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Abstract: The hybrid method proposed in the study, ANFIS-GWO, combines the Adaptive
Neuro-Fuzzy Inference System (ANFIS) with Grey Wolf Optimization (GWO) for the diagnosis of liver
disorders. ANFIS is a powerful tool that combines the advantages of neural networks and fuzzy logic
to create a hybrid model capable of handling complex and uncertain data. GWO is a metaheuristic
optimization algorithm inspired by the social behaviour of grey wolves. In the ANFIS-GWO method,
the hyper-parameters of ANFIS are optimized using GWO. This optimization process aims to fine-tune
the ANFIS model based on the available dataset, which consists of 7 characteristic attributes and
354 samples related to liver diseases. By adopting the hyper-parameters, the ANFIS-GWO method
enhances the overall performance and accuracy of the diagnostic system. To evaluate the effectiveness
of the ANFIS-GWO intelligent medical system, the study employs classification accuracy, sensitivity,
and specificity analysis. Classification accuracy measures the overall correctness of the system in
predicting liver disease cases. Sensitivity refers to the system’s ability to correctly identify individuals
with liver disorders, while specificity measures its ability to correctly identify those without liver
disorders. Experimental results demonstrate that the performance of the ANFIS-GWO method
surpasses that of traditional Fuzzy Inference Systems (FIS) and ANFIS models that do not undergo an
optimization phase. This suggests that the integration of GWO optimization significantly improves
the diagnostic accuracy of the ANFIS model for liver disease diagnosis.

Keywords: adaptive neuro-fuzzy inference systems; liver disorders; bupa dataset; grey wolf
optimization; intelligence

1. Introduction

Expert systems are indeed a branch of Artificial Intelligence (Al) that leverages human expertise
to solve complex or ill-structured problems where a specific algorithmic solution may not be readily
available. These systems are designed to mimic the decision-making capabilities of human experts in a
specific domain. They utilize knowledge and inference techniques to address challenging problems
that typically require significant human expertise for their resolutions. [1]. Expert systems [2] are built
upon a knowledge base, which contains a collection of domain-specific information and rules. This
knowledge base is created by capturing the expertise of human specialists in the form of if-then rules
or logical statements. The inference engine, a key component of expert systems, applies these rules to
the available data or user input to make informed decisions or provide recommendations.

The aim of expert systems is to emulate the problem-solving and decision-making abilities of
human experts [3]. They can handle complex situations, analyze data, and provide explanations and
justifications for their conclusions. Expert systems are particularly useful in domains where expert
knowledge is scarce, expensive, or time-consuming to obtain.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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By utilizing expert systems, organizations can leverage the expertise of specialists even in the
absence of direct human involvement [4]. These systems have found applications in various fields, such
as medicine, finance, engineering, and troubleshooting complex technical issues. They have proven
effective in assisting professionals, enhancing decision-making processes, and providing valuable
insights and guidance in complex problem domains.

A fuzzy expert system can be a specific knowledge-based system, which is formed of fuzzification,
knowledge database, inference rules, and defuzzification parts and applies fuzzy logic instead of
Boolean logic to consider data in the deduction mechanism. This system is adopted to describe
decision-making problems where there is no scientific algorithm exists, although alternatively, the
problem solution can be considered heuristically, which is based on specialists in the form of If-Then
rules. A fuzzy expert system can be sufficiently supplied to the problem, which gives uncertainty
emitting from fuzziness, ambiguity or subjectivity. In the 21st century, the applications of fuzzy expert
systems have been tremendously expanding throughout scientific research topics such as diagnosing
and predicting the various risks of diseases [5-7], civil engineering applications, evaluating the
educational service qualities and for modelling different aspect of indeterministic business situations.
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Figure 1. The scheme of a fuzzy expert system

The liver plays a vital role in detoxifying medications and removing waste products generated
from the breakdown and formation of red blood cells. It also produces bile, blood clotting factors,
and stores glycogen, while regulating sugar and fat metabolism. Additionally, it aids in fat digestion
and defends against microbes and toxins present in food [8]. The prevalence of liver disorders and
associated mortality has significantly increased in recent years. Timely detection of these disorders
can effectively mitigate their impact and enable better control and treatment. Diagnosis of diseases
is a complex task influenced by human error, highlighting the importance of expert systems. These
systems utilize artificial intelligence (AI) techniques, such as machine learning, fine-tuning [9], neural
networks, Deep learning [10], ensemble models [11], transfer learning [12] and so on, to assist
medical professionals in diagnosing diseases based on symptom analysis and laboratory tests [13].
By leveraging expert systems, we can reduce costs, save time, and improve diagnostic accuracy. In
our research, we focus on diagnosing liver disorders using a hybrid adaptive neuro-fuzzy inference
technique. Our approach involves selecting the adaptive neuro-fuzzy inference system (ANFIS)
due to its advantages, such as simplicity, flexibility, robustness to erroneous data, ability to model
complex non-linear functions, reliance on expert knowledge, and compatibility with conventional
control systems. We also apply Grey Wolf swarm optimization (GWO), a popular swarm intelligence
technique, to optimize the hyper-parameters of ANFIS. These hyper-parameters include the number
and type of fuzzy membership functions and the enhancement of fuzzy rules. The utilization of GWO
significantly impacts diagnostic performance, improving the accuracy of liver disorder diagnosis.

The primary objective of this article is to examine and compare the advantages and limitations of
existing approaches and theories in enhancing and modelling fuzzy expert systems using optimization
algorithms. The focus is on evaluating the performance of the proposed hybrid adaptive neural fuzzy
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inference system for diagnosing liver disorders utilizing the Bupa dataset. To achieve this goal, a
thorough investigation of the relevant fuzzy inference system technique is conducted. The intention is
to provide a comprehensive study that explores the potential benefits and drawbacks associated with
various approaches and theories in the context of improving and modelling fuzzy expert systems for
liver disorder diagnosis.

The remaining sections of this article are organized as follows. Section 2 provides an overview
of the dataset used in the study, presenting its details. In Section 3, a comprehensive explanation of
fuzzy expert systems is provided, highlighting their intricacies. Section 4 focuses on reviewing the
structure of adaptive neural fuzzy inference systems. Additionally, Section 5 delves into the technical
specifications of the particle swarm optimization method and explores its diverse applications. The
experimental results and implications are presented in Section 6. Finally, Section 7 presents the
concluding remarks summarizing the findings and contributions of the study.

2. Bupa Liver Disorders Data-Set

The dataset utilized in this research paper aims to enhance the investigation of liver disorders
based on their characteristics. The dataset was collected by Richard S. Forsyth [14] and was introduced
to the UCI (University of California, Irvine) in 1995 [1].

It contains a total of 345 samples, with each sample consisting of 7 attributes. The first five
attributes in the dataset are associated with various variable substances obtained from a male blood
test. The sixth attribute represents the quantity of alcohol consumption, while the seventh attribute is
used to classify individuals as either healthy or ill. Detailed information about the attributes can be

found in Table 1.
Table 1. Bupa Liver Disorders Dataset
# Feild Description
1 MCV means corpuscular volume Alkphos
2 ALP Alkaline phosphates
3 Sgpt alanine aminotransferase
4 Sgot aspartate aminotransferase
5 Gammagt gamma-glut amyl Tranpeptidase
6 Drinks number of half-pint equivalents of alcoholic beverages Drunk per day
7 Selector field used to split data into two sets.

Figure 2 represents the correlation coefficients between the features and liver disorder. As can
be seen, the highest correlation is 0.16 between the SGOT and disorder; however, other features have
a low and negative correlation. In total, the highest meaningful correlations are between Drinking
alcohol and MCV at 0.31. Furthermore, the correlation between SGPT and SGOT is considerable. The
dataset is continuous, and there is no missing or destroyed data.
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Figure 2. Correlation matrix plot: visualizing the relationships among variables and target"

3. Fuzzy Expert Systems (FES)

The original formulation of fuzzy logic theory was introduced by Zadeh [15] as a means of
handling imprecise and well-defined human knowledge. Figure 3 illustrates the basic structure of
a fuzzy logic system. The process of fuzzification involves converting crisp input information into
fuzzy linguistic values using various membership functions. In a fuzzy expert system, fuzzification is
often necessary as the input values from sensors or detectors are typically deterministic numerical
values. The inference engine takes fuzzy inputs and rules, generating fuzzy productions as a result. It
is important to represent the fuzzy rule base in the form of "IF-THEN" rules that incorporate linguistic
variables. The final component of a fuzzy expert system is defuzzification, which is responsible for
converting fuzzy outputs into crisp values. Figure 1 provides a visual representation of the structure
of a fuzzy expert system.

Over the past 30 years, fuzzy rule-based systems have played a significant role in artificial
intelligence, specifically in the interpretation of complex medical data. These systems have
demonstrated the ability to uncover meaningful relationships within datasets, which has been applied
in various clinical scenarios for diagnosis, treatment, and outcome prediction. This section presents a
survey of different artificial intelligence techniques and highlights their critical clinical applications
in expert systems. Artificial neural networks and knowledge-based systems have been the most
commonly utilized analytical tools in medical research. Additionally, other artificial intelligence
systems, including evolutionary algorithms, swarm intelligence, and hybrid systems, have been
employed in diverse clinical settings. The potential of artificial intelligence and expert systems extends
to almost every field of medicine. To provide a comprehensive overview, Table 2 showcases the
practical application of various Al techniques such as fuzzy sets, neural networks, evolutionary
algorithms, and swarm intelligence in diagnosing a wide range of diseases. Moreover, Table 2 offers
a brief review of different methods specifically focused on analyzing liver disorders in the past two

decades.
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Figure 3. The scheme of the Liver Disorders Diagnostic Fuzzy Inference System
Table 2. A brief survey of the Al method applications for diagnosing Liver disorders.
Authors Methods Disease Year
Neshat et al. [16-20] Bayesian parametric method and Parzen window Liver Disease 2008,
non parametric method, Fuzzy Expert System, 2009,
Hopfield Neural Network and Fuzzy Hopfield 2010,
Neural Network 2013,
2014
Selvaraj et al.[21] particle swarm optimization Liver Disease 2013
Satarkar et al.[22] Fuzzy expert system Liver Disease 2015
Hashemi et al. [23] fuzzy logic Liver Disease 2015
Singh et al.[24] Principal Component Analysis and K-Nearest Liver Disease 2018
Neighbor (PCA-KNN)
Mirmozaffari et al. expertsystem Liver Disease 2019
[25]
Kim et al. [26] neural network and fuzzy neural network Liver Cancer 2014
Das et al. [27] Adaptive fuzzy clustering-based texture analysis Liver Cancer 2018
Xian et al. [28] GLCM texture features and fuzzy SVM Liver Tumors 2010
Polat et al. [29] adaptive neuro-fuzzy inference system Diabetes Disease 2007
Polat et al. [30] artificial immune recognition system with fuzzy Hepatitis Disease 2006
resource allocation
Chen et al.[31] local fisher discriminant analysis and support Hepatitis Disease 2011
vector machines
Neshat et al. [32-34] Adaptive Neural Network Fuzzy System, Hybrid = Hepatitis B 2009,
Case Based Reasoning and PSO, Fuzzy expert 2012
system
Adeli et al. [35] Genetic algorithm and adaptive network fuzzy Hepatitis 2013
inference system
Ahmad et al. [36,37] adaptive neuro-fuzzy inference system, Multilayer ~Hepatitis Disease 2018,
Mamdani Fuzzy Inference System 2019
Affane et al. [38] Deep learning models liver vessels 2020
reconstruction
Rabbi et al. [39] Machine learning models Liver disorders 2020
Balasubram et al. [40] Improved ANFIS + Glow Worm Swarm +DE Liver Cancer 2021
Napte et al. [41] Deep learning models Liver Segmentation 2022
Huang et al. [42] Raman spectroscopy and deep learning liver cancer 2023
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4. Adaptive Neural Fuzzy Inference System (ANFIS)

ANFIS, short for Adaptive Neuro-Fuzzy Inference System, is a type of artificial neural network
(ANN) that operates based on the principles of the Takagi-Sugeno fuzzy inference system. It was
initially developed in the early 1990s [43]. By combining both ANN and fuzzy logic principles,
ANFIS offers a unique framework that capitalizes on the advantages of both approaches. The fuzzy
inference system (FIS) within ANFIS consists of a collection of fuzzy rules (IF-THEN) that can learn to
approximate nonlinear functions. As a result, ANFIS is considered a versatile estimator. To improve
the efficiency and optimization of ANFIS, one can utilize genetic algorithms to handle the relevant
parameters [44]. ANFIS (Adaptive Neuro-Fuzzy Inference System) [45] is based on the concept of
utilizing fuzzy logic principles to construct a fuzzy inference system (FIS) comprising a set of fuzzy
rules. These rules are structured as "[F-THEN" statements and aim to approximate intricate nonlinear
functions. The learning process in ANFIS involves fine-tuning the parameters of the fuzzy rules to
enhance the model’s accuracy [46]. The ANFIS architecture (See Figure 4) comprises five layers. The
initial layer called the fuzzification layer, receives input values and assigns membership degrees using
predefined membership functions. These functions determine the extent to which the input values
belong to specific fuzzy sets [47]. The second layer, referred to as the rule layer, calculates the firing
strengths for each fuzzy rule by combining the membership degrees of the input variables. Each rule
is associated with parameters that govern its firing strength. The third layer normalizes the firing
strengths by dividing each value by the sum of all firing strengths. This normalization process ensures
that the contribution of each rule is appropriately scaled. The fourth layer, known as the defuzzification
layer, combines the normalized firing strengths with the consequent parameters of the fuzzy rules. It
computes the weighted average of the consequent parameters based on the normalized firing strengths,
generating defuzzified values as outputs. The final layer represents the overall output of the ANFIS
model. It receives the defuzzified values from the preceding layer and produces the final output based
on the specific task or problem under consideration.

ANFIS models can be trained using various learning algorithms, such as gradient descent or
hybrid approaches that combine gradient-based and least-squares techniques. Genetic algorithms
can also be employed to optimize the model’s parameters and enhance its performance. In summary,
ANFIS offers a flexible and adaptive framework for modelling complex systems by integrating
the interpretability of fuzzy logic with the learning capabilities of neural networks. It has been
successfully utilized across various domains, including forecasting, classification, control systems, and
decision-making tasks.
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Figure 4. The five layers architecture of an Adaptive Neuro-Fuzzy Inference System from [48]
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ANFIS (Adaptive Neuro-Fuzzy Inference System) provides several technical advantages in
modelling and problem-solving, as follows.

* ANFIS excels at approximating complex nonlinear functions by employing fuzzy rules [49]. It
can effectively capture intricate relationships between input and output variables, surpassing
traditional mathematical models.

¢ The interpretability and linguistic representation of fuzzy logic with the powerful learning
capabilities [50] and pattern recognition of neural networks is another benefit of ANFIS. This
fusion enables comprehensive comprehension of the modelled system.

¢ Adaptability and learning capabilities [51] can be found by ANFIS. Through parameter
adjustments in fuzzy rules during training, ANFIS continually enhances accuracy and
performance. This adaptability is particularly valuable in dynamic systems subject to changes.

¢ ANFIS yields interpretable models due to the linguistic representation of fuzzy rules [52]. The
"IF-THEN" structure facilitates easy understanding and analysis by domain experts, which is
crucial for domains emphasizing explainability and transparency.

* Supporting various learning algorithms, including gradient descent, hybrid techniques, and
genetic algorithms [53], can be considered by ANFIS. This versatility allows practitioners to
choose optimal learning approaches, improving training efficiency and model performance.

5. Grey Wolf Swarm Optimization

The Grey Wolf Optimizer [54] (GWO) is a swarm intelligent optimization algorithm proposed by
Seyedali Mirjalili and others in 2014. It draws inspiration from the hierarchical leadership structure
and hunting behaviour of wolves in nature. Research conducted by Seyedali Mirjalili and colleagues
has demonstrated that the standard GWO algorithm outperforms other optimization algorithms such
as PSO, GSA, DE, and FEP. The GWO algorithm offers several advantages, including its simplicity, fast
convergence speed [55], high precision in searching for optimal solutions, and ease of implementation.
These characteristics make it well-suited for practical engineering problems and hold significant
theoretical research value. Although GWO is a relatively new algorithm in the field of biological
intelligence, research on it is still in its early stages. The theory and development of the algorithm are
not yet perfect. To fully harness the superior performance of GWO, further exploration and research
are required.

To replicate the internal leadership structure of wolves, the GWO algorithm categorizes wolves
into four distinct types: alpha, beta, delta, and omega. Among these, the alpha, beta, and delta wolves
represent the best, second-best, and third-best individuals, respectively, while the remaining wolves
are classified as omega. Within the GWO algorithm, the hunting or optimization process is guided by
the alpha, beta, and delta wolves. They lead other wolves (W) towards the most promising areas in the
search space. During the iterative search process, the potential position of the prey (optimal solution)
is evaluated by the alpha, beta, and delta wolves. The locations of the wolves are then updated in the
optimization process using Equations (1) and (2).

- = = 5
D= |C-Xp(t) — X(t)
. — L. )
X(t+1)=Xp(t)—A-D
Where t represents the t;, iteration, A and C are coefficient vectors, (Xp ) is the position vector of
prey, and X represents the wolf position. The vectors A and C can be expressed by:

AzZu-T{—E )
C=2-73

Where the coefficient linearly decreases from 2 to 0 with the increasing iteration number, (r1 ) and
(r2 ) are random vectors located in the scope [0,1]. The principles underlying the position updating
rules described in Equations (1) is visually represented in Figure 1. The figure illustrates how a wolf
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positioned at coordinates (X, Y) can adjust its position around the prey based on the aforementioned
updating formulas. Although Figure 1 only displays seven possible positions for the wolf to move to,
by adjusting the random parameters C and A, it becomes possible for the wolf to relocate itself to any
position within the continuous space near the prey.

In the GWO algorithm, it is always assumed that the positions of the alpha, beta, and delta wolves
are likely to correspond to the position of the prey, which represents the optimal solution. Throughout
the iterative search process, the alpha, beta, and delta wolves represent the best, second-best, and
third-best individuals obtained thus far, respectively. On the other hand, the remaining wolves,
referred to as omega, adjust their locations based on the positions of the alpha, beta, and delta wolves.
Mathematical formulas are employed to re-adjust the positions of the omega wolves. The conceptual
model depicting the process of a wolf updating its position is presented in Figure 2.

. - =
D“:’C1~Xa—X
. - = 5
D,;:‘cz-xﬁ—x‘ 3)
. — .
DgI‘C3'}Z>5—X

In the equations mentioned, X,, X/g, and X; represent the position vectors of the alpha, beta, and
delta individuals, respectively. C1, C2, and C3 denote randomly generated vectors, and X represents
the position vector of the current individual. Equations (3) calculate the distances between the position
of the current individual and the positions of the alpha, beta, and delta individuals, respectively. The
final position vectors of the current individual are then determined by the following calculations:

R =% (5]
55 (3]

%-% -7 (D) N
X(t+1)—z+)§+z

Where Al, A2, and A3 are randomly generated vectors, and t represents the number of iterations.

X _{
T

& Y'-v)

Figure 5. The coordination vectors of the particles in GWO and possible next locations.
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The ability to explore and exploit plays a crucial role in determining the search performance
of an algorithm. In the context of GWO, exploration refers to a wolf deviating from its original
search path to a certain extent and venturing into new directions. This reflects the wolf’s capability
to explore unknown regions and discover potentially promising solutions. Exploitation, on the other
hand, involves a wolf continuing its search more meticulously along its original trajectory, ensuring a
thorough examination of the regions that have already been explored.

Finding the right balance between exploration and exploitation is a significant research question
in optimizing the GWO algorithm. It involves determining how to enable the algorithm to strike
a suitable compromise between exploring new areas and exploiting the knowledge gained from
previously explored regions. By achieving this balance, the algorithm can effectively search the
solution space and improve its overall performance.

6. Neural Fuzzy Grey wolf Optimization Inference System (ANFIS-GWO)

Developing an accurate fuzzy rule base is a critical aspect of building a fuzzy system. Typically,
domain specialists are responsible for creating these rules and defining the membership functions, as
their expertise directly influences the meaning and effectiveness of the system. While acquiring fuzzy
rules can be relatively straightforward, obtaining appropriate membership functions can be challenging
and time-consuming. The membership functions play a significant role in characterizing the fuzzy
system and determining its performance through its type and parameters. Unfortunately, there are no
established techniques available for managing them. Fuzzy systems can be viewed as search spaces,
where each point in the space represents a rule set and membership functions. Evolutionary algorithms
such as Genetic Algorithms (GAs), particle swarm optimization (PSO), and other similar approaches
are well-suited for exploring these spaces [56].

Combining an Adaptive Neuro-Fuzzy Inference System (ANFIS) with the Grey Wolf Optimization
(GWO) method involves integrating the optimization capabilities of GWO into the learning process of
ANFIS. Here is a general approach to combining ANFIS with GWO:

1. Initialize the GWO population: Generate an initial population of grey wolves with random
positions.

2. Evaluate the fitness: Evaluate the fitness of each grey wolf in the population by using ANFIS to
measure the performance of the fuzzy inference system.

3. Update the alpha, beta, delta, and omega positions: Identify the alpha (best), beta, delta, and
omega positions based on the fitness evaluations.

4. Update the position of each grey wolf: Update the position of each grey wolf using the GWO
equations, which involve leveraging the alpha, beta, delta, and omega positions to simulate the
movement and search behaviour of the grey wolves.

5. Design an initial FIS, which serves as the starting point for optimization.

6. Fine-tune the parameters of the FIS using GWO. This process involves precise adjustments to
align the model’s error function with the desired performance.

7. Identify the best FIS solution based on the minimum Root Mean Square Error (RMSE), indicating
the optimal balance between accuracy and error.

8. Perform ANFIS training: Use the updated positions of the grey wolves to adjust the parameters
of the fuzzy rules in ANFIS. This involves updating membership functions, rule weights, and
other parameters through the learning process.

9. Repeat steps 6-8: Iterate through steps 6 to 8 until a termination criterion is met, such as reaching
a maximum number of iterations or achieving a desired level of performance.

By combining ANFIS with GWO, several benefits can be obtained. Frist, GWO improves the
optimization process of ANFIS by exploring the search space more effectively. The optimization
capabilities of GWO help ANFIS find better parameter values, leading to improved accuracy and
performance. Secondly, GWO'’s ability to guide the search process can accelerate the convergence
of ANFIS. This can result in a reduced number of training iterations needed to achieve the desired
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performance. Furthermore, The combined approach of ANFIS with GWO can help improve the
generalization ability of the model. GWO helps avoid overfitting by effectively exploring the solution
space and finding a good balance between underfitting and overfitting. Meanwhile, GWO assists in
automatically tuning the parameters of ANFIS, reducing the need for manual parameter tuning. This
can save time and effort in model development. Last but not least, the combination of ANFIS and GWO
can enhance the robustness of the model by providing a more reliable and accurate representation of
the underlying data patterns. Overall, combining ANFIS with GWO allows for improved optimization,
faster convergence, enhanced generalization, automatic parameter tuning, and increased robustness,
making it a powerful approach for solving complex problems.

7. Experimental outcomes

In this section, we established a structured framework for systematically evaluating the efficacy
of three methods, ANFIS, FIS, and ANFIS-GWO, for the diagnosis of liver disorders. Subsequently, we
conducted an analysis to assess the performance of GWO control parameters, aiming to demonstrate
the sensitivity of GWO in relation to optimal parameter selection.

7.1. GWQO's control parameters tuning

Achieving an appropriate equilibrium between exploration and exploitation processes is crucial
in swarm intelligence methods [57], and it heavily relies on the accurate initialization of control
parameters. Control parameters, including population size, crossover probability rate, mutation
size, and alpha value, exert a significant impact on the behaviour of the swarm throughout the
optimization process [58]. The population size determines the number of individuals in the swarm,
directly influencing both diversity and exploration capabilities. The crossover probability rate
determines the likelihood of genetic material exchange among individuals, facilitating the exploitation
of advantageous solutions. The mutation size governs the magnitude of random perturbations applied
to individuals, promoting exploration within the search space [59]. Meanwhile, the alpha value
regulates the influence of the global best position on individual movement, ensuring a delicate balance
between exploration and exploitation. By meticulously initializing and fine-tuning these control
parameters, swarm intelligence methods can effectively navigate the search landscape, facilitating the
discovery of optimal solutions while maintaining a harmonious interplay between exploration and
exploitation.

In this investigation, we conducted performance testing of the Grey Wolf Optimizer (GWO)
using four well-known optimization benchmarks sourced from the CEC2005 package [60]. Various
population sizes were employed in the testing process. The two dimensions of the optimization
benchmark are depicted in Figure 6 . F1 represents an unimodal benchmark characterized by a
single global optimum. On the other hand, F7 and F8 are multi-modal benchmarks that pose a
significant challenge for most optimization methods in finding the global optimum. Lastly, F10
presents an intriguing optimization benchmark featuring one global optimum and numerous local
optima. Addressing the issue of stagnation becomes particularly challenging when dealing with
problems that exhibit multiple local optima.
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Figure 6. Optimisation benchmark functions, a) F1, b) F7, c) F8, and d)F10

In Figure 7(a), we can see the convergence speed of GWO with various population sizes, 5, 10,
25, 50 and 100 solutions for F1. As F1 is an unimodal function, increasing the population size leads
to reducing the convergence rate; thus smaller population size can perform better. This is because a
smaller population size reduces the likelihood of premature convergence to local optima. By having
fewer individuals, the exploration of the search space becomes less dense, allowing the algorithm
to focus on refining and converging towards the global optimum more efficiently [61]. In unimodal
benchmarks, where the objective function exhibits a single peak, a larger population size can lead to
increased competition among individuals, resulting in more exploration across different regions of the
search space. This extensive exploration may slow down the convergence process towards the global
optimum [62]. Conversely, a smaller population size tends to accelerate convergence by reducing
exploration, enabling individuals to converge more rapidly towards the global optimum.

On the other hand, it can be seen in Figure 7(c) a large population sizes can perform better than
small sizes in multimodal benchmarks. This is due to the capability of larger populations to engage in
more extensive exploration of the search space, thereby increasing the likelihood of discovering and
converging towards multiple optima. In multi-modal benchmarks, characterized by having multiple
peaks in the objective function, a larger population size facilitates a more comprehensive exploration
of diverse regions within the search space [63]. With a greater number of individuals, the algorithm
can simultaneously search for and converge towards multiple optima. This heightened exploration
capacity helps prevent premature convergence to suboptimal solutions and enhances the probability
of identifying global optima or multiple global optima.
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The alpha parameter in GWO is the second most significant parameter, as it plays a crucial role
in balancing exploration and exploitation. Figure 8 illustrates the impact of different alpha values on
the performance of GWO. Interestingly, when alpha had a fixed value of 0.5, it exhibited a notable
convergence rate compared to the standard linear decrease from 2 to zero. However, other alpha values
did not yield satisfactory results. Additionally, we tested other constant values, such as 1, 1.5, and 3, in
the dynamic formula for alpha, but none of them outperformed the value of 2. Overall, these findings
highlight the significance of selecting an appropriate alpha value to achieve optimal performance in
GWO, with a fixed value of 0.5 demonstrating promising results compared to the conventional linear
decrease from 2 to zero.
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7.2. Diagnosis liver disorders results

The proposed ANFIS and ANFIS-GWO performances are evaluated by the dataset of Liver
disorders (Bupa). Both Figures 9 and 10 present the fuzzy relationships among the five features with
drinks level in ANFIS and ANFIS-GWO. It can be seen that the used ANFIS-GWO is able to enhance
the achieved model.

Based on the information provided, Table 3 presents the statistical analysis results of various
models for classifying liver disorders. The models evaluated in terms of classification accuracy are as
follows:

ANFIS-GWO: A hybrid model combining Adaptive Neuro-Fuzzy Inference System (ANFIS) with
Grey Wolf Optimization (GWO). ANFIS: The standard ANFIS model. SVM: Support Vector Machine.
SGD: Stochastic Gradient Descent. MLP: Multilayer Perceptron. KNN: K-Nearest Neighbors. Decision
Tree: A decision tree-based model. XGBoost: A gradient boosting-based model.

According to the results presented in Table 3, the best-performing models in terms of classification
accuracy are ANFIS-GWO with an accuracy of 51%, followed by ANFIS with 44%, and SVM with 42%.
It is also mentioned that this arrangement holds true for the average validation error as well.
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Table 3. Statistical analysis of the proposed model (ANFIS-GWO) compared with seven models for
diagnosing Liver disorders.

SVM SGD
MSE RMSE MAE R-value R2 MSE RMSE MAE R-value R2
Min 0203 0450 0203 0.263 0.069 Min 0246 049 0246 0.136 0.018
Max 0348 0590 0348 0.574 0.329 Max 0435 0.659 0435 0.498 0.248

Mean 0280 0.527 0280 0.422 0.190 Mean 0339 0580 0339 0.318 0.123
Median 0.283 0532  0.283 0415 0172 Median 0.355 0.596 0355 0.305 0.099
STD 0.056 0.053  0.056 0.103 0.088 STD 0.064 0.056 0.064 0.149 0.096

MLP KNN
MSE RMSE MAE R-value R2 MSE RMSE MAE R-value R2
Min 0.246  0.496 0.246 0.248 0.062 Min 0.275 0.525 0.275 0.131 0.017
Max 0.362 0.602 0.362 0.550 0.302 Max 0.406 0.637 0.406 0.362 0.131

Mean 0295 0.541 0.295 0.394 0.167 Mean 0349 0590  0.349 0.262 0.076
Median 0.283 0.532  0.283 0.410 0.168 Median 0.355 0.596  0.355 0.262 0.069
STD 0.041 0.038 0.041 0.103 0.080 STD 0.040 0.034 0.040 0.082 0.043

Decision Tree XGBoost
MSE RMSE MAE R-value R2 MSE RMSE MAE R-value R2
Min 0.275 0.525 0.275 0.026 0.001 Min 0.246  0.496 0.246 0.149 0.022

Max 0464 0.681 0464 0445 0.198 Max 0.406 0.637  0.406 0.496 0.246
Mean 0367 0.603  0.367 0.259 0.093 Mean 0325 0567 0325 0.328 0.124
Median 0.355 0596  0.355 0.300 0.091 Median 0.319 0565 0319 0.357 0.127
STD 0.070 0.058  0.070 0.157 0.073 STD 0.062 0.054 0.062 0.120 0.080

ANFIS ANFIS-GWO
MSE RMSE MAE R-value R2 MSE RMSE MAE R-value R2
Min 0203 0450 0203 0.367 0.134 Min 0.188 0434 0.188 0.426 0.181

Max 0319 0565 0319 0.562 0316 Max 0275 0525 0275 0.606 0.368
Mean 0.273  0.521 0273  0.441 0.202 Mean 0234 0482 0234 0514 0.271
Median 0.304 0552 0.304 0.386 0.149 Median 0.246 0496 0246 0472 0.222
STD 0.047 0.047 0.047 0.084 0.078 STD 0.038 0.039  0.038 0.085 0.090

8. Conclusions

This study introduced a hybrid adaptive neural fuzzy expert system that utilizes Grey Wolf
Swarm Optimization (GWO) in Matlab’s Simulink for distinguishing between liver disease and healthy
conditions. By employing this recommended approach, the classification accuracy can be improved
by 7% compared to the ANFIS system based on the dataset. Statistical analysis was employed to
develop meaningful attributes and fuzzy rules. The significance of identifying significant and relevant
fuzzy rules without relying on specialists highlights the potential for knowledge discovery. The key
advantages of using the fuzzy inference system (FIS) as a knowledge acquisition mechanism include
the adaptability to handle varying numbers of rules and the ability to efficiently explain the acquired
rules. These findings suggest promising research avenues for utilizing GWO and fuzzy expert systems
in various classification problems. Based on the results, the proposed hybrid system outperforms
previously studied approaches in terms of accuracy and reliability.
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