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Abstract: Despite the impressive performance of deep neural networks on many different vision

tasks, they have been known to be vulnerable to intentionally added noise to input images. To

combat these adversarial examples (AEs), improving the adversarial robustness of models has

emerged as an important research topic, and research has been conducted in various directions

including adversarial training, image denoising, and adversarial purification. Among them, this

paper focuses on adversarial purification, which is a kind of pre-processing that removes noise before

AEs enter a classification model. The advantage of adversarial purification is that it can improve

robustness without affecting the model’s nature, while another defense techniques like adversarial

training suffer from a decrease in model accuracy. Our proposed purification framework utilizes

a Convolutional Autoencoder as a base model to capture the features of images and their spatial

structure. We further aim to improve the adversarial robustness of our purification model by distilling

the knowledge from teacher models. To this end, we train two Convolutional Autoencoders (teachers),

one with adversarial training and the other with normal training. Then, through ensemble knowledge

distillation, we transfer the ability of denoising and restoring of original images to the student

model (purification model). Our extensive experiments confirm that our student model achieves high

purification performance(i.e., how accurately a pre-trained classification model classifies purified

images). The ablation study confirms the positive effect of our idea of ensemble knowledge distillation

from two teachers on performance.

Keywords: adversarial robustness; adversarial attacks; adversarial purification; knowledge

distillation; image classification; convolutional autoencoders

1. Introduction

Deep Neural Networks have achieved promising performances in many domains including

computer vision and natural language processing. However, there have been a lot of adversarial

attacks that can fool the deep learning models [1]. Adversarial robustness is thus critical in real-world

scenarios because deep learning models, when deployed in practical applications, can be vulnerable

to such maliciously crafted inputs (i.e., adversarial examples) designed to deceive or mislead them.

These adversarial attacks can have severe consequences, especially in safety-critical systems such

as autonomous vehicles, medical diagnosis, or financial systems. Ensuring adversarial robustness is

critical to maintaining the integrity, safety, and reliability of AI-driven systems in diverse real-world

environments.

Consequently, there has been an active research effort to improve the adversarial robustness of

recent neural models. In the field of computer vision, adversarial examples (AEs) are obtained by

perturbing the original image to introduce small noises that are difficult to discern by human eyes.

Adversarial attacks are designed to cause misclassification of the model by creating these AEs, and

adversarial defenses are designed to make the model more robust so that it can classify well even

when these AEs are mixed in the input. There are many types of adversarial attacks, and one popular
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technique is to add noise to an image based on gradients (FSGM, PGD, etc.) [2–4]. Other methods

include generating AEs that minimize a loss function over the input [5], changing only one of the most

critical pixels in the image [6], and combining multiple methods of creating AEs [7]. The effectiveness

of the attack usually depends on the value of the parameter ǫ, which controls the amount of noise

added to images.

Adversarial defense strategies to combat these attacks have also been actively studied.

Representative areas include adversarial training [2], which uses AEs together to train a model,

and image denoising, which tries to remove noise from the input AEs [8,9]. Adversarial training

involves learning AEs together during training, which enables the given classification model to learn

the distribution of AEs and thus become robust to adversarial attacks. Adversarial defense strategies

to combat these attacks have also been actively studied. Representative areas include adversarial

training [2], which uses AEs together to train a model, and image denoising, which tries to remove

noise from the input AEs [8,9]. Adversarial training involves learning AEs together during training,

which enables the given classification model to learn the distribution of AEs and thus become robust

to adversarial attacks. Image denoising aims to restore the AEs as close as possible to the original

image by removing the noise in the image, and among them, adversarial purification aims to remove

the noise by assuming that the noise is definitely an adversarial purturbation caused by adversarial

attacks. However, both methods have limitations in that their robustness performance decreases with

different types of attacks, and their accuracy for normal inputs decreases.

In this paper, we propose a novel purification technique that can improve adversarial robustness.

The main idea of the proposed method is to transfer the knowledge of two Convolutional Autoencoder

[10] models (one with adversarially trained and the other with normally trained) to a student model

through ensemble knowledge distillation [11]. Convolutional Autoencoder is an image-friendly

structure that replaces MLP (multi-layer perceptron) with Convolutional layers in the original

MLP-based Autoencoder. It has shown good performance in image restoration and generation because

it can capture the local features and spatial structures of images better than MLP. Using this structure

as our base model, the knowledge of the adversarially trained teacher model (AT) and the normally

trained teacher model (NT) is transferred to the student (purification) model by ensemble knowledge

distillation, where the ability to remove the added noise is learned from the AT teacher and the ability

to restore the features of the original image is learned from the NT teacher.

We measure the performance of the proposed purifier on a widely utilized benchmark dataset.

Specifically, the purified images were fed into a pre-trained classification model to evaluate whether it

can accurately predict the class; the better the purification ability, the higher the classification accuracy

of the model. The experimental results show that the proposed purifier can indeed prevent accuracy

degradation when classifying the original image, and is robust to both the attacks used in training and

the attacks not used in training. An ablation study was conducted to verify the effectiveness of the

teacher models used in knowledge distillation, and the results showed that the student model using

both teacher models as proposed outperformed the other alternatives.

The rest part of this paper is organized as follows. In Section 2, we highlight existing

methodologies regarding adversarial training and adversarial purification. In section 3, we introduce

our novel adversarial purification method. In section 4, we report the experimental settings and results,

demonstrating its efficacy and superiority. Finally, Section 5 concludes our study.

2. Related Work for Adversarial Defense

This chapter introduces two representative approaches in the context of adversarial defense:

adversarial training and adversarial purification. Our work is in line with the latter category.

2.1. Adversarial Training

Adversarial Training involves training a model on adversarial examples (AEs) along with the

normal training data. The idea is to expose the model to adversarial attacks during training, so it can
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learn to resist them. Formally, adversarial attacks manipulate an original image x into the adversarial

example x′ using the following method:

x′ = x + δ s.t. ‖δ‖∞ ≤ ǫ (1)

where δ indicates the adversarial noise to be injected. The strength of the attack is controlled by

ensuring that the L∞norm of the noise does not exceed a hyper-parameter, ǫ. The noise introduces

subtle changes to the original image that are imperceptible to the human eye [12]. Various adversarial

attacks have been developed over the years. For example, Fast Gradient Sign Method (FGSM) [2]

creates AEs by adding a perturbation in the direction of the gradient of the loss with respect to the

input data. Projected Gradient Descent (PGD) [3] is an iterative version of FGSM, which applies the

perturbation step multiple times, each time projecting the adversarial example back into a valid input

space. Carlini & Wagner (CW) [5] attack is a more sophisticated optimization-based approach that aims

to find the smallest perturbation necessary to induce misclassification, often resulting in more subtle

changes and thus challenging AEs than the aforementioned two methods. In addition, it minimizes the

distance of the original image from the corresponding AE, making it more likely to be misclassified,

using a distance function, such as L0, L2, L∞, as an objective.

AdvProp [13] enhanced robustness of the model by adversarial training using a minibatch

consisting solely of normal data as well as a supplementary minibatch consisting of PGD-generated

AEs. The AEs in the supplementary minibatch have different underlying distributions than normal

examples, which helps to mitigate the issue of distribution mismatch and makes it easier for the

model to learn valuable features from both clean and adversarial domains. RoCL (Robust Contrastive

Learning) [14] proposes a novel adversarial training approach without the need for labeled data. It

uses instance-wise adversarial attacks and a contrastive learning framework to maximize the similarity

between transformed examples and their adversarial perturbations. [15] explores adversarial training

with imperfect supervision, specifically with complementary labels (CLs), and proposes a new learning

strategy using gradually informative attacks to address the challenges of this setting. The authors aim

to reduce the performance gap between adversarial training with ordinary labels and CLs (such as

noisy or partial labels).

2.2. Adversarial Purification

Adversarial purification is a preprocessing technique that removes noise before the classification

model receives input images, resulting in clean images. It does not require model modification or

additional training, preserving the unique features and performance of each model. The concept of

adversarial purification was first introduced by the authors of PixelDefend [16]. This method trains a

PixelCNN [17] as a purifier by making small changes to input images to return AEs to the distribution

of original dataset. However, because PixelDefend makes changes at the pixel level of images, which

involves pixel-by-pixel operations, which in turn increases computational overhead. The authors of

[18] propose to improve the purification performance by training an Energy-Based Model (EBM) with

a score function trained by Denoising Score-Matching (DSM).

Purification based on Generative Adversarial Nets (GAN) [19] has also been studied to purify

AEs by training a generator to remove noise and a discriminator to distinguish the purified images

produced by the generator from original images [20,21]. However, the training of GANs is inherently

unstable, and there are vulnerabilities in the latent space that can be exploited by adversarial attacks

to produce wrong images[22]. NRP [23] uses a similar idea to GANs to train a purifier. The purified

image is passed through a “critic” network, which acts as a discriminator, and a feature extractor.

The loss of the feature extractor is defined as the distance between the AEs and the original images.

It is trained to minimize the loss of the critic network as well as to maximize the loss of the feature

extractor, and noise is generated based on the loss of the feature extractor and added to the input

image. SOAP [24] simultaneously performs the main task of classification and auxiliary tasks to train a
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purifier, where the auxiliary tasks include some widely-used tasks in self-supervised learning, such as

data reconstruction and rotation prediction. Other works used autoencoders and VAEs [25] to remove

noise [26–28], and employed diffusion models to clean up AEs [29].

… …

Encoder Decoder

Skip connection

Conv BatchNorm ReLU ConvTranspose Tanh

Figure 1. The structure of the Convolutional Autoencoder used in our work, inspired by [28].

3. Method

The overview of the proposed framework for learning purifiers based on knowledge distillation

is as follows. First, we train two Convolutional Autoencoder-based teacher models with the same

structure. One is trained by adversarial training and the other by normal training using original

images. The knowledge of the teacher models is then distilled in an ensemble fashion to the purifier

(student model). After the knowledge is transferred, the purifier cleans the images affected by various

adversarial attacks, and then classifies the purified images with a pre-trained classification model

(ResNet56). This classification result is compared to the classification result of the corresponding

original image. The closer the results match, the better the purification.

3.1. Base Model: Convolutional Autoencoders

In our work, the two teacher models and the student model in the knowledge distillation

framework are based on the same Convolutional Autoencoder structure. An Autoencoder is an

encoder-decoder neural structure that compresses the input through the encoder and restores it to

its original dimension through the decoder. The bottleneck layer between the encoder and decoder

has a low-dimensional latent representation that retains important features of the original input. The

decoder aims to produce an output that is as close as possible to the original input based on this latent.

Autoencoders have been widely used for tasks such as data generation, super resolution, and data

restoration. We believe that autoencoders are also well suited to the task of purification, which is the

task of restoring images by removing noise from AEs.

Furthermore, Convolutional Autoencoders are specialized in dealing with image data. Instead of a

fully connected network (FCN), a Convolutional layer with local connections is mainly utilized, which

can better learn the spatial features of images. Here, the encoder consists of a series of Convolution,

batch normalization, and ReLU (Rectified Linear Unit) layers in one block, for a total of 15 blocks.

The Convolution layer extracts various features, colors, textures, etc. from images, while the batch

normalization layer keeps the distributions within a batch consistent for stable learning. The ReLU

activation function mitigates the problem of gradient vanishing. The decoder also consists of 15

blocks, each of which consists of a series of Convolutional Transpose, batch normalization, and ReLU

operations. A tangent hyperbolic (Tanh) operation is added to the end of the last block. The latent
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representation is upsampled by the Convolutional Transpose operation to decode as close to the input

image as possible.

Our Convolutional Autoencoder is quite deep, with a total of 30 blocks. This has the advantage

of learning a good quality of latent representation, but because of its depth, there is a risk that the

gradient may vanish or explode during backpropagation. To avoid this, we make skip connections

at the encoder and decoder to convey the gradient flow directly. This also has the effect of helping

the decoder to reconstruct images by preventing the loss of information or details that are useful for

reconstruction. As a result, the network structure of this study is similar to that of U-net[30].

3.2. Teacher Models

Next, we describe the training of two teacher models, as depicted in Figure 2. The teacher models

are of the same Convolutional Autoencoder structure, but one is trained adversarially using the PGD

attack (AT teacher model) and the other is trained using the original image (NT teacher model).

PGD (ϵ= 8255)

… …

… …

Original image

Purified image

Restored image

Teacher model with adversarial training (AT)

Teacher model with normal training (NT)

Figure 2. Training of the two teacher models, one with adversarial training (NT) using the PGD attack

and the other with the normal training (NT) with original images. The ǫ value for PGD is set to 8
255 .

The objective function LAT for training the AT teacher model consists of two loss terms, Lp and

Ladv, as follows:

LAT = Lp + Ladv = MSE( fAT(x′), x)− log(σ(pout − advout))

=
1

n

n

∑
i=1

( fAT(x′)i, xi)
2 − log

(

1

1 + e−(pout−advout)

)

(2)

Here, n is the number of pixels in an image. Lp computes the MSE (Mean Squared Error) of the original

image x and the purified image fAT(x′) (x′ is the adversarial example). Ladv is the adversarial loss

function, where pout and advout denote the output of the classification model with the purified image

fAT(x′) and with the adversarial sample x′, respectively. These two outputs should be maximized

while minimizing the MSE term for training the AT teacher model.

Next, the NT teacher model is trained to minimize the difference between the restored image and

the original image. For this, the loss function LNT uses the mean square error as shown below:
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LNT = MSE( fNT((x), x)

=
1

n

n

∑
i=1

( fNT(x)i − xi)
2 (3)

where fNT(x) is the image restored by the NT teacher model.

As a result, the AT teacher model learns to remove noise by restoring the original images from

the adversarial images, and the NT teacher model learns to restore original images by extracting

the important features. The respective abilities of the two teachers are distilled to a purifier (student

model).

3.3. Training Purifier via Knowledge Distillation

We next build a purifier model as a student to distill the knowledge of the two previously trained

teacher models. The purifier also uses a Convolutional Autoencoder with the same structure as the

teacher models. Figure 3 depicts our process of learning a purifier based on knowledge distillation. As

we introduced, the AT teacher model is given AEs generated by the PGD attack to purify them, and

the NT teacher model is given pure images to restore them. The purifier takes AEs (each denoted by x′)

as input and tries to remove the noise. Then, the difference between the purified image fs(x′) and the

original image x is defined as the reconstruction loss function Ls for our purifier, which is computed as

follows:

*𝐿𝑘𝑑
Pretrained teacher model (AT)

Student model

… …

… …

Pretrained teacher model (NT)

… …

PGD (ϵ= 8255)Original image

Purified by AT teacher

Restored by NT teacher

Purified by student

*𝐿𝑠

Figure 3. The proposed framework for learning a purification model based on knowledge distillation.

Ls = MSE
(

( fs(x′), x
)

=
1

n

n

∑
i=1

( fs(x′)i, xi)
2

(4)

Another loss function of our purifier, the ensemble knowledge distillation loss function Lkd,

consists of the Kullback-Leibler distance and the mean square error between the outputs of multiple

teacher models fTj
and student models fs, as follows:

Lkd =
1

M

M

∑
j=1

(

KL
(

g
(

fTj

(

x′
)

)

, g
(

fs

(

x′
))

)

+ MSE
(

fTj

(

x′
)

, fs

(

x′
)

))

(5)
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where M is the number of teacher models (in our case, M = 2) and Tj is each teacher model. The

Kullback-Leibler divergence function KL() computes the difference between the output distribution of

the teacher model and that of the student model, where each probability distribution is computed by

the Softmax function g.

As a result, the purifier learns the denoising ability and image restoration ability of the two teacher

models respectively, and is simultaneously optimized by the Kullback-Leibler divergence and the

mean square error, which can reduce both the distribution difference between the student and teacher

models and the output image difference. The final loss function L for training the purifier is configured

as follows:

L = β · Ls + γ · Lkd (6)

where β and γ control the importance of the reconstruction loss Ls and the knowledge distillation

loss Lkd respectively. For simplicity, we assume that the two loss terms have equal importance and set

β = γ = 0.5.

3.4. Purification Process

Figure 4 depicts the overall purification process. After training with ensemble knowledge

distillation, the purifier is able to cleanse the AEs generated by various attacks1 to output purified

images (see Figure 5 for an example of images actually purified by our method). We feed the purified

images into a pre-trained classification model (ResNet [31] is used) to classify them. If the classification

result is the same as the classification result of the corresponding original image, we can say that the

purification is successful.

PGD(ϵ= 8255)
Pretrained

Classifier
“bird”… …

Student model

Purified image

Figure 4. Purification process. A pre-trained ResNet56 [31] was used as a classification model.

(a) Original images.

(b) Adversarial images by PGD.

(c) Purified images.

Figure 5. From top to bottom, we show the original images, the adversarial examples generated by the

PGD attack, and the purified images using our proposed method. We can see that the noise has been

well removed from the purified images.

1 In our experiments, we used a variety of attacks that the student model has not encountered, including FSGM, BIM, CW,
and AutoAttack, in addition to the PGD attacks used in the training of the AT teacher model.
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4. Evaluation

4.1. Settings

We used CIFAR-102, which is a collection of 60,000 32 × 32 color images (i.e., each image is a

3-dimensional array of size 32 × 32 × 3, where the third dimension represents the RGB color channels.)

in 10 classes, with 6,000 images per class. There are 50,000 training images and 10,000 test images. The

dataset is divided into five training batches and one test batch, each containing 10,000 images. The

test batch contains exactly 1,000 randomly selected images from each class. The 10 different classes

represent airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. These classes are

mutually exclusive, meaning an image can only belong to one class.

In our training, we used a batch size of 128, a learning rate of 0.01, and the Adam (Adaptive

Moment Estimation) optimizer. The teacher model was trained for 100 epochs, while the student model

was trained for 40 epochs. In the test scenarios, we used five different adversarial attacks: PGD, FGSM,

BIM, CW, and AA. PGD, FGSM, and BIM generate noise using gradients which are then added to

the input images. FGSM adds noise once, while PGD and BIM add noise iteratively to the images.

Specifically, PGD generates noise based on the gradient from the adversarial sample produced in

the previous iteration, while BIM consistently computes the gradient from the original input image.

Consequently, when the iteration counts are equal, the magnitude of the noise produced by BIM is

greater than that produced by PGD. The value of ǫ for each attack is set to 8
255 by default. However,

for PGD, since the value of 8
255 was also used to train our purifier, we used an additional value of

16
255 , which was not used in the training. We name them PGD8 and PGD16, respectively. For PGD and

BIM, we used α (step size) of 2
255 and the iteration number of 20. For CW, we used L2 as the distance

function, 40 as the iteration number, and Adam optimizer with a learning rate of 0.01.

4.2. Results and Analyses

First, to evaluate the superiority of our proposed purifier, we purified the AEs generated by the

adversarial attacks described above, and then fed the purified images into a pre-trained classification

model, ResNet56, to measure the classification accuracy. The accuracy of this classification model on

CIFAR-10 is 89.46%. We employed NRP [23] and SOAP [24] as baseline purifiers for comparison.

Table 1 reports the experimental results. The proposed purifier generally performed satisfactorily

against the gradient-based attacks PGD, FGSM, BIM, and AA. However, it performed slightly worse

than SOAP against the PGD16(ǫ = 16
255 ) and the BIM attacks, which add slightly stronger noise than

PGD8 which was used for training. We also observed that our purifier did not perform well on samples

subjected to CW attacks, which is likely due to the fact that CW is a different type of attack than the

gradient-based attack used in the adversarial training of the AT teacher model.

Next, we performed an ablation study. Table 2 reports the results. The last row of the table is the

proposed method (training two teacher models, AT and NT, and distilling their knowledge to our

purifier model), and the two rows above it are versions of distilling the knowledge of only one teacher

model, AT or NT, to the purifier, respectively. Finally, the first row is a purification method using only

adversarial training without knowledge distillation.

The experimental results show that the proposed method generally performs best, and that using

only one of the two teacher models or no knowledge distillation leads to lower performance. In

particular, distilling the knowledge of the NT teacher model resulted in good performance, which

suggests that the knowledge of image restoration is helpful in the purification task. However, the NT

teacher model’s knowledge alone was not sufficient to improve adversarial robustness of the student

2 https://www.cs.toronto.edu/∼kriz/cifar.html
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model, and we found that ensemble knowledge distillation from both AT and NT teachers was most

effective.

Table 1. Comparison of purification performance against various adversarial attacks.

Ours NRP [23] SOAP [24]

Original 89.46 89.46 89.46

PGD8 40.20 35.07 39.14

PGD16 33.57 35.57 35.65

FGSM 40.12 39.79 37.43

BIM 38.37 31.96 40.18

CW 56.87 57.24 79.22

AA 46.91 12.34 41.03

Table 2. Results on our ablation study.

AT NT KD PGD8 PGD16 FGSM BIM CW AA

X - - 34.16 28.01 38.07 33.29 56.54 43.20

X - X 35.46 28.70 38.42 34.92 56.32 42.77

- X X 35.77 29.47 36.93 34.88 57.90 40.50

X X X 40.20 33.57 40.12 38.37 56.87 46.91

5. Conclusions

In this paper, we proposed a novel adversarial purification framework for improving the

robustness of deep neural networks against adversarial attacks. Our approach utilizes a convolutional

autoencoder to capture image features and spatial structure, and a student model is trained on

the purified images using knowledge distillation from two teacher models. Experimental results

demonstrate that our proposed method can effectively remove adversarial noise from input images

and improve model robustness against both white-box and black-box attacks. Our approach also

outperforms existing state-of-the-art methods in terms of accuracy and robustness. Future work will

focus on exploring the effectiveness of our approach on other types of neural networks and datasets.
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