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Abstract: With the rapid development of artificial intelligence, machine learning is gradually 1

becoming popular in predictions in all walks of life. In meteorology, It is gradually competing with 2

traditional climate predictions dominated by physical models. This survey aims to consolidate the 3

current understanding of Machine Learning (ML) applications in weather and climate prediction—a 4

field of growing importance across multiple sectors including agriculture and disaster management. 5

Building upon an exhaustive review of more than 20 methods highlighted in existing literature, 6

this survey pinpointed eight techniques that show particular promise for improving the accuracy 7

of both short-term weather and medium-to-long-term climate forecasts. According to the survey, 8

while ML demonstrates significant capabilities in short-term weather prediction, its application in 9

medium-to-long-term climate forecasting remains limited, constrained by factors such as intricate 10

climate variables and data limitations. Current literature tends to focus narrowly on either short-term 11

weather or medium-to-long-term climate forecasting, often neglecting the relationship between the 12

two, as well as general neglect of modelling structure and recent advances. By providing an integrated 13

analysis of models spanning different time scales, this survey aims to bridge these gaps, thereby 14

serving as a meaningful guide for future interdisciplinary research in this rapidly evolving field. 15

Keywords: Machine learning; Weather prediction; Climate prediction; Meteorological Forecasting; 16

Survey 17

1. Introduction 18

Weather and climate prediction play an important role in human history. Weather 19

forecasting serves as a critical tool that underpins various facets of human life and soci- 20

etal operations, permeating everything from individual decision-making to large-scale 21

industrial planning. Its significance at the individual level is manifested in its capacity 22

to guide personal safety measures, from avoiding hazardous outdoor activities during 23

inclement weather to taking health precautions in extreme temperatures. This decision- 24

making extends into the agricultural realm, where forecasts inform the timing for planting, 25

harvesting, and irrigation, ultimately contributing to maximized crop yields and stable 26

food supply chains [1]. The ripple effect of accurate forecasting also reaches the energy 27

sector, where it aids in efficiently managing demand fluctuations, allowing for optimized 28

power generation and distribution. This efficiency is echoed in the transportation industry, 29

where the planning and scheduling of flights, train routes, and maritime activities hinge on 30

weather conditions. Precise weather predictions are key in mitigating delays and enhancing 31

safety protocols [2]. Beyond these sectors, weather forecasting plays an integral role in 32

the realm of construction and infrastructure development. Adverse conditions can cause 33

project delays and degrade quality, making accurate forecasts a cornerstone of effective 34

project management. Moreover, the capacity to forecast extreme weather events like hur- 35
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ricanes and typhoons is instrumental in disaster management, offering the possibility of 36

early warnings and thereby mitigating loss of life and property [3]. 37

Although climate prediction often is ignored by human beings in the short term, it has 38

a close relationship with Earth’s life. Global warming and the subsequent rise in sea levels 39

constitute critical challenges with far-reaching implications for the future of our planet. 40

Through sophisticated climate modelling and forecasting techniques, we stand to gain 41

valuable insights into the potential ramifications of these phenomena, thereby enabling 42

the development of targeted mitigation strategies. For instance, precise estimations of 43

sea-level changes in future decades could inform rational urban planning and disaster 44

prevention measures in coastal cities. On an extended temporal scale, climate change is 45

poised to instigate considerable shifts in the geographical distribution of numerous species, 46

thereby jeopardizing biodiversity. State-of-the-art climate models integrate an array of 47

variables—encompassing atmospheric conditions, oceanic currents, terrestrial ecosystems, 48

and biospheric interactions—to furnish a nuanced comprehension of environmental trans- 49

formations [4]. This integrative approach is indispensable for the formulation of effective 50

global and regional policies aimed at preserving ecological diversity. Economic sectors 51

such as agriculture, fisheries, and tourism are highly susceptible to the vagaries of climate 52

change. Elevated temperatures may precipitate a decline in crop yields, while an upsurge 53

in extreme weather events stands to impact tourism adversely. Longitudinal climate fore- 54

casts are instrumental in guiding governmental and business strategies to adapt to these 55

inevitable changes. Furthermore, sustainable resource management, encompassing water, 56

land, and forests, benefits significantly from long-term climate projections. Accurate pre- 57

dictive models can forecast potential water scarcity in specific regions, thereby allowing for 58

the preemptive implementation of judicious water management policies. Climate change 59

is also implicated in a gamut of public health crises, ranging from the proliferation of 60

infectious diseases to an uptick in heatwave incidents. Comprehensive long-term climate 61

models can equip public health agencies with the data necessary to allocate resources and 62

devise effective response strategies. 63

Time Scale Domains Applications

Agriculture
The timing for sowing and harvesting;
Irrigation and fertilization plans. [5]

Energy Predicts output for wind and solar energy. [6]

Transportation
Road traffic safety; Rail transport;
Aviation and maritime industries. [7]

Construction Project plans and timelines; Safe operations. [8]

Retail and Sales Adjusts inventory based on weather forecasts. [9]

Tourism and
Entertainment

Operations of outdoor activities
and tourist attractions. [16]

Short Term

Environment and
Disaster Management

Early warnings for floods, fires,
and other natural disasters. [10]

Agriculture Long-term land management and planning. [11]

Insurance
Preparations for future increases in
types of disasters, such as floods and droughts. [12]

Real Estate
Assessment of future sea-level rise or other
climate-related factors. [13]

Urban Planning Water resource management. [14]

Tourism
Long-term investments and planning,
such as deciding which regions may become
popular tourist destinations in the future. [15]

Medium - Long Term

Public Health
Long-term climate changes may impact the
spread of diseases. [17]

Table 1. Applications of Short term and medium-long term weather/climate forecasting in daily life.
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Table 1 elucidates the diverse applications of weather forecasting across multiple 64

sectors and time frames. In the short-term context, weather forecasts are instrumental for 65

agricultural activities such as determining the optimal timing for sowing and harvesting 66

crops, as well as formulating irrigation and fertilization plans. In the energy sector, short- 67

term forecasts facilitate accurate predictions of output levels for wind and solar energy 68

production. For transportation, which encompasses road, rail, aviation, and maritime 69

industries, real-time weather information is vital for operational decisions affecting safety 70

and efficiency. Similarly, construction projects rely on short-term forecasts for planning and 71

ensuring safe operations. In the retail and sales domain, weather forecasts enable businesses 72

to make timely inventory adjustments. For tourism and entertainment, particularly those 73

involving outdoor activities and attractions, short-term forecasts provide essential guidance 74

for day-to-day operations. Furthermore, short-term weather forecasts play a pivotal role 75

in environment and disaster management by providing early warnings for floods, fires, 76

and other natural calamities. In the medium-to-long-term scenario, weather forecasts 77

have broader implications for strategic planning and risk assessment. In agriculture, these 78

forecasts are used for long-term land management and planning. The insurance industry 79

utilizes medium-to-long-term forecasts to prepare for prospective increases in specific 80

types of natural disasters, such as floods and droughts. Real estate sectors also employ 81

these forecasts for evaluating the long-term impact of climate-related factors like sea-level 82

rise. Urban planning initiatives benefit from these forecasts for effective water resource 83

management. For the tourism industry, medium-to-long-term weather forecasts are integral 84

for long-term investments and for identifying regions that may become popular tourist 85

destinations in the future. Additionally, in the realm of public health, long-term climate 86

changes projected through these forecasts can inform strategies for controlling the spread 87

of diseases. In summary, weather forecasts serve as a vital tool for both immediate and 88

long-term decision-making across a diverse range of sectors. 89

Short-term weather prediction. Short-term weather forecasting primarily targets weather 90

conditions that span from a few hours up to seven days, aiming to deliver highly accu- 91

rate and actionable information that empowers individuals to make timely decisions like 92

carrying an umbrella or postponing outdoor activities. These forecasts typically decrease 93

their reliability as they stretch further into the future. Essential elements of these forecasts 94

include maximum and minimum temperatures, the likelihood and intensity of various 95

forms of precipitation like rain, snow, or hail, wind speed and direction, levels of relative 96

humidity or dew point temperature, and types of cloud cover such as sunny, cloudy, or 97

overcast conditions [18]. Visibility distance in foggy or smoky conditions and warnings 98

about extreme weather events like hurricanes or heavy rainfall are also often included. The 99

methodologies for generating these forecasts comprise numerical simulations run on high- 100

performance computers, the integration of observational data from multiple sources like 101

satellites and ground-based stations, and statistical techniques that involve pattern recogni- 102

tion and probability calculations based on historical weather data. While generally more 103

accurate than long-term forecasts, short-term predictions are not without their limitations, 104

often influenced by the quality of the input data, the resolution of the numerical models, 105

and the sensitivity to initial atmospheric conditions. These forecasts play a crucial role in 106

various sectors including decision-making processes, transportation safety, and agriculture, 107

despite the inherent complexities and uncertainties tied to predicting atmospheric behavior. 108

Medium-to-long term climate prediction. Medium to Long-term Climate Forecasting 109

(MLTF) concentrates on projecting climate conditions over periods extending from several 110

months to multiple years, standing in contrast to short-term weather forecasts which focus 111

more on immediate atmospheric conditions. The time frame of these climate forecasts can be 112

segmented into medium-term, which generally ranges from a single season up to a year, and 113

long-term, that could span years to decades or even beyond[19]. Unlike weather forecasts, 114

which may provide information on imminent rainfall or snowfall, MLTF centers on the 115

average states or trends of climate variables, such as average temperature and precipitation, 116

ocean-atmosphere interactions like El Niño or La Niña conditions, and the likelihood of 117
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extreme weather events like droughts or floods, as well as anticipated hurricane activities 118

[20]. The projection also encompasses broader climate trends, such as global warming or 119

localized climatic shifts. These forecasts employ a variety of methods, including statistical 120

models based on historical data and seasonal patterns, dynamical models that operate on 121

complex mathematical equations rooted in physics, and integrated models that amalgamate 122

multiple data sources and methodologies. However, the accuracy of medium- to long-term 123

climate forecasting often falls short when compared to short-term weather predictions 124

due to the intricate, multi-scale, and multi-process interactions that constitute the climate 125

system, not to mention the lack of exhaustive long-term data. The forecasts’ reliability 126

can also be influenced by socio-economic variables, human activities, and shifts in policy. 127

Despite these complexities, medium- to long-term climate projections serve pivotal roles in 128

areas such as resource management, agricultural planning, disaster mitigation, and energy 129

policy formulation, making them not only a multi-faceted, multi-disciplinary challenge but 130

also a crucial frontier in both climate science and applied research. 131

Survey Scope. In recent years, machine learning has emerged as a potent tool in meteorol- 132

ogy, displaying strong capabilities in feature abstraction and trend prediction. Numerous 133

studies have employed machine learning as the principal methodology for weather forecast- 134

ing [21–23]. Our survey extends this current understanding by including recent advances in 135

the application of machine learning techniques such as High-Resolution Neural Networks 136

and 3D neural networks representing the state-of-the-art in this multidisciplinary domain. 137

This survey endeavours to serve as a comprehensive review of machine learning tech- 138

niques applied in the realms of meteorology and climate prediction. Previous studies have 139

substantiated the efficacy of machine learning methods in short-term weather forecasting 140

[24]. However, there exists a conspicuous dearth of nuanced research in the context of 141

medium-to-long-term climate predictions [25]. The primary objective of this survey is to 142

offer a comprehensive analysis of nearly 20 diverse machine-learning methods applied in 143

meteorology and climate science. It is worth noting that our selection criteria are twofold: 144

we include classic models in the application of machine learning to meteorology, as well as, 145

from a computer science perspective, represent recent state-of-the-art complex models. We 146

categorize these methods based on their temporal applicability: short-term weather fore- 147

casting and medium-to-long-term climate predictions. This dual focus uniquely situates 148

our survey as a bridge between immediate weather forecasts and longer climatic trends, 149

thereby filling existing research gaps summarized as follows: 150

• Limited Scope: Existing surveys predominantly focus either on short-term weather 151

forecasting or medium-to-long-term climate predictions. There is a notable absence of 152

comprehensive surveys that endeavour to bridge these two-time scales. In addition, 153

current investigations tend to focus narrowly on specific methods, such as simple 154

neural networks, thereby neglecting some combination of methods. 155

• Lack of Model details: Many extant studies offer only generalized viewpoints and 156

lack a systematic analysis of the specific model employed in weather and climate 157

prediction. This absence creates a barrier to researchers aiming to understand the 158

intricacies and efficacy of individual methods. 159

• Neglect of Recent Advances: Despite rapid developments in machine learning and 160

computational techniques, existing surveys have not kept pace with these advance- 161

ments. The paucity of information on cutting-edge technologies stymies the progres- 162

sion of research in this interdisciplinary field. 163

By addressing these key motivations, this survey aims to serve as a roadmap for future 164

research endeavours in this rapidly evolving, interdisciplinary field. 165

Contributions of the Survey. The contributions of this paper are as follows. 166

• Comprehensive scope: Unlike research endeavors that restrict their inquiry to a singu- 167

lar temporal scale, our survey provides a comprehensive analysis that amalgamates 168

short-term weather forecasting with medium- and long-term climate predictions. In 169

total, 20 models were surveyed, from which a select subset of eight were chosen for an 170
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in-depth scrutiny.These models are discerned as the industry’s avant-garde, thereby 171

serving as invaluable references for researchers. For instance, the PanGu model ex- 172

hibits a remarkable congruence with actual observational results, thereby illustrating 173

the caliber of models included in our analysis 174

• In-Depth Analysis: Breaking new ground, this study delves into the intricate op- 175

erational mechanisms of the eight focal models. We have dissected the operating 176

mechanisms of these eight models, distinguishing the differences in their approaches 177

and summarizing the commonalities in their methods through comparison. This com- 178

parison helps readers gain a deeper understanding of the efficacy and applicability of 179

each model and provides a reference for choosing the most appropriate model for a 180

given scenario. 181

• Identification of Contemporary Challenges and Future Work: The survey identifies 182

pressing challenges currently facing the field, such as limited dataset of chronological 183

seasons and complex climate change effects, and suggests directions for future work, 184

including simulating dataset and physics-Based Constraint model. These recommen- 185

dations not only add a forward-looking dimension to our research but also act as a 186

catalyst for further research and development in climate prediction. 187

Outline of the paper. This paper consists of six sections. Section 1 describes our motivation 188

and innovations compared to other weather prediction surveys. Section 2 introduces some 189

weather-related background knowledge. Section 3 broadly introduces relevant methods 190

for weather prediction other than machine learning. Section 4 highlights the milestones 191

of forecasting models using machine learning and their categorization. Sections 5 and 6 192

analyze representative methods in both short-term and medium- and long-term time scales. 193

Sections 7 and 8 summarize the challenges faced and present promising future work and 194

conclude the paper. 195

2. Background 196

In this section, the objective is to provide a thorough understanding of key meteo- 197

rological principles, tailored to be accessible even to readers outside the meteorological 198

domain. The section commences with an overview of Reanalysis Data, the cornerstone for 199

data inputs in weather forecasting and climate projection models. Following this, the focus 200

shifts to the vital aspect of model output validation. It is necessary to identify appropriate 201

benchmarks and key performance indicators for assessing the model’s predictive accuracy. 202

Without well-defined standards, the evaluation of a model’s effectiveness remains nebulous. 203

Further, three essential concepts bias-correction; down-scaling and emulation are introduced. 204

These become particularly relevant when discussing the role of machine learning in aug- 205

menting physical models. Finally, the text offers an in-depth explanation of predicting 206

extreme events, clearly defining “extreme event” and differentiating them from routine 207

occurrences. 208

Data source. Observed data undergoes a series of rigorous processing steps before it enters 209

the predictive model (or what is known as the reanalysis data generation process). They are 210

amassed from heterogeneous sources, such as ground-based networks like the Global Histor- 211

ical Climatology Network (GHCN), atmospheric tools like Next-Generation Radar (NEXRAD), 212

and satellite systems like the Geostationary Operational Environmental Satellites (GOES). 213

Oceanic measurements are captured through the specialized ARGO float network, focusing 214

on key parameters like temperature and salinity. These raw datasets are further audited 215

with quality control, spatial and temporal interpolation, and unit standardization.Despite 216

meticulous preprocessing, observational data exhibit challenges such as spatial-temporal 217

heterogeneity, inherent measurement errors, and discrepancies with numerical models. To 218

mitigate these issues, data assimilation techniques are employed. These techniques syner- 219

gize observations with model forecasts using mathematical and statistical algorithms like 220

Kalman filtering, Three-Dimensional Variational Analysis (3D-Var), and Four-Dimensional 221

Variational Analysis (4D-Var) [26]. Additionally, data assimilation can be utilized to en- 222

hance the initial model conditions and correct systemic model biases.The scope of data 223
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assimilation extends beyond singular meteorological models to complex Earth System 224

Models that integrate dynamics from atmospheric, oceanic, and terrestrial subsystems. 225

Post-assimilation where the model state is updated, leads to the generation of "reanalysis 226

data". Popular reanalysis datasets include ERA5 from the European Centre for Medium- 227

Range Weather Forecasts (ECMWF), NCEP/NCAR Reanalysis from the National Centers 228

for Environmental Prediction and the National Center for Atmospheric Research, JRA-55 229

from the Japan Meteorological Agency, and MERRA-2 from NASA. 230

Result evaluation. Result evaluation serves as a critical stage in the iterative process of 231

predictive modeling. It involves comparing forecasted outcomes against observed data to 232

gauge the model’s reliability and accuracy. The temporal dimension is a critical factor in 233

result evaluation. Short-term predictive models, like those used in weather forecasting, 234

benefit from near-real-time feedback, which allows for frequent recalibration using machine 235

learning algorithms like Ensemble Kalman Filters. On the other hand, long-term models, 236

such as climate projections based on General Circulation Models (GCMs), are constrained 237

by the absence of an immediate validation period.In weather forecasting, meteorologists 238

employ a variety of numerical models like the Weather Research and Forecasting (WRF) 239

model, which are evaluated based on short-term observational data. Standard metrics for 240

evaluation include Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and 241

Skill Scores. The high-frequency availability of data, from sources like weather radars 242

and satellites, facilitates rapid iterations and refinements.In contrast, climate models are 243

scrutinized using different methodologies. Given their long-term nature, climate models 244

are often validated using historical and paleoclimatic data. Statistical techniques like 245

Empirical Orthogonal Functions (EOF) and Principal Component Analysis (PCA) are 246

employed to identify and validate overarching climatic patterns. These models often 247

have to account for high levels of uncertainty and are cross-validated against geological 248

or even astronomical records, making immediate validation impractical. For weather 249

forecasts, predictive accuracy within the scope of hours to days is paramount. Climate 250

models, conversely, are evaluated based on their ability to accurately reproduce decadal 251

and centennial patterns. 252

Bias correction. In the context of meteorology, climate science, machine learning, and 253

statistical modeling, bias correction (or bias adjustment) refers to a set of techniques used to 254

correct systematic errors (biases) in model simulations or predictions. These biases may 255

arise due to various factors such as model limitations, uncertainties in parameterization, 256

or discrepancies between model assumptions and real-world data. Bias Correction (Bias 257

Adjustment) can be formally defined as the process of modifying the output of predictive 258

models to align more closely with observed data. The primary objective is to minimize the 259

difference between the model’s estimates and the observed values, thereby improving the 260

model’s accuracy and reliability. 261

In more formal terms, let M represent the model output, and O represent the observed data. 262

Bias B is defined as: 263

B = M − O (1)

The aim of bias correction is to find a function f such that: 264

f (M) ≈ O (2)

Various methods can be employed for bias correction, including simple linear adjustments, 265

quantile mapping, and more complex machine-learning techniques. The choice of method 266

often depends on the specific characteristics of the data and the overarching objectives of 267

the study. 268

Emulation. The term emulation is utilized here to denote the approach where machine 269

learning models are employed to simulate or approximate components and processes 270

of the original physical model. In meteorology, physical models are devised based on a 271

comprehensive understanding of atmospheric dynamics, often entailing intricate hydro- 272
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dynamic equations to elucidate atmospheric motions and interactions. However, to attain 273

high computational efficiency in practical operations, direct resolution of these equations is 274

frequently computationally demanding, particularly when high spatial and temporal reso- 275

lution simulations are requisite. To alleviate these issues, modellers are already using fast 276

and accurate ML simulations to simulate existing time-consuming parameterizations [27– 277

29]. Machine learning methods are capable of delivering fast and precise approximations of 278

complex physical processes by learning patterns and relationships from historical data or 279

high-precision model runs. For instance, neural networks or other machine learning algo- 280

rithms can be deployed to deal with Longwave and shortwave radiation parameterization 281

[30,31] and emulate nonlinear wave interactions in wind wave models [32]. Consequently, 282

machine learning models can substitute traditional physical parameterization schemes in 283

prediction models, significantly alleviating the computational burden while preserving or 284

even augmenting the accuracy of predictions. 285

Down-scaling. Down-scaling in meteorology and climate science is a computational tech- 286

nique employed to bridge the gap between the spatial and temporal resolutions offered by 287

General Circulation Models (GCMs) or Regional Climate Models (RCMs) and the scale at 288

which specific applications, such as local weather predictions or hydrological assessments, 289

operate. Given that GCMs and RCMs typically operate at a coarse resolution—spanning 290

tens or hundreds of kilometres—downscaling aims to refine these projections to a more 291

localized level, potentially down to single kilometres or less. 292

Extreme events. In meteorology, an "extreme event" refers to a rare occurrence within a 293

statistical distribution of a particular weather variable. These events can be extreme high 294

temperatures, heavy precipitation, severe storms, or high winds, among others. These 295

phenomena are considered "extreme" due to their rarity and typically severe impact on 296

ecosystems, infrastructure, and human life. 297

Symbol definition. Since many formulas are involved in weather and climate prediction 298

methods, we have defined a table that summarizes all the common symbols and their 299

definition. 300

In standard meteorological models, precipitation is usually represented as a three- 301

dimensional array containing latitude, longitude, and elevation. Each cell in this array 302

contains a numerical value that represents the expected precipitation for that particular 303

location and elevation during a given time window. This data structure allows for straight- 304

forward visualization and analysis, such as contour maps or time series plots. Unlike 305

standard precipitation forecasts, which focus primarily on the water content of the at- 306

mosphere, extreme events may require tracking multiple variables simultaneously. For 307

example, hurricane modeling may include variables such as wind speed, atmospheric pres- 308

sure, and sea surface temperature. Given the higher uncertainty associated with extreme 309

events, the output may not be a single deterministic forecast, but rather a probabilistic one. 310

An integration approach can be used to generate multiple model runs to capture a range 311

of possible outcomes. Both types of predictions are typically evaluated using statistical 312

metrics; however, for extreme events, more sophisticated measures such as event detection 313

rates, false alarm rates, or skill scores associated with probabilistic predictions can be used. 314

3. Related work 315

This study principally centers on the utilization of machine learning techniques in the 316

realm of climate prediction. However, to furnish a comprehensive perspective, we also 317

elucidate traditional forecasting methodologies—statistical and physical methods—within 318

this section. Historically speaking, the evolution of predictive models in climate science has 319

undergone three distinct phases. Initially, statistical methods were prevalently deployed; 320

however, their limited accuracy led to their gradual supplantation by physical models. 321

While the role of statistical methods has dwindled in terms of standalone application, they 322

are frequently amalgamated with other techniques to enhance predictive fidelity. Subse- 323

quently, physical models ascended to become the prevailing paradigm in climate prediction. 324

Given the current predominance of physical models in the field of climate prediction, they 325
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Symbol Definition

v velocity vector

t time

ρ fluid density

p pressure

µ dynamic viscosity

g gravitational acceleration vector

Iν intensity of radiation at frequencyν

s distance along the ray path

αν absorption coefficient at frequency ν

jν emission coefficient at frequency ν

κν absorption coefficient at frequency ν

ρ density of the medium

Bν Planck function at frequencyν

Eq(z|x) expectation under the variational distribution q(z | x)

z latent variable

x observed data

p(x, z) joint distribution of observed and latent variables

q(z | x) variational distribution

λ variational parameters

G, F Generators for mappings from simulated to real domain
and vice versa.

Dx, Dy Discriminators for real and simulated domains.

Lcyc,LGAN Cycle consistency loss and Generative Adversarial Net-
work loss.

X, Y Data distributions for simulated and real domains.

λ Weighting factor for the cycle consistency loss.

Table 2. Commonly used symbols and definitions
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serve as the natural benchmarks against which we evaluate the performance of emerging 326

machine learning approaches. Finally, our focus on machine learning methods, exploring 327

their potential to mitigate the limitations intrinsic to their historical predecessors. 328

3.1. Statistical method 329

Statistical or empirical forecasting methods have a rich history in meteorology, serving 330

as the initial approach to weather prediction before the advent of computational models. 331

Statistical prediction methodologies serve as the linchpin for data-driven approaches 332

in meteorological forecasting, focusing on both short-term weather patterns and long- 333

term climatic changes. These methods typically harness powerful statistical algorithms, 334

among which Geographically Weighted Regression (GWR) and Spatio-Temporal Kriging 335

(ST-Kriging) stand out as particularly effective [33,34]. 336

GWR is instrumental in adjusting for spatial heterogeneity, allowing meteorologi- 337

cal variables to exhibit different relationships depending on their geographical context. 338

ST-Kriging extends this spatial consideration to include the temporal domain, thereby cap- 339

turing variations in weather and climate that are both location-specific and time-sensitive. 340

Such spatio-temporal modeling is especially pertinent in a rapidly changing environment, 341

where traditional stationary models often fail to capture the dynamism inherent in meteo- 342

rological systems. 343

Forecasting using inter-annual increments is now a statistically based forecasting 344

method with better results.The interannual increment of a variable such as precipitation is 345

calculated as: 346

Interannual Increment = Valueyear − Valueyear-1

Through meticulous analysis of variables correlating with the inter-annual growth rate of 347

the predictive variable, five key predictive factors have been identified. A multivariate 348

linear regression model was developed, employing these selected key predictive factors 349

to estimate the inter-annual increment for future time units. The estimated inter-annual 350

increment is subsequently aggregated with the actual variable value from the preceding 351

year to generate a precise prediction of the total quantity for the current time frame. 352

However, these statistical models operate on a critical assumption cited in literature 353

[35,36], which posits that the governing laws influencing past meteorological events are 354

consistent and thus applicable to future events as well. While this assumption generally 355

holds for many meteorological phenomena, it confronts limitations when dealing with 356

intrinsically chaotic systems. The Butterfly Effect serves as a prime example of such chaotic 357

behavior, where minuscule perturbations in initial conditions can yield dramatically diver- 358

gent outcomes. This implies that the reliability of statistical models could be compromised 359

when predicting phenomena susceptible to such chaotic influences. 360

3.2. Physical Models 361

Physical models were the predominant method for meteorological forecasting before 362

the advent of Artifical intelligence (AI) and generally produce more accurate results com- 363

pared to statistical methods. Physical models are predicated upon a foundational set of 364

physical principles, including but not limited to Newton’s laws of motion, the laws of 365

conservation of energy and mass, and the principles of thermodynamics. These governing 366

equations are commonly expressed in mathematical form, with the Navier-Stokes equa- 367

tions serving as a quintessential example for describing fluid dynamics. At the core of 368

these models lies the objective of simulating real-world phenomena in a computational 369

setting with high fidelity. To solve these intricate equations, high-performance computing 370

platforms are typically employed, complemented by specialized numerical methods and 371

techniques such as Computational Fluid Dynamics (CFD) and Finite Element Analysis 372

(FEA). 373

In the context of atmospheric science, these physical models are especially pivotal 374

for Numerical Weather Prediction (NWP) and climate modeling. NWP primarily focuses 375

on short-to-medium-term weather forecasting, striving for highly accurate meteorological 376
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predictions within a span of days or weeks. In contrast, climate models concentrate on 377

long-term changes and predictions, which can span months, years, or even longer time 378

scales. Owing to their rigorous construction based on physical laws, physical models offer 379

a high degree of accuracy and reliability, providing researchers with valuable insights into 380

the underlying mechanisms of weather and climate variations. 381

As mentioned before, Statistical-based methods can analyze past weather data to make 382

predictions, but they may often fail to accurately predict future weather trends [37], and 383

physic-based models, despite being computationally intensive [38], help us understand 384

atmospheric, oceanic, and terrestrial processes in detail.Recently, machine learning methods 385

have begun to be applied to the field of meteorology [39], offering new ways to analyze 386

and predict weather patterns and climate change [40]. Machine learning methods are 387

increasingly being utilized in meteorology for forecasting. Compared to physical models, 388

they offer faster predictions, and compared to statistical methods, they provide more 389

accurate results [41]. Additionally, machine learning can be employed for error correction 390

and downscaling, further enhancing its applicability in weather and climate predictions. 391

In the critical fields of weather forecasting and climate prediction, achieving accu- 392

racy and efficiency is of paramount importance. Traditional methods, while foundational, 393

inevitably present limitations, creating a compelling need for innovative approaches. Ma- 394

chine learning has emerged as a promising solution, demonstrating significant potential in 395

enhancing prediction outcomes. 396

4. Taxonomy of climate prediction applications. 397

In this section, we primarily explore the historical trajectory of machine learning 398

applications within the field of meteorology. We categorize the surveyed methods according 399

to distinct criteria, facilitating a more lucid understanding for the reader. 400

4.1. Climate prediction Milestone based on machine-learning. 401

In this subsection, we surveyed almost 20 methods of machine learning applications 402

for weather prediction and climate prediction. These methods are representative and 403

common. We listed them in the following timeline. The journey of machine learning 404

applications in climate and weather prediction has undergone significant transformations 405

since its inception. 406

Climate prediction methods before 2010. The earliest model in this context is the Pre- 407

cipitation Neural Network prediction model published in 1998. This model serves as an 408

archetype of Basic DNN Models, leveraging Artificial Neural Networks to offer short- 409

term forecasts specifically for precipitation in the Middle Atlantic Region. Advancing 410

to the mid-2000s, the realm of medium-to-long-term predictions saw the introduction of 411

ML-Enhanced Non-Deep-Learning Models, exemplified by KNN-Downscaling in 2005 412

and SVM-Downscaling in 2006. These models employed machine learning techniques 413

like K-Nearest Neighbors and Support Vector Machines, targeting localized precipitation 414

forecasts in the United States and India, respectively. In 2009, the field welcomed another 415

medium-to-long-term model, CRF-Downscaling, which used Conditional Random Fields 416

to predict precipitation in the Mahanadi Basin. 417

Climate prediction methods from 2010 - 2019. During the period from 2010 to 2019, the 418

field of weather prediction witnessed significant technological advancements and diversifi- 419

cation in modeling approaches. Around 2015, a notable shift back to short-term predictions 420

was observed with the introduction of Hybrid DNN Models, exemplified by ConsvLSTM. 421

This model integrated Long Short-Term Memory networks with Convolutional Neural 422

Networks to provide precipitation forecasts specifically for Hong Kong. As the decade 423

progressed, models became increasingly specialized. For instance, the 2017 Precipitation 424

Convolution prediction model leveraged Convolutional Neural Networks to focus on 425

localized precipitation forecasts in Guang Dong, China. The following year saw the emer- 426

gence of the Stacked-LSTM-Model, which utilized Long Short-Term Memory networks for 427

temperature predictions in Amsterdam and Eindhoven. 428
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Figure 1. Applications of machine-learning on climate prediction milestone

Climate prediction methods from 2020. Fast forward to 2020, the CapsNet model, a 429

Specific Model, leveraged a novel architecture known as Capsule Networks to predict 430

extreme weather events in North America. By 2021, the scope extended to models like 431

RF-bias-correction and the Sea-ice prediction model, focusing on medium-to-long-term 432

predictions. The former employed Random Forests for precipitation forecasts in Iran, while 433

the latter utilized probabilistic deep learning techniques for forecasts in the Arctic region. 434

Recent advancements as of 2022 and 2023 incorporate more complex architectures. Cycle 435

GAN, a 2022 model, utilized Generative Adversarial Networks for global precipitation 436

prediction. PanGu, a 2023 release, employed 3D Neural Networks for predicting extreme 437

weather events globally. Another recent model, FourCastNet, leveraged a technique known 438

as AFNO to predict extreme global events. And in 2022, this year also witnessed the 439

introduction of DeepESD-Downscaling and CNN-Bias-correction models, both utilizing 440

Convolutional Neural Networks to predict local temperature scales and perform global 441

bias correction, respectively. 442

4.2. Classification of climate prediction methods 443

To provide a deeper level of understanding regarding the various weather prediction 444

methods discussed, we have organized them into classifications in Table 3. These classifi- 445

cations are made according to multiple criteria that encompass Time Scale, Type, Model, 446

Technique, Name, Region, and Event. This structured approach aims to offer readers an 447

easy way to compare and contrast different methods, as well as to gain insights into the 448

specific contexts where each method is most applicable. 449
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Time Scale Spational scale Type Model Technology Name Event

Short-term weather prediction

Special DNN Models

AFNO FourCastNet [48]
Extreme Events

3D Neural Network PanGu[50]

Vision Transformers ClimaX[51]
Temperature& Extreme

Event

Global SwinTransformer SwinVRNN[63] Temperature& Precipitation

U-Transformer FuXi[64]

GNN
CLCRN [65] Temperature

GraphCast [49]

Extreme Events
Transformer FengWu [66]

ML Single DNNs Model CapsNet [46]

CNN
Precipitation Convolution

prediction [44]
Precipitation

Regional ANN
Precipitation Neural

Network prediction [42]

LSTM Stacked-LSTM-Model [45] Temperature

Hybrid DNNs Model LSTM+CNN
ConsvLSTM [43]

MetNet [47]

Probalistic deep learning
Conditional Generative

Forecasting [62]

Temperature&Precipitation

Global CNN
CNN-Bias-correction

model [61]

Temperature& Extreme

Event

Single DNN models GAN Cycle GAN [60]

Precipitation

NN Hybrid-GCM-Emulation [54] Precipitation

Medium-to-long-term climate prediction ResDNN NNCAM-emulation [58]

ML

Enhanced

CNN
DeepESD-Downscaling

model [59]

Temperature

Random forest(RF) RF-bias-correction model [56]

Precipitation

Regional
Support vector

machine(SVM)

SVM-Downscaling model [53]

K-nearest

neighbor(KNN)

KNN-Downscaling model [52]

Non-Deep-Learning

Model

Conditional random

field(CRF)

CRF-Downscaling model [55]

Table 3. Classification of models

Time Scale. Models in weather and climate prediction are initially divided based on 450

their temporal range into ’Short-term’ and ’Medium-to-long-term’. Short-term weather 451

prediction focuses on the state of the atmosphere in the short term, usually the weather 452

conditions in the next few hours to days; Medium-to-long term climate prediction focuses 453

on longer time scales, usually the average weather trends over months, years or decades. 454

Weather forecasts focus on specific weather conditions in the near term, such as temperature, 455

precipitation, humidity, wind speed and direction; Climate prediction: focuses on long-term 456

weather patterns and trends, such as seasonal or inter-annual variations in temperature and 457

precipitation. In the traditional approach, weather forecasting usually utilizes numerical 458

weather prediction models that predict weather changes in the short term by resolving 459

the equations of atmospheric dynamics; climate prediction usually utilizes climate models 460

that incorporate more complex interacting feedback mechanisms and longer-term external 461

drivers, such as greenhouse gas emissions and changes in solar radiation. 462

Spatial Scale. Regional meteorology concerns a specified geographic area, such as a 463

country or a continent, and aims to provide detailed insights into the weather and climate 464

phenomena within that domain. The finer spatial resolution of regional models allows 465
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for a more nuanced understanding of local geographical and topographical influences on 466

weather patterns, which in turn can lead to more accurate forecasts within that particular 467

area. On the other hand, global meteorology encompasses the entire planet’s atmospheric 468

conditions, providing a broader yet less detailed view of weather and climate phenomena. 469

The spatial resolution of global models is generally coarser compared to regional models. As 470

such, global forecasts might not capture localized weather events as accurately as regional 471

forecasts. However, global models are crucial for understanding large-scale atmospheric 472

dynamics and providing the boundary conditions necessary for regional models. 473

ML and ML-Enhanced Types. We categorize models into ML and ML-Enhanced types. In 474

ML type, algorithms are directly applied to climate data for pattern recognition or predic- 475

tive tasks. These algorithms typically operate independently of traditional physical models, 476

relying instead on data-driven insights garnered from extensive climate datasets. Contrast- 477

ingly, ML-Enhanced type integrate machine learning techniques into conventional physical 478

models to optimize or enhance their performance. Fundamentally, these approaches still 479

rely on physical models for prediction. However, machine learning algorithms serve as aux- 480

iliary tools for parameter tuning, feature engineering, or addressing specific limitations in 481

the physical models, thereby improving their overall predictive accuracy and reliability. In 482

this survey, ML-enhanced was divided into three catalogues: bias correction; down-scaling; 483

emulation [67]. 484

Model. Within each time scale, models are further categorized by their type. These models 485

include: Specific Models: These are unique or specialized neural network architectures 486

developed for particular applications. 487

Specific DNN Models: Unique or specialized neural network architectures developed for 488

particular applications. 489

Hybrid DNN Models: These models use a combination of different neural network architec- 490

tures, such as LSTM+CNN. 491

Single DNN Models: These models employ foundational Deep Neural Network architectures 492

like ANNs (Artificial Neural Networks), CNNs (Convolutional Neural Networks), and 493

LSTMs (Long Short-Term Memory networks). 494

Non-Deep-Learning Models: These models incorporate machine learning techniques that do 495

not rely on deep learning, such as Random Forests and Support Vector Machines. 496

Technique. This category specifies the underlying machine learning or deep learning 497

technique used in a particular model, for example, CNN, LSTM, Random Forest Probalistic 498

deep learning and GAN. 499

CNN. A specific type of ANN is the Convolutional Neural Network (CNN), designed to 500

automatically and adaptively learn spatial hierarchies from data [68]. CNNs comprise three 501

main types of layers: convolutional, pooling, and fully connected [69]. The convolutional 502

layer applies various filters to the input data to create feature maps, identifying spatial 503

hierarchies and patterns. Pooling layers reduce dimensionality, summarizing features in 504

the previous layer [70]. Fully connected layers then perform classification based on the 505

high-level features identified [71].CNNs are particularly relevant in meteorology for tasks 506

like satellite image analysis, with their ability to recognize and extract spatial patterns [72]. 507

Their unique structure allows them to capture local dependencies in the data, making them 508

robust against shifts and distortions [73]. 509

LSTM. Long Short-Term Memory (LSTM) units, a specialized form of recurrent neural net- 510

work architecture [43]. Purposefully designed to mitigate the vanishing gradient problem 511

inherent in traditional RNNs, LSTM units manage the information flow through a series 512

of gates, namely the input, forget, and output gates. These gates govern the retention, 513

forgetting, and output of information, allowing LSTMs to effectively capture long-range 514

dependencies and temporal dynamics in sequential data [43]. In the context of meteorolog- 515

ical forecasting, the utilization of LSTM contributes to a nuanced understanding of weather 516

patterns, as it retains relevant historical information and discards irrelevant details over 517

various time scales [43]. The pioneering design of LSTMs and their ability to deal with 518
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nonlinear time dependencies have led to their outstanding robustness, adaptability, and 519

efficiency, making them an essential part of modern predictive models. [43]. 520

Random forest. A technique used to adjust or correct biases in predictive models, particularly 521

in weather forecasting or climate modeling. Random Forest (RF) is a machine learning 522

algorithm used for various types of classification and regression tasks. In the context of 523

bias correction, the Random Forest algorithm would be trained to identify and correct 524

systematic errors or biases in the predictions made by a primary forecasting model. 525

Probabilistic deep learning. Probabilistic deep learning models in weather forecasting aim 526

to provide not just point estimates of meteorological variables but also a measure of 527

uncertainty associated with the predictions. By leveraging complex neural networks, these 528

models capture intricate relationships between various features like temperature, humidity, 529

and wind speed. The probabilistic aspect helps in quantifying the confidence in predictions, 530

which is crucial for risk assessment and decision-making in weather-sensitive industries. 531

Generative adversarial networks. Generative Adversarial Networks (GANs) are a class of 532

deep learning models composed of two neural networks: a Generator and a Discriminator. 533

The Generator aims to produce data that closely resembles a genuine data distribution, 534

while the Discriminator’s role is to distinguish between real and generated data. During 535

training, these networks engage in a kind of "cat-and-mouse" game, continually adapting 536

and improving—ultimately with the goal of creating generated data so convincing that the 537

Discriminator can no longer tell it apart from real data. 538

Graph Neural Network. Graph Neural Network( GNN ) are designed to work with graph- 539

structured data, capturing the relationships between connected nodes effectively. They 540

operate by passing messages or aggregating information from neighbors and then updating 541

each node’s representation accordingly. This makes GNNs exceptionally good at handling 542

problems like social network analysis, molecular structure analysis, and recommendation 543

systems. 544

Transformer. Transformer consists of an encoder and a decoder, but its most unique feature 545

is the attention mechanism. This allows the model to weigh the importance of different 546

parts of the input data, making it very efficient for tasks like text summarization, question 547

answering, and language generation. 548

Name. Some models are commonly cited or recognized under a specific name, such as 549

PanGu or FourCastNet. Some models are named after their technical features. 550

Event. The type of weather or climatic events that the model aims to forecast is specified 551

under this category. This could range from generalized weather conditions like temperature 552

and precipitation to more extreme weather events. 553

Selection Rationale. In the next section, we will discuss the related reasons. In the short 554

term, we choose three specific ones(PanGu; GraphCast and FourCastNet) as analysis 555

targets according to the model type. And we also analyze the MetNet which is a hybrid 556

DNNs Model. The other hybrid DNNs Model (ConsLSTM) is one part of MetNet. In 557

the medium-to-long term, we choose the probabilistic deep learning model(Conditional 558

Generative Forecasting). It has more extensive applicability compared to the other one in 559

Probabilistic deep learning category. Probabilistic deep learning method is also minority 560

machine learning method which could be used in medium-to-long-term prediction. In 561

addition, we also selected three machine learning-enhanced methods for downscaling; bias 562

correction and emulation. In general, our survey includes established models recognized 563

for their utility in applying machine learning to meteorological tasks and cutting-edge 564

complex models viewed from a computer science standpoint as state-of-the-art. 565

5. Short-term weather forecast 566

Weather forecasting aims to predict atmospheric phenomena within a short time- 567

frame, generally ranging from one to three days. This information is crucial for a multitude 568

of sectors, including agriculture, transportation, and emergency management. Factors 569

such as precipitation, temperature, and extreme weather events are of particular interest. 570

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 October 2023                   doi:10.20944/preprints202309.1764.v2

https://doi.org/10.20944/preprints202309.1764.v2


Version October 30, 2023 submitted to Journal Not Specified 15 of 38

Forecasting methods have evolved over the years, transitioning from traditional numerical 571

methods to more advanced hybrid and machine-learning models. This section elucidates 572

the working principles, methodologies, and merits and demerits of traditional numerical 573

weather prediction models, MetNet, FourCastNet, and PanGu. 574

5.1. Model Design 575

Numerical Weather Model. Numerical Weather Prediction (NWP) stands as a cornerstone 576

methodology in the realm of meteorological forecasting, fundamentally rooted in the 577

simulation of atmospheric dynamics through intricate physical models. At the core of NWP 578

lies a set of governing physical equations that encapsulate the holistic behaviour of the 579

atmosphere: 580

• The Navier-Stokes Equations [74]: Serving as the quintessential descriptors of fluid 581

motion, these equations delineate the fundamental mechanics underlying atmospheric 582

flow. 583

∇ · v = 0 (3)

584

ρ

(

∂v

∂t
+ v · ∇v

)

= −∇p + µ∇2v + ρg (4)

• The Thermodynamic Equations [75]: These equations intricately interrelate the tem- 585

perature, pressure, and humidity within the atmospheric matrix, offering insights into 586

the state and transitions of atmospheric energy. 587

∂ρ

∂t
+∇ · (ρv) = 0 (Continuity equation) (5)

∂T

∂t
+ v · ∇T =

q

cp
(Energy equation) (6)

Dp

Dt
= −ρcp∇ · v (Pressure equation) (7)

The model is fundamentally based on a set of time-dependent partial differential equations, 588

which require sophisticated numerical techniques for solving. The resolution of these 589

equations enables the simulation of the inherently dynamic atmosphere, serving as the 590

cornerstone for accurate and predictive meteorological insights. Within this overarching 591

framework, a suite of integral components is embedded to address specific physical inter- 592

actions that occur at different resolutions, such as cloud formation, radiation, convection, 593

boundary layers, and surface interactions. Each of these components serves a pivotal role: 594

• The Cloud Microphysics Parameterization Scheme is instrumental for simulating 595

the life cycles of cloud droplets and ice crystals, thereby affecting [78,79] and the 596

atmospheric energy balance. 597

• Shortwave and Longwave Radiation Transfer Equations elucidate the absorption, 598

scattering, and emission of both solar and terrestrial radiation, which in turn influence 599

atmospheric temperature and dynamics. 600

• Empirical or Semi-empirical Convection Parameterization Schemes simulate vertical 601

atmospheric motions initiated by local instabilities, facilitating the capture of weather 602

phenomena like thunderstorms. 603

• Boundary-Layer Dynamics concentrate on the exchanges of momentum, energy, and 604

matter between the Earth’s surface and the atmosphere, which are crucial for the 605

accurate representation of surface conditions in the model. 606

• Land Surface and Soil/Ocean Interaction Modules simulate the exchange of energy, 607

moisture, and momentum between the surface and the atmosphere, while also ac- 608

counting for terrestrial and aquatic influences on atmospheric conditions. 609
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These components are tightly coupled with the core atmospheric dynamics equations, 610

collectively constituting a comprehensive, multi-scale framework. This intricate integration 611

allows for the simulation of the complex dynamical evolution inherent to the atmosphere, 612

contributing to more reliable and precise weather forecasting. 613

In Numerical Weather Prediction (NWP), a critical tool for atmospheric dynamics fore- 614

casting, the process begins with data assimilation, where observational data is integrated 615

into the model to reflect current conditions. This is followed by numerical integration, 616

where governing equations are meticulously solved to simulate atmospheric changes over 617

time. However, certain phenomena, like microphysics of clouds, cannot be directly resolved 618

and are accounted for through parameterization to approximate their aggregate effects. 619

Finally, post-processing methods are used to reconcile potential discrepancies between 620

model predictions and real-world observations, ensuring accurate and reliable forecasts. 621

This comprehensive process captures the complexity of weather systems and serves as a 622

robust method for weather prediction [80]. While the sophistication of NWP allows for 623

detailed simulations of global atmospheric states, one cannot overlook the intensive com- 624

putational requirements of such models. Even with the formidable processing capabilities 625

of contemporary supercomputers, a ten-day forecast simulation can necessitate several 626

hours of computational engagement. 627

MetNet. MetNet [47] is a state-of-the-art weather forecasting model that integrates the 628

functionality of CNN, LSTM, and auto-encoder units. The CNN component conducts a 629

multi-scale spatial analysis, extracting and abstracting meteorological patterns across vari- 630

ous spatial resolutions. In parallel, the LSTM component captures temporal dependencies 631

within the meteorological data, providing an in-depth understanding of weather transitions 632

over time [43]. Autoencoders are mainly used in weather prediction for data preprocessing, 633

feature engineering and dimensionality reduction to assist more complex prediction models 634

in making more accurate and efficient predictions.This combined architecture permits a 635

dynamic and robust framework that can adaptively focus on key features in both spatial 636

and temporal dimensions, guided by an embedded attention mechanism [81,82]. 637

MetNet is consist of three core components: Spatial Downsampler, Temporal Encoder 638

(ConvLSTM), and Spatial Aggregator. In this architecture, the Spatial Downsampler acts 639

as an efficient encoder that specializes in transforming complex, high-dimensional raw 640

data into a more compact, low-dimensional, information-intensive form. This process 641

helps in feature extraction and data compression. The Temporal Encoder, using the Con- 642

vLSTM (Convolutional Long Short-Term Memory) model, is responsible for processing 643

this dimensionality-reduced data in the temporal dimension. One of the major highlights 644

of ConvLSTM is that it combines the advantages of CNNs and LSTM. The advantage of 645

ConvLSTM is that it combines the advantages of CNN and LSTM, and is able to consider 646

the localization of space in time series analysis simultaneously, increasing the model’s 647

ability to perceive complex time and space dependencies. The Spatial Aggregator plays 648

the role of an optimized, high-level decoder. Rather than simply recovering the raw data 649

from its compressed form, it performs deeper aggregation and interpretation of global and 650

local information through a series of axial self-attentive blocks, thus enabling the model to 651

make more accurate weather predictions. These three components work in concert with 652

each other to form a powerful and flexible forecasting model that is particularly well suited 653

to handle meteorological data with a high degree of spatio-temporal complexity. 654

The operational workflow of MetNet begins with the preprocessing of atmospheric 655

input data, such as satellite imagery and radar information [83]. Spatial features are then 656

discerned through the CNN layers, while temporal correlations are decoded via the LSTM 657

units. This information is synthesized, with the attention mechanism strategically empha- 658

sizing critical regions and timeframes, leading to short-term weather forecasts ranging 659

from 2 to 12 hours [82]. MetNet’s strength lies in its precise and adaptive meteorological 660

predictions, blending spatial and temporal intricacies, and thus offers an indispensable tool 661

for refined weather analysis [47]. 662
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FourCastNet. In response to the escalating challenges posed by global climate changes 663

and the increasing frequency of extreme weather phenomena, the demand for precise and 664

prompt weather forecasting has surged. High-resolution weather models serve as pivotal 665

instruments in addressing this exigency, offering the ability to capture finer meteorological 666

features, thereby rendering more accurate predictions [84,85]. Against this backdrop, 667

FourCastNet [48] has been conceived, employing ERA5, an atmospheric reanalysis dataset. 668

This dataset is the outcome of a Bayesian estimation process known as data assimilation, 669

fusing observational results with numerical models’ output [87]. FourCastNet leverages 670

the Adaptive Fourier Neural Operator (AFNO), uniquely crafted for high-resolution inputs, 671

incorporating several significant strides within the domain of deep learning. 672

The essence of AFNO resides in its symbiotic fusion of the Fourier Neural Operator 673

(FNO) learning strategy with the self-attention mechanism intrinsic to Vision Transformers 674

(ViT) [88]. While FNO, through Fourier transforms, adeptly processes periodic data and has 675

proven efficacy in modeling complex systems of partial differential equations, the computa- 676

tional complexity for high-resolution inputs is prohibitive. Consequently, AFNO deploys 677

the Fast Fourier Transform (FFT) in the Fourier domain, facilitating continuous global 678

convolution. This innovation reduces the complexity of spatial mixing to O(N log N), thus 679

rendering it suitable for high-resolution data [89]. The workflow of AFNO encompasses 680

data preprocessing, feature extraction with FNO, feature processing with ViT, spatial mix- 681

ing for feature fusion, culminating in prediction output, representing future meteorological 682

conditions such as temperature, pressure, and humidity. 683

Tailoring AFNO for weather prediction, FourCastNet introduces specific adaptations. 684

Given its distinct application scenario—predicting atmospheric variables utilizing the ERA5 685

dataset—a dedicated precipitation model is integrated into FourCastNet, predicting six- 686

hour accumulated total precipitation [87]. Moreover, the training paradigm of FourCastNet 687

includes both pre-training and fine-tuning stages. The former learns the mapping from 688

weather state at one time point to the next, while the latter forecasts two consecutive 689

time steps. The advantages of FourCastNet are manifested in its unparalleled speed— 690

approximately 45,000 times swifter than conventional NWP models—and remarkable 691

energy efficiency—consuming about 12,000 times less energy compared to the IFS model 692

[88]. The model’s architectural innovations and its efficient utilization of computational 693

resources position it at the forefront of high-resolution weather modeling. 694
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forecast model in free-running autoregressive inference mode.

GraphCast. GraphCast represents a notable advance in weather forecasting, melding 695

machine learning with complex dynamical system modelling to pave the way for more 696

accurate and efficient predictions. It leverages machine learning to model complex dy- 697

namical systems and showcases the potential of machine learning in this domain. It’s an 698

autoregressive model, built upon graph neural networks (GNNs) and a novel multi-scale 699

mesh representation, trained on historical weather data from the European Centre for 700

Medium-Range Weather Forecasts (ECMWF)’s ERA5 reanalysis archive. 701

The structure of GraphCast employs an "encode-process-decode" configuration utilizing 702

GNNs to autoregressively generate forecast trajectories. In detail: 703

704

• Encoder: The encoder component maps the local region of the input data (on the origi- 705

nal latitude-longitude grid) onto the nodes of the multigrid graphical representation. 706

It maps two consecutive input frames of the latitude-longitude input grid, with nu- 707

merous variables per grid point, into a multi-scale internal mesh representation. This 708

mapping process helps the model better capture and understand spatial dependencies 709

in the data, allowing for more accurate predictions of future weather conditions. 710

711

• Processor: This part performs several rounds of message-passing on the multi-mesh, 712

where the edges can span short or long ranges, facilitating efficient communication 713

without necessitating an explicit hierarchy. More specifically, the section uses a multi- 714

mesh graph representation. It refers to a special graph structure that is able to represent 715

the spatial structure of the Earth’s surface in an efficient way. In a multi-mesh graph 716

representation, nodes may represent specific regions of the Earth’s surface, while 717

edges may represent spatial relationships between these regions. In this way, models 718

can capture spatial dependencies on a global scale and are able to utilize the power of 719

GNNs to analyze and predict weather changes. 720

721
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Figure 4. (a) The encoder component of the GraphCast architecture maps the input local regions

(green boxes) to the nodes of the multigrid graph.(b) The processor component uses learned message

passing to update each multigrid node. (c) The decoder component maps the processed multigrid

features (purple nodes) to the grid representation. (d) A multi-scale grid set

• Decoder: It then maps the multi-mesh representation back to the latitude-longitude 722

grid as a prediction for the next time step. 723

724

The workflow of GraphCast begins with the input of weather state(s) defined on a high- 725

resolution latitude-longitude-pressure-levels grid. The encoder processes these inputs 726

into a multi-scale internal mesh representation, which then undergoes many rounds of 727

message-passing in the processor to capture spatio-temporal relationships in the weather 728

data. Finally, the decoder translates the multi-mesh representation back to the latitude- 729

longitude grid to generate predictions for subsequent time steps. It is worth noting that, as 730

shown in the d part, due to the multi-scale mesh mapping property, the model is able to 731

capture both localized weather features on a high-resolution mesh and large-scale weather 732

features on a low-resolution mesh at the same time. 733

In essence, GraphCast encapsulates a pioneering stride in enhancing weather forecast- 734

ing accuracy and efficiency through the amalgamation of machine learning and complex 735

dynamical system modelling. It uniquely employs an autoregressive model structure un- 736

derpinned by graph neural networks and a multi-scale mesh representation. The model’s 737

"encode-process-decode" configuration, executed through a novel multi-mesh graphical 738

representation, adeptly captures spatial dependencies and facilitates global-scale weather 739

prediction. By processing high-resolution weather data inputs through a systematic work- 740

flow of encoding, message-passing, and decoding, GraphCast not only generates precise 741

weather predictions for subsequent time intervals but also exemplifies the profound poten- 742

tial of machine learning in advancing meteorological forecasting methodologies. 743

PanGu. In the rapidly evolving field of meteorological forecasting, PanGu emerges as 744

a pioneering model, predicated on a three-dimensional neural network that transcends 745

traditional boundaries of latitude and longitude. Recognizing the intrinsic relationship 746

between meteorological data and atmospheric pressure, PanGu incorporates a neural 747

network structure that accounts for altitude in addition to latitude and longitude. The 748

initiation of the PanGu model’s process involves Block Embedding, where the dataset is 749

parsed into smaller subsets or blocks. This operation not only mitigates spatial resolution 750

and complexity but also facilitates the subsequent data management within the network. 751

Following block embedding, the PanGu model integrates the data blocks into a 3D 752

cube through a process known as 3D Cube Fusion, thereby enabling data processing within 753

a tri-dimensional space. Swin Encoding [90], a specialized Transformer encoder utilized in 754

the deep learning spectrum, applies a self-attention mechanism for data comprehension 755

and processing. This encoder, akin to the Autoencoder, excels in extracting and encoding 756
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essential information from the dataset. The ensuing phases include Decoding, which strives 757

to unearth salient information, and Output Splitting, which partitions data into atmospheric 758

and surface variables. Finally, Resolution Restoration reinstates the data to its original 759

spatial resolution, making it amenable for further scrutiny and interpretation. 760

PanGu [50]’s innovative 3D neural network architecture [91] offers a groundbreaking 761

perspective for integrating meteorological data, and its suitability for three-dimensional 762

data is distinctly pronounced. Moreover, PanGu introduces a hierarchical time-aggregation 763

strategy, an advancement that ensures the network with the maximum lead time is con- 764

sistently invoked, thereby curtailing errors. In juxtaposition with running a model like 765

FourCastNet [48] multiple times, which may accrue errors, this approach exhibits superior- 766

ity in both speed and precision. Collectively, these novel attributes and methodological 767

advancements position PanGu as a cutting-edge tool in the domain of high-resolution 768

weather modeling, promising transformative potential in weather analysis and forecasting. 769
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770

MetNet, FourCastNet, GraphCast and PanGu are state-of-the-art methods in the field of 771

weather prediction, and they share some architectural similarities that can indicate converg- 772

ing trends in this field. All four models initiate the process by embedding or downsampling 773

the input data. FourCastNet uses AFNO, MetNet employs a Spatial Downsampler, and PanGu 774

uses Block Embedding to manage the spatial resolution and complexity of the datasets, while 775

GraphCast maps the input data from the original latitude-longitude grid into a multi-scale 776

internal mesh representation. Spatio-temporal coding is an integral part of all networks; 777

FourCastNet uses pre-training and fine-tuning phases to deal with temporal dependencies, 778

MetNet uses ConvLSTM, and PanGu introduces a hierarchical temporal aggregation strategy 779

to manage temporal correlations in the data, while GraphCast employs GNNs to capture 780

and address spatio-temporal dependencies in weather data. Each model employs a special- 781

ized approach to understand the spatial relationships within the data. FourCastNet uses 782

AFNO along with Vision Transformers, MetNet utilizes Spatial Aggregator blocks, and PanGu 783
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integrates data into a 3D cube via 3D Cube Fusion while GraphCast translates data into 784

multi-scale internal mesh . Both FourCastNet and PanGu employ self-attention mechanisms, 785

derived from the Transformer architecture, for better capturing long-range dependencies in 786

the data. FourCastNet combines FNO with ViT, and PanGu uses Swin Encoding. 787

5.2. Result Analysis 788

MetNet: According to MetNet experiment part,at the threshold of 1 millimeter/hour 789

precipitation rate, both MetNet and NWP predictions have high similarity to ground condi- 790

tions.Evidently, MetNet exhibits a forecasting capability that is commensurate with NWP, 791

distinguished by an accelerated computational proficiency that generally surpasses NWP’s 792

processing speed. 793

FourCastNet: According to FourCastNet experiment, FourCastNet can predict wind speed 794

96 hours in advance, with extremely high fidelity and accurate fine-scale features. In the 795

experiment, the FourCastNet forecast accurately captured the formation and path of the 796

super typhoon Shanzhu, as well as its intensity and trajectory over four days. It also 797

has a high resolution and demonstrates excellent skills in capturing small-scale features. 798

Particularly noteworthy is the performance of FourcastNet, in forecasting meteorological 799

phenomena within a 48-hour horizon, has transcended the predictive accuracy intrinsic to 800

conventional numerical weather forecasting methodologies. This constitutes a significant 801

stride in enhancing the veracity and responsiveness of short-term meteorological projec- 802

tions. 803

GraphCast: According to the GraphCast experiment, GraphCast demonstrates superior 804

performance in tracking weather patterns, substantially outperforming NWP in various 805

forecasting horizons, notably from 18 hours to 4.75 days, as depicted in Figure 3b. It excels 806

in predicting atmospheric river behaviours and extreme climatic events, with significant 807

improvement seen in longer-term forecasts of 5 and 10 days. The model’s prowess extends 808

to accurately capturing extreme heat and cold anomalies, showcasing not just its forecast- 809

ing capability, but a nuanced understanding of meteorological dynamics, thereby holding 810

promise for more precise weather predictions with contemporary data. 811

PanGu: According to PanGu experiment, PanGu can almost accurately predict typhoon 812

trajectories during the tracking of strong tropical cyclones Kong Lei and Yu Tu, and is 48 813

hours faster than NWP.The advent of 3D Net further heralds a momentous advancement 814

in weather prediction technology. This cutting-edge model outperforms numerical weather 815

prediction models by a substantial margin and possesses the unprecedented ability to repli- 816

cate reality with exceptional fidelity. It’s not merely a forecasting tool but a near-precise 817

reflection of meteorological dynamics, allowing for a nearly flawless reconstruction of 818

real-world weather scenarios. 819

In table 4, "Forecast-timeliness" represents the forecasting horizon of each model, 820

indicating their ability to predict weather up to certain future days. In meteorology, z500 821

refers to the height at the 500 hPa isobaric level, critical for understanding atmospheric 822

structures and weather systems. Model evaluation often employs RMSE (Root Mean 823

Square Error) and ACC (Anomaly Correlation Coefficient) to gauge prediction accuracy 824

and correlation with actual observations. Lower RMSE and higher ACC values indicate 825

better model performance. Among GraphCast, PanGu, and IFS, PanGu exhibits the highest 826

accuracy with an ACC of 0.872 for a 7-day forecast timeliness. GraphCast, while having a 827

longer forecast timeliness of 9.75 days, has an ACC of 0.825 and an RMSE of 460, showing 828

a balance between a longer forecasting duration and decent accuracy. Apart from this, 829

Introducing GPU data and prediction speed can provide crucial reference information for 830

model selection, especially in scenarios with limited resources or where rapid responses 831

are required. This aids in finding a balance between efficiency and effectiveness, offering 832

support for successful forecasting. 833
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Model Forecast-
timeliness

Z500
RMSE(7
days)

Z500
ACC(7
days)

Training-
complexity

Forecasting-
speed

MetNet [47] 8 hours - - 256 Google-
TPU-
accelerators(16-
days-training)

Fewer seconds

FourCastNet [48] 7 days 595 0.762 4 A100-GPU 24-hour forecast
for 100 members
in 7 seconds

GraphCast [49] 9.75 days 460 0.825 32 Cloud-TPU-
V4(21-days-
training)

10-days-
predication
within 1 minute

PanGu [50] 7 days 510 0.872 192 V100-
GPU(16-days-
training)

24-hours-
global-
prediction
in 1.4s for each
GPU

IFS [92] 8.5 days 439 0.85 - -

Table 4. Short-term weather forecast model result comparison

6. Medium-to-long-term climate prediction 834

Medium to long-term climate predictions are usually measured in decadal quarters. 835

In the domain of medium to long-term climate forecasting, the focal point extends beyond 836

immediate meteorological events to embrace broader, macroscopic elements such as long- 837

term climate change trends, average temperature fluctuations, and mean precipitation 838

levels. This orientation is critical for a wide array of sectors, spanning from environmental 839

policy planning to infrastructure development and agricultural projections. Over time, 840

the forecasting methodologies have experienced significant advancements, evolving from 841

conventional climate models to cutting-edge computational methods such as Probabilistic 842

Deep Learning for Climate Forecasting (CGF), Machine Learning for Model Downscaling 843

(DeepESD), and Machine Learning for Result Bias Correction (CycleGAN). 844

6.1. Model Design 845

Climate Model. Climate models, consisting of fundamental atmospheric dynamics and 846

thermodynamics equations, focus on simulating Earth’s long-term climate system [93]. 847

Unlike NWP which targets short-term weather patterns, climate models address broader 848

climatic trends. These models encompass Global Climate Models (GCMs), which provide a 849

global perspective but often at a lower resolution, and Regional Climate Models (RCMs), 850

designed for detailed regional analysis [94]. The main emphasis is on the average state 851

and variations rather than transient weather events. The workflow of climate modelling 852

begins with initialization by setting boundary conditions, possibly involving centuries 853

of historical data. Numerical integration follows, using the basic equations to model the 854

long-term evolution of the climate system [95]. Parameterization techniques are employed 855

to represent sub-grid scale processes like cloud formation and vegetation feedback. The 856

model’s performance and uncertainties are then analyzed and validated by comparing 857

them with observational data or other model results [96]. The advantages of climate models 858

lie in their ability to simulate complex climate systems, providing forecasts and insights 859

into future climate changes, thereby informing policy and adaptation strategies. However, 860

they also present challenges such as high computational demands, sensitivity to boundary 861

conditions, and potential uncertainties introduced through parameterization schemes. The 862

distinction between GCMs and RCMs, and their integration in understanding both global 863

and regional climate phenomena, underscores the sophistication and indispensable role of 864

these models in advancing meteorological studies [97]. 865
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Conditional Generative Forecasting [62]. In the intricate arena of medium to long-term 866

seasonal climate prediction, the scarcity of substantial datasets since 1979 poses a significant 867

constraint on the rigorous training of complex models like CNNs, thus limiting their 868

predictive efficacy. To navigate this challenge, a pioneering approach of transfer learning 869

has been embraced, leveraging the simulated climate data drawn from CMIP5 (Coupled 870

Model Intercomparison Project Phase 5) [98]to enhance modeling efficiency and accuracy. 871

The process begins with a pre-training phase, where the CNN is enriched with CMIP5 872

data to comprehend essential climatic patterns and relationships. This foundational insight 873

then transfers seamlessly to observational data without resetting the model parameters, 874

ensuring a continuous learning trajectory that marries simulated wisdom with empirical 875

climate dynamics. The methodology culminates in a fine-tuning phase, during which the 876

model undergoes subtle refinements to align more closely with the real-world intricacies 877

of medium to long-term ENSO forecasting [99]. This innovative strategy demonstrates 878

the transformative power of transfer learning in addressing the formidable challenges 879

associated with limited sample sizes in medium to long-term climate science. 880

Leveraging 52,201 years of climate simulation data from CMIP5/CMIP6, which serves 881

to increase the sample size, the method for medium-term forecasting employs CNNs and 882

Temporal Convolutional Neural Networks (TCNNs) to extract essential features from high- 883

dimensional geospatial data. This feature extraction lays the foundation for probabilistic 884

deep learning, which determines an approximate distribution of the target variables, cap- 885

turing the data’s structure and uncertainty [100]. The model’s parameters are optimized 886

through maximizing the Evidence Lower Bound (ELBO) within the variational inference 887

framework. The integration of deep learning techniques with probabilistic modeling en- 888

sures accuracy, robustness to sparse data, and flexibility in assumptions, enhancing the 889

precision of forecasts and offering valuable insights into confidence levels and expert 890

knowledge integration. 891

Leveraging advanced techniques in variational inference and neural networks, the 892

method described seeks to approximate the complex distribution p(Y | X, M), where Y is 893

the target variable, and X and M are predictor and GCM index information, respectively. 894

The process is outlined as follows: 895

1. Problem Definition: The goal is to approximate p(Y | X, M), a task challenged by 896

high-dimensional geospatial data, data inhomogeneity, and a large dataset. 897

2. Model Specification: 898

• Random Variable z: A latent variable with a fixed standard Gaussian distribution. 899

• Parametric Functions pθ , qφ, pψ: Neural networks for transforming z and approx- 900

imating target and posterior distributions. 901

• Objective Function: Maximization of the Evidence Lower Bound (ELBO). 902

3. Training Procedure: 903

• Initialize: Define random variable z ∼ N(0, 1) [101] [102] [103] 904

parametric functions pθ(z, X, M), qφ(z | X, Y, M), pψ(Y | X, M, z). 905

• Training Objective (Maximize ELBO) [104]: The ELBO is defined as: 906

ELBO = Ez∼qφ

(

log pψ(Y | X, M, z)
)

−DKL(qφ‖p(z | X, M))−DKL(qφ‖p(z | X, Y, M))
(8)

with terms for reconstruction, regularization, and residual error. 907

• Optimization: Utilize variational inference, Monte Carlo reparameterization, and 908

Gaussian assumptions. 909

4. Forecasting: Generate forecasts by sampling p(z | X, M), the likelihood of pψ, and 910

using the mean of pψ for an average estimate. 911
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Figure 6. Conditonal Generative Forecasting (CGF) model.

This method embodies a rigorous approach to approximating complex distributions, 912

bridging deep learning and probabilistic modeling to enhance forecasting accuracy and 913

insights. 914

ELBO(λ) = Eq(z|x)[log p(x, z)− log q(z|x)] (Evidence Lower Bound) (9)

In summary, the combination of deep learning and probabilistic insights presents a 915

unique and potent method for spatial predictive analytics. The approach is marked by scal- 916

ability, flexibility, and an ability to learn complex spatial features, even though challenges 917

persist such as intrinsic complexity in computational modeling and the requirement for 918

profound statistical and computer science background. Its potential in handling large data 919

settings and adapting to varying scenarios highlights its promising applicability in modern 920

spatial predictive analytics, representing an advanced tool in the arena of seasonal cli- 921

mate prediction. Cycle-Consistent Generative Adversarial Networks. Cycle-Consistent 922

Generative Adversarial Networks (CycleGANs) have been ingeniously applied to the 923

bias correction of high-resolution Earth System Model (ESM) precipitation fields, such as 924

GFDL-ESM4 [105]. This model includes two generators responsible for translating between 925

simulated and real domains, and two discriminators to differentiate between generated 926

and real observations. A key component of this approach is the cycle consistency loss, 927

ensuring a reliable translation between domains, coupled with a constraint to maintain 928

global precipitation values for physical consistency. By framing bias correction as an image- 929

to-image translation task, CycleGANs have significantly improved spatial patterns and 930

distributions in climate projections. The model’s utilization of spatial spectral densities and 931

fractal dimension measurements further emphasizes its spatial context-awareness, making 932

it a groundbreaking technique in the field of climate science. CycleGAN model consists of 933

two generators and two discriminators along with a cycle consistency loss: 934

• Two Generators: The CycleGAN model includes two generators. Generator G learns 935

the mapping from the simulated domain to the real domain, and generator F learns 936

the mapping from the real domain to the simulated domain [106]. 937

• Two Discriminators: There are two discriminators, one for the real domain and one for 938

the simulated domain. Discriminator Dx encourages generator G to generate samples 939
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that look similar to samples in the real domain, and discriminator Dy encourages 940

generator F to generate samples that look similar to samples in the simulated domain. 941

• Cycle Consistency Loss: To ensure that the mappings are consistent, the model enforces 942

the following condition through a cycle consistency loss: if a sample is mapped from 943

the simulated domain to the real domain and then mapped back to the simulated 944

domain, it should get a sample similar to the original simulated sample. Similarly, if a 945

sample is mapped from the real domain to the simulated domain and then mapped 946

back to the real domain, it should get a sample similar to the original real sample. 947

Lcyc(G, F) = Ex∼pdata(x)[||F(G(x))− x||1] +Ey∼pdata(y)
[||G(F(y))− y||1] (10)

• Training Process: The model is trained to learn the mapping between these two domains 948

by minimizing the adversarial loss and cycle consistency loss between the generators 949

and discriminators. 950

LGen(G, F) = LGAN(G, Dy, X, Y) + LGAN(F, Dx, Y, X) + λLcyc(G, F) (11)

• Application to Prediction: Once trained, these mappings can be used for various tasks, 951

such as transforming simulated precipitation data into forecasts that resemble ob- 952

served data. 953

The bidirectional mapping strategy of Cycle-Consistent Generative Adversarial Net- 954

works (CycleGANs) permits the exploration and learning of complex transformation 955

relationships between two domains, without reliance on paired training samples. This 956

attribute holds profound significance, especially in scenarios where only unlabeled data are 957

available for training. In the specific application within climate science, this characteristic 958

of CycleGAN enables precise capturing and modeling of the subtle relationships between 959

real and simulated precipitation data. Through this unique bidirectional mapping, the 960

model not only enhances the understanding of climatic phenomena but also improves 961

the predictive accuracy of future precipitation trends. This provides a novel, data-driven 962

methodology for climate prediction and analysis, contributing to the ever-expanding field 963

of computational climate science. 964
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DeepESD. Traditional GCMs, while proficient in simulating large-scale global climatic 965

dynamics [107,108], exhibit intrinsic limitations in representing finer spatial scales and 966

specific regional characteristics. This inadequacy manifests as a pronounced resolution gap 967

at localized scales, restricting the applicability of GCMs in detailed regional climate studies 968

[109,110]. 969

In stark contrast, the utilization of CNNs symbolizes a significant breakthrough [111]. 970

Structurally characterized by hierarchical convolutional layers, CNNs possess the unique 971

ability to articulate complex multi-scale spatial features across disparate scales, commencing 972

from global coarse-grained characteristics and progressively refining to capture intricate 973

regional details. An exemplar implementation of this approach was demonstrated by 974

Baño-Medina et al. [112], wherein a CNN comprised three convolutional layers with 975

spatial kernels of varying counts (50, 25, and 10 respectively). The transformation process 976

began with the recalibration of ERA-Interim reanalysis data to a 2° regular grid, elevating 977

it to 0.5° [113–115]. This configuration allowed the CNN to translate global atmospheric 978

patterns into high-resolution regional specificity [116,117]. 979

The nuanced translation from global to regional scales, achieved through sequential 980

convolutional layers, not only amplifies the spatial resolution but also retains the contextual 981

relevance of climatic variables [118,119]. The first convolutional layer captured global 982

coarse-grained features, with subsequent layers incrementally refining these into nuanced 983

regional characteristics. By the terminal layer, the CNN had effectively distilled complex 984

atmospheric dynamics into a precise high-resolution grid [120,121]. 985

This enhancement fosters a more robust understanding of regional climatic processes, 986

ushering in an era of precision and flexibility in climate modeling. The deployment of 987

this technology affirms a pivotal advancement in the field, opening new possibilities for 988

more granulated, precise, and comprehensive examination of climatic processes and future 989

scenarios [122–124]. The introduction of CNNs thus represents a transformative approach 990

to bridging the resolution gap inherent to traditional GCMs, with substantial implications 991

for future climate analysis and scenario planning. 992

NNCAM. The design and implementation of the Neural Network Community Atmosphere 993

Model (NNCAM) are architected to leverage advancements in machine learning for im- 994

proved atmospheric simulations. The architecture is a nuanced blend of traditional General 995

Circulation Models (GCMs), specifically the Super-Parameterized Community Atmosphere 996

Model (SPCAM), and cutting-edge machine learning techniques like Residual Deep Neural 997

Networks (ResDNNs). 998

• Reference Model: SPCAM. SPCAM serves as the foundational GCM and is embedded 999

with Cloud-Resolving Models (CRMs) to simulate microscale atmospheric processes 1000

like cloud formation and convection. SPCAM is employed to generate "target sim- 1001

ulation data," which serves as the training baseline for the neural networks. The 1002

use of CRMs is inspired by recent advancements in data science, demonstrating that 1003

machine learning parameterizations can potentially outperform traditional methods 1004

in simulating convective and cloud processes. 1005

• Neural Networks: ResDNNs. ResDNNs, a specialized form of deep neural networks, 1006

are employed for their ability to approximate complex, nonlinear relationships. The 1007

network comprises multiple residual blocks, each containing two fully connected 1008

layers with Rectified Linear Unit (ReLU) activations. ResDNNs are designed to 1009

address the vanishing and exploding gradient problems in deep networks through 1010

residual connections, offering a stable and effective gradient propagation mechanism. 1011

This makes them well-suited for capturing the complex and nonlinear nature of 1012

atmospheric processes. 1013

• Subgrid-Scale Physical Simulator. Traditional parameterizations often employ sim- 1014

plified equations to model subgrid-scale processes, which might lack accuracy. In 1015

contrast, the ResDNNs are organized into a subgrid-scale physical simulator that 1016

operates independently within each model grid cell. This simulator takes atmospheric 1017
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states as inputs and outputs physical quantities at the subgrid scale, such as cloud 1018

fraction and precipitation rate. 1019

In the NNCAM model, the core workflow is divided into several key steps to achieve 1020

efficient and accurate climate simulations. First, the dynamic core, which serves as the base 1021

component of the model, is responsible for solving the underlying hydrodynamic equations 1022

and calculating the current climate state, e.g., temperature, pressure, and humidity, as well 1023

as the environmental forcings, e.g., wind and solar radiation. These calculations are then 1024

transmitted to the NN-GCM coupler. Upon receiving these data, the coupler further passes 1025

them to the neural network parameterization module. This module utilizes pre-trained 1026

neural networks, specifically ResDNNs, for faster and more accurate parameterization 1027

of the climate. Upon completion of the predictions, these results are fed back to the host 1028

GCM, i.e., NNCAM.The host GCM then uses the predictions generated by these neural 1029

networks to update the climate state in the model, and based on these updates, performs 1030

the simulation at the next time step. 1031

Overall, the host GCM, as the core of the whole simulation, is not only responsible for 1032

the basic climate simulation, but also efficiently interacts with the dynamic core and neural 1033

network parameterization modules to achieve higher simulation accuracy and computa- 1034

tional efficiency. This hierarchical architecture ensures both computational efficiency and 1035

high simulation fidelity. It allows for seamless integration and synchronization of the model 1036

states and predictions, thereby enabling continuous and efficient operation of NNCAM. 1037

The proposed framework represents a significant stride in the realm of atmospheric science, 1038

offering a harmonious integration of machine learning and physical simulations to achieve 1039

unprecedented accuracy and computational efficiency. 1040

CGF, DeepESD, CycleGAN are very different in their uses and implementations, but 1041

there are also some levels of similarity. All three approaches focus on mapping from one 1042

data distribution to another. And, they focus more on the mechanisms of climate change 1043

than previous models for weather forecasting. CycleGAN specifically emphasizes the 1044

importance of not only mapping from distribution A to B, but also the inverse mapping 1045

capability from B to A, which is to some extent what CGF and DeepESD are concerned 1046

with. NNCAM realizes the mapping from physical parameterization to machine learning 1047

parameterization. This mapping can be viewed as a functional mapping that replaces 1048

parameterized functions in the physical process with functions learned and inferred by the 1049

machine learning model. 1050

6.2. Result Analysis 1051

CGF: In the utilization of deep probabilistic machine learning techniques, the figure com- 1052

pares the performance of the CGF model using both simulated samples and actual data 1053

against the traditional climate model, Cancm4. The findings illustrate that our model 1054

outperforms the conventional climate modeling approach in terms of accuracy, irrespective 1055

of the employment of simulated or real data sets. This distinction emphasizes the enhanced 1056

predictive capability of our method, and underlines its potential superiority in handling 1057

complex meteorological phenomena. 1058

CycleGANs: In the context of long-term climate estimation, the application of deep learn- 1059

ing for model correction has yielded promising results. As illustrated in the accompanying 1060

figure, the diagram delineates the mean absolute errors of different models relative to 1061

the W5E5v2 baseline facts. Among these, the error correction technique utilizing Gen- 1062

erative Adversarial Networks (GANs) in conjunction with the ISIMIP3BASD physical 1063

model has demonstrated the lowest discrepancy. This evidence underscores the efficacy 1064

of sophisticated deep-learning methodologies in enhancing the precision of long-term 1065

climate estimations, thereby reinforcing their potential utility in climatological research 1066

and forecasting applications. 1067

DeepESD: In the conducted study, deep learning has been employed to enhance resolution, 1068

resulting in a model referred to as DeepESD. The following figure portrays the Probability 1069

Density Functions (PDFs) of precipitation and temperature for the historical period from 1070
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1979 to 2005, as expressed by the General Circulation Model (GCM) in red, the Regional 1071

Climate Model (RCM) in blue, and DeepESD in green. These are contextualized across 1072

regions such as the Alps, the Iberian Peninsula, and Eastern Europe as defined by the 1073

PRUDENCE area.In the diagram, solid lines represent the overall mean, while the shaded 1074

region includes two standard deviations. Dashed lines depict the distribution mean of 1075

each PDF. A clear observation from the graph illustrates that DeepESD maintains a higher 1076

consistency with observed data in comparison to the other models. 1077

NNCAM: NNCAM has demonstrated proficient simulation of strong precipitation centers 1078

across maritime continental tropical regions, Asian monsoon areas, South America, and the 1079

Caribbean. The model maintains the spatial pattern and global average of precipitation 1080

over the subsequent 5 years in its simulation, showcasing its long-term stability. Overall, in 1081

terms of the spatial distribution of multi-annual summer precipitation, NNCAM results 1082

are closer to the standard values compared to those from CAM5, with smaller root mean 1083

square errors and global average deviations. Additionally, NNCAM operates at a speed 1084

that is 30 times faster than traditional models, marking a significant stride in enhancing 1085

computational efficiency. 1086

In table 5, MAE is a metric commonly used to measure the magnitude of forecast errors. It

Name Categories Metrics ESM This model
CycleGAN [60] Bias correction MAE 0.241 0.068
DeepESD [59] Downscaling Euclidean Distance

to Observations in
PDF

0.5 0.03

CGF[62] Prediction ACC 0.31 0.4
NNCAM [58] Emulation Speed 1 30 times speed-up

Table 5. Medium-to-long term climate prediction model result comparison

1087

calculates the average of the absolute errors between the actual and predicted values. This 1088

metric was selected because it provides a clear, intuitive way to understand the accuracy of 1089

model predictions. A low MAE value indicates better prediction accuracy, while a high 1090

MAE value indicates a larger prediction error. The Euclidean Distance to Observations 1091

in the Probability Density Function (PDF) is utilized to evaluate the performance of the 1092

model by comparing the distance difference in the PDFs between the predicted and actual 1093

observed data. This metric was selected because it provides a means of quantifying how 1094

well a model’s predicted distribution aligns with the actual observed distribution, enabling 1095

the evaluation of model performance in complex systems, particularly when dealing with 1096

systems that possess inherent uncertainty and variability. While these four methods address 1097

different problems and thus a direct comparison is not feasible in this study, it is evident 1098

that they all exhibit significant improvements compared to traditional earth system models. 1099

From the results, it can be discerned that although the utilization of machine learning 1100

has significantly diminished in medium-to-long-term climate forecasting, our findings 1101

demonstrate that by judiciously addressing the challenge of scarce sample sizes, and by 1102

employing appropriate machine learning techniques, superior results can still be achieved 1103

compared to those derived from physical models. This observation underscores the poten- 1104

tial of machine learning methodologies to enhance prediction accuracy in climate science, 1105

even in situations constrained by data limitations. In the context of climate estimation, it 1106

is observable that the utilization of neural networks for predicting climate variations has 1107

become less prevalent among meteorologists. However, the adoption of machine learning 1108

techniques to aid and optimize climate modelling has emerged as a complementary strat- 1109

egy. As evidenced by the two preceding figures, climate models that have been enhanced 1110

through the application of machine learning demonstrate superior predictive capabilities 1111

when compared to other conventional models. 1112
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7. Discussion 1113

Weather forecast and climate prediction are closely related to people’s lives and 1114

provide important information support for social and economic activities. For example, 1115

governments and relief organizations rely on accurate weather forecasts to warn of and 1116

respond to natural disasters, thereby mitigating their impact on people’s lives and property. 1117

At the same time, the energy industry also relies heavily on climate forecasts to predict 1118

energy demand and optimize energy distribution, thereby ensuring the stability and 1119

efficiency of energy supply. Our research purpose, the examination of machine learning 1120

in meteorological forecasting, is situated within a rich historical context, charting the 1121

evolution of weather prediction methodologies. Starting from simple statistical methods to 1122

complex deterministic modelling, the field has witnessed a paradigm shift with the advent 1123

of machine learning techniques. 1124

7.1. Overall comparison 1125

In this section of our survey, we delineate key differences between our study and 1126

existing surveys, thereby underscoring the unique contribution of our work. We contrast 1127

various time scales—short-term versus medium-to-long-term climate predictions—to sub- 1128

stantiate our rationale for focusing on these particular temporal dimensions. Additionally, 1129

we draw a comparative analysis between machine learning approaches and traditional 1130

models in climate prediction. This serves to highlight our reason for centering our survey 1131

on machine learning techniques for climate forecasting. Overall, this section not only 1132

amplifies the distinctiveness and relevance of our survey but also frames it within the larger 1133

scientific discourse. 1134

Comparison to existing surveys. Compared to existing literature, our survey takes a 1135

unique approach by cohesively integrating both short-term weather forecasting and medium- 1136

to-long-term climate predictions—a dimension often underrepresented. While other sur- 1137

veys may concentrate on a limited range of machine learning methods, ours extends to 1138

examine nearly 20 different techniques. However, we recognize our limitations, particularly 1139

the challenge of providing an exhaustive analysis due to the complexity of machine learning 1140

algorithms and their multifaceted applications in meteorology. This signals an opportunity 1141

for future research to delve deeper into specialized machine-learning techniques or specific 1142

climatic variables. In contrast to many generalized surveys, our study ventures into the 1143

technical nuances of scalability, interpretability, and applicability for each method. We 1144

also make a conscious effort to incorporate the most recent advances in the field, although 1145

we acknowledge that the pace of technological change inevitably leaves room for further 1146

updates. In sum, while our survey provides a more comprehensive and technically detailed 1147

roadmap than many existing reviews, it also highlights gaps and opportunities for future 1148

work in this rapidly evolving interdisciplinary domain. 1149

Short-term Weather prediction vs Medium to long-term climate predication. Short-term 1150

weather predictions focus on immediate atmospheric conditions within a time span of 1151

hours to days. This is a contrast to medium-to-long-term climate predictions, which aim 1152

to forecast broader patterns in weather, temperature trends, and precipitation averages 1153

over extended timeframes of months to decades. The goals underlying these two forms of 1154

prediction also diverge significantly. Short-term forecasts are usually operational in nature, 1155

aimed at immediate public safety or aiding sectors like agriculture and industry, whereas 1156

medium-to-long-term predictions typically inform strategic and policy-oriented planning 1157

for various societal sectors including agriculture, energy, and urban development. 1158

This comparison extends to the variables considered in the predictive models. Short- 1159

term weather predictions often hone in on localized states like temperature, humidity, wind 1160

speed, and precipitation. On the other hand, medium-to-long-term climate predictions 1161

scrutinize a wider array of variables such as average temperature shifts, sea-level rise, and 1162

the general patterns of extreme weather events, often on a global or regional scale. 1163

Regarding methodologies, machine learning techniques such as neural networks, 1164

random forests, and support vector machines are frequently deployed in the realm of 1165
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short-term weather prediction, owing to their prowess in swiftly analyzing large datasets. 1166

In contrast, for medium-to-long-term climate predictions, machine learning generally 1167

complements traditional physics-based models, serving a supplementary role to handle 1168

the complexities and uncertainties inherent in longer-range forecasts. 1169

Finally, each type of prediction comes with its own set of challenges. Short-term fore- 1170

casts grapple with issues related to the accuracy and granularity of the data and the speed 1171

of its dissemination to the public. Medium-to-long-term climate predictions, however, face 1172

challenges related to the scarcity of quality long-term datasets and the intricacies associated 1173

with interdependent climatic variables. Yet, there are challenges that are common to both, 1174

exemplified by the nonlinearity inherent in weather and climate prediction models which 1175

underscore the complex dynamic relationships among atmospheric variables, necessitating 1176

techniques adept at capturing such intricate interactions. Furthermore, the assessment of 1177

model uncertainties is arduous as they emanate from various facets, demanding algorithms 1178

that can quantify, accommodate, and ideally mitigate these uncertainties to augment the 1179

reliability and accuracy of predictions. 1180

Machine-learning models vs Traditional models. In terms of computational speed, ma- 1181

chine learning algorithms—particularly those based on deep learning—have the capability 1182

to process extensive datasets at a far quicker rate compared to traditional methodologies. 1183

When it comes to prediction accuracy, the machine learning algorithms stand out for their 1184

superior feature extraction capabilities, often yielding more precise outcomes in short-term 1185

weather forecasting scenarios. Additionally, the adaptability of machine learning models 1186

enables them to evolve and improve over time. This flexibility makes them particularly 1187

useful tools that can be fine-tuned as climate data and observational technologies continue 1188

to advance. 1189

While machine learning models can excel in generating rapid and sometimes more 1190

accurate forecasts, their lack of interpretability can be a barrier to gaining deeper scientific 1191

insights.Machine learning models, especially complex ones like deep neural networks, are 1192

often considered "black boxes," meaning their internal workings are not easily understand- 1193

able. This is a significant drawback during meteorological application. Understanding the 1194

underlying mechanisms of weather and climate variability is crucial across all temporal 1195

scales, serving as the bedrock upon which all predictive methods are built. For instance, in 1196

short-term weather forecasting, an in-depth grasp of these mechanisms assists researchers 1197

in selecting the most relevant datasets. For example, when forecasting precipitation, it 1198

would be ineffective to merely input precipitation data as a training set. Instead, one must 1199

understand the specific meteorological factors that influence precipitation in a given region. 1200

This necessity becomes even more pronounced for medium-to-long-term forecasts, which 1201

are inherently more complex. To construct accurate and reliable models, it is imperative 1202

to identify the factors that interact with each other, eventually leading to variations in the 1203

target predictive elements for a particular region.Thus, a nuanced understanding of these 1204

mechanisms not only enhances the precision of our models but also broadens the scope for 1205

comprehensive climatic analysis and future scenario planning. 1206

7.2. Challenge 1207

Although we found extensive work of machine learning frameworks that succeed in 1208

short-term weather prediction and even outperform traditional methods, climate prediction 1209

in the medium-to-long term mainly relying on traditional methods. The main challenges 1210

can be attributed to the limited data size and complex climate change effect. 1211

Dataset. The scarcity of seasonal meteorological data, particularly evident from the era 1212

around 1979, poses significant challenges for applying machine learning to climate predic- 1213

tion. While data from this period may be adequate for short-term weather forecasting, it 1214

falls short for medium-to-long-term climate models. This data limitation impacts machine 1215

learning algorithms, which rely on large, quality datasets for robust training. Consequently, 1216

the lack of seasonal data affects not only the model’s performance and reliability but also 1217

complicates validation procedures. This makes it challenging to assess the model’s gen- 1218
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eralizability and accuracy. Additionally, the sparse data hampers the effective fusion of 1219

machine learning with traditional physics-based models, affecting the overall reliability of 1220

climate predictions. Therefore, the limitations of historical meteorological data significantly 1221

constrain the application of machine learning in long-term climate studies. 1222

Complex climate change effect. A certain climate change may be related to hundreds or 1223

thousands of variables. It’s difficult for us to use machine learning to capture their correla- 1224

tion. The intricate nature of climate change, influenced by hundreds or even thousands of 1225

interrelated variables, presents a daunting challenge for machine learning applications in 1226

climate prediction. Unlike simpler systems where causal relationships between variables 1227

are straightforward, climate systems embody complex, non-linear interactions that are 1228

difficult to model. Machine learning algorithms, though powerful, often require clearly 1229

defined feature sets and labels for effective training, a condition seldom met in the realm 1230

of climate science. The sheer number of variables can lead to issues of dimensionality, 1231

where the complexity of the model grows exponentially, making it computationally inten- 1232

sive and difficult to interpret. Furthermore, capturing long-term dependencies between 1233

these myriad variables is particularly challenging, given the current state-of-the-art in 1234

machine learning techniques. This complexity often results in models that, while math- 1235

ematically sophisticated, lack the interpretability necessary for scientific validation and 1236

policy implications. 1237

7.3. Future work 1238

For these challenges and the disadvantages of machine-learning prediction method in 1239

meteorology, we propose the following future work: 1240

• Simulate the dataset using statistic methods or physical methods 1241

• Combining statistical knowledge with machine learning methods to enhance the 1242

interpretability of patterns 1243

• Consider the introduction of physics-based constraints into deep learning models to 1244

produce more accurate and reliable results. 1245

• Accelerating Physical Model Prediction with machine learning knowledge 1246

Simulating Datasets: One promising avenue for future work is to simulate datasets using 1247

either statistical or physical methods. Such synthetic datasets can provide a controlled 1248

environment to test and validate predictive models. Utilizing methods like Monte Carlo 1249

simulations or employing first-principle equations to generate realistic data, this approach 1250

promises to enhance model robustness by enabling better generalizability testing. 1251

Enhancing Interpretability: The issue of interpretability is a well-known drawback of 1252

machine learning models. A future research direction could be the fusion of statistical 1253

methodologies with machine learning algorithms. Incorporating statistical tests for feature 1254

selection or Bayesian methods for uncertainty quantification can render the inherently 1255

opaque machine learning models more interpretable, thereby making their results more 1256

actionable in critical fields like meteorology. 1257

Physics-Based Constraints: A particularly vital frontier for research is the integration 1258

of atmospheric physics-based constraints into deep learning architectures. Traditional 1259

machine learning models, when unconstrained, might produce forecasts that, although 1260

statistically plausible, violate fundamental principles of atmospheric physics and dynamics. 1261

To mitigate this, it would be beneficial to incorporate terms or constraints that reflect the 1262

known interactions among meteorological elements such as temperature, pressure, and 1263

humidity. This can be done through methods like Physics-Informed Neural Networks 1264

(PINNs) or physics-based regularization terms. Such an approach would be invaluable 1265

for complex meteorological applications like severe weather forecasting, where both the 1266

accuracy and physical plausibility of predictions are of utmost importance. 1267

Accelerating Physical Models: Lastly, the intersection of machine learning with traditional 1268

physical models offers significant potential. Physical models are often computationally 1269

intensive; however, machine learning can expedite these calculations. Techniques such as 1270

model parallelization or simpler surrogate models developed via machine learning could 1271
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dramatically speed up real-time analysis and forecasting, a critical need in time-sensitive 1272

applications. 1273

Machine Learning (ML), a subset of Artificial Intelligence (AI), holds a distinctive 1274

prowess in discerning patterns from large datasets, yet it does not possess the capability to 1275

replace physical models including NWP and the Global Climate Model. This limitation 1276

predominantly stems from ML’s inherent "black box" nature which lacks explicability, in 1277

contrast to the physical models based on atmosphere principles. The symbiotic alliance 1278

between ML and physical models unveils a plethora of enhancements in weather forecast- 1279

ing. Specifically, ML significantly augments physical models in areas like bias correction, 1280

parameterization, and downscaling, where the fusion of data-driven insights with physical 1281

models tends to yield more accurate and efficient forecasts. On the flip side, physical 1282

models enrich ML by imparting robust physical constraints that guide the learning process 1283

towards physically plausible solutions. The inextricable synergy between ML and NWP 1284

models is underscored by their irreplaceable strengths, heralding a future where their 1285

collaborative integration could unlock new horizons in advancing meteorological science 1286

and forecasting accuracy. This harmonious coexistence not only propels the forecasting 1287

capabilities to new heights but also bridges the interpretability gap, thereby fostering a 1288

more comprehensive understanding and enhanced trust in predictive modeling within the 1289

meteorological community. 1290

8. Conclusion 1291

In conclusion, this study offers an extensive look into the transformative role of ma- 1292

chine learning in meteorological forecasting. It uniquely amalgamates short-term weather 1293

forecasting with medium- and long-term climate predictions, covering a total of 20 models 1294

and providing an in-depth introduction of eight select models that stand at the forefront of 1295

the industry. Our rigorous survey helps distinguish the operational mechanisms of these 1296

eight models, serving as a reference for model selection in various contexts. Furthermore, 1297

this work identifies current challenges like the limited dataset of chronological seasons and 1298

suggests future research directions, including data simulation and the incorporation of 1299

physics-based constraints. Thus, the survey not only provides a comprehensive current 1300

view but also outlines a roadmap for future interdisciplinary work in this burgeoning field. 1301

While the research acknowledges its limitations in providing an exhaustive analysis, it 1302

delineates a promising direction for future exploration. 1303
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