-image translation task, CycleGANs have significantly improved spatial patterns and
distributions in climate projections. The model’s utilization of spatial spectral densities and
fractal dimension measurements further emphasizes its spatial context-awareness, making
it a groundbreaking technique in the field of climate science. CycleGAN model consists of
two generators and two discriminators along with a cycle consistency loss:

*  Two Generators: The CycleGAN model includes two generators. Generator G learns
the mapping from the simulated domain to the real domain, and generator F learns
the mapping from the real domain to the simulated domain [106].

e Two Discriminators: There are two discriminators, one for the real domain and one for
the simulated domain. Discriminator D, encourages generator G to generate samples
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that look similar to samples in the real domain, and discriminator D, encourages
generator F to generate samples that look similar to samples in the simulated domain.
*  Cycle Consistency Loss: To ensure that the mappings are consistent, the model enforces
the following condition through a cycle consistency loss: if a sample is mapped from
the simulated domain to the real domain and then mapped back to the simulated
domain, it should get a sample similar to the original simulated sample. Similarly, if a
sample is mapped from the real domain to the simulated domain and then mapped
back to the real domain, it should get a sample similar to the original real sample.

ﬁcyC(G/F) = Exwpdata(x)[HF(G(x)) - xlll] +Ey~pdata(y)H|G(F(y)) _ylll] (10)

*  Training Process: The model is trained to learn the mapping between these two domains
by minimizing the adversarial loss and cycle consistency loss between the generators
and discriminators.

Lgen(G, F) = Loan(G, Dy, X, Y) + Loan(F, Dy, Y, X) + ALy (G, F)  (11)

*  Application to Prediction: Once trained, these mappings can be used for various tasks,
such as transforming simulated precipitation data into forecasts that resemble ob-
served data.

The bidirectional mapping strategy of Cycle-Consistent Generative Adversarial Net-
works (CycleGANSs) permits the exploration and learning of complex transformation
relationships between two domains, without reliance on paired training samples. This
attribute holds profound significance, especially in scenarios where only unlabeled data are
available for training. In the specific application within climate science, this characteristic
of CycleGAN enables precise capturing and modeling of the subtle relationships between
real and simulated precipitation data. Through this unique bidirectional mapping, the
model not only enhances the understanding of climatic phenomena but also improves
the predictive accuracy of future precipitation trends. This provides a novel, data-driven
methodology for climate prediction and analysis, contributing to the ever-expanding field
of computational climate science.
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DeepESD. Traditional GCMs, while proficient in simulating large-scale global climatic
dynamics [107,108], exhibit intrinsic limitations in representing finer spatial scales and
specific regional characteristics. This inadequacy manifests as a pronounced resolution gap
at localized scales, restricting the applicability of GCMs in detailed regional climate studies
[109,110].

In stark contrast, the utilization of CNNs symbolizes a significant breakthrough [111].
Structurally characterized by hierarchical convolutional layers, CNNs possess the unique
ability to articulate complex multi-scale spatial features across disparate scales, commencing
from global coarse-grained characteristics and progressively refining to capture intricate
regional details. An exemplar implementation of this approach was demonstrated by
Bafio-Medina et al. [112], wherein a CNN comprised three convolutional layers with
spatial kernels of varying counts (50, 25, and 10 respectively). The transformation process
began with the recalibration of ERA-Interim reanalysis data to a 2° regular grid, elevating
it to 0.5° [113-115]. This configuration allowed the CNN to translate global atmospheric
patterns into high-resolution regional specificity [116,117].

The nuanced translation from global to regional scales, achieved through sequential
convolutional layers, not only amplifies the spatial resolution but also retains the contextual
relevance of climatic variables [118,119]. The first convolutional layer captured global
coarse-grained features, with subsequent layers incrementally refining these into nuanced
regional characteristics. By the terminal layer, the CNN had effectively distilled complex
atmospheric dynamics into a precise high-resolution grid [120,121].

This enhancement fosters a more robust understanding of regional climatic processes,

ushering in an era of precision and flexibility in climate modeling. The deployment of
this technology affirms a pivotal advancement in the field, opening new possibilities for
more granulated, precise, and comprehensive examination of climatic processes and future
scenarios [122-124]. The introduction of CNNs thus represents a transformative approach
to bridging the resolution gap inherent to traditional GCMs, with substantial implications
for future climate analysis and scenario planning.
NNCAM. The design and implementation of the Neural Network Community Atmosphere
Model (NNCAM) are architected to leverage advancements in machine learning for im-
proved atmospheric simulations. The architecture is a nuanced blend of traditional General
Circulation Models (GCMs), specifically the Super-Parameterized Community Atmosphere
Model (SPCAM), and cutting-edge machine learning techniques like Residual Deep Neural
Networks (ResDNNs).

*  Reference Model: SPCAM. SPCAM serves as the foundational GCM and is embedded
with Cloud-Resolving Models (CRMs) to simulate microscale atmospheric processes
like cloud formation and convection. SPCAM is employed to generate "target sim-
ulation data,” which serves as the training baseline for the neural networks. The
use of CRMs is inspired by recent advancements in data science, demonstrating that
machine learning parameterizations can potentially outperform traditional methods
in simulating convective and cloud processes.

. Neural Networks: ResDNNs. ResDNNS, a specialized form of deep neural networks,
are employed for their ability to approximate complex, nonlinear relationships. The
network comprises multiple residual blocks, each containing two fully connected
layers with Rectified Linear Unit (ReLU) activations. ResDNNs are designed to
address the vanishing and exploding gradient problems in deep networks through
residual connections, offering a stable and effective gradient propagation mechanism.
This makes them well-suited for capturing the complex and nonlinear nature of
atmospheric processes.

¢  Subgrid-Scale Physical Simulator. Traditional parameterizations often employ sim-
plified equations to model subgrid-scale processes, which might lack accuracy. In
contrast, the ResDNNs are organized into a subgrid-scale physical simulator that
operates independently within each model grid cell. This simulator takes atmospheric
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states as inputs and outputs physical quantities at the subgrid scale, such as cloud
fraction and precipitation rate.

In the NNCAM model, the core workflow is divided into several key steps to achieve
efficient and accurate climate simulations. First, the dynamic core, which serves as the base
component of the model, is responsible for solving the underlying hydrodynamic equations
and calculating the current climate state, e.g., temperature, pressure, and humidity, as well
as the environmental forcings, e.g., wind and solar radiation. These calculations are then
transmitted to the NN-GCM coupler. Upon receiving these data, the coupler further passes
them to the neural network parameterization module. This module utilizes pre-trained
neural networks, specifically ResDNNSs, for faster and more accurate parameterization
of the climate. Upon completion of the predictions, these results are fed back to the host
GCM, i.e., NNCAM.The host GCM then uses the predictions generated by these neural
networks to update the climate state in the model, and based on these updates, performs
the simulation at the next time step.

Overall, the host GCM, as the core of the whole simulation, is not only responsible for
the basic climate simulation, but also efficiently interacts with the dynamic core and neural
network parameterization modules to achieve higher simulation accuracy and computa-
tional efficiency. This hierarchical architecture ensures both computational efficiency and
high simulation fidelity. It allows for seamless integration and synchronization of the model
states and predictions, thereby enabling continuous and efficient operation of NNCAM.
The proposed framework represents a significant stride in the realm of atmospheric science,
offering a harmonious integration of machine learning and physical simulations to achieve
unprecedented accuracy and computational efficiency.

CGF, DeepESD, CycleGAN are very different in their uses and implementations, but
there are also some levels of similarity. All three approaches focus on mapping from one
data distribution to another. And, they focus more on the mechanisms of climate change
than previous models for weather forecasting. CycleGAN specifically emphasizes the
importance of not only mapping from distribution A to B, but also the inverse mapping
capability from B to A, which is to some extent what CGF and DeepESD are concerned
with. NNCAM realizes the mapping from physical parameterization to machine learning
parameterization. This mapping can be viewed as a functional mapping that replaces
parameterized functions in the physical process with functions learned and inferred by the
machine learning model.

6.2. Result Analysis

CGEF: In the utilization of deep probabilistic machine learning techniques, the figure com-
pares the performance of the CGF model using both simulated samples and actual data
against the traditional climate model, Cancm4. The findings illustrate that our model
outperforms the conventional climate modeling approach in terms of accuracy, irrespective
of the employment of simulated or real data sets. This distinction emphasizes the enhanced
predictive capability of our method, and underlines its potential superiority in handling
complex meteorological phenomena.

CycleGANSs: In the context of long-term climate estimation, the application of deep learn-
ing for model correction has yielded promising results. As illustrated in the accompanying
figure, the diagram delineates the mean absolute errors of different models relative to
the W5E5v2 baseline facts. Among these, the error correction technique utilizing Gen-
erative Adversarial Networks (GANSs) in conjunction with the ISIMIP3BASD physical
model has demonstrated the lowest discrepancy. This evidence underscores the efficacy
of sophisticated deep-learning methodologies in enhancing the precision of long-term
climate estimations, thereby reinforcing their potential utility in climatological research
and forecasting applications.

DeepESD: In the conducted study, deep learning has been employed to enhance resolution,
resulting in a model referred to as DeepESD. The following figure portrays the Probability
Density Functions (PDFs) of precipitation and temperature for the historical period from
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1979 to 2005, as expressed by the General Circulation Model (GCM) in red, the Regional
Climate Model (RCM) in blue, and DeepESD in green. These are contextualized across
regions such as the Alps, the Iberian Peninsula, and Eastern Europe as defined by the
PRUDENCE area.In the diagram, solid lines represent the overall mean, while the shaded
region includes two standard deviations. Dashed lines depict the distribution mean of
each PDF. A clear observation from the graph illustrates that DeepESD maintains a higher
consistency with observed data in comparison to the other models.

NNCAM: NNCAM has demonstrated proficient simulation of strong precipitation centers
across maritime continental tropical regions, Asian monsoon areas, South America, and the
Caribbean. The model maintains the spatial pattern and global average of precipitation
over the subsequent 5 years in its simulation, showcasing its long-term stability. Overall, in
terms of the spatial distribution of multi-annual summer precipitation, NNCAM results
are closer to the standard values compared to those from CAMS5, with smaller root mean
square errors and global average deviations. Additionally, NNCAM operates at a speed
that is 30 times faster than traditional models, marking a significant stride in enhancing
computational efficiency.

In table 5, MAE is a metric commonly used to measure the magnitude of forecast errors. It

Name Categories Metrics ESM This model
CycleGAN [60] | Bias correction | MAE 0.241 0.068
DeepESD [59] | Downscaling | Euclidean Distance | 0.5 0.03
to Observations in
PDF
CGEF[62] Prediction ACC 0.31 0.4
NNCAM [58] Emulation Speed 1 30 times speed-up

Table 5. Medium-to-long term climate prediction model result comparison

calculates the average of the absolute errors between the actual and predicted values. This
metric was selected because it provides a clear, intuitive way to understand the accuracy of
model predictions. A low MAE value indicates better prediction accuracy, while a high
MAE value indicates a larger prediction error. The Euclidean Distance to Observations
in the Probability Density Function (PDF) is utilized to evaluate the performance of the
model by comparing the distance difference in the PDFs between the predicted and actual
observed data. This metric was selected because it provides a means of quantifying how
well a model’s predicted distribution aligns with the actual observed distribution, enabling
the evaluation of model performance in complex systems, particularly when dealing with
systems that possess inherent uncertainty and variability. While these four methods address
different problems and thus a direct comparison is not feasible in this study;, it is evident
that they all exhibit significant improvements compared to traditional earth system models.

From the results, it can be discerned that although the utilization of machine learning
has significantly diminished in medium-to-long-term climate forecasting, our findings
demonstrate that by judiciously addressing the challenge of scarce sample sizes, and by
employing appropriate machine learning techniques, superior results can still be achieved
compared to those derived from physical models. This observation underscores the poten-
tial of machine learning methodologies to enhance prediction accuracy in climate science,
even in situations constrained by data limitations. In the context of climate estimation, it
is observable that the utilization of neural networks for predicting climate variations has
become less prevalent among meteorologists. However, the adoption of machine learning
techniques to aid and optimize climate modelling has emerged as a complementary strat-
egy. As evidenced by the two preceding figures, climate models that have been enhanced
through the application of machine learning demonstrate superior predictive capabilities
when compared to other conventional models.
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7. Discussion

Weather forecast and climate prediction are closely related to people’s lives and
provide important information support for social and economic activities. For example,
governments and relief organizations rely on accurate weather forecasts to warn of and
respond to natural disasters, thereby mitigating their impact on people’s lives and property.
At the same time, the energy industry also relies heavily on climate forecasts to predict
energy demand and optimize energy distribution, thereby ensuring the stability and
efficiency of energy supply. Our research purpose, the examination of machine learning
in meteorological forecasting, is situated within a rich historical context, charting the
evolution of weather prediction methodologies. Starting from simple statistical methods to
complex deterministic modelling, the field has witnessed a paradigm shift with the advent
of machine learning techniques.

7.1. Overall comparison

In this section of our survey, we delineate key differences between our study and
existing surveys, thereby underscoring the unique contribution of our work. We contrast
various time scales—short-term versus medium-to-long-term climate predictions—to sub-
stantiate our rationale for focusing on these particular temporal dimensions. Additionally,
we draw a comparative analysis between machine learning approaches and traditional
models in climate prediction. This serves to highlight our reason for centering our survey
on machine learning techniques for climate forecasting. Overall, this section not only
amplifies the distinctiveness and relevance of our survey but also frames it within the larger
scientific discourse.

Comparison to existing surveys. Compared to existing literature, our survey takes a
unique approach by cohesively integrating both short-term weather forecasting and medium-
to-long-term climate predictions—a dimension often underrepresented. While other sur-
veys may concentrate on a limited range of machine learning methods, ours extends to
examine nearly 20 different techniques. However, we recognize our limitations, particularly
the challenge of providing an exhaustive analysis due to the complexity of machine learning
algorithms and their multifaceted applications in meteorology. This signals an opportunity
for future research to delve deeper into specialized machine-learning techniques or specific
climatic variables. In contrast to many generalized surveys, our study ventures into the
technical nuances of scalability, interpretability, and applicability for each method. We
also make a conscious effort to incorporate the most recent advances in the field, although
we acknowledge that the pace of technological change inevitably leaves room for further
updates. In sum, while our survey provides a more comprehensive and technically detailed
roadmap than many existing reviews, it also highlights gaps and opportunities for future
work in this rapidly evolving interdisciplinary domain.

Short-term Weather prediction vs Medium to long-term climate predication. Short-term
weather predictions focus on immediate atmospheric conditions within a time span of
hours to days. This is a contrast to medium-to-long-term climate predictions, which aim
to forecast broader patterns in weather, temperature trends, and precipitation averages
over extended timeframes of months to decades. The goals underlying these two forms of
prediction also diverge significantly. Short-term forecasts are usually operational in nature,
aimed at immediate public safety or aiding sectors like agriculture and industry, whereas
medium-to-long-term predictions typically inform strategic and policy-oriented planning
for various societal sectors including agriculture, energy, and urban development.

This comparison extends to the variables considered in the predictive models. Short-
term weather predictions often hone in on localized states like temperature, humidity, wind
speed, and precipitation. On the other hand, medium-to-long-term climate predictions
scrutinize a wider array of variables such as average temperature shifts, sea-level rise, and
the general patterns of extreme weather events, often on a global or regional scale.

Regarding methodologies, machine learning techniques such as neural networks,
random forests, and support vector machines are frequently deployed in the realm of
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short-term weather prediction, owing to their prowess in swiftly analyzing large datasets.
In contrast, for medium-to-long-term climate predictions, machine learning generally
complements traditional physics-based models, serving a supplementary role to handle
the complexities and uncertainties inherent in longer-range forecasts.

Finally, each type of prediction comes with its own set of challenges. Short-term fore-

casts grapple with issues related to the accuracy and granularity of the data and the speed
of its dissemination to the public. Medium-to-long-term climate predictions, however, face
challenges related to the scarcity of quality long-term datasets and the intricacies associated
with interdependent climatic variables. Yet, there are challenges that are common to both,
exemplified by the nonlinearity inherent in weather and climate prediction models which
underscore the complex dynamic relationships among atmospheric variables, necessitating
techniques adept at capturing such intricate interactions. Furthermore, the assessment of
model uncertainties is arduous as they emanate from various facets, demanding algorithms
that can quantify, accommodate, and ideally mitigate these uncertainties to augment the
reliability and accuracy of predictions.
Machine-learning models vs Traditional models. In terms of computational speed, ma-
chine learning algorithms—particularly those based on deep learning—have the capability
to process extensive datasets at a far quicker rate compared to traditional methodologies.
When it comes to prediction accuracy, the machine learning algorithms stand out for their
superior feature extraction capabilities, often yielding more precise outcomes in short-term
weather forecasting scenarios. Additionally, the adaptability of machine learning models
enables them to evolve and improve over time. This flexibility makes them particularly
useful tools that can be fine-tuned as climate data and observational technologies continue
to advance.

While machine learning models can excel in generating rapid and sometimes more
accurate forecasts, their lack of interpretability can be a barrier to gaining deeper scientific
insights.Machine learning models, especially complex ones like deep neural networks, are
often considered "black boxes," meaning their internal workings are not easily understand-
able. This is a significant drawback during meteorological application. Understanding the
underlying mechanisms of weather and climate variability is crucial across all temporal
scales, serving as the bedrock upon which all predictive methods are built. For instance, in
short-term weather forecasting, an in-depth grasp of these mechanisms assists researchers
in selecting the most relevant datasets. For example, when forecasting precipitation, it
would be ineffective to merely input precipitation data as a training set. Instead, one must
understand the specific meteorological factors that influence precipitation in a given region.
This necessity becomes even more pronounced for medium-to-long-term forecasts, which
are inherently more complex. To construct accurate and reliable models, it is imperative
to identify the factors that interact with each other, eventually leading to variations in the
target predictive elements for a particular region.Thus, a nuanced understanding of these
mechanisms not only enhances the precision of our models but also broadens the scope for
comprehensive climatic analysis and future scenario planning.

7.2. Challenge

Although we found extensive work of machine learning frameworks that succeed in
short-term weather prediction and even outperform traditional methods, climate prediction
in the medium-to-long term mainly relying on traditional methods. The main challenges
can be attributed to the limited data size and complex climate change effect.

Dataset. The scarcity of seasonal meteorological data, particularly evident from the era
around 1979, poses significant challenges for applying machine learning to climate predic-
tion. While data from this period may be adequate for short-term weather forecasting, it
falls short for medium-to-long-term climate models. This data limitation impacts machine
learning algorithms, which rely on large, quality datasets for robust training. Consequently,
the lack of seasonal data affects not only the model’s performance and reliability but also
complicates validation procedures. This makes it challenging to assess the model’s gen-
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eralizability and accuracy. Additionally, the sparse data hampers the effective fusion of
machine learning with traditional physics-based models, affecting the overall reliability of
climate predictions. Therefore, the limitations of historical meteorological data significantly
constrain the application of machine learning in long-term climate studies.

Complex climate change effect. A certain climate change may be related to hundreds or
thousands of variables. It’s difficult for us to use machine learning to capture their correla-
tion. The intricate nature of climate change, influenced by hundreds or even thousands of
interrelated variables, presents a daunting challenge for machine learning applications in
climate prediction. Unlike simpler systems where causal relationships between variables
are straightforward, climate systems embody complex, non-linear interactions that are
difficult to model. Machine learning algorithms, though powerful, often require clearly
defined feature sets and labels for effective training, a condition seldom met in the realm
of climate science. The sheer number of variables can lead to issues of dimensionality,
where the complexity of the model grows exponentially, making it computationally inten-
sive and difficult to interpret. Furthermore, capturing long-term dependencies between
these myriad variables is particularly challenging, given the current state-of-the-art in
machine learning techniques. This complexity often results in models that, while math-
ematically sophisticated, lack the interpretability necessary for scientific validation and
policy implications.

7.3. Future work

For these challenges and the disadvantages of machine-learning prediction method in
meteorology, we propose the following future work:

e  Simulate the dataset using statistic methods or physical methods

¢ Combining statistical knowledge with machine learning methods to enhance the
interpretability of patterns

*  Consider the introduction of physics-based constraints into deep learning models to
produce more accurate and reliable results.

*  Accelerating Physical Model Prediction with machine learning knowledge

Simulating Datasets: One promising avenue for future work is to simulate datasets using
either statistical or physical methods. Such synthetic datasets can provide a controlled
environment to test and validate predictive models. Utilizing methods like Monte Carlo
simulations or employing first-principle equations to generate realistic data, this approach
promises to enhance model robustness by enabling better generalizability testing.
Enhancing Interpretability: The issue of interpretability is a well-known drawback of
machine learning models. A future research direction could be the fusion of statistical
methodologies with machine learning algorithms. Incorporating statistical tests for feature
selection or Bayesian methods for uncertainty quantification can render the inherently
opaque machine learning models more interpretable, thereby making their results more
actionable in critical fields like meteorology.

Physics-Based Constraints: A particularly vital frontier for research is the integration
of atmospheric physics-based constraints into deep learning architectures. Traditional
machine learning models, when unconstrained, might produce forecasts that, although
statistically plausible, violate fundamental principles of atmospheric physics and dynamics.
To mitigate this, it would be beneficial to incorporate terms or constraints that reflect the
known interactions among meteorological elements such as temperature, pressure, and
humidity. This can be done through methods like Physics-Informed Neural Networks
(PINNS) or physics-based regularization terms. Such an approach would be invaluable
for complex meteorological applications like severe weather forecasting, where both the
accuracy and physical plausibility of predictions are of utmost importance.

Accelerating Physical Models: Lastly, the intersection of machine learning with traditional
physical models offers significant potential. Physical models are often computationally
intensive; however, machine learning can expedite these calculations. Techniques such as
model parallelization or simpler surrogate models developed via machine learning could
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dramatically speed up real-time analysis and forecasting, a critical need in time-sensitive
applications.

Machine Learning (ML), a subset of Artificial Intelligence (Al), holds a distinctive
prowess in discerning patterns from large datasets, yet it does not possess the capability to
replace physical models including NWP and the Global Climate Model. This limitation
predominantly stems from ML's inherent "black box" nature which lacks explicability, in
contrast to the physical models based on atmosphere principles. The symbiotic alliance
between ML and physical models unveils a plethora of enhancements in weather forecast-
ing. Specifically, ML significantly augments physical models in areas like bias correction,
parameterization, and downscaling, where the fusion of data-driven insights with physical
models tends to yield more accurate and efficient forecasts. On the flip side, physical
models enrich ML by imparting robust physical constraints that guide the learning process
towards physically plausible solutions. The inextricable synergy between ML and NWP
models is underscored by their irreplaceable strengths, heralding a future where their
collaborative integration could unlock new horizons in advancing meteorological science
and forecasting accuracy. This harmonious coexistence not only propels the forecasting
capabilities to new heights but also bridges the interpretability gap, thereby fostering a
more comprehensive understanding and enhanced trust in predictive modeling within the
meteorological community.

8. Conclusion

In conclusion, this study offers an extensive look into the transformative role of ma-
chine learning in meteorological forecasting. It uniquely amalgamates short-term weather
forecasting with medium- and long-term climate predictions, covering a total of 20 models
and providing an in-depth introduction of eight select models that stand at the forefront of
the industry. Our rigorous survey helps distinguish the operational mechanisms of these
eight models, serving as a reference for model selection in various contexts. Furthermore,
this work identifies current challenges like the limited dataset of chronological seasons and
suggests future research directions, including data simulation and the incorporation of
physics-based constraints. Thus, the survey not only provides a comprehensive current
view but also outlines a roadmap for future interdisciplinary work in this burgeoning field.
While the research acknowledges its limitations in providing an exhaustive analysis, it
delineates a promising direction for future exploration.
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