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Abstract: The rapid adoption of hydrogen as an eco-friendly energy source has necessitated the
development of intelligent power management systems capable of ef ciently utilizing hydrogen
resources. However, guaranteeing the security and integrity of hydrogen-related data has become
a signi cant challenge. This paper proposes a pioneering approach to ensure secure hydrogen
data analysis through the integration of blockchain technology, enhancing trust, transparency, and
privacy in handling hydrogen-related information. By combining blockchain with intelligent power
management systems, the ef cient utilization of hydrogen resources becomes feasible. The utilization
of smart contracts and distributed ledger technology facilitates secure data analysis, real-time
monitoring, prediction, and optimization of hydrogen-based power systems. The effectiveness and
performance of the proposed approach are demonstrated through comprehensive case studies and
simulations. Notably, our prediction models, including ABILSTM, ALSTM, and ARNN, consistently
delivered high accuracy with MAE values of approximately 0.154, 0.151, and 0.151, respectively,
enhancing the security and ef ciency of hydrogen consumption forecasts. The blockchain-based
solution offers enhanced security, integrity, and privacy for hydrogen data analysis, thus contributing
to the advancement of clean and sustainable energy systems. Additionally, the research identi es
existing challenges and outlines potential future directions for further enhancing the proposed system.
This study adds to the growing body of research on blockchain applications in the energy sector, with
a speci ¢ focus on secure hydrogen data analysis and intelligent power management systems.

Keywords: blockchain; I0T; hydrogen production; secure data-driven analysis; historical data
management

1. Introduction

Green hydrogen, produced from renewable sources such as wind, solar, and hydropower, has
emerged as a promising solution to decarbonize the global energy system. It has the potential to reduce
greenhouse gas emissions, create new job opportunities, and contribute to energy security. However,
to achieve its full potential, effective management and analysis of the production and consumption
data is crucial. This requires the use of multiple data analytics techniques to extract valuable insights
from the large amounts of data generated by green hydrogen production and consumption [ 1].

The analysis of green hydrogen production and consumption data can provide valuable insights
into the ef ciency of the production process, the performance of the equipment, and the impact of
external factors such as weather and demand uctuations. By employing data analytics techniques
such as machine learning, statistical analysis, and optimization algorithms, patterns and correlations

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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in the data can be identi ed, future trends can be predicted, and the production and consumption
process can be optimized [2].

Furthermore, the analysis of green hydrogen consumption data offers insights into the
performance and ef ciency of equipment that uses hydrogen as a fuel, such as fuel cells, hydrogen
turbines, and hydrogen engines. The data can be used to optimize equipment operation, improve
performance and reliability, and reduce costs. Data analytics techniques also help identify potential
issues and prevent equipment failures [ 3].

Effective management and analysis of green hydrogen production and consumption data can
also contribute to the development of policies and regulations that support the growth of the green
hydrogen industry. The insights gained from data analysis can inform decision-making, set targets
and standards, and allocate resources effectively [4].

One of the primary challenges in managing green hydrogen production and consumption is
the need for ef cient data analytics techniques. The sheer volume of data generated from various
sources such as weather data, production logs, and consumption patterns can be overwhelming. To
effectively manage and analyze this data, various data analytics techniques such as correlation analysis,
feature extraction, and pattern recognition are used. These techniques enable the identi cation of
trends, patterns, and anomalies that aid in improving the ef ciency of green hydrogen production and
consumption [ 5].

Correlation analysis is an essential data analytics technique used in green hydrogen production
and consumption management. It involves examining the relationships between different variables,
such as wind speed, solar irradiation, and hydrogen production. Correlation analysis helps identify
the factors that in uence green hydrogen production and consumption, enabling the development of
better predictive models [ 6].

Feature extraction is another important data analytics technique used in green hydrogen
management. It involves identifying relevant features from large datasets. In green hydrogen
production and consumption, features such as wind speed, solar irradiation, and temperature provide
valuable insights into the system's performance. By extracting these features, data analysts can identify
patterns and trends that inform decisions related to system optimization and maintenance [ 7].

Pattern recognition is also a key data analytics technique used in green hydrogen management. It
involves identifying patterns or anomalies in datasets. In green hydrogen production and consumption,
pattern recognition aids in the detection of abnormal system behavior, such as a sudden drop in
hydrogen production or consumption. By detecting and responding to these patterns, operators can
improve the ef ciency and reliability of the system [ 8,9].

Furthermore, blockchain technology plays several essential roles in the context of green hydrogen
production. It ensures the traceability and transparency of green hydrogen production by recording
and verifying each step of the production process on a decentralized ledger [ 10]. Blockchain-based
platforms facilitate the certi cation and veri cation of green hydrogen production according to speci ¢
standards, such as renewable energy sourcing or carbon intensity limits [ 11]. Additionally, blockchain
enables peer-to-peer trading of green hydrogen, eliminating the need for intermediaries. Through
smart contracts, producers and consumers can directly trade hydrogen and settle transactions securely
and ef ciently [ 12,13]. Moreover, blockchain technology facilitates the integration of renewable
energy sources into green hydrogen production, enabling real-time monitoring of energy generation,
consumption, and storage, optimizing the use of renewable energy sources [ 14].

Overall, the effective management and analysis of green hydrogen production and consumption
data are crucial for harnessing the full potential of green hydrogen as a clean energy source. By
utilizing various data analytics techniques and integrating blockchain technology, the intelligent power
management system can optimize the production and consumption process, improve ef ciency, and
contribute to a sustainable and decarbonized energy future.
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« In this paper application of blockchain for secure hydrogen data analysis, ensuring data integrity,
transparency, and immutability, to enhance the security and trustworthiness of the hydrogen
data analysis process.

e The paper proposes integrating intelligent power management systems with blockchain
technology. It highlights the bene ts of combining these two domains to optimize hydrogen
generation, storage, and consumption, leading to more efcient and sustainable power
management practices.

e The paper presents various data analysis techniques speci cally tailored for hydrogen data
analysis. These include correlation analysis, box plot analysis, feature ranking, and predictive
analytics, enabling valuable insights and informed decision-making.

e The paper addresses the security and privacy challenges associated with hydrogen data analysis.
It proposes the use of encryption, access control mechanisms, and secure data handling protocols
to safeguard sensitive information and ensure secure data management throughout the analysis
process.

« The paper discusses the practical implementation aspects of the proposed system. It includes
details on the architecture, algorithms, protocols, and technologies employed to realize the secure
hydrogen data analysis system based on blockchain and intelligent power management.

The rest of the paper is organized as follows: Section 2 presents a literature review wherein
contemporary state-of-the-art pertaining to green hydrogen production is explained. The system
overview of the proposed model is described in Section 3. Section4 presents the implementation
details of the architecture along with a blockchain based secure data analysis case study. Section
5 analyzes the performance of the proposed green hydrogen production platform, and Section 6
investigates the proposed study by providing a critical analysis and comparison with existing studies.
Finally, Section 7 concludes the paper with possible future dimensions.

2. Literature Review

In this section, we will explore recent advancements in Green hydrogen as a promising energy
carrier for decarbonization across sectors. Numerous research studies have focused on managing
and analyzing green hydrogen production and consumption using various data analytics techniques.
Analyzing historical data offers valuable insights into system performance, enabling improvements in
ef ciency and sustainability. This paper presents a comprehensive review of the literature on green
hydrogen production, historical data management and analysis, diverse data analytics techniques, the
role of blockchain in data analysis, and trend prediction derived from historical data analysis.

Toshiba Corporation, Tohoku Electric Power Co., Inc., and lwatani Corporation collaborate to
advance hydrogen energy technology, focusing on innovative solutions such as advanced electrolysis
systems, ef cient storage and transportation methods, and the establishment of hydrogen refueling
stations and power plants. This aligns with the global shift towards cleaner and more sustainable
energy sources, as hydrogen offers high energy density and produces only water vapor when utilized.
Their investment aims to contribute to the growth of the hydrogen economy and promote its adoption
as a viable energy solution [15].

Shimizu specializes in hydrogen infrastructure development, including planning, designing, and
constructing hydrogen production facilities, storage systems, and distribution networks. They also
integrate hydrogen energy systems into construction projects and offer smart energy management
systems that optimize hydrogen utilization with other renewable energy sources [ 16].

ENEOS Corporation focuses on technologies for ef cient and sustainable hydrogen production,
storage, and distribution. They explore various methods such as electrolysis, steam methane reforming,
and biomass gasi cation to generate hydrogen. ENEOS also integrates hydrogen energy with
renewable sources like solar and wind power, enhancing the sustainability and carbon neutrality
of hydrogen production. They incorporate advanced energy management systems into their
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hydrogen initiatives, optimizing energy usage through integration with smart grid networks and
demand-response systems [L7].

PCI energy solutions accelerate decarbonization by integrating hydrogen assets into energy
systems. Hydrogen plays a crucial role in energy storage, utilizing excess renewable energy through
electrolysis for later use. This enables sector coupling across transportation, industrial processes, and
power generation, creating new markets and stimulating the development of hydrogen production
technologies, infrastructure, and distribution networks [ 18].

A framework aims to evaluate the feasibility and potential of green hydrogen production projects,
utilizing open-source software tools and integrating Geographic Information System, Life Cycle
Assessment, Techno-Economic Analysis, and Optimization Algorithms. This systematic approach
supports decision-making processes and optimizes the design of hydrogen production systems [ 35].

The project's primary objective is to demonstrate the feasibility and potential of using hydrogen
as an energy carrier for power generation. It follows a power-to-X-to-power concept, where renewable
electricity is converted into hydrogen through electrolysis and later utilized to generate power in a
gas turbine [36]. This project addresses challenges related to integrating renewable energy sources
into the power grid, enhancing grid exibility, improving energy storage capabilities, reducing carbon
emissions, and promoting renewable energy integration [ 37].

Historical data analysis plays a crucial role in understanding the performance of green hydrogen
production and consumption systems and predicting future trends. Numerous studies have focused
on utilizing historical data analysis to forecast trends in the eld [ 38]. Blockchain technology holds
signi cant promise for the management and analysis of historical data in green hydrogen systems.
Its decentralized and secure nature makes it an ideal platform for storing and sharing historical data.
Research has explored the potential of blockchain in this regard. For instance, blockchain enables
the traceability and transparency of green hydrogen production by recording and verifying each
production step on a decentralized ledger [ 39]. This transparency fosters trust among stakeholders and
simpli es the veri cation of hydrogen's green credentials. Additionally, blockchain-based platforms
facilitate the certi cation and veri cation of green hydrogen production[  40], enhancing credibility and
marketability. Furthermore, blockchain eliminates the need for intermediaries, enabling peer-to-peer
trading of green hydrogen [ 41]. This decentralized trading system reduces costs, improves market
ef ciency, and promotes wider adoption of green hydrogen. Moreover, blockchain technology aids
in the integration of renewable energy sources into green hydrogen production [ 42]. By aligning
hydrogen production with the availability of renewable energy, blockchain-based systems help balance
the grid and maximize the utilization of green energy.

Historical data management and analysis are crucial for improving the ef ciency and sustainability
of green hydrogen production and consumption systems. Several research studies have focused on
historical data management and analysis using various data analytics techniques. The article [43]
focuses on the analysis of smart meter data in power systems. The primary role of clustering analysis,
time series analysis, and pattern recognition in this article is to enable the interpretation and utilization
of smart meter data for applications such as demand response, load pro ling, energy ef ciency analysis,
and anomaly detection. Similarly, In[ 44], the article reviews the application of data analytics techniques
for the predictive maintenance of power transformers. The main aim of the statistical analysis and
support vector machines in this article is to analyze transformer data, including sensor readings,
historical maintenance records, and other relevant information, to predict the health condition and
remaining useful life of power transformers. Moreover, In[ 45], various data analysis techniques are
applied to wind power forecasting. It explores the use of historical weather data, wind turbine data,
and other relevant variables to develop accurate wind power forecast models. The article applies time
series and regression analyses to understand the relationship between weather patterns and wind
power output. Furthermore, in another research article [ 46], data analysis techniques for demand
response in smart grids, such as clustering analysis, pattern recognition, and regression analysis used
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to explore the use of data analysis to analyze energy consumption patterns, customer behavior, and
grid conditions for effective demand response programs.

We have curated a collection of 10 diverse research methods (in 2023) as shown in Tablel,
each applied to distinct application areas, showcasing the evolving landscape of blockchain-based
data analysis. These methods explore cutting-edge solutions, addressing various industries' speci ¢

challenges and opportunities. Here's a summary of methods with the diverse application areas based
on blockchain based data analysis:
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Table 1. Table summarizing the applications on which blockchain-based data analysis is performed.

allows authorized users to retrieve biomedical
documents from the blockchain in a secure and
privacy-preserving manner.

offers a holistic approach to safeguarding biomedical
documents, addressing data integrity, non-repudiation,
and smart contract support.

Application Area Ref Method Summary Advantageous Dis-advantageous
Emerging trends in the eld of blockchain and machine In the method, blockchain provides a decentralized
learning are analyzed for development of new blockchain N N . . . .

h y ) and immutable ledger, which helps to improve the Blockchain and machine learning are both
based machine learning platforms and data analysis - . N N L
Bibliometric Analysis [19 h security and privacy of data with better transparency complex technologies, combining them can
frameworks. It enables federated learning that allows o . A
. N N and traceability, ML based methods can be used to be challenging, slow, and expensive to scale
multiple parties to train a shared model and create .
develop new automation tools and processes
decentralized marketplaces for bibliometric analysis.
A private blockchain network is built based on The n'_\ethod improves lhe_ security and privacy The lack of standardlz_at_lon of blockc_haln
of patient records by providing a decentralized technology. Blockchain implementations
Hyperledger Fabric for healthcare to support the "

Health Care [20-22) N " and tamper-proof ledger. Automated many manual must adhere to the health care regulations
sharing and management of patient records between in the health h ) h hievi Ji b |
different healthcare providers processes in the healthcare system, such as patient where achieving compliance can be complex

) registration and record sharing. and time-consuming
. . The authors perceived the bene ts of blockchain The perceived risks of blockchain technology,
" The authors use a structural equation modeling approach N . s N
Supply Chain . . technology, such as improved transparency, such as complexity and cost is negatively
[2324] to analyze data from a survey of 300 retail supply chain - . o . . " - h

Management . . . traceability, and ef ciency, are positively associated associated with employees' intentions to

employees in India to adopt blockchain technology. N Ve . - "

with employees' intentions to adopt blockchain. adopt blockchain.
The authors investigate the barriers and mitigation A systematic and rigorous method for identifying ISM can be time-consuming and complex
strategies to blockchain technology implementation the root causes of problems and to develop effective to implement as it requires a high degree of

Construction Industry [25,26] in the construction industry. The authors use an mitigation strategies in the construction industry to expertise from the researcher. It can be
interpretive structural modeling (ISM) approach communicate complex information in a clear and subjective, and the results may vary depending
to analyze data from a survey of 10 construction experts. concise manner for blockchain-based data analysis. on the researcher's interpretation of the data.
A social network analysis (SNA) framework for modeling SNA is a powerful tool for analyzing complex SNA is complex and computationally expensive
and handling cross-blockchain ecosystems. A multi- networks, such as cross-blockchain ecosystems that . P P Y exp

. N o . . . - " to implement. The framework proposed in the

Social Network dimensional and multi-view SNA framework is designed a!lows it to capture the different aspects (multi- paper is still in its early stages of development

. [27,29) for modeling cross-blockchain ecosystems. The framework dimensional and multi-view) of cross-blockchain - i

Analysis . : " : : o and more research is needed to evaluate its
considers different dimensions of the ecosystem, such as ecosystems. It can be used to identify important effectiveness in real-world cross-blockchain
the network's topology, the ow of transactions, and the wallets in cross-blockchain ecosystems and to ecosystemns
behavior of wallets and users. develop strategies for handling common challenges. Y i

Several assumptions, such as the assumption
that all parties involved in the insurance
Decentralized applications offer a variety of services process are honest and trustworthy. The
The blockchain platform provides a secure and transparent to insurance customers, such as policy comparison, framework could be vulnerable to fraud and

Finance And Insurance [2930] ledger for storing and managing insurance data. Smart claims processing, and risk assessment. Blockchain- attacks if these assumptions are unmet. The

Industry " contracts automate many manual processes in insurance based data analysis can help to reduce fraud in the framework is not yet widely adopted by the
claims processing and underwriting. insurance industry by providing a secure and tamper- insurance industry. This could make it dif cult

proof ledger for storing and managing insurance data. to nd other insurance companies and
organizations that are willing to participate in
the blockchain network.
The system is designed to improve the ef ciency, The system uses cryptography to protect vehicle data Many challenges are associated with implementin
transparency, and security of automotive diagnostics and from unauthorized access and tampering. This can help and z\ana ing blockchain technology in ltjhe 9
Smart Automotive performance analysis, where the OBD device collects data to improve the security of vehicles and prevent fraud. 1aging 9y S
" " [31,32 o B N ) automotive industry. More research and testing is

Diagnostic from the vehicle's sensors and sends it to the blockchain Blockchain helped to automate many of the manual needed to evaluate the effectiveness of the system
network. The cloud platform provides a variety of services processes involved in automotive diagnostics and in real-world automotive applications. 4
to users, such as data visualization, analytics, and reporting. performance analysis PP i

. . It has automated many of the manual processes involved
The blockchain network stores and manages livestock in livestock farming and provided a secure and transparent . .
data in a secure where loT sensors are used to collect Blockchain networks are slow and expensive

Smart Livestock N . N way to store and manage livestock data. It can lead to . . o

N [9 data from livestock, such as their health, location, and . N ! to scale, which could limit the applicability of the
Farming = increase ef ciency, reduce costs, improve food safety n
activity levels. Smart contracts are used to automate - . framework to large-scale livestock farms.
. . — and traceability, and build trust between consumers and
animal feeding and vaccination.
farmers.
The study uses qualitative and quantitative data collection Findings are speci ¢ to the Seribu Islands
methods for a blockchain-based framework to enhance the The authors identify several potential bene ts of and mg not flfll apply to other regions or
integrated blue economy on smart islands. Qualitative blockchain, as well as the challenges of implementation. contexlz Im IerynenptFiJny blockchaigtechnolo

Tourism Industry [33 data are gathered from scienti ¢ journal publications and They also provide a case study of the Seribu Islands in can be c;)m ﬁex and t}?e study does not del\?ey

analyzed using VOS viewer. Quantitative data are obtained Indonesia to illustrate the potential of blockchain in a complex, . Y
" . " deeply into the technical challenges and
through a questionnaire survey of 150 blue economy real-world setting. al barriers faced during impl .
industry players in the Seribu Islands. potential barriers faced during implementation.
Blockchain-based biomedical document protection The blockchain-based framework is transparent and . .
. N . ¥ N The study focuses on speci ¢ blockchain
(BBDP) uses cryptography to secure biomedical auditable. This means that all transactions are recorded . -
documents and protect their privacy. The algorithm on the blockchain and can be viewed by anyone. BBDPF technologies and may not fully generalize to all
Data Protection [34 o ol Y 9 Y anyone. healthcare contexts. Blockchain operations,

especially on public blockchains, can consume
substantial computational resources.
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In summary, the related work acknowledges the importance of historical data analysis in
understanding the performance of green hydrogen systems and predicting future trends. It explores
the potential of blockchain technology in managing and analyzing historical data, including its role
in traceability, transparency, certi cation, and peer-to-peer trading of green hydrogen. The use of
blockchain-based systems aligns hydrogen production with renewable energy availability and aids
in balancing the grid and maximizing the utilization of green energy. In addition, the related work
also provides a comprehensive review of green hydrogen production, historical data management
and analysis, diverse data analytics techniques, the role of blockchain, and trend prediction derived
from historical data analysis. It highlights the efforts of various companies and research projects in
advancing hydrogen technology. It emphasizes the signi cance of data analysis in improving the
ef ciency and sustainability of energy generation and delivery systems.

3. METHODOLOGY

This section gives out a comprehensive overview of the proposed green hydrogen production
and consumption history management and analysis scheme. The overall scheme provides information
regarding the green hydrogen production steps, elements data analysis, data security, and prediction
of the trends obtained from the history management framework.

3.1. Proposed Scenario Of Blockchain Based Secure Hydrogen Data Analysis

Figure 1 represents the scenario diagram of the proposed secure hydrogen production and
management network. The scenario involves multiple participants: the operational incharge,
maintenance incharge, data analyst, and supply management. Each participant has speci ¢ requests
and interactions within the hydrogen power management system.

The operational incharge requests the blockchain framework for the adjustment of power
management system control. This represents transaction 1 in the hydrogen power management
application. The maintenance incharge requests the maintenance of the hydrogen storage system.
This represents transaction 2 in the hydrogen power management application. The data analyst
requests the energy generation data for analysis. This involves performing correlation analysis, box
plot analysis, and feature ranking in the data analysis module. This represents transaction 3 in the
hydrogen power management application. The supply management requests hydrogen delivery data
tracking. This represents an nth transaction in the hydrogen power management application. All
these transactions are recorded and stored in the hydrogen blockchain ledger. The hydrogen power
management application communicates with the hydrogen blockchain service framework through a
REST API server, following a request and response fashion.

In this article the impacts of blockchain adoption on data access performance within the context of
hydrogen production and management. Blockchain enhances data security by cryptographically
securing data and reducing the risk of unauthorized access and tampering. It improves data
transparency, making information easily accessible to authorized parties. The technology also
streamlines data traceability, ensuring a clear history of data changes. With decentralized data
access, participants can directly retrieve relevant data, eliminating delays from centralized systems.
Smart contracts automate access control, and data immutability guarantees integrity. Lastly, ef cient
compliance reporting is facilitated, reducing the time and resources needed for regulatory tasks. These
improvements collectively create a more robust and ef cient data access framework for hydrogen
production management.
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Figure 1. Proposed architecture of blockchain-based secure hydrogen data analysis aims to improve
the ef ciency of the green hydrogen asset network's performance and optimize hydrogen production

and distribution.

Figure 2 showcases how each blockchain adoption impact improves data access performance in
hydrogen production. The technology secures data and streamlines access, enhances transparency,
and automates various aspects of data management, ultimately bolstering data access ef ciency and

reliability.
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Figure 2. Impacts of Blockchain on Data Access Performance in Hydrogen Production.

The hydrogen blockchain service framework ensures access control, integrity, robustness,
transparency, irreversibility, security, and safety. It acts as the intermediary for communication
between the hydrogen power management application and the physical assets in the green hydrogen
asset network, including wind turbines, green ESS (Energy Storage Systems), solar panels, hydrogen
electrolyzers, hydrogen storage tanks, and hydrogen delivery units. Each asset, such as the wind
turbine, green ESS, solar panels, hydrogen electrolyzer, hydrogen storage, and hydrogen delivery, has
its own management within the hydrogen blockchain framework.

The scenario diagram illustrates the interactions and transactions within the hydrogen power
management system, highlighting the role of blockchain technology in securing hydrogen data analysis
and enabling intelligent power management.

3.2. Proposed Layered Architecture Design For SDA and Intelligent PMS Based on Blockchain Framework

Here's an explanation of the layered architecture depicted in Figure 3 for the secure analysis of
hydrogen data using blockchain technology in intelligent power management systems:

Layer 1: Hydrogen Physical Layer The bottommost layer represents the physical components
of the system, including renewable energy sources, power converters, and energy storage systems.
It incorporates an electrolyzer for green hydrogen production through electrolysis. The produced
hydrogen is compressed, stored in a hydrogen tank, and distributed to various destinations within the
green hydrogen asset network, such as hydrogen housing, hydrogen turbines, and hydrogen pumps.

Layer 2: Hydrogen Blockchain Virtual Layer The virtual representation of each physical asset's
data resides in this layer. It includes the virtual assets of the blockchain network, such as wind turbine
data, solar panel data, green ESS (Energy Storage System) data, hydrogen electrolyzer data, and
hydrogen delivery data.
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Figure 3. Layered architecture for secure hydrogen data analysis and intelligent power management
system using blockchain technology.

Layer 3: Hydrogen Blockchain Service Framework Layer Sitting atop the Hydrogen Blockchain
Virtual Layer is the Hydrogen Blockchain Service Framework Layer. This layer is further divided into
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two sub-layers: the Hydrogen Blockchain Services sub-layer and the REST API Server sub-layer. The
Hydrogen Blockchain Services sub-layer comprises components such as a consensus manager, smart
contracts, identity management, access control, network con guration, real-time storage, and security.
The REST API Server sub-layer includes HTTP, API, and REST API methods for communication,
including POST, GET, PUT, and DELETE. This layer facilitates the connection between the above layers
and the hydrogen blockchain services.

Layer 4: Hydrogen Application Layer In this layer, two sub-layers are introduced. The rst
sub-layer is the Power Management Application Layer, which includes functionalities such as hydrogen
fuel consumption prediction, residential level prediction, commercial level prediction, industrial level
prediction, load management monitoring, energy storage reporting and visualization, and power
distribution monitoring. The second sub-layer focuses on hydrogen data analytics, including the use
of a weighted attention mechanism for hydrogen data predictive analytics and modules for box plot
analysis, correlation analysis, and feature ranking analysis.

Layer 5: Hydrogen User Layer The topmost layer represents the hydrogen user layer, which
includes the operational incharge, maintenance incharge, data analyst, and supply management. These
users interact with the system by generating transactions and retrieving responses from the hydrogen
blockchain service framework using the REST API server.

The layered architecture provides a structured and organized approach to secure hydrogen data
analysis and intelligent power management. Each layer contributes to the overall functionality and
security of the system.

3.3. Hydrogen Power Management Architectural Based on Data Analysis Using Blockchain Framework
Overview

Figure 4, illustrates the architecture and ow of data within the system. The participants, including
operational incharge, maintenance incharge, data analyst, and supply management, are connected
to the system through a REST API that ensures secure communication using encrypted signatures.
The blockchain network, built on Hyperledger Fabric, consists of multiple peers that maintain the
same chain codes and ensure the integrity of the data. Within the blockchain network, there are MSP
(Membership Service Provider) de nitions and organization certi cate authorities (CAs) that facilitate
the authentication and authorization of participants. The network is connected to an off-chain data
lake that stores various data related to wind turbine, green ESS, solar panels, hydrogen production
electrolyzer, hydrogen delivery, and hydrogen storage. This off-chain data lake acts as a repository for
the data used in the analysis.

The data from the off-chain data lake is then passed as input to the data analytics module, which
includes correlation analysis, box plot analysis, and feature ranking techniques. These analytics
techniques help derive insights and patterns from the data. The output of the data analytics module
is then fed into the predictive data analytics module, which employs a weighted assisted BI-LSTM
(Bidirectional Long Short-Term Memory) prediction algorithm. This algorithm uses historical data
and weighted factors to make predictions about future hydrogen-related parameters. Finally, the
output of the predictive analytics module is incorporated back into the blockchain network, ensuring
the secure and transparent storage of the prediction results. The architecture presented in the gure
demonstrates how blockchain technology is leveraged to securely analyze hydrogen-related data and
support intelligent power management within the system.

Overall, the gure provides an overview of the system's components, including the participants,
blockchain network, off-chain data lake, data analytics module, and predictive analytics module. It
showcases how the secure analysis of hydrogen data is integrated into the blockchain-based power
management system. The proposed blockchain-based framework used the Practical Byzantine Fault
Tolerance (PBFT) consensus algorithm. PBFT is a consensus mechanism that ensures consensus among
a set of nodes in a network, even if some nodes are malicious or faulty. It provides a high level of fault
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tolerance and ensures that the agreed-upon transactions are added to the blockchain in a consistent
and secure manner.
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Figure 4. Development model and data ow of blockchain-based secure hydrogen data analysis and
intelligent power management system.

3.4. Blockchain Framework For Secure HDA

In this paper, we propose a hydrogen history management blockchain-based framework for
analyzing green hydrogen data securely. The proposed blockchain single Channel Blockchain
Framework for Secure Hydrogen Data Analysis, is designed to manage and analyze historical data in a
green hydrogen asset network. This network comprises various physical assets, such as wind turbines,
solar panels, green Energy Storage Systems (ESS), hydrogen electrolyzers, hydrogen storage units, and
hydrogen delivery units, which play vital roles in the production, storage, and distribution of green
hydrogen.

The Single Channel Blockchain Framework consists of three key components: the Green Hydrogen
Asset Network, the Hydrogen Blockchain Service Network, and the Hydrogen Off-Chain Data Lake.
The Green Hydrogen Asset Network forms the foundation for green hydrogen operations, while the
Hydrogen Blockchain Service Network ensures secure and con dential management of hydrogen data
using a single channel blockchain. The Hydrogen Off-Chain Data Lake acts as a centralized repository,
housing historical data from each asset in the network, enabling valuable insights into the system's
performance.

The functioning of the Single Channel Blockchain Framework follows a systematic process.
Physical assets in the green hydrogen network continuously generate data on their operations and
performance, which is integrated and stored in the off-chain data lake. The hydrogen data analytics
module and hydrogen data prediction module utilize this data lake to conduct various data analysis
techniques, extracting insights and predicting future trends. These modules interact securely with the
hydrogen blockchain service network through encrypted channels and chaincode, accessing data from
the off-chain data lake and storing analysis results on the distributed ledger.
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Furthermore, the hydrogen blockchain service network facilitates interactions with hydrogen
user participants, including the operational in charge, maintenance in charge, data analyst, and supply
management. Each user's role is de ned in the organization MSP, granting speci ¢ access rights and

permissions for conducting transactions on the blockchain network.

In the Hyperledger Fabric-based hydrogen production blockchain network, several essential
components play vital roles. The chaincode acts as the "smart contract," governing interactions between
the hydrogen data analytics module, hydrogen data prediction module, and the distributed ledger. The
organization certi cate authority ensures user authentication, allowing only authorized participants
to access speci ¢ data. The distributed ledger serves as an immutable record of all transactions and
analysis results, promoting transparency and security. Overall, this framework guarantees secure,
reliable, and authorized operations in hydrogen data analysis and prediction, facilitating intelligent

power management in green hydrogen systems.

3.5. Interection model of the proposed blockchain-based HMA of green hydrogen production and consumption.

This section outlines the work ow of our proposed blockchain

and ML-based RIVHPMA

(Renewable Integrated Virtual Hydrogen Power Management Application). The platform serves as
both a technical infrastructure and a user service framework, offering a smart contract and blockchain
ledger as services to the front-end application. Figure 5 illustrates the work ow diagram of our
RIVHPMA, building upon the integrated loT and blockchain ow model [67].
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Figure 5. Event Flow in Blockchain-Based Secure Hydrogen Data Analysis and Intelligent Power

Management System.

The front-end application provides a user-friendly interface to interact with the blockchain system.
Users can access intuitive services, such as enrolling and authenticating their identities, requesting
data, managing participant pro les, and generating data analytics reports. Our RIVHPMA operates on
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a permissioned chain of network, necessitating user enroliment and authentication to generate private
keys used for transaction signing. Transactions involve reading and writing hydrogen production
and prediction analysis data to/from the blockchain ledger across the entire network. Hydrogen user
participants can submit requests related to power management control, hydrogen storage, hydrogen
data analysis, and hydrogen delivery to hydrogen power management application.

An integrated inference engine analyzes and discovers hidden knowledge from renewable energy
generation, green hydrogen production, hydrogen storage, and hydrogen delivery data fetched from
the ledger, with data analytics results stored back to the distributed ledger. Additionally, a predictive
analytics module builds a prediction model based on mined patterns, fetching input data from the
data analytics module and storing prediction results in the ledger.

To ensure ef cient storage and retrieval of current values of participants and assets from the
blockchain ledger, we utilize an off-chain data lake. This independent data storage maintains up-to-date
sets of various data, such as the latest records of renewable energy generation, green hydrogen
production, hydrogen storage, and hydrogen delivery data.

Lastly, an event manager sends noti cation alerts to the client application, informing users about
the successful execution or status of their submitted transactions. Overall, our proposed blockchain and
ML-based RIVHPMA streamline green hydrogen production and consumptions operations, providing
secure and transparent access to data analytics and predictive insights for ef cient intelligent power
management in green hydrogen systems.

3.6. TPM of the proposed blockchain-based HMA of GHP and consumption.

Figure 6 depicts the transaction process management of the proposed HDA for Intelligent PMS.
The participants include the Operational Incharge, Maintenance Incharge, Data Analyst, and Supply
Management. Blockchain smart contracts are utilized, namely the Power Management System Smart
Contract, Hydrogen Storage Smart Contract, and Hydrogen Data Analysis Smart Contract. The
assets involved consist of Solar Panels, Wind Turbines, Hydrogen Electrolyzer, Hydrogen Storage,
Green Energy Storage System, and Hydrogen Delivery Data. The sequence diagram showcases
the interactions and message ow between participants and blockchain smart contracts, along with
asset involvement. The diagram provides an overview of the process steps and interactions. The
Operational Incharge initiates a power management system control request, which is veri ed by
the Power Management System Smart Contract. The Solar Panels and Wind Turbines interact with
the Power Management System Smart Contract to collect energy generation data. The Data Analyst
retrieves this data for analysis from the Secure HDA Based on Blockchain For Intelligent PMS Power
Management System Smart Contract. The Data Analyst then generates insights from the analysis and
shares them with the Operational Incharge for decision-making. The Maintenance Incharge initiates a
request for asset maintenance, interacting with the Hydrogen Storage Smart Contract to assess storage
status and maintenance needs. Similarly, the Supply Management initiates a request for hydrogen
delivery data, and the Hydrogen Data Analysis Smart Contract veri es the authority of the Supply
Management before retrieving relevant information from the Hydrogen Delivery Data.
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Figure 6. Sequence diagram of the proposed blockchain-based HDA for intelligent PMS.

3.7. Hydrogen Consumption Data Prediction

In this section, we present an overview of our proposed weighted Bidirectional Long Short-Term
Memory (BILSTM) scheme for hydrogen consumption prediction data in the context of the "Secure
Hydrogen Data Analysis Based on Blockchain for Intelligent Power Management System" paper. Our
scheme utilizes an attention-assisted BI-LSTM model, which combines the power of Bidirectional
LSTM (BILSTM) with an attention mechanism to capture long-term dependencies and enhance the
prediction accuracy. The attention mechanism allows the model to focus on the most relevant features
within the hydrogen consumption data, dynamically assigning weights to different elements based on
their importance. By incorporating this attention-assisted BI-LSTM model into our framework, we aim
to improve the precision and reliability of hydrogen consumption predictions, enabling more effective
power management and resource optimization in the intelligent power management system.
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In this paper, we present the model ow of the suggested weighted BILSTM-CNN algorithm, as
depicted in Figure 2, for hydrogen consumption prediction in the context of the "Secure Hydrogen
Data Analysis Based on Blockchain for Intelligent Power Management System." The weighted BILSTM
model is a deep learning architecture speci cally designed for analyzing sequential data. It builds
upon the classic LSTM model by enabling bidirectional analysis, incorporating both forward and
backward hidden states to enhance its performance. The proposed model utilizes a weighted sum of
the forward and backward hidden states at each time step, leading to improved feature extraction and
increased prediction accuracy for hydrogen consumption. The model architecture consists of three
main components: the input layer, the BILSTM layer, and the output layer.

The input layer receives data from various sensors, including temperature, humidity, and
hydrogen consumption, categorized accordingly. For hydrogen consumption prediction, the input
data is structured as a sequence of vectors, with each vector representing a speci c time step in the
sequence. Each vector contains features used for predicting the output.

The BILSTM layer is responsible for processing the input sequence in both forward and backward
directions. At each time step, the BILSTM layer produces a concatenated vector that combines the
forward and backward hidden states. To further enhance the model's performance, a weighted
attention mechanism is employed. This mechanism assigns varying importance to speci ¢ hidden
states based on their relevance to the prediction task at hand. In the weighted BILSTM model, the
forward hidden state is denoted as hf(t), and the backward hidden state is denoted as hb(t).

The concatenated vector at each time step, represented as h(t), is computed by combining hf(t) and
hb(t). This process ensures that the model captures information from both past and future time steps,
facilitating a comprehensive understanding of the sequential data and enabling accurate hydrogen
consumption predictions.

By adopting the weighted BILSTM-CNN algorithm and incorporating attention mechanisms,
our proposed model offers a robust approach to analyzing sequential data and accurately predicting
hydrogen consumption. This model architecture, comprising the input layer, BILSTM layer with
bidirectional analysis, and attention mechanism, forms the foundation of our research in the secure
hydrogen data analysis for intelligent power management system.

h(t) = [ hy(y; hpgeyl (1)

where [;] denotes vector concatenation.
The concatenated output h(t) is subjected to the attention mechanism, which functions as follows:

u(t) = tanh[W,, h(t) + by] )

The intermediate vector u(t) is used to compute the attention vector &(t) by applying the softmax
function as follows:

g(t) = softmaxw, u(t) + byl (3)

oft) = & [e(t) h(1)] (4)

The intermediate vector u(t) is used to compute the attention vector &t), with W, and by,
representing the weight matrix and bias vector for the hidden state h(t), respectively. The attention
mechanism's weight matrix and bias vector are denoted as wy and by, respectively. The resulting
attention vector €(t) is then used to calculate the context vector c(t) from the output of the BILSTM
layer at each time step. The intermediate vector u(t) is normalized and assigned weights to each
hidden state based on its relevance to the task by applying the softmax function to compute the
attention vector e(t). The context vector ¢(t) is calculated as a weighted sum of the hidden states. The
attention vector e(t) determines the weights assigned to each hidden state. The summary of the hidden
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states at time stept is represented by the context vector ¢(t), which assigns higher weights to the more
relevant hidden states through the attention mechanism.

The output of the attention mechanism passed to the 1D-CNN to learn the essential spatial
features from enhanced temporal features data ef ciently. 1D CNNs can identify patterns in the time
series data regardless of location. This is because the convolution operation slides a lter over the
entire time series, capturing patterns at all time steps. The layerwise explanation of the 1D-CNN is
discussed below.

Zero padding layer: The zero padding layer adds zeros to the beginning and end of the input
sequence to ensure that the convolutional layer can process the entire sequence. The output of this
layer is the padded sequence. Letx be the input sequence of length L, and p be the amount of padding
applied to each end of the sequence. Then the output of the zero padding layer is:

X(paddedl = [0,...,0Xq,...,X,0,...,q with 2p+ L elements (5)

The purpose of the batch normalization layer is to standardize the input data so that the mean
and variance of the input features remain uniform across all the samples in a batch. Assuming x s a
sequence of input data with a length of L and mand s are the mean and standard deviation of the input
features across the entire batch, the batch normalization layer transforms the input data to ensure the
mean and variance of the input features are consistent across all samples in the batch. The output of
the batch normalization layer can be expressed as:

-, xm

X(norm) - (32_'_ e)

(6)

To ensure numerical stability, the equation is modi ed with a small constant epsilon

The 1D convolutional layer utilizes a set of learned lIters to process the input data, enabling it to
extract local features from the input sequence. Let W be the set of lters, each length K, and b be the
bias term. Then the output of the convolutional layer is:

z=W Xpormt b (7)

where represents the convolution operation, and the output zis a sequence of lengthL K+ 1.

The output of the convolutional layer is processed by the ReLU activation layer, which applies
the recti ed linear unit (ReLU) activation function. The ReLU function sets all negative values in the
output to zero, which introduces non-linearity into the model and helps to prevent over tting. The
output of the ReLU layer is:

a= max0,2) (8)

The output of the second batch normalization layer is obtained by normalizing the output of the
ReLU activation layer in the same manner as the input data. The resulting output is given by:

_,(a m
a(norm) - pm 9)

During training, the dropout layer randomly drops out a fraction of the output units from the
previous layer. Let pgropoutb€ the probability of dropping out each unit. Then the output of the dropout
layer is:

& dropou) = Gnorm) d (10)

where dis a dropout mask, which is a binary matrix of the same shape as anorm With values of 1
with probability 1 Pdropoutand O with probability - pgropout
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The purpose of the average pooling layer is to decrease the dimensionality of the previous layer's
output by computing the average value of each feature map. If the size of the pooling window is
denoted ask, then the output of the average pooling layer can be expressed as follows:

y= [mear(adropou{i:H k]) foriinrange(o, L K+ 1,k)] (11)

where meanis the mean function, and the output y is a sequence of length(L K+ 1)/ k.
Overall,1D-CNN architecture allows the model to extract informative features from the enhanced
temporal features data and increase the HDL activity classi cation accuracy. The training of the
BILSTM model employs the Adam optimizer, a variation of the stochastic gradient descent algorithm.
For multiclass classi cation, the categorical cross-entropy loss function is utilized as the loss function.
Using backpropagation, the loss function is optimized by minimizing the difference between the
predicted output and the true output.

The output layer is responsible for producing the nal output of the model. The output layer
includes a fully connected layer with a softmax activation function for recognizing the activity in
HDL's multiclass time series data. The output obtained from the softmax layer denotes the probability
of each class concerning the given input sequence.

The model for contextual and local feature extraction, i.e., the weighted BILSTM-CNN model, is a
highly capable and adaptable machine learning model for sequential data processing tasks such as
HDL activity recognition, which offers signi cant advantages over other models in terms of accuracy
and exibility.

4. EXPERIMENT AND IMPLEMENTATION

The PowerManagementSmartContract in Table 2 is the main smart contract responsible for
power management control. It interacts with the Assets data to handle the physical assets in the
green hydrogen asset network. The Participants data represents the participants involved in the
green hydrogen blockchain framework. The Transactions data structure de nes the different types
of transactions that can be performed for power management, and the corresponding functions
(updatePowerGeneration, updatePowerConsumption, calculatePowerBalance, distributePower, and
transferPower) handle the speci c actions for power management. Additionally, there are functions to
retrieve the current power balance, power consumption, and power generation data of speci c assets
(getPowerBalance, getTotalPowerBalance, getPowerConsumption, and getPowerGeneration). These
functions enable participants to access relevant information for decision-making and analysis.

Furthermore, the experimental setting for the proposed blockchain-based green hydrogen
production and consumption history management is expressed in Table 3.
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Table 2. Smart Contract Modeling for Proposed blockchain-based green hydrogen production and

consumption history management.

Type

Component

Description

Assets

wind turbines

Wind turbines are REA that convert wind energy into electrical power.
Wind turbines are essential for harnessing wind power and generating green
energy.

solar panels

Solar panels are a key asset in the green hydrogen asset network, as they utilize
solar energy to produce clean and sustainable electrical power.

Green Energy Storage System

The green Energy Storage System is a crucial asset that stores excess renewable
energy generated by wind turbines and solar panels. It helps balance energy
supply and demand, ensuring a stable and reliable power output.

hydrogen electrolyzer

The hydrogen electrolyzer is a critical asset used for the production of green
hydrogen through the process of electrolysis.

hydrogen storage

Hydrogen storage units are responsible for storing the produced green hydrogen
securely. They ensure that the hydrogen is readily available for utilization
during peak demand or when renewable energy generation is low.

hydrogen delivery units

Hydrogen delivery units are involved in transporting hydrogen to various destinations
such as hydrogen housing, hydrogen turbines, and hydrogen fuel pumps. These
units facilitate the distribution of hydrogen throughout the system.

Participants

operational in charge

The operational incharge is responsible for overseeing and managing the day-to-day
operations of the power management system. They have the authority to request
adjustments to the power management system control and initiate transactions related to
the system's operation and performance.

maintenance in charge

The maintenance incharge is in charge of monitoring and maintaining the various assets
in the green hydrogen asset network. They can request maintenance for the assets as
needed and interact with the hydrogen storage smart contract to check the status and
maintenance requirements of the hydrogen storage units.

Data analyst

The data analyst plays a vital role in the power management system as they are responsible

for performing data analysis on the energy generation data obtained from wind turbines and
solar panels. They use various data analysis techniques to extract insights and patterns that can
aid in decision-making and optimization of the power management system.

Supply management

The supply management participant is involved in tracking and managing the delivery
of hydrogen to various destinations within the system, such as hydrogen housing, hydrogen
turbines, and hydrogen fuel pumps.

Transactions

Adjust Power Management System Control

The operational incharge initiates this transaction to request adjustments to the power
management system control. This could involve optimizing the power distribution, adjusting
energy storage settings, or managing renewable energy sources based on real-time data and
system requirements.

Retrieve Energy Generation Data

The power management system smart contract interacts with wind turbines and solar
panels to retrieve real-time energy generation data. This data is crucial for making decisions
regarding power distribution and storage.

Perform Data Analysis

The data analyst requests energy generation data from the power management system
smart contract to perform data analysis. This transaction involves extracting insights, identifying
patterns, and generating data analytics reports.

Request Maintenance

The maintenance incharge initiates this transaction to request maintenance for speci ¢ assets
in the green hydrogen asset network. The smart contract veri es the maintenance requirements
and schedules necessary maintenance activities.

Retrieve Hydrogen Delivery Data

The supply management participant requests hydrogen delivery data from the hydrogen data
analysis smart contract. This transaction provides information on hydrogen delivery to various
destinations within the system.

Approve or Cancel Maintenance Request

After receiving the maintenance request, the smart contract allows the operational incharge
or maintenance incharge to approve or cancel the maintenance request based on the system
requirements and priorities.

View Data Analytics Report

The operational incharge and data analyst can view the data analytics report generated by
the data analyst through this transaction. The report includes insights on energy generation,
power distribution, and system performance.

Hydrogen Consumption Prediction

The power management system smart contract may include a transaction for hydrogen
consumption prediction. This involves leveraging the hydrogen data prediction module to
forecast hydrogen usage for various applications, such as hydrogen housing, turbines,
or fuel pumps.

Table 3. Experimental setting of the proposed blockchain based green hydrogen production and

consumption history management.

Table 4 shows the services that are offered

Component Description
CPU Intel Core i9-8500 @ 3.00GHz
Memory 20GB

Operating System

Ubuntu Linux 18.04.1 LTS

Docker Engine

Version 18.06.1-ce

Docker-Compose, Simulink

Version 1.13.0, Version 10.7

Node v8.11.4
Python, Matlab v2.7.15, R2023a
Hyperledger Fabric v1.2

IDE composer-playground

CLI Tool composer-cli, composer-rest-server
DBMS CouchDB

Programming Language JavaScript
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using PyCharm and Python-based programming are

implemented using the TensorFlow framework and the Flask web server application platform. The
following core Python libraries are utilized: Keras 2.6, TensorFlow 2.6, Flask 2.2.2, Numpy 1.19.5,
Request 2.28, Seaborn, and MatplotLib. Additionally, MS Exce is utilized to store both the raw
and nal hydrogen production and consumption data analysis data. Moreover, 11th Gen Intel(R)

hexa-deca-Core(TM) i9-11900 @ 2.50GHz, 64-bit OS, and 63.8GB usable random access memory to

perform experiments.
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Table 4. Implementation environment of the proposed approach.

Component Description

Operating System Windows 10 Professional

Hardware Anemometers, Temperature Sensors, IMU-6050, and Humidity sensors

CPU/Memory Intel(R) Core(TM) i5-5800 CPU @ 3.00 GHz, 32 GB

External Libraries geodesy-2.0.0, slf4j-api-1.7.2, achartengine-1.1.0, EJML-core-0.26, and MidasconSDK_android_1.0.0;
Programming language Java, Python (for pre-trained LSTM model)

Integrated Development Toolkit PyCharm

In the experimental setting of the proposed blockchain-based green hydrogen production and
consumption history management system, the components and descriptions are as follows: The
system utilizes an Intel Core i9-8500 @ 3.00GHz CPU with 20GB of memory, running on Ubuntu Linux
18.04.1 LTS. Docker Engine (Version 18.06.1-ce) and Docker Compose (Version 1.13.0) are used for
containerization. Node.js (v8.11.4) and Python (v2.7.15) are the programming languages employed,
while Hyperledger Fabric (v1.2) serves as the blockchain framework. The development environment is
facilitated by Composer-Playground IDE, and Composer-CLI acts as the command-line interface tool.
The database management system employed is CouchDB, and JavaScript is used for implementing
various functionalities within the system.

The Figure 7 illustrates a hybrid energy system with voltage signals from both the battery and the
grid represented on the x-axis. The hybrid energy system integrates two energy sources, the battery,
and the grid, to optimize energy utilization and enhance overall ef ciency. The x-axis represents
the voltage levels of both energy sources, which can vary over time depending on factors such as
energy demand and supply. The hybrid energy system is designed to work seamlessly by intelligently
switching between the battery and the grid as needed. When the demand for energy is low, the system
may draw power from the battery, which is typically charged during off-peak hours or when renewable
energy sources like solar panels generate excess electricity. This helps reduce reliance on the grid and
allows for more ef cient energy utilization.

Figure 7. Green hydrogen production from hybrid green renewable energy system.

Furthermore, The gure depicts a comprehensive view of the hybrid energy system, including
various current measurements and battery charge status, which are crucial for understanding and
optimizing the system's performance.

On the y-axis, the currents (in amperes) for different components of the system are represented.
Speci cally:

Solar Current: This line indicates the current generated by the solar panels, which convert sunlight
into electricity. Energy Storage System Current: This line represents the current owing to or from
the energy storage system (e.g., batteries), which stores excess electricity generated by the solar
panels or other renewable energy sources. Electrolyzer Current: This line shows the current used
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by the electrolyzer, a critical component responsible for producing hydrogen through the process of
electrolysis. On the x-axis, the timeline is displayed, indicating different time intervals during which
the system operates.

Additionally, the gure includes a plot of the battery charge (in ampere-hours) over time. The
battery charge indicates the amount of electricity stored in the battery at a given moment. When
renewable energy sources produce more electricity than needed, the excess power is used to charge the
battery, increasing its charge level. Conversely, when energy demand exceeds the renewable energy
generation, the battery discharges to meet the demand.

By analyzing the currents and battery charge status over tim e, system operators and energy managers
can gain insights into the efficiency and performance of the hybrid energy system. They can identify periods
of peak energy generation, monitor the battery charge level , and assess the overall energy utilization to
optimize the system's operation and ensure a reliable and su stainable energy supply.

Similarly, Figure 8 shows the standalone energy system based on solar arrays. It also shows the
required voltage for the electrolyzer and produced voltage from renewable energy sources. Moreover,
the gure also expressed the pressure bar of produced hydrogen and the consumed energy of the
electrolyzer.

On the other hand, Figure 9 shows various energy systems used to produce hydrogen fuel.

In a blockchain-based green energy production history management system, the identi cation of
organization members or participants can be updated using a variety of methods. One approach is
to utilize cryptographic keys, such as public-private key pairs, to uniquely identify and authenticate
participants within the network. Each member would possess their own private key, which is securely
stored and used for cryptographic operations, while their corresponding public key serves as their
identi er on the blockchain. Figure 10in the blockchain-based framework shows the data of three
participants. When a new organization member joins the network, they can go through a registration
process where their identity and credentials are veri ed by the network administrators.

Figure 8. Green hydrogen production from green renewable energy system.
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Figure 9. Green hydrogen production from various energy system.

This veri cation process may involve providing relevant information, such as legal identi cation
documents or certi cates, to establish trust and compliance with the organization's rules and
regulations. Once veri ed, the new member's public key can be added to the blockchain, linking their
identity to their cryptographic key pair.

(a) Participant 1 (b) Participant 2 (c) Participant 3

Figure 10. Representation of participants in hydrogen production unit based on blockchain service
framework.
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In a blockchain-based green energy production history management system, the identi cation of
organization assets can be updated using various methods. Assets in this context refer to the different
components involved in the production and management of green energy, such as solar panels, wind
turbines, energy storage systems, and more.

To update asset identification, a unigue identifier can be a ssigned to each asset within the blockchain
network. This identifier can be in the form of a digital token , a smart contract, or a specific code that
represents the asset as shown in Figurell. When a new asset is added to the network, it goes through a
registration process where its identity and relevant infor mation are recorded on the blockchain.

During asset updates, changes to the asset's information, ownership, or status can be made. This
can include modi cations to technical speci cations, maintenance records, operational data, or any
other relevant details. Similar to participant identi cation updates, asset identi cation updates require
a consensus among the network participants to validate and approve the changes.

(a) Asset 1 (b) Asset 2 (c) Asset 3

Figure 11. Blockchain-based green hydrogen production history management organization assets
(con guration) identi cation.

To update historian record identification, a unique identi fier can be assigned to each record within
the blockchain network. This identifier can be generated ba sed on the timestamp, transaction ID, or a
combination of both to ensure uniqueness and traceability. When a new historian record is added to the
network, it is assigned a unique identification that serves as a reference for future updates or retrieval.

Updating historian records involves making changes or additions to existing records. This
can include updating energy generation data with new readings, adding maintenance records for
equipment, or modifying consumption data based on real-time measurements. Similar to participant
and asset identi cation updates, updating historian records requires consensus among the network
participants to validate and approve the changes. In this regard, Figures 12and 13 shows any events
that occurred in the hydrogen blockchain service framework and all the requests originated from the
participants recorded in the form of transactions. Also, Figure 14 refers to the transaction data that
occurred in the green hydrogen blockchain service framework.
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(a) Event 1 (b) Event 2 (c) Event 3
Figure 12. Blockchain-based green hydrogen production history manag ement organization event identification.

(a) Transaction 1 (b) Transaction 2 (c) Transaction 3

Figure 13. Blockchain-based green hydrogen production history management organization historian
record update (con guration) transactions identi cation.
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Figure 14. Blockchain manager/user development plan for managing gre en hydrogen production history).

5. Performance of Secure Data-driven History Management Analysis

Heatmap analysis of the hydrogen dataset involves visualizing the data using a color-coded
matrix representation, where different colors indicate the intensity or value of a particular variable. In
the context of the provided dataset, a heatmap analysis can provide insights into the relationships and
patterns between the different variables, such as DateTime, Temperature, Wind Speed, General Diffuse
Flows, Diffuse Flows, and Hydrogen Commercial Building consumption. By plotting the variables on
the heatmap, it becomes possible to observe correlations, trends, and variations within the dataset.
For example, the intensity of colors in the Temperature column can indicate temperature uctuations
over time, with warmer colors representing higher temperatures and cooler colors representing lower
temperatures. Similarly, the Wind Speed column can show areas of high or low wind intensity.
Heatmap analysis allows for quick visual identi cation of patterns, such as periods of high hydrogen
fuel pump consumption coinciding with speci c temperature or wind speed conditions. It helps in
identifying any dependencies or interactions between the variables in the dataset.

The correlation heatmap analysis is a graphical representation of the correlation matrix, which
guanti es the relationships between variables in a dataset is shown in Figure 15. It helps to visualize
the strength and direction of the linear relationship between pairs of variables.

The correlation coef cient, often denoted by "r," is a measure of the strength and direction of the
linear relationship between two variables. It ranges between -1 and 1, where -1 represents a strong
negative correlation, O represents no correlation, and 1 represents a strong positive correlation. To
calculate the correlation coef cient between two variables, you can use the following mathematical
formula:

(0 X)(Y Y))

TE(X X)2 L a(Y Y)? (12)
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Where: X and Y are the values of the two variables. X and Y are the means ofX and Y, respectively.
a denotes summation.

The resulting correlation coef cient ranges between -1 and 1, where a value close to -1 or 1
indicates a strong correlation, and a value close to 0 indicates no or weak correlation. This formula
quanti es the degree and direction of the linear relationship between the variables X and Y.

In the context of the correlation heatmap analysis, this calculation is performed for each pair of
variables in the dataset, and the resulting correlation coef cients are visualized in a heatmap, with
colors representing the strength of the correlation.

Overall, heatmap analysis provides an intuitive and visually appealing representation of the
dataset, enabling users to gain insights into the relationships and trends between the variables. It
can aid in identifying patterns, making data-driven decisions, and optimizing the performance of the
green hydrogen power management system.

(@) Correlation analysis
commercial consumption
hydrogen

for
(b) Correlation analysis for industrial (c) Correlation analysis for residential
consumption of hydrogen consumption of hydrogen

Figure 15. Correlation analysis of hydrogen consumption in different sectors for optimizing hydrogen
production, distribution, and utilization strategies for each sector.

Autocorrelation and Partial Autocorrelation are two important statistical tools used in time series
analysis to identify the patterns and relationships between consecutive data points. Moreover, in
this paper, we conducted the experiments, where PCA is applied to a hydrogen fuel consumption
dataset with 09 features and 06 principal components retained. In the given gure we cam analyze the
dimensionality of the data of applying PCA. The analysis computed the proportion of the total variance
in the data that is explained by each principal component, which is called the explained variance ratio.
This provides insight into the relative contribution of each component towards the overall variance of
the data. Finally, the model performance was evaluated using the R2 score, and it was observed that
the score improved from 86.5 to 87.5 after applying Principal Component Analysis (PCA). PCAis a
dimensionality reduction technique used to transform a dataset into a lower-dimensional space while
preserving the data's most important information or patterns. Here is the mathematical formulation
for PCA: This suggests that the reduced-dimensional representation captured by PCA was informative
for the predictive task. The PCA analysis for three considered factors is shown in Figure 16.

Given a dataset X with n samples (data points) and m features (variables), where X isan n xm
matrix. Compute the mean of each feature, represented as a column vector m by taking the average
of the values across all samples. Center the data by subtracting the mean vector from each sample
in X, resulting in a centered data matrix Z, where Z = X - m Compute the covariance matrix C of the
centered data Z. The covariance matrix measures the pairwise relationships between the different
features.

1

= Tz (13)
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where ZT represents the transpose of the centered data matrix Z. Perform eigenvalue
decomposition on the covariance matrix C to obtain its eigenvectors and eigenvalues.

c=v ~r VI (14)

V is a matrix of eigenvectors, and L is a diagonal matrix of eigenvalues.

(@) PCA analysis for commercial consumption 5y pcA analysis for industrial consumption of
of hydrogen hydrogen

(c) PCA analysis for residential consumption of
hydrogen
Figure 16. Principal Component Analysis on hydrogen consumption data to facilitate more effective

decision-making in optimizing hydrogen production, distribution, and utilization strategies for each
sector.

Sort the eigenvalues in descending order and select the top k eigenvectors corresponding to the
largest eigenvalues to form a projection matrix P.

P=V1,V2,..,Vk (15)

where v1, v2, ..., vk represent the top k eigenvectors. Project the centered data Z onto the new
lower-dimensional space by multiplying Z with the projection matrix P.

Y=2z P (16)

Where Y represents the transformed dataset with reduced dimensions. The resulting transformed
dataset Y captures the most important information or patterns in the original data, with the dimensions
ordered by the signi cance of their contribution to the overall variance.

Feature density analysis is a statistical technique used to identify important features in a dataset
as shown in Figure 17. The goal of feature density analysis is to nd a set of features that can best
explain the variation in the data. Here are the steps to perform feature density analysis:
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(a) Density analysis for commercial consumption (b) Density analysis for industrial consumption
of hydrogen of hydrogen

(c) Density analysis for residential consumption
of hydrogen

Figure 17. Density analysis of hydrogen consumption data to gain insights into the distribution and
concentration of hydrogen consumption within each sector.

Density analysis can be used to understand the distribution of hydrogen production data over
time. It can provide insights into the concentration or variability of hydrogen production rates within
a given timeframe. the kernel density estimation (KDE) method. The KDE estimates the probability
density function (PDF) of the hydrogen production data based on observed values. It assigns a density
value to each data point, representing the likelihood of nding other hydrogen production values in
its vicinity.

where, KDE(X) is the estimated density at value x of hydrogen production, n is the number of data
points, h is the bandwidth parameter that determines the width of the kernel function, xi represents the
individual hydrogen production data points, K() is the kernel function, which speci es the shape of
the kernel. The choice of the kernel function, such as the Gaussian (normal) distribution, Epanechnikoyv,
or triangular kernel, can affect the shape and characteristics of the density estimation.

KDE(x) = (1/ (n h)) S[K((x xi)/ h)] 17)

Moreover, the bene t of applying feature importance analysis on hydrogen consumption data in
different sectors in this paper is to identify the most in uential features that signi cantly contribute to
hydrogen consumption variations within each sector. Feature importance analysis, often conducted
using techniques like feature ranking, can help in understanding the relative importance of different
variables or factors affecting hydrogen consumption. The result of feature importance for different
sectors is shown in Figure 18,
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This paper performs prediction analysis on the hydrogen dataset by applying various machine
learning models to predict hydrogen consumption data in different sectors as shown in Figure 19.
The signi cance of this analysis lies in its potential to offer precise and dependable forecasts of future
hydrogen consumption patterns. Machine learning models serve as robust tools capable of analyzing
historical data and recognizing intricate relationships between variables, enabling accurate predictions
based on the patterns they have learned. By harnessing machine learning models for prediction analysis
on hydrogen consumption data, the paper aims to achieve humerous bene ts, including improved
decision-making, resource planning, risk mitigation, informed investment decisions, sustainable
growth, and real-time decision support.

(@) Feature  importance
commercial consumption
hydrogen data.
Figure 18. Feature importance analysis to identify the most in uential features that signi cantly
contribute to hydrogen consumption variations within each sector.

for . . . . . .
(b) Feature importance for industrial (c) Feature importance for residential
consumption of hydrogen data. consumption of hydrogen data.

(a) Prediction results for commercial consumption of (b) Prediction results for industrial consumption of
hydrogen data. hydrogen data.

(c) Prediction results for residential consumption of

hydrogen data.
Figure 19. Prediction analysis to provide accurate and reliable forecasts of future hydrogen
consumption patterns.
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(a) Prediction analysis for commercial consumption of (b) Prediction analysis for industrial consumption of
hydrogen data. hydrogen data.

(c) Prediction analysis for residential consumption of
hydrogen data.
Figure 20. Prediction result evaluation of future hydrogen consumption patterns.

Three models—ABILSTM, ALSTM, and ARNN—were used to assess the prediction outcomes
for the three scenarios of hydrogen consumption—commercial, industrial, and domestic. All models
had quite low prediction errors in the commercial scenario; ALSTM had the highest R2 score and
ABILSTM the lowest MAE. With the lowest MAE and RMSE, ABILSTM performed better for industrial
consumption than the other models, indicating reliable predictions. All models performed similarly in
the residential environment, with low MAE and RMSE values. With the greatest R2 value, ALSTM
appears to provide a more effective explanation for variance. Ultimately, the selection of a model
could depend on the particular scenario. For example, ALSTM demonstrated promise in commercial
and residential scenarios due to greater R2 scores, indicating better data variation, whereas ABILSTM
excelled in industrial forecasts.

6. Discussion, Comparison, and Limitations

The discussion section of the paper "Secure Hydrogen Data Analysis Based on Blockchain for
Intelligent Power Management System" provides an opportunity to delve into the ndings and
implications of the research. It discusses the key ndings and their signi cance in the context of the
paper's objectives. Additionally, it explores the contributions of the study to the eld of hydrogen data
analysis and power management systems. The discussion may also address any unexpected results or
limitations encountered during the research process.

In the comparison section, the paper can compare its approach and ndings with existing literature
and similar studies in the eld. It highlights the unique aspects and advantages of the proposed
blockchain-based system for secure hydrogen data analysis and intelligent power management. This
section may also discuss how the proposed system outperforms or complements traditional methods
and technologies used in the domain.
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To forecast future hydrogen requirements, systems for analyzing and predicting hydrogen
production gather information on hydrogen production, use, and storage. Without using blockchain,
several security problems can arise in systems that analyze and anticipate hydrogen production. The
security risks related to hydrogen production analysis and prediction systems without blockchain
technology are outlined below.

» The possibility of data tampering, in which nefarious individuals try to alter the information
gathered about the production, use, and storage of hydrogen. This could cause erroneous forecasts and
interfere with the system's functionality [ 47]. ¢ The manufacturing and storage systems for hydrogen
are becoming more and more vulnerable to hackers. These kinds of assaults can be used to harm
equipment, interfere with operations, or even steal data. Because blockchain creates a dispersed,
decentralized network that is more resilient to attacks, it can improve cybersecurity. Additionally, it
can be used to safeguard login information and prevent unauthorized changes [ 48]. « Security and
safety risks might arise from supply chain weaknesses, such as tampering with the transportation
and storage of hydrogen. A supply chain-wide immutable ledger can be produced using blockchain
technology. It lowers the possibility of tampering by guaranteeing the traceability of hydrogen
generation, transmission, and storage [12]. ¢ Sensitive information may be present in predictive
maintenance systems. Unauthorized entry may result in data breaches and possibly harm essential
equipment. Predictive maintenance data can be secured using blockchain technology by encrypting it
and limiting access via smart contracts. Data can be accessed by authorized personnel while security
and privacy are preserved [ 2]. « Systems for energy trading and billing can be subject to fraud and
con icts in hydrogen production. Blockchain-based smart contracts can automate Energy trade and
billing, guaranteeing tamper-proof and transparent transactions. Settlements get more open and
safer [49]. « Penalties, both monetary and legal, may arise from breaking environmental and safety
standards. Blockchain technology can securely store data on emissions, safety precautions, and other
regulatory requirements, which can automate compliance reporting. Transparency and compliance are
thus guaranteed [50].

Furthermore, the paper should address the limitations of the research. This includes
acknowledging any constraints or challenges faced during the implementation of the proposed
system, potential biases in the data collected, or limitations in the analytical methods employed.
By acknowledging these limitations, the authors demonstrate a critical understanding of the study's
scope and provide directions for future research to overcome these limitations.

Overall, the discussion, comparison, and limitations sections of the paper contribute to a
comprehensive understanding of the research, its implications, and its potential for real-world
applications. They provide valuable insights for researchers, practitioners, and policymakers in
the eld of secure hydrogen data analysis and intelligent power management systems.

7. Conclusion and Future Directions

The proposed research presents a four-layer architecture for safe and effective green hydrogen data
analysis that makes use of blockchain technology. It highlights blockchain's function in maintaining
data integrity and transparency within intelligent power management systems and places special
emphasis on historical data analysis. By incorporating renewable energy sources, applying statistical
approaches, closely monitoring data, and facilitating power management, this design makes a
substantial contribution to the creation and distribution of clean and sustainable energy. Making
decisions is further improved by the addition of machine learning prediction models. With mean
absolute error (MAE) values of 0.154 for commercial consumption, 0.157 for industrial consumption,
and 0.136 for residential consumption, the prediction models speci cally showed noteworthy accuracy,
demonstrating the ef cacy of the suggested approach in forecasting hydrogen consumption. These
ndings endow power management systems with the capacity to predict hydrogen requirements
precisely.
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Prospective avenues for development encompass enhancing scalability, tackling pragmatic
implementation obstacles, and investigating interoperability. Potential technical dif culties as well as
the requirement for scalability and processing ef ciency are limitations. As a result, this study provides
a strong foundation for safe blockchain-based hydrogen data analysis, promoting improved power
control, integration of green energy sources, and accurate hydrogen consumption forecasting. To fully
realise the promise, more research should concentrate on optimisation and useful implementation.
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