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ABSTRACT

» In the present document a compilation of empirical, semiempirical, and theoretical expressions
«» for the water-vapor pressure and specific humidity-based mass transfer coefficients employed in

«+ the Dalton equation is presented.
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1. Turbulence-induced vertical transport in the atmospheric surface layer

a. Empirical approach

Daily and monthly evaporation rates can be effectively parameterized in terms of routinously
measured meteorological observables among which the wind velocity is the key aerodynamic driver
for water-vapor mass transfer across the sea-atmosphere interface (next to the relative fugacity or its
proxies as the thermodynamic driving force of evaporation) (e.g., Wiist 1920; Jacobs 1942, 1951;
Sutton and Simpson 1934; Sverdrup 1936; Penman and Keen 1948; Tomczak 1939; Brogmus
1958, 1959; Budyko 1963; Dammann 1965; Sellers 1965; Richter 1969; Kunz 1972; Richter 1977,
Richter 1978; Richter et al. 1979; Dyck and Peschke 1983, pp. 137-141; Richter 1997; Vietinghoft
2000; DWA 2018, pp. 103-122, Table 15). The first trials to directly calculate the evaporation can

be probably traced back to Dalton (1802), who proposed the following simple relation:
Xe=f(U)Ae, Ae=eq(Sa,T)—e. (1)

Here, Xg = {E, Jg} denotes the evaporation metrics, which can be either the evaporation velocity
(or evaporation rate), E (in units of ms™"), or the water-vapor mass flux density, Jg (in units of
kgm~2s~1). The quantity Ae denotes the thermodynamic driving force of evaporation, given by the
difference between the equilibrium water-vapor pressure, ecq(Sa, T'), as a function of the salinity and
temperature and the actual water-vapor pressure, e. The aerodynamic prefactor f(U) is a nonlinear
function of the wind velocity, U, and is called “wind function”. The unit of f(U) depends on the
choice of Xg. In the literature, Eq. (1) is frequently given in form of a tailored equation expressed
in non-SI units. The aerodynamic prefactor is not a universal (generally valid) function of U,
but depends on several factors, such as the local wind field, which is influenced by topography,
orographic roughness, shore conditions (morphology, vegation, house building), location of the

measurement site etc. This holds true especially for inland waters. Correspondingly, there are
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different types of wind functions. Already Tomczak (1939) addressed the question, whether it is
allowed to extrapolate the local water-vapor mass flux density, Jg, to the whole free water area,
Ag, i.e., to determine the total evaporation mass flux from multiplication of the mass flux density
with the free-water area, Fg = Jg X Ag. The author denied the answer. Based on the evaporation
theory of Sutton and Simpson (1934), Tomczak (1939) analyzed the influence of the fetch on the
evaporation rate and derived an analytical expression for the wind function, which depends next
to U on the degree of turbulence, and on the geometrical dimensions of the free-water area. A
further discussion of this problem can be found in Richter (1969). A consequence of this problem
is that the validity of empirical relations is more or less restricted to the special conditions of their
derivation. Hence, special care is required when extrapolating empirical relations from one place
to another. Compilations and critical reviews of empirical and semiempirical correlations for the
estimation of the evaporation of free water areas can be found, e. g., in Vietinghoff (2000, pp.

51-60) and DWA (2018, p. 103-122, Table 15).

b. Rationale of the Monin-Obukhov similarity theory

In contrast to empirical and semiempirical approaches for daily and monthly means, the de-
termination of instantaneous evaporation fluxes, e.g., in model applications, requires the explicit
consideration of the atmospheric stability, which controls the turbulence exchange of water vapor in
the atmospheric surface layer (ASL). Such approach requires the completion of empirical findings
by additional theoretical considerations.

The Monin-Obukhov similarity theory (MOST) serves as a master theory for the treatment
of ASL turbulence. This theory was originally published in Russian in 1954, later translated and
published in German and English languages (e.g., Monin and Obuchow 1958; Monin and Obukhov

1990). A review of the history, assumptions, rationale, and predictive power of the MOST can
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be found in, e. g., Foken (2004). Owing to its widespread presence in atmospherically relevant
literature, especially on ABL physics (e.g., Pal Arya 1988; Foken 1990; Schmugge and André 1991;
Garratt 1992; Kaimal and Finnigan 1994; Stull 1997; Etling 2010; Foken 2016; Emeis 2022), here
one can abstain from a comprehensive review of referenced sources. The explanations given below
will focus on the rationale of this theory.

The MOST is based on the following assumptions:

1. The application of the MOST is restricted to the ASL, the height of which is denoted as H.

2. The universal laws predicted by the MOST rely on similarity considerations, which are

typically applied in aero-hydrodynamics and thermal physics.

3. The flow is assumed to be horizontally homogeneous and to be free of acceleration.

4. Vertical motions are neglected.

5. Turbulence is assumed to be in a quasi-steady state.

6. The turbulent fluxes of momentum and heat are assumed to be independent of height, i.e., the

ASL is approximated as a “constant-flux layer”.

7. In the system of equations describing the momentum, mass, and heat budgets of a thermally
inhomogeneous medium, terms containing the viscosity and thermal conductivity of the fluid
are neglected. Under the condition of fully developed turbulence these terms must only be
considered in the description of the details of the microstructure of the wind and temperature

field.

8. The differences between the temperature and the potential temperature in the ASL and their
vertical gradients are negligibly small. However, in the vicinity of isothermal states, these

differences become important and must be considered.
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In its orginal form, the MOST is formulated for a dry ASL (Monin and Obuchow 1958), but it
is commonly agreed, that the rules for the heat flux can also be applied to specific humidity or
any other passive tracer, hence the heat-flux relations are applicable to scalar fluxes. Under these
conditions, the MOST describes the turbulence in a thermally inhomogeneous medium by only

four independent observables (e. g., Foken and Richter 1991, p. 9 therein), namely
1. the screening height z,

2. the buoyancy parameter Sg = g/T with g denoting the constant of gravity, and T the temper-

ature at the screening height,

3. the momentum flux Jy = —|TReynolds| = =/ 7% + T5; = —0avu; (in units of Nm™2), with 7, and
Ty, denoting the xz- and yz-component of the Reynolds stress tensor, oay the mass density of

humid air, and u, the friction velocity, and finally

4. the sensible heat flux Jr = oavep(W'T”)s (in units of Wm2), with ¢p denoting the specific
isobaric heat capacity of humid air, (w'T”)s = —u,Ty the kinematic heat flux (in units of
Kms™), 7, the kinematic scaling temperature, w = w +w’ the vertical velocity, and T = T+T

the potential temperature employing Reynolds decomposition in a mean and deviatoric part.

These four quantities define a dimensionless stability parameter £,

ul

E ) L= -— ) (2)
L kBe(W'T")s

with a characteristic turbulence length scale, L, serving as a key scaling length of the MOST,
which found entrance in the literature as Monin-Obukhov length (MOL). The quantity « is the Von

Karman constant. The upper limit of the ASL height is estimated to amount

u3(0) - ui(H) _

H~ax250m, 3
uy(0)

b
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where « is a prescibed parameter controlling the vertical gradient of the momentum flux (vanishing
vertical gradient at @ = 0). For a = 0.2 the ASL height amounts H = 50m. The most important
prediction of the MOST is the existence of similarity laws for the vertical gradients of the horizontal

wind velocity, U=ui+ vf, the temperature, T, and the specific humidity, g:

Kz Oy - T =
X_ﬁ_)z( = 0,0), ¥={UULTG, xu={unTuds)
*
~ B €))
k7 0|U| kz 0T kz 0q
~> — = O ——=0 ? —-- =0 ’
N v({), T, 9z 7(¢) gx 07 (&)

The quantities ®y({), Pr({), and P,({) are universal similarity functions for momentum, heat,
and humidity, which must be empirically determined. In the limiting case of neutral stratification
one has Jr =0, resulting in L — oo and { = 0. The restoration of the logarithmic wind profile under
neutral conditions requires ®@;(0) = 1. The quantities u,, Ty, and g, are independent of altitude
and serve as characteristic scaling properties. A direct consequence of the MOST is the mutual
interdependence of momentum, heat, and evaporation fluxes.

Now it is assumed, that the relations given in Eq. (3) are valid in turbulent layers of thicknesses
Az|ly =z=2z-20, Azly =z2=z—2z0r, and Az|, = z = z— 20, for momentum, heat, and moisture
transport, respectively. The quantitites zo, zor, and zq 4 are the aerodynamic roughness lenghts for
momentum, temperature, and specific humidity and define the lower height of the applicability of
the MOST scaling laws. Adding a nutritive zero 1 — 1 = 0 to the right-hand side of the first scaling

relation in Eq. (3), the integration over the height from the aerodynamic roughness length z to the
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4
w» Analogously, carrying out the integration of the second relation in Eq. (3) from zo7 to z with

T(Zo,T) =T, and of the third relation from 20,4 to z with g(zo4) = g, one arrives at the following

)

e integrals:

4

T, = T [ Tyt () ().
. 5)
o = [ —1_®2(,§(Z')) a’,
. 0
=07 = % [P gt L (2], (2]
- | ©)
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Considering A| U (z)|, AT, and Aq as given, and inserting u, from Eq. (4) together with T, from Eq.

o

(5) into Eq. (2), one obtains a transcendental equation for the determination of L, the knowledge

N
N

s of which allows the determination of u., Ty, and gx:

kAU (2)|
Uy =

Tz Z 20\’
oSl )
N, u\z) T

(7
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By virtue of Jy = —QAvui, Jr = —oavepusTy, and analogously, J, = —oavLvyixgs, wWith Ly
denoting the specific heat of evaporation, one arrives at the following flux representations for the

turbulent transfer of momentum, sensible heat, and latent heat:

- 2
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Here, Cy, Cr, and C, denote the drag coefficient, and the Stanton and Dalton numbers, respectively.
The application of Egs. (10), (11), and (12) requires the specification of the similarity functions,
®,, and the boundary conditions at zo, zo7, and zo,. The availability of the Dalton number,
Cy, allows a unique determination of the vapor-pressure and specific humidity-based transfer

coefficients, D, and D, = C, AU (z)|, appearing in the Dalton equation.



w C. Applicational aspects and compilation of transfer coefficients

w  The MOST serves as the theoretical fundament of countless meteorological and metrological

» applications in parameterizing and measuring near-surface turbulent fluxes. For example, the
w MOST is part of the flux parameterization in several community models for numerical weather

» prediction (NWP) and global circulation models (GCM), such as,

the NWP model COSMO of the German Weather Service (e. g., Doms et al. 2013),

141

12 * the Integrated Forecast System (IFS) of the European Center for Medium-Range
14 Weather Forecasts (ECMWF) (e. g., ECMWEF-IFS 2021, https://www.ecmwf.int/en/

144 publications/ifs-documentation),

145 * the NCAR-GCM (e. g., Large and Pond 1981, 1982; Large et al. 1997; Large and Yeager

116 2004, 2009; Brodeau et al. 2017), and

. * the TOGA-COARE-GCM (e. g., Webster and Lukas 1992; Fairall et al. 1996b,a, 1997;
148 Andreas 2003; Brunke et al. 2003; Fairall et al. 2003a,b; Zeng et al. 2003; Andreas et al. 2008;

149 Fairall et al. 2011; Edson et al. 2013; Yusup et al. 2018).

w0 While retaining the basic physical assumptions of the theory, the specific implementation is subject
s to manifold modifications and enhancement to continuously ensure best agreement with available
w2 state-of-the-art empirical and theoretical findings and to remove still existing biases in the flux

s parameterization (e.g., Yu 2019). The variety of specifications concerns, e.g.,

154 * the specification of the empirical similiarity functions, ®,, underlying the determination of
155 the stability functions, ¥, , and the drag coefficient and the Stanton and Dalton numbers (e.
156 g., Dyer and Hicks 1970; Paulson 1970; Businger et al. 1971; Kaimal et al. 1972, 1990; Dyer
157 1974; Skeib 1980; Foken and Skeib 1983; Skeib and Richter 1984; Holtslag 1987; Hogstrom
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1988; Foken 1990, 1991; Garratt 1992; Kaimal and Finnigan 1994; Fairall et al. 1996b;

ECMWEF-IFS 2021),

e the parameterization of the surface-roughness lengths, zo, zo7, and zo, (e. g., Smith 1988;
Miller et al. 1992; Beljaars 1995; Fairall et al. 1996b,a, 1997, 2003a; Large and Yeager 2009;

Fairall et al. 2011; Doms et al. 2013; Edson et al. 2013; Liu et al. 2013), and

* the refinement of the description of the exchange processes in the molecular boundary layer
and the viscous intermediate (buffer) layer, i. e., at 0 < z < {z0,207, 204} (€. g., Owen and
Thomson 1963; Kondo 1975; Foken et al. 1978; Liu et al. 1979; Foken 1979b,a, 1984, 1986;
Foken and Richter 1991; Foken and Skeib 1991; Richter and Skeib 1991), e.g., within the
framework of the surface-renewal theory (e. g., Brutsaert 1975; Soloviev and Schliissel 1994,
1998; Clayson et al. 1996; Fairall et al. 1996a; Zappa et al. 1998; Mengistu and Savage 2010;

Horvath and Chatterjee 2018; Hu et al. 2018).

Table 2 contains a compilation of selected empirical and semi-empirical expressions of the vapor-
pressure and specific humidity-based transfer coefficients, D, and D,, appearing in the Dalton

equation.
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TaBLE 1. List of Symbols.

Symbol  Unit Value Meaning

a 1 Regression parameter

ag 1 Regression parameter

Ag m? Evaporation surface area

b 1 Regression parameter

b, 1 Regression parameter

beorr ms~! Regression parameter

Cq 1 Regression parameter

Cp Jkg='K~! Specific heat capacity of humid air

Cy 1 Bulk-transfer coeflicient for moisture (Dalton number)

C}; 1 Bulk-transfer coefficient for moisture for neutral stratification
Cr 1 Bulk-transfer coefficient for temperature (Stanton number)
Cy 1 Bulk-transfer coefficient for momentum (drag coeflicient)
C II}I 1 Bulk-transfer coefficient for momentum for neutral stratification
D, m?skg™! Vapor-pressure based mass-transfer coefficient

D, ms~! Specific-humidity based mass-transfer coefficient

e Pa Actual water-vapor pressure

€eq Pa Equilibrium water-vapor pressure

E ms~! Evaporation velocity (evaporation rate)

fu m?skg™! Wind function

Fr kgs™! Water-vapor mass flux (evaporation mass flux)

F, 1 Stability correction function for moisture

g ms~2 Gravitational constant

H m Height of the ASL
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Continuation of Table 1.

Symbol  Unit Value Meaning

Jy Wm™ Turbulent flux of latent heat

Jr Wm™2 Turbulent flux of sensible heat flux

Ju Nm™2 Turbulent flux of momentum

Jg kgm2s7! Water-vapor mass flux density (evaporation mass flux den-
sity)

Pa~! Pressure coefficient
m m?s~! Molecular exchange coefficient

Kny ~ m?s7! Molecular exchange coefficient for momentum

L m Monin-Obukhov length

Ly Jkg™! Specific heat of evaporation

n 1 Parameter in the Skeib-similarity function

Nturb 1 Metric for the degree of turbulence

)2 1 Regression parameter

Pry, 1 Molecular Prandtl number

q kgkg™! Specific humidity (mass fraction of water vapor in humid
air)

q10 kgkg™! Specific humidity at z = 10m

Geq kgkg™! Equilibrium specific humidity

qx kgkg™! Kinematic scaling specific humidity

Riy 1 Bulk Richardson number between the surface and the first
model layer

S Ksm™2 Stability parameter

SR Ksm™2 Reference stability parameter

S 1 Dimensionless stability parameter

Sa kgkg™! Salinity (mass fraction of sea salt in seawater)
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Continuation of Table 1.

Symbol  Unit Value Meaning

T K Temperature

Ta K Air temperature

TssT K Sea surface temperature

Ty K Kinematic scaling temperature

u ms~! x-component of wind vector

Us ms~! Friction velocity

U ms~! Wind speed

Ur Ims™! 1 Reference wind speed

U, ms~! Wind speed at the first model level

Ujo ms~! Wind speed at z = 10m

U 1 Normalized wind speed

v ms~! y-component of wind vector

w ms~! z-component of wind vector

X 1 Auxiliary function

Z m Height

20 m Surface-roughness length for momentum (aerodynamic
roughness)

204 m Surface-roughness length for specific humidity

20T m Surface-roughness length for temperature

21 m Height of the first model level above the surface
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Continuation of Table 1.

Symbol  Unit Value Meaning

a 1 Relative change of the momentum flux in the ASL

am m?s™! Thermal diffusivity of air

B 1 Parameter

Br ms2K~! Buoyancy parameter

0% 1 Parameter

Om m Thickness of the molecular diffusion layer

Omg m Thickness of the molecular boundary layer for water vapor
3; 1 Dimensionless thickness of the molecular boundary layer

for water vapor

AT K Temperature difference

e 1 Tubulence parameter

4 1 Stability parameter at z

) 1 Stability parameter at z = zg

L 1 Critical stability parameter defined in the Skeib-similarity
function

n Physical parameter

K 1 0.4 von-Karmén constant

v m?s™! Kinematic viscosity of air

& 1 Wind function

OAV kgm™3 Mass density of humid air

ow kgm™3 Mass density of water

J °C Celsius temperature
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Continuation of Table 1.

Symbol Unit  Value Meaning

T Nm™2 Reynolds stress

0y K Absolute virtual potential temperature

Oy K Absolute virtual potential temperature at the surface
Ov.1 K Absolute virtual potential temperature at the first model level
Q, 1 Similarity function for specific humidity

(o7 1 Similarity function for temperature

Dy 1 Similarity function for momentum

D, 1 Similarity function for quantity y

b% [x] Placeholder for any physical quantity

Xx [x] Kinematic scaling value of quantity y

¥, 1 Stability function for specific humidity

Yr 1 Stability function for temperature

Yy 1 Stability function for momentum
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TaBLE 2. Compilation of water-vapor mass transfer coefficients from the literature (selection).

Vapor-pressure based formulation of Daltons evaporation formula (e.g., Wiist 1920; Sutton and Simpson 1934; Sverdrup 1937;
Tomczak 1939; Jacobs 1942, 1951; DWA 2018)

Ji J
E="5 =% - D,[ecq(Sa.T)~e]
ow owly
—a (1 +3.66- 10—319/°c) (1 +bU/(kmh_1)) (Wiist 1920, pp. 39-41)
a=(4.6-564)-10""m?>skg™", b=0.075-0.11
=a(U/UR) (Jacobs 1942, 1951)
a=(0.94-1.24)-10"" m?skg™!
D, = _ & _ 2 — Narb . .
=w [a +b(U/UR) ] , &€= —— (Sutton and Simpson 1934; Tomczak 1939)
2+ ngrb
a=0.16,b=0.18,=0.84, w=28.7- 1071 mzskgf] (Richter 1969, p. 16, Stechlinsee, Branden-
burg);
= fy(U) (Compilation of different wind functions: Viet-
inghoff 2000, pp. 51-60; DWA 2018, p. 117,
Table 15)

Specific-humidity based formulation of Daltons evaporation formula (e.g., Budyko 1963, pp. 74-76, Eqgs. (68), (69), (73),
Sellers 1965, p. 145, Eq. (10.9), Kondo 1975, Eq. (2), Liu et al. 1979, Eq. (1b), Foken 1984, Eq. (10), Smith 1988, Eq. (3),
Pal Arya 1988, p. 188, Eq. (12.13), Kondo et al. 1990, Egs. (1), (2), Ruprecht and Simmer 1991, Section 2, Schmugge and
André 1991, p. 72, Eqgs. (4.6)-(4.8), Garratt 1992, p. 56, Eq. (3.51), Miller et al. 1992, Eq. (1), Kraus and Businger 1994, pp.
180-181, Kaimal and Finnigan 1994, p. 13, Eq. (1.17); p. 70, Eq. (3.13), Zhang and McPhaden 1995, Eq. (1b), Stull 1997, p.
263, Eq. (7.4.1e), Fairall et al. 2003a, Liu et al. 2007, Yu 2007, Eq. (1), Stewart 2008, p. 58, Eq. (5.10c), Table 5.1, Liu et al.
2013, Eq. (5), Rosenberg 2016, Eq. (2), Kumar et al. 2017, Eq. (1), Cronin et al. 2019, Eq. (1.6b), Yu 2019, Eq. (3), Hogan
2020, Reeves Eyre et al. 2021, Eq. (3), Table 1, Song et al. 2022, Eq. (1))

Jg = QAVLVDq[Cqu(SAv T)-q], Dy =CgU

KU
= m 5> Sm=(1-1.5)-107m (Sverdrup 1936, Budyko 1963,
U by + K (M) Eq. (69))
K2 20
=a+b(UJUR), a=(7-45-10"*ms™", b=2-10"ms"! (Sellers 1965, p. 159, Eq.
(11.2))

(a=7- 10~*ms~! for large lakes)

Dg=91 =5.10ms™! (Kaimal and Finnigan 1994, pp.
73-76, Eq. (3.21), Table 3.1)

= i - (Foken 1984, Eq. (10))
KPrm o +dk+n [ 2L ) Ly (2
moma 20Kmy) n L
 bmous {(~0.075,0.5}, —2.5 < £ < ~0.075
omg = =6, {{en}= (Skeib and Richter 1984)
Kmu

{0.16,-2},0.16 < ¢ < 1
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Continuation of Table 2.

Specific-humidity based formulation of Daltons evaporation formula with correction for subsurface sea-temperature effects
according to Kruspe (1977, Eq. (3), Fig. 2)

Jg = 0avLy |CqUi0lqeq(SaT) = q10] + beorr |, Cqx 103 =1.36£0.25,  beorr = —0.7- 10 ms™!

Formulations of the Dalton number for neutral, stable, and unstable stratification from different sources

1.15 (Large and Pond 1982, Table 2, for unstable condi-
tions)
1-5 (Stull 1984, p. 263, Eq. (7.4.1e))
1.1 (£15%) (Garratt 1992, p. 101-104, Fig. 4.9)
N 3 1.2 (Smith 1988, best estimate from compilation of
Cq x 107 = data, Kraus and Businger 1994, p. 181 for U =
(5-20) ms~!, Stewart 2008, Table 5.1, Hogan 2020,
Eq. (29))
(1.1-1.2)@U < 10ms™!, 1.45@U ~ 20ms™! (Fairall et al. 2003a, Fig. 3)
1.2-1.5 (Liu et al. 2007, Table 3)
1.3 (Kumar et al. 2017, Eq. (1))
LUT as function of U and AT = Tx —TssT (Bunker 1976, Table 4)
(1-2) [1 + 10—2/33/4] at ¢ <0 (unstable)
1 _ .
CqN T+35¢ [1 +10 2,83/4] at ¢ > 0 (stable) (Panin .et al.. 2006,.for deep-
e water air-sea interaction)
U
;=2 ZOzzexp(_K_) g ftx
Cq — L Ux v
2
X , g:% (Pal Arya 1988, p. 167, Eq.
[m z_ LPU(O] [m z _\yq(é')] (11.16), Garratt 1992, p. 55,
20 0 Egs. (3.47)-(3.51), Stull 1997,
p. 267, Eq. (7.4.1m))
2
K , Q= =Y (Liu et al. 2013, Egs. (7), (8))
z z
In o Yu(O)+ ‘PU(KO)] [ln o Yq()+Y¥q(0)

Stability function (e.g., Paulson 1970, Pal Arya 1988, p. 167, Eq. (11.14), Zhang and McPhaden 1995):

-5 for (>0
Yu({) = 2 2
In (1+2x )(1;)6) —2arctanx+g, x:(l—lS()l/4 for <0
-5¢ for (>0
W (0) = ¥(0) = Lo
21n( ZX ) x=(1-150)Y% for ¢<0
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Continuation of Table 2.

Parameterization of the Dalton number according to Kondo (1975) on the base of the Owen-Thomson theory of evaporation
(Owen and Thomson 1963) (see also Garratt (1992, pp. 90-93) for interfacial sublayer relations)

(A) Parameterization for neutral (adiabatic) stratification (Kondo 1975, Fig. 5, Appendix 1, Table Al):

CY(10m)x 10° = ag + by (Z—f)pq +cq [Z—f —8]2
Ulo/(ms’l) ag by cq Py
03-22 0 123 0 -0.16
22-5(0969 0.0521 0 1
5-8|1.18 001 0 1
8§-25| 1.196 0.008  —0.0004 1
25-50 | 1.68  -0.016 0 1

(B) Parameterization for diabatic stratification (Kondo 1975, Appendix 3):

0.01+0.035+0.9exp(4.85) for Tssy—T <0and —3.3 < § < 0 (stable stratification)

Cq= Cg X1 0 for Tsst—T <0and S<-33 (very stable stratification)
1.0+0.635'/2 for Tgst—T > 0 (unstable stratification)

= = IS < S Tsst—T

S5 1%l S=30 g2 SST

0o=——> S0 ,
|So| +0.01 SR

2
1.0+log;g (lo—m)])
Z

v
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Continuation of Table 2.

Parameterization of the Dalton number according to Miller et al. (1992, Eqgs. (2), (3), Fig. 3)

2
Cq:CtII\IFq(RiOsZ_l,—Z] Z—l), ch = =

0 0T W4 [lnz—l] [ln | ]
20 20,9

Rough-wind regime (Charnock relation):

”i -5
Zo = max (0.018 —=,1.5-10"" m) » 20 =20,T =20,q
8

Weak-wind regime (smooth surface):

2
u
20=0.11—+0.018%, z)7 =040—+1.4-10°m, z0,=0.62—+1.3-10*m
Ux 8 Ux Ux
Free-convection limit of ocean evaporation:
) 1/3
8§ 1/3
Jq = 0avLvD}[qeq(Sa.T)— 1], D =0.17 (V—Q’“) (Ov,s—6y1)"

\4

Dalton number with consideration of the free-convection limit:

1/y K 2 n 1/3
c, = cN(1+c2) ", CN=(—) . Cr=—— (6ys—6,1)"
! 7 (1) ¢ \In(z1/20) : cgul(“ wt)
y = 125, 5=0.00l6ms'K"!/3
zg = from the Charnock formula
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Continuation of Table 2.

Parameterization of Dalton number according to Large and Yeager (2004, Eq. (6))

18.0 VCU . [>0 2.7 -1 U
Cyx 103 = L Cux10° =210 on4n 10
D IVE <0 Uio 13.09ms™
. V U 5 >

Parameterization of Dalton number according to Large and Yeager (2009)

—~ ~ 16 —~
f—1+a2+a3U10+a8 [Ul()] , Ujp=33
cy =1 Yo

N

N KJCU
q ! 10m’ _
" P 0.00234 , Ujp<33

- U
Uo=—22, a=27-107,ay=1.42-10%, a3 =7.64-107%, ag = -3.14807 - 10~ 13
Ur

K
10m

In—
20,q

=0.0346

Parameterization of the wind function ¢ in dependence on the wind velocity, the difference between water and air temperatures,
and on the humidity deficit according to Babkin (2023, Eq. (1))

E=¢U)U[geq(S.T)—q]
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