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Article 
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Abstract: Gliomas, the most prevalent and lethal form of brain cancer, are known to exhibit metabolic 

alterations that facilitate tumor growth, invasion, and resistance to therapies. Peroxisomes, essential organelles 

responsible for fatty acid oxidation and reactive oxygen species (ROS) homeostasis, rely on the receptor PEX5 

for the import of metabolic enzymes into their matrix. However, the prognostic significance of PEX5 for glioma 

patients remains unclear. We developed a robust prognosis model based on PEX5-dependent signature. This 

signature not only serves as a robust prognosis model capable of accurately predicting outcomes for glioma 

patients but also effectively distinguishes several clinicopathological features, including the grade, isocitrate 

dehydrogenase (IDH) mutation, and 1p19q codeletion status. Furthermore, we developed a nomogram that 

integrates the prognostic model with other clinicopathological factors, demonstrating highly accurate 

performance in estimating patient survival. Patients classified into the high-risk group based on our prognostic 

model exhibit an immunosuppressive microenvironment. Finally, we validated that the peroxisomal 

localization of the signature genes depends on PEX5 and demonstrated that PEX5 is required for cell growth, 

migration and invasion of glioma cells. These findings identify the PEX5-dependent signature as a promising 

prognostic tool for gliomas. 
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1. Introduction 

Gliomas are the most common and deadly type of cancer in the central nervous system in adults, 

accounting for 80% of all malignant brain tumors [1]. Glioblastoma (GBM), an extremely aggressive 

form of glioma, makes up 50% of newly diagnosed glioma cases and has a median overall survival 

(OS) of less than two years [2]. Despite advances in standard treatments like surgery, radiotherapy, 

and chemotherapy, therapeutic resistance remains a significant challenge due to the highly 

infiltrative nature of malignancy [3]. To address this, previous studies have identified various 

molecular markers, such as mutations in isocitrate dehydrogenase 1 and 2 genes (IDH1 and IDH2, 

collectively referred to as IDH) and co-deletion of 1p/19q, to aid in molecular pathological diagnosis, 

treatment options, and prognostic assessment [ 

4]. However, the prognosis for glioma patients remains poor, necessitating the development of 

an improved prognostic model for the disease. 

Peroxisomes are crucial single membrane-bound organelles present in all eukaryotic cells. Their 

importance for mammalian physiology is underscored by the existence of severe inherited human 

diseases resulting from the complete or partial loss of peroxisomal functions [5]. Peroxisomes are 

involved in essential cellular metabolism, most notably FA oxidation as well as the synthesis and 

breakdown of ROS [5,6]. Additionally, peroxisomes participate in various other processes such as 

glyoxylate detoxification, the synthesis and breakdown of ether phospholipids, and amino acid 

metabolism [5,6]. 

To enable these metabolic pathways, peroxisomes contain a variety of metabolic enzymes in the 

matrix. The import of matrix proteins is typically facilitated by peroxisomal targeting signals (PTSs), 

such as PTS1, which comprises a non-cleaved, C-terminal tripeptide, SKL, or its conserved variants 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 September 2023                   doi:10.20944/preprints202309.1748.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202309.1748.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

[7], or PTS2, which consists of a nonapeptide sequence, 

(R/K)(L/V/I/Q)XX(L/V/I/H/Q)(L/S/G/A/K)X(H/Q)(L/A/F), located near the N terminus of the cargo 

protein [8]. PEX5 functions as the receptor for recognition and import of PTS1-containing proteins 

[9,10], while PEX7 is the receptor for PTS2 proteins. Remarkably, PEX5 acts as a co-receptor for the 

import of PTS2 proteins by binding to the PEX7-cargo complexes [11,12]. Additionally, membrane 

proteins harbor targeting signals (mPTS), recognized by the receptor PEX19 [13]. 

One of the hallmarks of glioma progression is metabolic reprogramming, which allows tumor 

cells to adapt and survive in a hostile microenvironment [14]. In gliomas, alterations in metabolic 

pathways, such as fatty acid, lipid, and redox metabolism, are not only a consequence of genetic and 

epigenetic changes, but they also contribute to tumor growth, invasion, and therapy resistance 

[14,15]. Accumulating evidence indicates that peroxisomes actively participate in cancer, a disease 

characterized by abnormal metabolism [16]. A significant proportion of gliomas carry mutations in 

IDH1 and IDH2 genes [17]. It is worth mentioning that IDH1 is partially localized within peroxisomes 

[18]. Several studies have linked the expression of peroxisomal genes and proteins to the malignancy 

grade of gliomas [19–21]. However, the prognostic significance of peroxisomes for glioma patients 

remains unclear. 

In our study, we focused on the receptor PEX5, as it plays a crucial role in the matrix import of 

major peroxisomal enzymes. We developed a PEX5-dependent prognosis model and evaluated its 

sensitivity, specificity, and accuracy in predicting the survival of glioma patients. Furthermore, we 

knocked out the PEX5 gene and assessed the essentiality of PEX5 in glioma cell growth, migration, 

and invasion. 

2. Materials and Methods 

2.1. Data acquisition and processing 

We retrieved expression data and clinical information for glioma patients from multiple public 

databases. Specifically, we obtained the TCGA RNA-seq datasets from the UCSC Xena website, 

which consisted of 529 Lower Grade Glioma (LGG) samples and 173 Glioblastoma (GBM) samples. 

Additionally, we downloaded two RNA-seq datasets, CGGA_693 (693 samples) and CGGA_325 (325 

samples), from the Chinese Glioma Genome Atlas. We also acquired the GSE16011 microarray 

dataset (284 samples) from the Gene Expression Omnibus (GEO) database. 

For the RNA-seq cohorts, we obtained both the FPKM (Fragments Per Kilobase of exon model 

per Million mapped fragments) values and raw count data for expression analysis. To ensure the 

quality of the prognosis model analysis, we filtered out patient data with missing survival time or 

status information. After applying this criterion, we obtained a total of 691, 657, 313, and 131 glioma 

patient data for the TCGA, CGGA_693, CGGA_325, and GSE16011 cohorts, respectively. The detailed 

clinicopathological characteristics of glioma patients were summarized in Table S1-S4. 

2.2. Construction of the PEX5-based prognostic gene signature 

Identification of PEX5-dependent peroxisomal metabolic enzymes was carried out by searching 

the Peroxisome database (http://www.peroxisomedb.org/home.jsp) and selecting those with PTS1 or 

PTS2 signals. The resulting genes were then subjected to least absolute shrinkage and selection 

operator (LASSO) regression analysis using the glmnet R package. Multivariate Cox regression 

analysis was subsequently performed with the survival R package to establish an optimal PEX5-

based risk signature. A prognostic risk score was generated for each patient with the following 

formula: risk score = expression level of gene1 x j1 + expression level of gene2 x j2 + .... + expression 

level of genex x jx, where j represents the coefficient. We used TCGA data as the training cohort, 

while CGGA_693, CGGA_325, and GSE16011 data were used as validation cohorts. 

2.3. Survival analysis 

The glioma patients were categorized into low- and high-risk groups based on their median risk 

score. A risk plot was generated using an in-house "risk_plot" R function to illustrate the distribution 
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of survival status of the patients and the expression of the risk signature genes in the different risk 

groups. To evaluate the sensitivity and specificity of the risk signatures in predicting outcomes, we 

established time-dependent receiver operating characteristic (ROC) curves using the R package 

"survivalROC". For the ROC analysis, a higher area under the curve (AUC) indicates better accuracy. 

The AUC values range from 0.5 to 1.0, where 0.5 represents random chance, and 1.0 represents perfect 

discrimination. Generally, an AUC value greater than 0.7 is considered a reasonable estimate [22]. To 

compare the OS between different groups of glioma patients, we conducted Kaplan-Meier survival 

analyses using the R "survival" and "survminer" packages. 

2.4. Independent prognostic role of the risk signature 

To determine whether the PEX5-based risk score and other clinicopathological factors were 

independent prognostic factors for glioma patients, univariate and multivariate Cox regression 

analyses were conducted using the "survival" R package. These clinicopathological factors included 

age, gender, tumor grade, IDH mutation status, 1p19q codeletion status, and MGMT promoter 

methylation status. Results were presented using forest plots generated by the "forestplot" R package. 

2.5. Construction of the Nomogram 

To develop a prognostic nomogram for glioma patients, the "rms" R package was utilized. The 

nomogram included the PEX5-based risk score and the aforementioned clinicopathological factors, 

and was used to predict survival probabilities at 1, 3, and 5 years. The accuracy of the nomogram was 

evaluated through calibration curves and decision curve analysis (DCA) for the one-, three-, and five-

year survival rates of glioma patients. DCA is a method for evaluating the clinical benefit of 

alternative models [23]. In the context of nomograms, DCA evaluates net benefits at various threshold 

probabilities. To provide a meaningful comparison, two reference curves are typically plotted: the 

treat-all-patients scheme, representing the highest clinical costs, and the treat-none scheme, 

indicating no clinical benefit. 

2.6. Differential expression gene (DEG) and functional enrichment Analysis 

Raw count data from the three RNA-seq cohorts (TCGA, CGGA_693, and CGGA_325) was 

obtained, and genes with expression detected in at least half of the samples were selected for DEG 

analysis using the "limma" R package between the low- and high- risk group. Statistically significant 

DEGs were defined as those with an adjusted p value (adj. p) < 0.05 and a |fold change (FC)| >= 2, 

and were visualized in volcano plots. To determine gene function enrichment, the human c5.go.bp 

gene set was downloaded from the MSigDB database. Genes were pre-ranked based on differential 

expression (log2FC), and a GSEA analysis of the c5.go.bp gene set was conducted using the GSEA() 

function in the "clusterProfiler" R package. 

2.7. Plasmid construction 

The PEX5 sgRNA sequence (sgPEX5-1: 5’ ttcgtgcggcagattggcga 3’; sgPEX5-2: 5’ 

acgagccaagtcagctatag 3’) was subcloned into the lentiCRISPRv2 vector. The C-terminal tripeptide, 

SKL, was in frame cloned into the GFP tag at the C terminus to generate the GFP-PTS1 construct. The 

nonapeptide sequence, RLQSIKDHL, was in frame cloned into the GFP tag at the N terminus to 

generate the PTS2-GFP construct. The coding regions for ACOX1, HMGCL, PIPOX, GSTK1, or CAT 

were cloned into the pEGFP-C1 construct with an in-frame N-terminal GFP tag. 

2.8. Cell culture and PEX5 knockout cell establishment 

293T and U251 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) (Biological 

Industries, 01-052-1A), supplemented with 10% fetal bovine serum (FBS) (Biological Industries, 04-

001-1A), 100 units/mL penicillin, and 100 μg/mL streptomycin (Gibco, 15070063). The cells were 

incubated in a humidified 5% CO2 incubator at 37°C. 
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To establish PEX5 knockout cells, the PEX5 KO targeting vector was co-transfected with psPAX2 

(Addgene, 12,260) and pMD2.G (Addgene, 12,259) into 293T cells. The virus in the culture media was 

filtered through a 0.45 μm filter and used to infect U251 cells. Forty-eight hours after infection, cells 

were selected with puromycin (1 μg/ml). The surviving cell population was digested and single cells 

were plated into 96-well plates. The single-cell populations were then expanded and subjected to 

PEX5 knockout detection by DNA sequencing and western blot. 

2.9. Western blot 

Cells were lysed in RIPA buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton 

X-100, 0.5% sodium deoxycholate, 0.1% SDS) supplemented with protease inhibitor cocktails (Roche, 

05892970001). Equal amounts of proteins were separated by SDS-PAGE and transferred to 

nitrocellulose membranes of 0.45 μm pore size. The membranes were then blocked with 5% skim 

milk, followed by incubation with α-Actin (Sigma, A1978) or α-PEX5 (Cell Signaling Technology, 

83020S) antibodies overnight at 4°C. Subsequently, the membranes were incubated with dye 800-

conjugated secondary antibodies and the fluorescence signals were captured using a Licor Odyssey-

CLx machine. 

2.10. Immunofluorescence 

Cells grown on cover slides were transfected with GFP fusion constructs using a homemade 

polycation PEI reagent. After 24 hours, the cells were fixed with 4% paraformaldehyde and 

permeabilized with 0.5% Triton X-100. They were then blocked with 1% BSA and incubated with the 

primary α-GFP antibody (Proteintech, 50430-2-A) overnight at 4°C. Following a washing step with 

PBS, the cells were incubated with fluorescent dye-conjugated secondary antibodies and stained with 

1μg/ml DAPI to label the nuclei. The subcellular localization of proteins was visualized using an 

Olympus FV3000 laser scanning confocal microscope. 

2.11. CCK-8 assays 

To assess cell proliferation, cells were plated into 96-well plates at a density of 1500 cells/well. 

At the indicated days, cell viability was measured using a Cell Counting Kit-8 (CCK-8) assay. The 

absorbance was measured at 450 nm using a microplate reader (Multiskan FC, Thermo Fisher 

Scientific). 

2.12. Colony formation assay 

Cells were seeded in 6-well plates (200 cells/well) and maintained in growth median for 14 days. 

Cell colonies were stained with 0.1% crystal violet solution. The colonies were photographed and the 

colony number was calculated.  

2.13. Cell cycle 

Cells were digested with 0.25% trypsin into single cells and washed with ice-cold PBS. The cells 

were fixed with 70% ice-cold ethanol for 2 hours and then washed with PBS before being resuspended 

in PI staining buffer (Beyotime, C1052). After a 30-minute incubation at room temperature in the 

dark, the cells were subjected to flow cytometry analysis using a BD flow cytometer. The cell cycle 

distribution was analyzed using FlowJo software. 

2.14. Wound-healing assay 

Cells were plated in 6-well plates and allowed to reach approximately 90% confluence. A sterile 

10 μl pipette tip was used to create a scratch wound, and the cells were washed twice with PBS buffer. 

The cells were then incubated in growth media, and the wound area was imaged at the indicated 

times using an inverted fluorescence microscope. The wound healing rate was calculated as follows: 

(wound width at 0h – wound width at the indicated time) / wound width at 0h. 
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2.15. Transwell 

Cells were cultured in DMEM supplemented with 1% FBS in the upper chamber of a 

polycarbonate filter membrane with an 8.0 μm pore size (Corning-Costar, Cambridge, MA, USA). 

The lower chamber was filled with DMEM supplemented with 10% FBS. After 36 hours of incubation, 

non-invading cells on the upper membranes were carefully removed by cotton swabs. The migrated 

cells on the lower membranes were fixed with 4% polyoxymethylene and stained with a 0.1% crystal 

violet solution. Five randomly selected fields for each transwell membrane were photographed, and 

the numbers of migrated cells were recorded. 

2.16. Statistical analysis  

Experimental data were analyzed at least three times. Statistical analysis was performed using 

GraphPad Prism software or R packages. Data are presented as the mean ± SD. The statistical tests, 

including Student’s t test, Wilcox test, and log-rank test, were indicated in the respective figure 

legends. A p-value of <0.05 was considered statistically significant, and the significance levels were 

denoted as follows: *, p < 0.05; **, p < 0.01; ***, p < 0.001. 

3. Results 

3.1. Construction of a prognostic gene signature in the TCGA training cohort 

Human peroxisomal metabolic pathways play a critical role in various metabolic pathways, 

including fatty acid (FA) oxidation, glyoxylate metabolism, ether phospholipid biosynthesis, amino 

acid metabolism, antioxidant system, and proteases. Using the peroxisome database 

(http://www.peroxisomeDB.org), we identified 45 human peroxisomal enzymes involved in these 

pathways, 35 of which contained the predicted PTS1 or PTS2 signals (Figure 1A). We investigated 

whether the PTS1 or PTS2-containing metabolic enzymes, whose peroxisomal localization depends 

on PEX5, could be used to establish a prognostic model for glioma. 

To develop a prognostic model for glioma, we used the TCGA glioma dataset as the training 

cohort and performed the least absolute shrinkage and selection operator (LASSO) Cox regression 

analysis on the 35 genes (Figure 1B-1C). This resulted in a signature consisting of 5 genes (ACOX1, 

HSD17B4, ACOT4, CROT, ECH1), 2 genes (HMGCL, PIPOX), 3 genes (GSTK1, PRDX5, CAT), and the 

LONP2 gene, involved in FA oxidation, amino acid metabolism, antioxidant system, and proteases, 

respectively (Figure 1A, 1D).  

Among these genes, ACOX1, HSD17B4, ECH1, PRDX5, and LONP2 were identified as protective 

factors for glioma survival, as indicated by hazard ratios (HRs) less than 1 (Figure 1D). Conversely, 

ACOT4, CROT, HMGCL, PIPOX, GSTK1, and CAT were identified as risk factors, with HRs greater 

than 1 (Figure 1D). 
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Figure 1. Identifying prognostic genes for developing a PEX5-dependent risk model. The six 

metabolic pathways in peroxisomes were depicted. The proteins with predicted PTS1 or PTS2 signals 

were denoted with red and blue fonts, respectively. The genes enclosed within the box represent the 

11 signature genes selected by the LASSO model, as illustrated in Panel B and C below. The 35 PTS1- 

or PTS2- containing genes in panel (A) were subjected to the LASSO coefficient analysis, using the 

TCGA data set. Selection of the optimal parameter (lambda), as indicated by the first black dotted 

line, in the LASSO model in panel (B). Forest plot of the 11 signature genes selected by the LASSO 

model. 

3.2. Evaluation of the prognosis model 

To assess the prognostic value of our PEX5-dependent model, we computed a risk score for each 

patient based on the mRNA expression levels of the 11 signature genes and LASSO Cox regression 

coefficients. Using the risk scores, we employed ROC curve analysis and Kaplan-Meier analysis to 

evaluate the sensitivity, specificity, and survival prediction of the model. In addition to the TCGA 

training cohort, we validated the model using two RNA-seq datasets (CGGA_693 and CGGA_325) 

and a microarray glioma dataset (GSE16011).  
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Based on the median risk score, we divided patients in each cohort into low- and high-risk 

groups. Figure 2A depicts the distribution of risk scores and survival times for each patient, along 

with the expression levels of the signature genes. Our analysis demonstrated that the PEX5-

dependent model had excellent sensitivity and specificity for predicting 1-, 3-, and 5-year OS in all 

four cohorts, with area under curve (AUC) values of 0.87, 0.87, and 0.79 for the TCGA cohort, and 

0.72, 0.71, 0.71 for the CGGA_693 cohort, 0.69, 0.77, 0.83 for the CGGA_325 cohort, and 0.79, 0.87, 0.81 

for the GSE16011 cohort, respectively (Figure 2B). Furthermore, KM analysis showed that patients in 

the high-risk group had worse outcomes than those in the low-risk group across all cohorts (Figure 

2C). These results suggest that our model has strong predictive power. 

 

Figure 2. Assessment of the prognostic prediction ability of the 11-gene signature. (A) Distributions 

of risk scores, OS, and survival status, and heatmaps of gene expression profiles of the signature genes 

in the indicated cohorts. The dotted line indicates patients were median-dichotomized into the low-

risk group and high-risk group. (B) ROC curves of the 11-gene signature in the training TCGA 

dataset, and the three validation datasets: CGGA_693; CGGA_325; GSE16011. (C) KM curve of the 

prognosis signature in the indicated four cohorts (log-rank test). 

Different clinicopathological features have been shown to influence the survival outcomes of 

glioma patients. For instance, patients with a higher World Health Organization (WHO) grade or 

IDH wild-type status are typically associated with a poor prognosis [24,25]. We examined the four 

cohorts containing the patient grade information and observed significantly higher risk scores among 

the GBM population (WHO grade IV) (Figure S1A). Additionally, the three RNA-seq cohorts 

included patient information on IDH and 1p19q codeletion status, and our analysis showed that 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 September 2023                   doi:10.20944/preprints202309.1748.v1

https://doi.org/10.20944/preprints202309.1748.v1


 9 

 

patients with wild-type IDH or 1p19q non-codeletion status had significantly higher risk scores in 

these cohorts (Figure S1B-S1C). These findings highlight the prognostic value of the PEX5-dependent 

signature and demonstrate its ability to differentiate between different clinicopathological features 

in glioma patients. 

3.3. Construction and validation of the nomogram 

We examined the independence of PEX5-dependent risk score from other known prognostic 

factors, such as age, gender, WHO grade, IDH mutation status, 1p19q codeletion status, and MGMT 

promoter methylation status. Using univariate Cox analysis, we found that the PEX5-dependent risk 

score, along with other prognostic factors, was significantly associated with OS in the TCGA training 

cohort (Figure 3A). Multivariate Cox regression analysis revealed that the PEX5-dependent risk score, 

along with age, grade, and 1p19q codeletion status, significantly correlated with OS (Figure 3B). 

These findings suggest that the risk score is an independent prognostic variable for glioma patients 

in the TCGA training cohort. To validate our findings, we extended our analysis to two independent 

cohorts (CGGA-325 and CGGA_693), for which clinicopathological parameters were available. 

Consistently, our results indicated that the PEX5-based risk score was an independent predictor of 

OS across these cohorts (Figure S2A-S2B, S2D-S2E). 

We developed nomograms to predict 1-, 3-, and 5-year OS in glioma patients using the TCGA 

cohort. The nomograms incorporated seven independent risk factors, including the PEX5 dependent 

risk score, age, gender, WHO grade, IDH mutation, 1p19q codeletion, and MGMT promoter 

methylation statuses (Figure 3C). In the model, each risk factor was assigned points based on its 

contribution to OS (Figure 3C). Calibration curves indicated a good match between the actual and 

predicted OS at the 1-, 3-, and 5-year intervals (Figure 3D). 

The clinical benefits of the nomogram were compared to those of IDH mutation or WHO grade. 

DCA curves demonstrated that the nomogram exhibited superior predictive capabilities for OS 

compared to IDH mutation or WHO grade. This superiority was observed across various threshold 

probabilities in both the training cohort (TCGA) and the validation cohorts (CGGA_693 and 

CGGA_325). Furthermore, the nomogram consistently yielded higher net benefits when compared 

to both the treat-all-patients (All) scheme and the treat-none (None) scheme (Figure 3E). 

We constructed the nomogram model for the CGGA-693 and CGGA-325 cohorts by integrating 

six risk factors, including risk score, age, gender, WHO grade, IDH mutation, and 1p19q codeletion 

statuses (Figure S2C, S2F). Since the majority of patients in these cohorts lacked information for the 

MGMT promoter methylation status, we omitted it from the nomogram construction. Consistently, 

these models demonstrated accurate prediction of patient survival for 1-, 3-, and 5-year OS in both 

the CGGA-693 and CGGA-325 cohorts (Figure 3D-3E). 
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Figure 3. Establishment and assessment of the nomogram. (A, B) Forest plot of the univariate (A) and 

multivariate (B) Cox regression analyses of the indicated parameters in the TCGA cohort. IDH, IDH 

mutation status; grade, WHO grade; 1p19q, 1p19q codeletion status; Meth, MGMT promoter 

methylation status. The X-axis indicated the hazard ratio values. A hazard ratio of 1 signified no 

difference in survival risk. (C) The nomogram plot was constructed based on the risk score, IDH, age, 

gender, grade, and meth. The points of the factors indicate their corresponding contribution to the 

survival probability. The total points of each patient provided the estimated 3-year and 5-year 

survival times. (D) Calibration plot of the nomogram based on the TCGA, CGGA_693, and 

CGGA_325 datasets. (E) DCA of the nomogram for the 1-, 3-and 5-year OS in the TCGA, CGGA_693 

and CGGA_325 datasets. 
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3.4. High-risk group had an immunosuppressive feature 

Gliomas exhibit a distinct tumor microenvironment, largely due to the presence of the blood-

brain barrier [26]. During glioma progression, the infiltrating macrophages, Tregs and MDSCs have 

been shown to have the protumor and immunosuppressive effects [26,27]. To examine the potential 

role of these immune cells in the prognosis value of PEX5-dependent model, we computed the 

abundance of the three types of immune cells in each glioma patient through ssGSEA [28]. Our 

analysis revealed that the abundance of all the three-cell population was significantly upregulated in 

the high-risk group, and positively correlated with the risk score in the three examined cohorts 

(TCGA, CGGA_693, and CGGA_325) (Figure 4A-4B).  

We divided the glioma samples into different immune subtypes (C1-C6 subtypes) and found 

that the high-risk group had significantly more C4 and less C5 immune subtypes than the low-risk 

group in all three cohorts (Figure 4C). It is worth noting that the prognosis of the C4 immune subtype 

in tumors is worse than that of the C5 immune subtype [29]. These results suggest that the enhanced 

activity of the macrophages, Tregs and MDSCs may contribute to the immunosuppressive 

microenvironment and worse prognosis in the high-risk group. 

We analyzed the negative immune regulators, such as cancer-immunity cycle inhibitors [30] and 

immune checkpoints [31]. Through differential gene expression analysis through the limma package, 

we found that 567 and 611 genes were downregulated and upregulated, respectively in the high-risk 

group across all the three RNA-seq cohorts (Figure S3A-S3B). The Venn analysis showed that 10 

cancer-immunity cycle inhibitors and 13 checkpoint genes were among the upregulated gene list 

(Figure 4D). Remarkably, five genes (PDCD1LG2, CD48, IDO1, LAIR1, PDCD1) were found to be 

present in both the cancer-immunity cycle inhibitors and checkpoint genes categories. Overall, we 

identified 18 upregulated negative regulators (PDCD1LG2, CD48, IDO1, LAIR1, MICB, ICAM1, 

PDCD1, VEGFA, IL10, CCL2, TNFSF14, CD80, CD44, ICOS, CD70, NRP1, CD28, TNFRSF9) in the high-

risk group. Notably, the expression of each of these negative regulators was positively correlated 

with the risk score (Figure 4E). 

To demonstrate the immunotherapy sensitivity differentiated by the model, we used Tumor 

Immune Dysfunction and Exclusion (TIDE) [32]. Our analysis showed that the high-risk group had 

higher TIDE scores than the low-risk group (Figure 4F), suggesting that the high-risk group is more 

likely to resist immunotherapy than the low-risk group. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 September 2023                   doi:10.20944/preprints202309.1748.v1

https://doi.org/10.20944/preprints202309.1748.v1


 12 

 

 

Figure 4. Comparisons of immunosuppressive features between the low- and high-risk gliomas. The 

abundance of macrophages, MDSCs, and Tregs is compared between the low- and high-risk groups 

in the three cohorts. ***, p < 0.001 (Wilcoxon test). (A) The correlation of the risk score with the 

abundance of macrophages, MDSCs, and Tregs is demonstrated in the three cohorts. Pearson 

correlation was used to calculate the correlation coefficient (R) and p-values. (B) The distribution of 

immune subtypes is compared between the low- and high-risk groups in the three cohorts. (C) 

Intersection analysis of commonly upregulated genes in the high-risk group among three cohorts with 

genes that inhibit the cancer-immunity cycle (TIP_down) or immune checkpoints. Heatmaps depict 

the expression levels of these overlapping genes between the low- and high-risk groups in the three 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 September 2023                   doi:10.20944/preprints202309.1748.v1

https://doi.org/10.20944/preprints202309.1748.v1


 13 

 

cohorts. Genes that belong to both the cancer-immunity cycle inhibitors and checkpoint genes 

categories are denoted by the "#" label." (D) Correlation matrix visualization showing the relationship 

between the risk score and the overlapping genes from panel (A). Pearson correlation coefficient (R) 

values were indicated by the color scale. *, p < 0.05; **, p < 0.01; ***, p < 0.001. (E) Comparison of the 

TIDE scores between the low- and high-risk groups in the three cohorts.  *, p < 0.05; ***, p < 0.001 

(Wilcoxon test). 

3.5. The peroxisomal localization of the signature genes depends on PEX5. 

To investigate the role of the import receptor PEX5 in determining the subcellular localization 

of signature genes, we designed a specific sgRNA to target the PEX5 gene in glioma U251 cells. We 

successfully generated the PEX5 knockout (KO, sgPEX5-1) cells, as confirmed by DNA sequencing 

and western blot analysis (Figure 5A-5B). As expected, PEX5 KO resulted in the defective import of 

PTS1- and PTS2-containing proteins, as demonstrated by PTS1- and PTS2-reporter constructs (Figure 

5C). 

 

Figure 5. PEX5 KO inhibits the peroxisomal localization of the signature genes. (A) The genomic DNA 

of U251(sgPEX5-1) cells was extracted, and the regions surrounding the PEX5 sgRNAs were amplified 

and sequenced. The deletion region by the sgRNAs is indicated. (B) PEX5 detection in the U251 

(sgPEX5-1) cells by western blot. (C) The control and sgPEX5-1 U251 cells were transfected with the 

GFP-PTS1 or GFP-PTS2 reporter constructs, or the indicated constructs. The cells were stained with 

GFP antibodies to enhance the fluorescent signal. Scale bars, 10 μm. (D) The control and sgPEX5-1 

U251 cells were co-stained with PMP70 and CAT antibodies. Scale bars, 10 μm. 
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Subsequently, we transfected U251 cells with constructs expressing each of the five signature 

genes: ACOX1, HMGCL, PIPOX, GSTK1, and CAT. We observed their peroxisomal localizations 

(Figure 5C). However, the peroxisomal localizations were found to be disrupted in PEX5 KO cells 

(Figure 5C). Furthermore, we performed immunostaining with a CAT antibody and observed that 

the endogenous CAT proteins lost their typical peroxisomal localization in the absence of PEX5 

(Figure 5D). These findings collectively underscore the pivotal role of PEX5 in governing the 

peroxisomal localization of the signature genes. 

3.6. PEX5 knockout inhibits the growth, migration, and invasion of glioma cells 

As the accurate peroxisomal localization of signature genes is pivotal in regulating their 

metabolic activity, we investigated the role of our prognosis model by assessing the cellular activity 

of glioma cells with PEX5 KO. To exclude the off-target effect, we developed an alternative PEX5 

sgRNA and subsequently established the PEX5 KO (sgPEX5-2) cells, as validated by western blot 

analysis (Figure 6A). The CCK8 and colony formation assays revealed that PEX5 KO severely 

suppressed the cell viability and anchorage independent growth (Figure 6B-6C). Cell cycle analysis 

showed an increase and decrease in the percentage of cells in S and G2/M phases, respectively, while 

the percentage of cells in G1 phase was unchanged (Figure 6D). These findings suggested that PEX5 

KO inhibits cell growth by arresting the cell cycle from S to G2M phase. Furthermore, our wound-

healing and trans-well assays demonstrated a remarkable impairment of migration and invasion in 

PEX5 KO cells (Figure 6E-6F). In summary, these findings underscore the pivotal role of PEX5 in 

glioma cell growth, migration, and invasion, further corroborating the significance of our PEX5-

dependent prognosis model. 
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Figure 6. PEX5 KO inhibits proliferation, migration, and invasion of U251 cells. (A) detection of PEX5 

in the Control, sgPEX5-1, and sgPEX5-2 U251 cells. U251 cells (control, sgPEX5-1, sgPEX5-2) were 

plated, and subjected to the CCK8 (B), colony formation (C), flowcytometry (D), migration (E), and 

transwell (F) assays. Data are presented as the mean ± SD and representative of three independent 

experiments. **, p < 0.01; ***, p < 0.001 (unpaired two-tailed Student’s t test). 

4. Discussion 

Within our prognostic model, several genes are involved in FA oxidation (FAO) and redox 

metabolism, alterations of which have been observed during glioma progression and are associated 

with malignancy [14]. It is worth noting that these metabolic processes also occur in mitochondria, 

albeit with different enzymes and reactions involved [33]. Take the FAO for example, two types of 

FAO occur in mammalian cells: α-oxidation and β-oxidation. α-Oxidation is a unique process that 

takes place in peroxisomes and is responsible for removing a single carbon from certain lipids at the 

carboxy terminus, enabling their subsequent β-oxidation [34]. Very-long-chain fatty acids (VLCFAs), 

which exceed 22 carbons in length, cannot be metabolized in the mitochondria and must undergo 

catabolism in peroxisomes [35]. While most of the research on FAO regards β-oxidation within the 

mitochondria in glioma cells [36,37], the study of peroxisomal FAO is very limited. Our PEX5-

dependent prognosis model takes advantage of the unique peroxisomal metabolism and highlights 

the pivotal role of PEX5-dependent peroxisomal metabolism in glioma development. 
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Gliomas present a complex and unique immune microenvironment, largely due to the presence 

of the blood-brain barrier [26]. Within this microenvironment, various immune cell populations 

coexist, including macrophages, resident microglia, MDSCs, T cells, natural killer (NK) cells, and a 

small number of B cells [27]. Studies have shown that macrophages, Tregs, and MDSCs exert 

protumor and immunosuppressive effects during the progression of gliomas [26,27]. In gliomas, 

there is a noticeable shift in the polarization of tumor-associated macrophages (TAMs) from an M1 

phenotype to an M2 phenotype, resulting in the suppression of the local immune response [38,39]. 

Recent research has linked TAMs to the promotion of tumor cell proliferation and the creation of an 

immunosuppressive environment through the recruitment of Tregs and MDSCs [40,41]. 

Furthermore, MDSCs contribute to the maintenance of an immunosuppressive environment by 

inhibiting various effector cells and promoting T-regulatory cell function [41].  

Our findings indicate that patients in the high-risk group exhibit an immunosuppressive 

microenvironment characterized by the upregulation of macrophages, Tregs, and MDSCs, as well as 

the presence of certain negative immune regulators. Moreover, these patients demonstrate higher 

TIDE scores, indicating reduced sensitivity to immunotherapy. These findings offer insights into the 

potential mechanisms underlying the unfavorable prognosis associated with high-risk gliomas. 

Currently, immunotherapy has shown limited success in the treatment of glioma patients [27], and a 

major challenge lies in identifying the patients most likely to respond to this treatment. Therefore, 

our results provide valuable guidance for the development of personalized immunotherapy 

approaches for glioma patients. 

Peroxisomes play a crucial role in compartmentalizing immune response pathways, serving as 

signaling platforms for initiating immune signaling cascades [42–44]. Additionally, peroxisomes act 

as immune metabolic hubs, influencing cellular metabolites such as ROS and unsaturated fatty acids. 

This functionality enables them to regulate immune cell development and activation, and modulate 

inflammatory pathways across different immune cells and tissues [45–48]. Impairment of 

macrophage activity has been observed in cells deficient in peroxisome biogenesis genes, such as 

PEX5 [45,47], or the antioxidant enzyme CAT [45]. These findings, in conjunction with our results, 

suggest that metabolic alterations may contribute to the establishment of an immunosuppressive 

microenvironment in high-risk gliomas. However, further research is necessary to identify the 

specific metabolic enzymes and products involved in this process. 
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