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ABSTRACT

In the present document a compilation of empirical, semiempirical, and theoretical expressions

for the water-vapor pressure and specific humidity-based mass transfer coefficients employed in

the Dalton equation is presented.
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1. Turbulence-induced vertical transport in the atmospheric surface layer14

a. Empirical approach15

Daily and monthly evaporation rates can be effectively parameterized in terms of routinously16

measuredmeteorological observables amongwhich thewind velocity is the key aerodynamic driver17

for water-vapor mass transfer across the sea-atmosphere interface (next to the relative fugacity or its18

proxies as the thermodynamic driving force of evaporation) (e.g., Wüst 1920; Jacobs 1942, 1951;19

Sutton and Simpson 1934; Sverdrup 1936; Penman and Keen 1948; Tomczak 1939; Brogmus20

1958, 1959; Budyko 1963; Dammann 1965; Sellers 1965; Richter 1969; Kunz 1972; Richter 1977;21

Richter 1978; Richter et al. 1979; Dyck and Peschke 1983, pp. 137–141; Richter 1997; Vietinghoff22

2000; DWA 2018, pp. 103-122, Table 15). The first trials to directly calculate the evaporation can23

be probably traced back to Dalton (1802), who proposed the following simple relation:24

XE = f (U) ∆e , ∆e = eeq(SA,T)− e . (1)

Here, XE = {E, JE} denotes the evaporation metrics, which can be either the evaporation velocity25

(or evaporation rate), E (in units of ms−1), or the water-vapor mass flux density, JE (in units of26

kgm−2 s−1). The quantity ∆e denotes the thermodynamic driving force of evaporation, given by the27

difference between the equilibriumwater-vapor pressure, eeq(SA,T), as a function of the salinity and28

temperature and the actual water-vapor pressure, e. The aerodynamic prefactor f (U) is a nonlinear29

function of the wind velocity, U, and is called “wind function”. The unit of f (U) depends on the30

choice of XE. In the literature, Eq. (1) is frequently given in form of a tailored equation expressed31

in non-SI units. The aerodynamic prefactor is not a universal (generally valid) function of U,32

but depends on several factors, such as the local wind field, which is influenced by topography,33

orographic roughness, shore conditions (morphology, vegation, house building), location of the34

measurement site etc. This holds true especially for inland waters. Correspondingly, there are35
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different types of wind functions. Already Tomczak (1939) addressed the question, whether it is36

allowed to extrapolate the local water-vapor mass flux density, JE, to the whole free water area,37

AE, i.e., to determine the total evaporation mass flux from multiplication of the mass flux density38

with the free-water area, FE = JE × AE. The author denied the answer. Based on the evaporation39

theory of Sutton and Simpson (1934), Tomczak (1939) analyzed the influence of the fetch on the40

evaporation rate and derived an analytical expression for the wind function, which depends next41

to U on the degree of turbulence, and on the geometrical dimensions of the free-water area. A42

further discussion of this problem can be found in Richter (1969). A consequence of this problem43

is that the validity of empirical relations is more or less restricted to the special conditions of their44

derivation. Hence, special care is required when extrapolating empirical relations from one place45

to another. Compilations and critical reviews of empirical and semiempirical correlations for the46

estimation of the evaporation of free water areas can be found, e. g., in Vietinghoff (2000, pp.47

51–60) and DWA (2018, p. 103-122, Table 15).48

b. Rationale of the Monin-Obukhov similarity theory49

In contrast to empirical and semiempirical approaches for daily and monthly means, the de-50

termination of instantaneous evaporation fluxes, e.g., in model applications, requires the explicit51

consideration of the atmospheric stability, which controls the turbulence exchange of water vapor in52

the atmospheric surface layer (ASL). Such approach requires the completion of empirical findings53

by additional theoretical considerations.54

The Monin-Obukhov similarity theory (MOST) serves as a master theory for the treatment55

of ASL turbulence. This theory was originally published in Russian in 1954, later translated and56

published in German and English languages (e.g., Monin and Obuchow 1958; Monin and Obukhov57

1990). A review of the history, assumptions, rationale, and predictive power of the MOST can58
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be found in, e. g., Foken (2004). Owing to its widespread presence in atmospherically relevant59

literature, especially onABL physics (e.g., Pal Arya 1988; Foken 1990; Schmugge andAndré 1991;60

Garratt 1992; Kaimal and Finnigan 1994; Stull 1997; Etling 2010; Foken 2016; Emeis 2022), here61

one can abstain from a comprehensive review of referenced sources. The explanations given below62

will focus on the rationale of this theory.63

The MOST is based on the following assumptions:64

1. The application of the MOST is restricted to the ASL, the height of which is denoted as H.65

2. The universal laws predicted by the MOST rely on similarity considerations, which are66

typically applied in aero-hydrodynamics and thermal physics.67

3. The flow is assumed to be horizontally homogeneous and to be free of acceleration.68

4. Vertical motions are neglected.69

5. Turbulence is assumed to be in a quasi-steady state.70

6. The turbulent fluxes of momentum and heat are assumed to be independent of height, i.e., the71

ASL is approximated as a “constant-flux layer”.72

7. In the system of equations describing the momentum, mass, and heat budgets of a thermally73

inhomogeneous medium, terms containing the viscosity and thermal conductivity of the fluid74

are neglected. Under the condition of fully developed turbulence these terms must only be75

considered in the description of the details of the microstructure of the wind and temperature76

field.77

8. The differences between the temperature and the potential temperature in the ASL and their78

vertical gradients are negligibly small. However, in the vicinity of isothermal states, these79

differences become important and must be considered.80
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In its orginal form, the MOST is formulated for a dry ASL (Monin and Obuchow 1958), but it81

is commonly agreed, that the rules for the heat flux can also be applied to specific humidity or82

any other passive tracer, hence the heat-flux relations are applicable to scalar fluxes. Under these83

conditions, the MOST describes the turbulence in a thermally inhomogeneous medium by only84

four independent observables (e. g., Foken and Richter 1991, p. 9 therein), namely85

1. the screening height z,86

2. the buoyancy parameter βB = g/T with g denoting the constant of gravity, and T the temper-87

ature at the screening height,88

3. the momentum flux JU =−|τReynolds | =−
√
τ2

xz + τ
2
yz =−%AVu2

? (in units of Nm−2), with τxz and89

τyz denoting the xz- and yz-component of the Reynolds stress tensor, %AV the mass density of90

humid air, and u? the friction velocity, and finally91

4. the sensible heat flux JT = %AVcp(w′T ′)s (in units of Wm−2), with cp denoting the specific92

isobaric heat capacity of humid air, (w′T ′)s = −u?T? the kinematic heat flux (in units of93

Kms−1), T? the kinematic scaling temperature, w = w+w′ the vertical velocity, andT =T +T ′94

the potential temperature employing Reynolds decomposition in a mean and deviatoric part.95

These four quantities define a dimensionless stability parameter ζ ,96

ζ =
z
L
, L = −

u3
?

κβB(w′T ′)s
, (2)

with a characteristic turbulence length scale, L, serving as a key scaling length of the MOST,97

which found entrance in the literature as Monin-Obukhov length (MOL). The quantity κ is the Von98

Kármán constant. The upper limit of the ASL height is estimated to amount99

H ≈ α×250m ,
u2
?(0)−u2

?(H)

u2
?(0)

≤ α ,
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where α is a prescibed parameter controlling the vertical gradient of the momentum flux (vanishing100

vertical gradient at α = 0). For α = 0.2 the ASL height amounts H = 50m. The most important101

prediction of theMOST is the existence of similarity laws for the vertical gradients of the horizontal102

wind velocity, ®U = u®i+ v®j, the temperature, T , and the specific humidity, q:103

κz
χ?

∂ χ

∂z
= Φχ(ζ) , χ = {| ®U |,T,q} , χ? = {u?,T?,q?}

;
κz
u?

∂ | ®U |
∂z

= ΦU(ζ) ,
κz
T?

∂T
∂z
= ΦT (ζ) ,

κz
q?

∂q
∂z
= Φq(ζ) .

(3)

The quantities ΦU(ζ), ΦT (ζ), and Φq(ζ) are universal similarity functions for momentum, heat,104

and humidity, which must be empirically determined. In the limiting case of neutral stratification105

one has JT = 0, resulting in L→∞ and ζ = 0. The restoration of the logarithmic wind profile under106

neutral conditions requires ΦU(0) = 1. The quantities u?, T?, and q? are independent of altitude107

and serve as characteristic scaling properties. A direct consequence of the MOST is the mutual108

interdependence of momentum, heat, and evaporation fluxes.109

Now it is assumed, that the relations given in Eq. (3) are valid in turbulent layers of thicknesses110

∆z |U = z = z− z0, ∆z |T = z = z− z0,T , and ∆z |q = z = z− z0,q for momentum, heat, and moisture111

transport, respectively. The quantitites z0, z0,T , and z0,q are the aerodynamic roughness lenghts for112

momentum, temperature, and specific humidity and define the lower height of the applicability of113

the MOST scaling laws. Adding a nutritive zero 1−1 = 0 to the right-hand side of the first scaling114

relation in Eq. (3), the integration over the height from the aerodynamic roughness length z0 to the115
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screening height z delivers:116

∆| ®U(z)| = | ®U(z)| − | ®U(z0)| =
u?
κ

z∫
z0

ΦU(ζ(z′))
z′

dz′ =
u?
κ

[
ln

z
z0
+

z∫
z0

ΦM(ζ(z′))−1
z′

dz′︸                    ︷︷                    ︸
= I

]

I =

ζ∫
ζ0

ΦU(ζ(z′))−1
ζ ′

dζ ′ = −

[ ζ∫
0

1−ΦU(ζ(z′))
ζ ′

dζ ′︸                    ︷︷                    ︸
= ΨU(ζ)

−

ζ0∫
0

1−ΦU(ζ(z′))
ζ ′

dζ ′
]

; ∆| ®U(z)| =
u?
κ

[
ln

z
z0
−ΨU

( z
L

)
+ΨU

( z0
L

) ]
.

(4)

Analogously, carrying out the integration of the second relation in Eq. (3) from z0,T to z with117

T(z0,T ) = T s, and of the third relation from z0,q to z with q(z0,q) = qs one arrives at the following118

integrals:119

∆T = T(z)−T s =
T?
κ

z∫
z0,T

ΦT (ζ(z′))
z′

dz′ =
T?
κ

[
ln

z
z0,T
−ΨT

( z
L

)
+ΨT

( z0,T

L

) ]
,

ΨT (ζ) =

ζ∫
0

1−ΦT (ζ(z′))
ζ ′

dζ ′ ,

(5)

120

∆q = q(z)− qs =
q?
κ

z∫
z0,q

Φq(ζ(z′))
z′

dz′ =
q?
κ

[
ln

z
z0,q
−Ψq

( z
L

)
+Ψq

( z0,q

L

) ]
,

Ψq(ζ) =

ζ∫
0

1−Φq(ζ(z′))
ζ ′

dζ ′ .

(6)

Considering ∆| ®U(z)|, ∆T , and ∆q as given, and inserting u? from Eq. (4) together with T? from Eq.121

(5) into Eq. (2), one obtains a transcendental equation for the determination of L, the knowledge122

of which allows the determination of u?, T?, and q?:123

u? =
κ∆| ®U(z)|

ln
z
z0
−ΨU

( z
L

)
+ΨU

( z0
L

) , (7)
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124

T? =
κ∆T

ln
z

z0,T
−ΨT

( z
L

)
+ΨT

( z0,T

L

) , (8)

125

q? =
κ∆q

ln
z

z0,q
−Ψq

( z
L

)
+Ψq

( z0,q

L

) . (9)

By virtue of JU = −%AVu2
?, JT = −%AVcpu?T?, and analogously, Jq = −%AVLVu?q?, with LV126

denoting the specific heat of evaporation, one arrives at the following flux representations for the127

turbulent transfer of momentum, sensible heat, and latent heat:128

JU = −%AV CU

[
∆| ®U(z)|

]2
,

CU =
κ2[

ln
z
z0
−ΨU

( z
L

)
+ΨU

( z0
L

)]2 ,
(10)

129

JT = −%AV cp CT ∆| ®U(z)|∆T ,

CT =
κ2[

ln
z
z0
−ΨU

( z
L

)
+ΨU

( z0
L

)] [
ln

z
z0,T
−ΨT

( z
L

)
+ΨT

( z0,T

L

)] , (11)

130

Jq = −%AV LV Cq∆| ®U(z)|∆q ,

Cq =
κ2[

ln
z
z0
−ΨU

( z
L

)
+ΨU

( z0
L

)] [
ln

z
z0,q
−Ψq

( z
L

)
+Ψq

( z0,q

L

)] . (12)

Here,CU ,CT , andCq denote the drag coefficient, and the Stanton and Dalton numbers, respectively.131

The application of Eqs. (10), (11), and (12) requires the specification of the similarity functions,132

Φχ, and the boundary conditions at z0, z0,T , and z0,q. The availability of the Dalton number,133

Cq, allows a unique determination of the vapor-pressure and specific humidity-based transfer134

coefficients, De and Dq = Cq∆| ®U(z)|, appearing in the Dalton equation.135

9



c. Applicational aspects and compilation of transfer coefficients136

The MOST serves as the theoretical fundament of countless meteorological and metrological137

applications in parameterizing and measuring near-surface turbulent fluxes. For example, the138

MOST is part of the flux parameterization in several community models for numerical weather139

prediction (NWP) and global circulation models (GCM), such as,140

• the NWP model COSMO of the German Weather Service (e. g., Doms et al. 2013),141

• the Integrated Forecast System (IFS) of the European Center for Medium-Range142

Weather Forecasts (ECMWF) (e. g., ECMWF-IFS 2021, https://www.ecmwf.int/en/143

publications/ifs-documentation),144

• the NCAR-GCM (e. g., Large and Pond 1981, 1982; Large et al. 1997; Large and Yeager145

2004, 2009; Brodeau et al. 2017), and146

• the TOGA-COARE-GCM (e. g., Webster and Lukas 1992; Fairall et al. 1996b,a, 1997;147

Andreas 2003; Brunke et al. 2003; Fairall et al. 2003a,b; Zeng et al. 2003; Andreas et al. 2008;148

Fairall et al. 2011; Edson et al. 2013; Yusup et al. 2018).149

While retaining the basic physical assumptions of the theory, the specific implementation is subject150

to manifold modifications and enhancement to continuously ensure best agreement with available151

state-of-the-art empirical and theoretical findings and to remove still existing biases in the flux152

parameterization (e.g., Yu 2019). The variety of specifications concerns, e.g.,153

• the specification of the empirical similiarity functions, Φχ, underlying the determination of154

the stability functions, Ψχ, and the drag coefficient and the Stanton and Dalton numbers (e.155

g., Dyer and Hicks 1970; Paulson 1970; Businger et al. 1971; Kaimal et al. 1972, 1990; Dyer156

1974; Skeib 1980; Foken and Skeib 1983; Skeib and Richter 1984; Holtslag 1987; Högström157
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1988; Foken 1990, 1991; Garratt 1992; Kaimal and Finnigan 1994; Fairall et al. 1996b;158

ECMWF-IFS 2021),159

• the parameterization of the surface-roughness lengths, z0, z0,T , and z0,q (e. g., Smith 1988;160

Miller et al. 1992; Beljaars 1995; Fairall et al. 1996b,a, 1997, 2003a; Large and Yeager 2009;161

Fairall et al. 2011; Doms et al. 2013; Edson et al. 2013; Liu et al. 2013), and162

• the refinement of the description of the exchange processes in the molecular boundary layer163

and the viscous intermediate (buffer) layer, i. e., at 0 ≤ z ≤ {z0, z0,T, z0,q} (e. g., Owen and164

Thomson 1963; Kondo 1975; Foken et al. 1978; Liu et al. 1979; Foken 1979b,a, 1984, 1986;165

Foken and Richter 1991; Foken and Skeib 1991; Richter and Skeib 1991), e.g., within the166

framework of the surface-renewal theory (e. g., Brutsaert 1975; Soloviev and Schlüssel 1994,167

1998; Clayson et al. 1996; Fairall et al. 1996a; Zappa et al. 1998; Mengistu and Savage 2010;168

Horvath and Chatterjee 2018; Hu et al. 2018).169

Table 2 contains a compilation of selected empirical and semi-empirical expressions of the vapor-170

pressure and specific humidity-based transfer coefficients, De and Dq, appearing in the Dalton171

equation.172
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Table 1. List of Symbols.

Symbol Unit Value Meaning

a 1 Regression parameter

aq 1 Regression parameter

AE m2 Evaporation surface area

b 1 Regression parameter

bq 1 Regression parameter

bcorr ms−1 Regression parameter

cq 1 Regression parameter

cp Jkg−1 K−1 Specific heat capacity of humid air

Cq 1 Bulk-transfer coefficient for moisture (Dalton number)

CN
q 1 Bulk-transfer coefficient for moisture for neutral stratification

CT 1 Bulk-transfer coefficient for temperature (Stanton number)

CU 1 Bulk-transfer coefficient for momentum (drag coefficient)

CN
U 1 Bulk-transfer coefficient for momentum for neutral stratification

De m2 skg−1 Vapor-pressure based mass-transfer coefficient

Dq ms−1 Specific-humidity based mass-transfer coefficient

e Pa Actual water-vapor pressure

eeq Pa Equilibrium water-vapor pressure

E ms−1 Evaporation velocity (evaporation rate)

fU m2 skg−1 Wind function

FE kgs−1 Water-vapor mass flux (evaporation mass flux)

Fq 1 Stability correction function for moisture

g ms−2 Gravitational constant

H m Height of the ASL
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Continuation of Table 1.

Symbol Unit Value Meaning

Jq Wm−2 Turbulent flux of latent heat

JT Wm−2 Turbulent flux of sensible heat flux

JU Nm−2 Turbulent flux of momentum

JE kgm−2 s−1 Water-vapor mass flux density (evaporation mass flux den-
sity)

K Pa−1 Pressure coefficient

Km m2 s−1 Molecular exchange coefficient

Km,U m2 s−1 Molecular exchange coefficient for momentum

L m Monin-Obukhov length

LV Jkg−1 Specific heat of evaporation

n 1 Parameter in the Skeib-similarity function

nturb 1 Metric for the degree of turbulence

pq 1 Regression parameter

Prm 1 Molecular Prandtl number

q kgkg−1 Specific humidity (mass fraction of water vapor in humid
air)

q10 kgkg−1 Specific humidity at z = 10m

qeq kgkg−1 Equilibrium specific humidity

q? kgkg−1 Kinematic scaling specific humidity

Ri0 1 Bulk Richardson number between the surface and the first
model layer

S Ksm−2 Stability parameter

SR Ksm−2 1 Reference stability parameter

Ŝ 1 Dimensionless stability parameter

SA kgkg−1 Salinity (mass fraction of sea salt in seawater)
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Continuation of Table 1.

Symbol Unit Value Meaning

T K Temperature

TA K Air temperature

TSST K Sea surface temperature

T? K Kinematic scaling temperature

u ms−1 x-component of wind vector

u? ms−1 Friction velocity

U ms−1 Wind speed

UR 1ms−1 1 Reference wind speed

U1 ms−1 Wind speed at the first model level

U10 ms−1 Wind speed at z = 10m

Û 1 Normalized wind speed

v ms−1 y-component of wind vector

w ms−1 z-component of wind vector

x 1 Auxiliary function

z m Height

z0 m Surface-roughness length for momentum (aerodynamic
roughness)

z0,q m Surface-roughness length for specific humidity

z0,T m Surface-roughness length for temperature

z1 m Height of the first model level above the surface
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Continuation of Table 1.

Symbol Unit Value Meaning

α 1 Relative change of the momentum flux in the ASL

αm m2 s−1 Thermal diffusivity of air

β 1 Parameter

βB ms−2 K−1 Buoyancy parameter

γ 1 Parameter

δm m Thickness of the molecular diffusion layer

δm,q m Thickness of the molecular boundary layer for water vapor

δ̂q 1 Dimensionless thickness of the molecular boundary layer
for water vapor

∆T K Temperature difference

ε 1 Tubulence parameter

ζ 1 Stability parameter at z

ζ0 1 Stability parameter at z = z0

ζc 1 Critical stability parameter defined in the Skeib-similarity
function

η Physical parameter

κ 1 0.4 von-Kármán constant

ν m2 s−1 Kinematic viscosity of air

ξ 1 Wind function

%AV kgm−3 Mass density of humid air

%W kgm−3 Mass density of water

ϑ ◦C Celsius temperature
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Continuation of Table 1.

Symbol Unit Value Meaning

τ Nm−2 Reynolds stress

θv K Absolute virtual potential temperature

θv,s K Absolute virtual potential temperature at the surface

θv,1 K Absolute virtual potential temperature at the first model level

Φq 1 Similarity function for specific humidity

ΦT 1 Similarity function for temperature

ΦU 1 Similarity function for momentum

Φχ 1 Similarity function for quantity χ

χ [χ] Placeholder for any physical quantity

χ? [χ] Kinematic scaling value of quantity χ

Ψq 1 Stability function for specific humidity

ΨT 1 Stability function for temperature

ΨU 1 Stability function for momentum
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Table 2. Compilation of water-vapor mass transfer coefficients from the literature (selection).

Vapor-pressure based formulation of Daltons evaporation formula (e.g., Wüst 1920; Sutton and Simpson 1934; Sverdrup 1937;
Tomczak 1939; Jacobs 1942, 1951; DWA 2018)

E =
JE
%W
=

Jq
%W LV

= De[eeq(SA,T)− e]

De =



= a
(
1+3.66 ·10−3ϑ/◦C

) (
1+ bU/(kmh−1)

)
(Wüst 1920, pp. 39-41)

a = (4.6−5.64) ·10−11 m2 skg−1 , b = 0.075−0.11

= a (U/UR) (Jacobs 1942, 1951)

a = (0.94−1.24) ·10−11 m2 skg−1

= ω
[
a+ b(U/UR)

ε ] , ε =
2−nturb
2+nturb

(Sutton and Simpson 1934; Tomczak 1939)

a = 0.16 , b = 0.18 , ε = 0.84 , ω = 8.7 ·10−11 m2 skg−1 (Richter 1969, p. 16, Stechlinsee, Branden-
burg);

= fU (U) (Compilation of different wind functions: Viet-
inghoff 2000, pp. 51-60; DWA 2018, p. 117,
Table 15)

Specific-humidity based formulation of Daltons evaporation formula (e.g., Budyko 1963, pp. 74-76, Eqs. (68), (69), (73),
Sellers 1965, p. 145, Eq. (10.9), Kondo 1975, Eq. (2), Liu et al. 1979, Eq. (1b), Foken 1984, Eq. (10), Smith 1988, Eq. (3),
Pal Arya 1988, p. 188, Eq. (12.13), Kondo et al. 1990, Eqs. (1), (2), Ruprecht and Simmer 1991, Section 2, Schmugge and
André 1991, p. 72, Eqs. (4.6)-(4.8), Garratt 1992, p. 56, Eq. (3.51), Miller et al. 1992, Eq. (1), Kraus and Businger 1994, pp.
180–181, Kaimal and Finnigan 1994, p. 13, Eq. (1.17); p. 70, Eq. (3.13), Zhang and McPhaden 1995, Eq. (1b), Stull 1997, p.
263, Eq. (7.4.1e), Fairall et al. 2003a, Liu et al. 2007, Yu 2007, Eq. (1), Stewart 2008, p. 58, Eq. (5.10c), Table 5.1, Liu et al.
2013, Eq. (5), Rosenberg 2016, Eq. (2), Kumar et al. 2017, Eq. (1), Cronin et al. 2019, Eq. (1.6b), Yu 2019, Eq. (3), Hogan
2020, Reeves Eyre et al. 2021, Eq. (3), Table 1, Song et al. 2022, Eq. (1))

Jq = %AVLVDq[qeq(SA,T)− q] , Dq = CE U

Dq =



=
KmU

U δm +
Km
κ2

(
z1 + z0

z0

)2 , δm = (1−1.5) ·10−3 m (Sverdrup 1936, Budyko 1963,
Eq. (69))

= a+ b (U/UR) , a = (7−45) ·10−4 ms−1 , b = 2 ·10−3 ms−1 (Sellers 1965, p. 159, Eq.
(11.2))

(a = 7 ·10−4 ms−1 for large lakes)

= 5 ·10−3 ms−1 (Kaimal and Finnigan 1994, pp.
73-76, Eq. (3.21), Table 3.1)

=
κu?

κPrm δ̂m,q +4 κ+ ln
(
ζc L u?

20Km,U

)
+

1
n

[
1−

(
z
ζc L

)−n] (Foken 1984, Eq. (10))

δ̂m,q =
δm,q u?
Km,U

= 6 , {ζc,n} =


{−0.075,0.5} , −2.5 ≤ ζ ≤ −0.075

{0.16,−2} , 0.16 ≤ ζ ≤ 1

 (Skeib and Richter 1984)
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Continuation of Table 2.

Specific-humidity based formulation of Daltons evaporation formula with correction for subsurface sea-temperature effects
according to Kruspe (1977, Eq. (3), Fig. 2)

Jq = %AVLV

[
CqU10[qeq(SA,T)− q10]+ bcorr

]
, Cq ×103 = 1.36±0.25 , bcorr = −0.7 ·10−5 ms−1

Formulations of the Dalton number for neutral, stable, and unstable stratification from different sources

CN
q ×103 =



1.15 (Large and Pond 1982, Table 2, for unstable condi-
tions)

1−5 (Stull 1984, p. 263, Eq. (7.4.1e))

1.1 (±15%) (Garratt 1992, p. 101-104, Fig. 4.9)

1.2 (Smith 1988, best estimate from compilation of
data, Kraus and Businger 1994, p. 181 for U =
(5−20)ms−1, Stewart 2008, Table 5.1, Hogan 2020,
Eq. (29))

(1.1−1.2)@U < 10ms−1, 1.45@U ≈ 20ms−1 (Fairall et al. 2003a, Fig. 3)

1.2−1.5 (Liu et al. 2007, Table 3)

1.3 (Kumar et al. 2017, Eq. (1))

Cq =



LUT as function of U and ∆T = TA −TSST (Bunker 1976, Table 4)

CN
q ×



(1− ζ)
[
1+10−2 β3/4

]
at ζ < 0 (unstable)[

1
1+3.5ζ

] [
1+10−2 β3/4

]
at ζ > 0 (stable)

ζ =
z
L
, z0 = z exp

(
−
κU
u?

)
, β =

z0u?
ν


(Panin et al. 2006, for deep-
water air-sea interaction)

κ2[
ln

z
z0
−ΨU (ζ)

] [
ln

z
z0
−Ψq(ζ)

] , ζ =
z
L

(Pal Arya 1988, p. 167, Eq.
(11.16), Garratt 1992, p. 55,
Eqs. (3.47)-(3.51), Stull 1997,
p. 267, Eq. (7.4.1m))

κ2[
ln

z
z0
−ΨU (ζ)+ΨU (ζ0)

] [
ln

z
z0
−Ψq(ζ)+Ψq(ζ0)

] , ζ0 =
z0
L

(Liu et al. 2013, Eqs. (7), (8))

Stability function (e.g., Paulson 1970, Pal Arya 1988, p. 167, Eq. (11.14), Zhang and McPhaden 1995):

ΨU (ζ) =


−5ζ for ζ ≥ 0

ln

[(
1+ x2

2

) (
1+ x

2

)2
]
−2arctan x+

π

2
, x = (1−15ζ)1/4 for ζ < 0

ΨT (ζ) = Ψq(ζ) =


−5ζ for ζ ≥ 0

2ln
(
1+ x2

2

)
, x = (1−15ζ)1/4 for ζ < 0
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Continuation of Table 2.

Parameterization of the Dalton number according to Kondo (1975) on the base of the Owen-Thomson theory of evaporation
(Owen and Thomson 1963) (see also Garratt (1992, pp. 90-93) for interfacial sublayer relations)

(A) Parameterization for neutral (adiabatic) stratification (Kondo 1975, Fig. 5, Appendix 1, Table A1):

CN
q (10m)×103 = aq + bq

(
U10
UR

)pq
+ cq

[
U10
UR
−8

]2

U10/(ms−1) aq bq cq pq

0.3−2.2 0 1.23 0 −0.16

2.2−5 0.969 0.0521 0 1

5−8 1.18 0.01 0 1

8−25 1.196 0.008 −0.0004 1

25−50 1.68 −0.016 0 1

(B) Parameterization for diabatic stratification (Kondo 1975, Appendix 3):

Cq ≈ CN
q ×



0.01+0.03 Ŝ+0.9exp(4.8 Ŝ) for TSST −T < 0 and −3.3 < Ŝ < 0 (stable stratification)

0 for TSST −T < 0 and Ŝ ≤ −3.3 (very stable stratification)

1.0+0.63 Ŝ 1/2 for TSST −T > 0 (unstable stratification)

Ŝ = Ŝ0
|Ŝ0 |

|Ŝ0 |+0.01
, Ŝ0 =

S0
SR

, S0 =
TSST −T(

U
[
1.0+ log10

(
10m

z

)] )2
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Continuation of Table 2.

Parameterization of the Dalton number according to Miller et al. (1992, Eqs. (2), (3), Fig. 3)

Cq = CN
q Fq

(
Ri0,

z1
z0
,

z1
z0,T

,
z1

z0,q

)
, CN

q =
κ2[

ln
z1
z0

] [
ln

z1
z0,q

]
Rough-wind regime (Charnock relation):

z0 =max

(
0.018

u2
?

g
,1.5 ·10−5 m

)
, z0 = z0,T = z0,q

Weak-wind regime (smooth surface):

z0 = 0.11
ν

u?
+0.018

u2
?

g
, z0,T = 0.40

ν

u?
+1.4 ·10−5 m , z0,q = 0.62

ν

u?
+1.3 ·10−4 m

Free-convection limit of ocean evaporation:

Jq = %AVLVD′q[qeq(SA,T)− q1] , D′q = 0.17

(
gα2

m
ν θv

)1/3 (
θv,s − θv,1

)1/3
Dalton number with consideration of the free-convection limit:

Cq = CN
q

(
1+CγR

)1/γ
, CN

q =

(
κ

ln (z1/z0)

)2
, CR =

η

CN
q U1

(
θv,s − θv,1

)1/3
γ = 1.25 , η = 0.0016ms−1 K−1/3

z0 = from the Charnock formula
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Continuation of Table 2.

Parameterization of Dalton number according to Large and Yeager (2004, Eq. (6))

Cq ×103 =


18.0
√

CU , ζ > 0

32.7
√

CU , ζ ≤ 0
, CU ×103 =

2.7ms−1

U10
+0.142+

U10
13.09ms−1

Parameterization of Dalton number according to Large and Yeager (2009)

CN
q =

κ
√

CN
U

ln
10m
z0,q

, CN
U =


a1

Û10
+ a2 + a3 Û10 + a8

[
Û10

]6
, Û10 ≥ 33

0.00234 , Û10 < 33

Û10 =
U10
UR

, a1 = 2.7 ·10−3 , a2 = 1.42 ·10−4 , a3 = 7.64 ·10−5 , a8 = −3.14807 ·10−13

κ

ln
10m
z0,q

= 0.0346

Parameterization of the wind function ξ in dependence on the wind velocity, the difference between water and air temperatures,
and on the humidity deficit according to Babkin (2023, Eq. (1))

E = ξ(U)U [qeq(S,T)− q]
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