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Abstract: The hybrid method proposed in the study, ANFIS-GWO, combines the Adaptive

Neuro-Fuzzy Inference System (ANFIS) with Grey Wolf Optimization (GWO) for the diagnosis of liver

disorders. ANFIS is a powerful tool that combines the advantages of neural networks and fuzzy logic

to create a hybrid model capable of handling complex and uncertain data. GWO is a metaheuristic

optimization algorithm inspired by the social behaviour of grey wolves. In the ANFIS-GWO method,

the hyper-parameters of ANFIS are optimized using GWO. This optimization process aims to fine-tune

the ANFIS model based on the available dataset, which consists of 7 characteristic attributes and

354 samples related to liver diseases. By adopting the hyper-parameters, the ANFIS-GWO method

enhances the overall performance and accuracy of the diagnostic system. To evaluate the effectiveness

of the ANFIS-GWO intelligent medical system, the study employs classification accuracy, sensitivity,

and specificity analysis. Classification accuracy measures the overall correctness of the system in

predicting liver disease cases. Sensitivity refers to the system’s ability to correctly identify individuals

with liver disorders, while specificity measures its ability to correctly identify those without liver

disorders. Experimental results demonstrate that the performance of the ANFIS-GWO method

surpasses that of traditional Fuzzy Inference Systems (FIS) and ANFIS models that do not undergo an

optimization phase. This suggests that the integration of GWO optimization significantly improves

the diagnostic accuracy of the ANFIS model for liver disease diagnosis.

Keywords: adaptive neuro-fuzzy inference systems; liver disorders; bupa dataset; grey wolf

optimization; intelligence

1. Introduction

Expert systems are indeed a branch of Artificial Intelligence (AI) that leverages human expertise

to solve complex or ill-structured problems where a specific algorithmic solution may not be readily

available. These systems are designed to mimic the decision-making capabilities of human experts in a

specific domain. They utilize knowledge and inference techniques to address challenging problems

that typically require significant human expertise for their resolutions. [1]. Expert systems [2] are built

upon a knowledge base, which contains a collection of domain-specific information and rules. This

knowledge base is created by capturing the expertise of human specialists in the form of if-then rules

or logical statements. The inference engine, a key component of expert systems, applies these rules to

the available data or user input to make informed decisions or provide recommendations.

The aim of expert systems is to emulate the problem-solving and decision-making abilities of

human experts [3]. They can handle complex situations, analyze data, and provide explanations and

justifications for their conclusions. Expert systems are particularly useful in domains where expert

knowledge is scarce, expensive, or time-consuming to obtain.
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By utilizing expert systems, organizations can leverage the expertise of specialists even in the

absence of direct human involvement [4]. These systems have found applications in various fields, such

as medicine, finance, engineering, and troubleshooting complex technical issues. They have proven

effective in assisting professionals, enhancing decision-making processes, and providing valuable

insights and guidance in complex problem domains.

A fuzzy expert system can be a specific knowledge-based system, which is formed of fuzzification,

knowledge database, inference rules, and defuzzification parts and applies fuzzy logic instead of

Boolean logic to consider data in the deduction mechanism. This system is adopted to describe

decision-making problems where there is no scientific algorithm exists, although alternatively, the

problem solution can be considered heuristically, which is based on specialists in the form of If-Then

rules. A fuzzy expert system can be sufficiently supplied to the problem, which gives uncertainty

emitting from fuzziness, ambiguity or subjectivity. In the 21st century, the applications of fuzzy expert

systems have been tremendously expanding throughout scientific research topics such as diagnosing

and predicting the various risks of diseases [5–7], civil engineering applications, evaluating the

educational service qualities and for modelling different aspect of indeterministic business situations.

Figure 1. The scheme of a fuzzy expert system

The liver plays a vital role in detoxifying medications and removing waste products generated

from the breakdown and formation of red blood cells. It also produces bile, blood clotting factors,

and stores glycogen, while regulating sugar and fat metabolism. Additionally, it aids in fat digestion

and defends against microbes and toxins present in food [8]. The prevalence of liver disorders and

associated mortality has significantly increased in recent years. Timely detection of these disorders

can effectively mitigate their impact and enable better control and treatment. Diagnosis of diseases

is a complex task influenced by human error, highlighting the importance of expert systems. These

systems utilize artificial intelligence (AI) techniques, such as machine learning, fine-tuning [9], neural

networks, Deep learning [10], ensemble models [11], transfer learning [12] and so on, to assist

medical professionals in diagnosing diseases based on symptom analysis and laboratory tests [13].

By leveraging expert systems, we can reduce costs, save time, and improve diagnostic accuracy. In

our research, we focus on diagnosing liver disorders using a hybrid adaptive neuro-fuzzy inference

technique. Our approach involves selecting the adaptive neuro-fuzzy inference system (ANFIS)

due to its advantages, such as simplicity, flexibility, robustness to erroneous data, ability to model

complex non-linear functions, reliance on expert knowledge, and compatibility with conventional

control systems. We also apply Grey Wolf swarm optimization (GWO), a popular swarm intelligence

technique, to optimize the hyper-parameters of ANFIS. These hyper-parameters include the number

and type of fuzzy membership functions and the enhancement of fuzzy rules. The utilization of GWO

significantly impacts diagnostic performance, improving the accuracy of liver disorder diagnosis.

The primary objective of this article is to examine and compare the advantages and limitations of

existing approaches and theories in enhancing and modelling fuzzy expert systems using optimization

algorithms. The focus is on evaluating the performance of the proposed hybrid adaptive neural fuzzy
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inference system for diagnosing liver disorders utilizing the Bupa dataset. To achieve this goal, a

thorough investigation of the relevant fuzzy inference system technique is conducted. The intention is

to provide a comprehensive study that explores the potential benefits and drawbacks associated with

various approaches and theories in the context of improving and modelling fuzzy expert systems for

liver disorder diagnosis.

The remaining sections of this article are organized as follows. Section 2 provides an overview

of the dataset used in the study, presenting its details. In Section 3, a comprehensive explanation of

fuzzy expert systems is provided, highlighting their intricacies. Section 4 focuses on reviewing the

structure of adaptive neural fuzzy inference systems. Additionally, Section 5 delves into the technical

specifications of the particle swarm optimization method and explores its diverse applications. The

experimental results and implications are presented in Section 6. Finally, Section 7 presents the

concluding remarks summarizing the findings and contributions of the study.

2. Bupa Liver Disorders Data-Set

The dataset utilized in this research paper aims to enhance the investigation of liver disorders

based on their characteristics. The dataset was collected by Richard S. Forsyth [14] and was introduced

to the UCI (University of California, Irvine) in 1995 [1].

It contains a total of 345 samples, with each sample consisting of 7 attributes. The first five

attributes in the dataset are associated with various variable substances obtained from a male blood

test. The sixth attribute represents the quantity of alcohol consumption, while the seventh attribute is

used to classify individuals as either healthy or ill. Detailed information about the attributes can be

found in Table 1.

Table 1. Bupa Liver Disorders Dataset

# Feild Description

1 MCV means corpuscular volume Alkphos

2 ALP Alkaline phosphates

3 Sgpt alanine aminotransferase

4 Sgot aspartate aminotransferase

5 Gammagt gamma-glut amyl Tranpeptidase

6 Drinks number of half-pint equivalents of alcoholic beverages Drunk per day

7 Selector field used to split data into two sets.

Figure 2 represents the correlation coefficients between the features and liver disorder. As can

be seen, the highest correlation is 0.16 between the SGOT and disorder; however, other features have

a low and negative correlation. In total, the highest meaningful correlations are between Drinking

alcohol and MCV at 0.31. Furthermore, the correlation between SGPT and SGOT is considerable. The

dataset is continuous, and there is no missing or destroyed data.
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Figure 2. Correlation matrix plot: visualizing the relationships among variables and target"

3. Fuzzy Expert Systems (FES)

The original formulation of fuzzy logic theory was introduced by Zadeh [15] as a means of

handling imprecise and well-defined human knowledge. Figure 3 illustrates the basic structure of

a fuzzy logic system. The process of fuzzification involves converting crisp input information into

fuzzy linguistic values using various membership functions. In a fuzzy expert system, fuzzification is

often necessary as the input values from sensors or detectors are typically deterministic numerical

values. The inference engine takes fuzzy inputs and rules, generating fuzzy productions as a result. It

is important to represent the fuzzy rule base in the form of "IF-THEN" rules that incorporate linguistic

variables. The final component of a fuzzy expert system is defuzzification, which is responsible for

converting fuzzy outputs into crisp values. Figure 1 provides a visual representation of the structure

of a fuzzy expert system.

Over the past 30 years, fuzzy rule-based systems have played a significant role in artificial

intelligence, specifically in the interpretation of complex medical data. These systems have

demonstrated the ability to uncover meaningful relationships within datasets, which has been applied

in various clinical scenarios for diagnosis, treatment, and outcome prediction. This section presents a

survey of different artificial intelligence techniques and highlights their critical clinical applications

in expert systems. Artificial neural networks and knowledge-based systems have been the most

commonly utilized analytical tools in medical research. Additionally, other artificial intelligence

systems, including evolutionary algorithms, swarm intelligence, and hybrid systems, have been

employed in diverse clinical settings. The potential of artificial intelligence and expert systems extends

to almost every field of medicine. To provide a comprehensive overview, Table 2 showcases the

practical application of various AI techniques such as fuzzy sets, neural networks, evolutionary

algorithms, and swarm intelligence in diagnosing a wide range of diseases. Moreover, Table 2 offers

a brief review of different methods specifically focused on analyzing liver disorders in the past two

decades.
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Figure 3. The scheme of the Liver Disorders Diagnostic Fuzzy Inference System

Table 2. A brief survey of the AI method applications for diagnosing Liver disorders.

Authors Methods Disease Year

Neshat et al. [16–20] Bayesian parametric method and Parzen window
non parametric method, Fuzzy Expert System,
Hopfield Neural Network and Fuzzy Hopfield
Neural Network

Liver Disease 2008,
2009,
2010,
2013,
2014

Selvaraj et al.[21] particle swarm optimization Liver Disease 2013

Satarkar et al.[22] Fuzzy expert system Liver Disease 2015

Hashemi et al. [23] fuzzy logic Liver Disease 2015

Singh et al.[24] Principal Component Analysis and K-Nearest
Neighbor (PCA-KNN)

Liver Disease 2018

Mirmozaffari et al.
[25]

expert system Liver Disease 2019

Kim et al. [26] neural network and fuzzy neural network Liver Cancer 2014

Das et al. [27] Adaptive fuzzy clustering-based texture analysis Liver Cancer 2018

Xian et al. [28] GLCM texture features and fuzzy SVM Liver Tumors 2010

Polat et al. [29] adaptive neuro-fuzzy inference system Diabetes Disease 2007

Polat et al. [30] artificial immune recognition system with fuzzy
resource allocation

Hepatitis Disease 2006

Chen et al.[31] local fisher discriminant analysis and support
vector machines

Hepatitis Disease 2011

Neshat et al. [32–34] Adaptive Neural Network Fuzzy System, Hybrid
Case Based Reasoning and PSO, Fuzzy expert
system

Hepatitis B 2009,
2012

Adeli et al. [35] Genetic algorithm and adaptive network fuzzy
inference system

Hepatitis 2013

Ahmad et al. [36,37] adaptive neuro-fuzzy inference system, Multilayer
Mamdani Fuzzy Inference System

Hepatitis Disease 2018,
2019

Affane et al. [38] Deep learning models liver vessels
reconstruction

2020

Rabbi et al. [39] Machine learning models Liver disorders 2020

Balasubram et al. [40] Improved ANFIS + Glow Worm Swarm +DE Liver Cancer 2021

Napte et al. [41] Deep learning models Liver Segmentation 2022

Huang et al. [42] Raman spectroscopy and deep learning liver cancer 2023
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4. Adaptive Neural Fuzzy Inference System (ANFIS)

ANFIS, short for Adaptive Neuro-Fuzzy Inference System, is a type of artificial neural network

(ANN) that operates based on the principles of the Takagi-Sugeno fuzzy inference system. It was

initially developed in the early 1990s [43]. By combining both ANN and fuzzy logic principles,

ANFIS offers a unique framework that capitalizes on the advantages of both approaches. The fuzzy

inference system (FIS) within ANFIS consists of a collection of fuzzy rules (IF-THEN) that can learn to

approximate nonlinear functions. As a result, ANFIS is considered a versatile estimator. To improve

the efficiency and optimization of ANFIS, one can utilize genetic algorithms to handle the relevant

parameters [44]. ANFIS (Adaptive Neuro-Fuzzy Inference System) [45] is based on the concept of

utilizing fuzzy logic principles to construct a fuzzy inference system (FIS) comprising a set of fuzzy

rules. These rules are structured as "IF-THEN" statements and aim to approximate intricate nonlinear

functions. The learning process in ANFIS involves fine-tuning the parameters of the fuzzy rules to

enhance the model’s accuracy [46]. The ANFIS architecture (See Figure 4) comprises five layers. The

initial layer called the fuzzification layer, receives input values and assigns membership degrees using

predefined membership functions. These functions determine the extent to which the input values

belong to specific fuzzy sets [47]. The second layer, referred to as the rule layer, calculates the firing

strengths for each fuzzy rule by combining the membership degrees of the input variables. Each rule

is associated with parameters that govern its firing strength. The third layer normalizes the firing

strengths by dividing each value by the sum of all firing strengths. This normalization process ensures

that the contribution of each rule is appropriately scaled. The fourth layer, known as the defuzzification

layer, combines the normalized firing strengths with the consequent parameters of the fuzzy rules. It

computes the weighted average of the consequent parameters based on the normalized firing strengths,

generating defuzzified values as outputs. The final layer represents the overall output of the ANFIS

model. It receives the defuzzified values from the preceding layer and produces the final output based

on the specific task or problem under consideration.

ANFIS models can be trained using various learning algorithms, such as gradient descent or

hybrid approaches that combine gradient-based and least-squares techniques. Genetic algorithms

can also be employed to optimize the model’s parameters and enhance its performance. In summary,

ANFIS offers a flexible and adaptive framework for modelling complex systems by integrating

the interpretability of fuzzy logic with the learning capabilities of neural networks. It has been

successfully utilized across various domains, including forecasting, classification, control systems, and

decision-making tasks.

Figure 4. The five layers architecture of an Adaptive Neuro-Fuzzy Inference System from [48]

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 September 2023                   doi:10.20944/preprints202309.1704.v1

https://doi.org/10.20944/preprints202309.1704.v1


7 of 18

ANFIS (Adaptive Neuro-Fuzzy Inference System) provides several technical advantages in

modelling and problem-solving, as follows.

• ANFIS excels at approximating complex nonlinear functions by employing fuzzy rules [49]. It

can effectively capture intricate relationships between input and output variables, surpassing

traditional mathematical models.
• The interpretability and linguistic representation of fuzzy logic with the powerful learning

capabilities [50] and pattern recognition of neural networks is another benefit of ANFIS. This

fusion enables comprehensive comprehension of the modelled system.
• Adaptability and learning capabilities [51] can be found by ANFIS. Through parameter

adjustments in fuzzy rules during training, ANFIS continually enhances accuracy and

performance. This adaptability is particularly valuable in dynamic systems subject to changes.
• ANFIS yields interpretable models due to the linguistic representation of fuzzy rules [52]. The

"IF-THEN" structure facilitates easy understanding and analysis by domain experts, which is

crucial for domains emphasizing explainability and transparency.
• Supporting various learning algorithms, including gradient descent, hybrid techniques, and

genetic algorithms [53], can be considered by ANFIS. This versatility allows practitioners to

choose optimal learning approaches, improving training efficiency and model performance.

5. Grey Wolf Swarm Optimization

The Grey Wolf Optimizer [54] (GWO) is a swarm intelligent optimization algorithm proposed by

Seyedali Mirjalili and others in 2014. It draws inspiration from the hierarchical leadership structure

and hunting behaviour of wolves in nature. Research conducted by Seyedali Mirjalili and colleagues

has demonstrated that the standard GWO algorithm outperforms other optimization algorithms such

as PSO, GSA, DE, and FEP. The GWO algorithm offers several advantages, including its simplicity, fast

convergence speed [55], high precision in searching for optimal solutions, and ease of implementation.

These characteristics make it well-suited for practical engineering problems and hold significant

theoretical research value. Although GWO is a relatively new algorithm in the field of biological

intelligence, research on it is still in its early stages. The theory and development of the algorithm are

not yet perfect. To fully harness the superior performance of GWO, further exploration and research

are required.

To replicate the internal leadership structure of wolves, the GWO algorithm categorizes wolves

into four distinct types: alpha, beta, delta, and omega. Among these, the alpha, beta, and delta wolves

represent the best, second-best, and third-best individuals, respectively, while the remaining wolves

are classified as omega. Within the GWO algorithm, the hunting or optimization process is guided by

the alpha, beta, and delta wolves. They lead other wolves (W) towards the most promising areas in the

search space. During the iterative search process, the potential position of the prey (optimal solution)

is evaluated by the alpha, beta, and delta wolves. The locations of the wolves are then updated in the

optimization process using Equations (1) and (2).

~D =
∣

∣

∣

~C ·

−→

XP(t)− ~X(t)
∣

∣

∣

~X(t + 1) =
−→

XP(t)− ~A · ~D
(1)

Where t represents the tth iteration, A and C are coefficient vectors, (XP ) is the position vector of

prey, and X represents the wolf position. The vectors A and C can be expressed by:

~A = 2a · −→r1 −~a

~C = 2 · −→r2

(2)

Where the coefficient linearly decreases from 2 to 0 with the increasing iteration number, (r1 ) and

(r2 ) are random vectors located in the scope [0,1]. The principles underlying the position updating

rules described in Equations (1) is visually represented in Figure 1. The figure illustrates how a wolf
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positioned at coordinates (X, Y) can adjust its position around the prey based on the aforementioned

updating formulas. Although Figure 1 only displays seven possible positions for the wolf to move to,

by adjusting the random parameters C and A, it becomes possible for the wolf to relocate itself to any

position within the continuous space near the prey.

In the GWO algorithm, it is always assumed that the positions of the alpha, beta, and delta wolves

are likely to correspond to the position of the prey, which represents the optimal solution. Throughout

the iterative search process, the alpha, beta, and delta wolves represent the best, second-best, and

third-best individuals obtained thus far, respectively. On the other hand, the remaining wolves,

referred to as omega, adjust their locations based on the positions of the alpha, beta, and delta wolves.

Mathematical formulas are employed to re-adjust the positions of the omega wolves. The conceptual

model depicting the process of a wolf updating its position is presented in Figure 2.

~Dα =
∣

∣

∣

−→

C1 ·
−→

Xα − ~X
∣

∣

∣

~Dβ =
∣

∣

∣

−→

C2 ·
−→

Xβ −
~X
∣

∣

∣

~Dδ =
∣

∣

∣

−→

C3 ·
−→

Xδ −
~X
∣

∣

∣

(3)

In the equations mentioned, Xα, Xβ, and Xδ represent the position vectors of the alpha, beta, and

delta individuals, respectively. C1, C2, and C3 denote randomly generated vectors, and X represents

the position vector of the current individual. Equations (3) calculate the distances between the position

of the current individual and the positions of the alpha, beta, and delta individuals, respectively. The

final position vectors of the current individual are then determined by the following calculations:

−→

X1 =
−→

Xα −
−→

A1 ·

−−−→(

−→

Dα

)

−→

X2 =
−→

Xβ −
−→

A2 ·

(

−→

Dβ

)

−→

X3 =
−→

Xδ −
−→

A3 ·

−−−→(

−→

Dδ

)

~X(t + 1) =

−→

X1 +
−→

X2 +
−→

X3

3

(4)

Where A1, A2, and A3 are randomly generated vectors, and t represents the number of iterations.

Figure 5. The coordination vectors of the particles in GWO and possible next locations.
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The ability to explore and exploit plays a crucial role in determining the search performance

of an algorithm. In the context of GWO, exploration refers to a wolf deviating from its original

search path to a certain extent and venturing into new directions. This reflects the wolf’s capability

to explore unknown regions and discover potentially promising solutions. Exploitation, on the other

hand, involves a wolf continuing its search more meticulously along its original trajectory, ensuring a

thorough examination of the regions that have already been explored.

Finding the right balance between exploration and exploitation is a significant research question

in optimizing the GWO algorithm. It involves determining how to enable the algorithm to strike

a suitable compromise between exploring new areas and exploiting the knowledge gained from

previously explored regions. By achieving this balance, the algorithm can effectively search the

solution space and improve its overall performance.

6. Neural Fuzzy Grey wolf Optimization Inference System (ANFIS-GWO)

Developing an accurate fuzzy rule base is a critical aspect of building a fuzzy system. Typically,

domain specialists are responsible for creating these rules and defining the membership functions, as

their expertise directly influences the meaning and effectiveness of the system. While acquiring fuzzy

rules can be relatively straightforward, obtaining appropriate membership functions can be challenging

and time-consuming. The membership functions play a significant role in characterizing the fuzzy

system and determining its performance through its type and parameters. Unfortunately, there are no

established techniques available for managing them. Fuzzy systems can be viewed as search spaces,

where each point in the space represents a rule set and membership functions. Evolutionary algorithms

such as Genetic Algorithms (GAs), particle swarm optimization (PSO), and other similar approaches

are well-suited for exploring these spaces [56].

Combining an Adaptive Neuro-Fuzzy Inference System (ANFIS) with the Grey Wolf Optimization

(GWO) method involves integrating the optimization capabilities of GWO into the learning process of

ANFIS. Here is a general approach to combining ANFIS with GWO:

1. Initialize the GWO population: Generate an initial population of grey wolves with random

positions.
2. Evaluate the fitness: Evaluate the fitness of each grey wolf in the population by using ANFIS to

measure the performance of the fuzzy inference system.
3. Update the alpha, beta, delta, and omega positions: Identify the alpha (best), beta, delta, and

omega positions based on the fitness evaluations.
4. Update the position of each grey wolf: Update the position of each grey wolf using the GWO

equations, which involve leveraging the alpha, beta, delta, and omega positions to simulate the

movement and search behaviour of the grey wolves.
5. Design an initial FIS, which serves as the starting point for optimization.
6. Fine-tune the parameters of the FIS using GWO. This process involves precise adjustments to

align the model’s error function with the desired performance.
7. Identify the best FIS solution based on the minimum Root Mean Square Error (RMSE), indicating

the optimal balance between accuracy and error.
8. Perform ANFIS training: Use the updated positions of the grey wolves to adjust the parameters

of the fuzzy rules in ANFIS. This involves updating membership functions, rule weights, and

other parameters through the learning process.
9. Repeat steps 6-8: Iterate through steps 6 to 8 until a termination criterion is met, such as reaching

a maximum number of iterations or achieving a desired level of performance.

By combining ANFIS with GWO, several benefits can be obtained. Frist, GWO improves the

optimization process of ANFIS by exploring the search space more effectively. The optimization

capabilities of GWO help ANFIS find better parameter values, leading to improved accuracy and

performance. Secondly, GWO’s ability to guide the search process can accelerate the convergence

of ANFIS. This can result in a reduced number of training iterations needed to achieve the desired
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performance. Furthermore, The combined approach of ANFIS with GWO can help improve the

generalization ability of the model. GWO helps avoid overfitting by effectively exploring the solution

space and finding a good balance between underfitting and overfitting. Meanwhile, GWO assists in

automatically tuning the parameters of ANFIS, reducing the need for manual parameter tuning. This

can save time and effort in model development. Last but not least, the combination of ANFIS and GWO

can enhance the robustness of the model by providing a more reliable and accurate representation of

the underlying data patterns. Overall, combining ANFIS with GWO allows for improved optimization,

faster convergence, enhanced generalization, automatic parameter tuning, and increased robustness,

making it a powerful approach for solving complex problems.

7. Experimental outcomes

In this section, we established a structured framework for systematically evaluating the efficacy

of three methods, ANFIS, FIS, and ANFIS-GWO, for the diagnosis of liver disorders. Subsequently, we

conducted an analysis to assess the performance of GWO control parameters, aiming to demonstrate

the sensitivity of GWO in relation to optimal parameter selection.

7.1. GWO’s control parameters tuning

Achieving an appropriate equilibrium between exploration and exploitation processes is crucial

in swarm intelligence methods [57], and it heavily relies on the accurate initialization of control

parameters. Control parameters, including population size, crossover probability rate, mutation

size, and alpha value, exert a significant impact on the behaviour of the swarm throughout the

optimization process [58]. The population size determines the number of individuals in the swarm,

directly influencing both diversity and exploration capabilities. The crossover probability rate

determines the likelihood of genetic material exchange among individuals, facilitating the exploitation

of advantageous solutions. The mutation size governs the magnitude of random perturbations applied

to individuals, promoting exploration within the search space [59]. Meanwhile, the alpha value

regulates the influence of the global best position on individual movement, ensuring a delicate balance

between exploration and exploitation. By meticulously initializing and fine-tuning these control

parameters, swarm intelligence methods can effectively navigate the search landscape, facilitating the

discovery of optimal solutions while maintaining a harmonious interplay between exploration and

exploitation.

In this investigation, we conducted performance testing of the Grey Wolf Optimizer (GWO)

using four well-known optimization benchmarks sourced from the CEC2005 package [60]. Various

population sizes were employed in the testing process. The two dimensions of the optimization

benchmark are depicted in Figure 6 . F1 represents an unimodal benchmark characterized by a

single global optimum. On the other hand, F7 and F8 are multi-modal benchmarks that pose a

significant challenge for most optimization methods in finding the global optimum. Lastly, F10

presents an intriguing optimization benchmark featuring one global optimum and numerous local

optima. Addressing the issue of stagnation becomes particularly challenging when dealing with

problems that exhibit multiple local optima.
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(a) (b)

(c) (d)

Figure 6. Optimisation benchmark functions, a) F1, b) F7, c) F8, and d)F10

In Figure 7(a), we can see the convergence speed of GWO with various population sizes, 5, 10,

25, 50 and 100 solutions for F1. As F1 is an unimodal function, increasing the population size leads

to reducing the convergence rate; thus smaller population size can perform better. This is because a

smaller population size reduces the likelihood of premature convergence to local optima. By having

fewer individuals, the exploration of the search space becomes less dense, allowing the algorithm

to focus on refining and converging towards the global optimum more efficiently [61]. In unimodal

benchmarks, where the objective function exhibits a single peak, a larger population size can lead to

increased competition among individuals, resulting in more exploration across different regions of the

search space. This extensive exploration may slow down the convergence process towards the global

optimum [62]. Conversely, a smaller population size tends to accelerate convergence by reducing

exploration, enabling individuals to converge more rapidly towards the global optimum.

On the other hand, it can be seen in Figure 7(c) a large population sizes can perform better than

small sizes in multimodal benchmarks. This is due to the capability of larger populations to engage in

more extensive exploration of the search space, thereby increasing the likelihood of discovering and

converging towards multiple optima. In multi-modal benchmarks, characterized by having multiple

peaks in the objective function, a larger population size facilitates a more comprehensive exploration

of diverse regions within the search space [63]. With a greater number of individuals, the algorithm

can simultaneously search for and converge towards multiple optima. This heightened exploration

capacity helps prevent premature convergence to suboptimal solutions and enhances the probability

of identifying global optima or multiple global optima.
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Figure 7. A performance comparison of GWO with various population sizes Optimisation benchmark

functions, a) F1, b) F2, c) F3, and d) F7

The alpha parameter in GWO is the second most significant parameter, as it plays a crucial role

in balancing exploration and exploitation. Figure 8 illustrates the impact of different alpha values on

the performance of GWO. Interestingly, when alpha had a fixed value of 0.5, it exhibited a notable

convergence rate compared to the standard linear decrease from 2 to zero. However, other alpha values

did not yield satisfactory results. Additionally, we tested other constant values, such as 1, 1.5, and 3, in

the dynamic formula for alpha, but none of them outperformed the value of 2. Overall, these findings

highlight the significance of selecting an appropriate alpha value to achieve optimal performance in

GWO, with a fixed value of 0.5 demonstrating promising results compared to the conventional linear

decrease from 2 to zero.
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Figure 8. Hyper-parameter analysis of GWO for the control parameter α with seven fixed values and

four linearly decreased strategies.

7.2. Diagnosis liver disorders results

The proposed ANFIS and ANFIS-GWO performances are evaluated by the dataset of Liver

disorders (Bupa). Both Figures 9 and 10 present the fuzzy relationships among the five features with

drinks level in ANFIS and ANFIS-GWO. It can be seen that the used ANFIS-GWO is able to enhance

the achieved model.

Based on the information provided, Table 3 presents the statistical analysis results of various

models for classifying liver disorders. The models evaluated in terms of classification accuracy are as

follows:

ANFIS-GWO: A hybrid model combining Adaptive Neuro-Fuzzy Inference System (ANFIS) with

Grey Wolf Optimization (GWO). ANFIS: The standard ANFIS model. SVM: Support Vector Machine.

SGD: Stochastic Gradient Descent. MLP: Multilayer Perceptron. KNN: K-Nearest Neighbors. Decision

Tree: A decision tree-based model. XGBoost: A gradient boosting-based model.

According to the results presented in Table 3, the best-performing models in terms of classification

accuracy are ANFIS-GWO with an accuracy of 51%, followed by ANFIS with 44%, and SVM with 42%.

It is also mentioned that this arrangement holds true for the average validation error as well.
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Figure 9. The fuzzy relationship among the effective variables of Liver disorders with different levels

of drink values BY ANFIS

Figure 10. The fuzzy relationship among the effective variables of Liver disorders with different levels

of drink values BY ANFIS-GWO.
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Table 3. Statistical analysis of the proposed model (ANFIS-GWO) compared with seven models for

diagnosing Liver disorders.

SVM SGD

MSE RMSE MAE R-value R2 MSE RMSE MAE R-value R2

Min 0.203 0.450 0.203 0.263 0.069 Min 0.246 0.496 0.246 0.136 0.018
Max 0.348 0.590 0.348 0.574 0.329 Max 0.435 0.659 0.435 0.498 0.248
Mean 0.280 0.527 0.280 0.422 0.190 Mean 0.339 0.580 0.339 0.318 0.123
Median 0.283 0.532 0.283 0.415 0.172 Median 0.355 0.596 0.355 0.305 0.099
STD 0.056 0.053 0.056 0.103 0.088 STD 0.064 0.056 0.064 0.149 0.096

MLP KNN

MSE RMSE MAE R-value R2 MSE RMSE MAE R-value R2

Min 0.246 0.496 0.246 0.248 0.062 Min 0.275 0.525 0.275 0.131 0.017
Max 0.362 0.602 0.362 0.550 0.302 Max 0.406 0.637 0.406 0.362 0.131
Mean 0.295 0.541 0.295 0.394 0.167 Mean 0.349 0.590 0.349 0.262 0.076
Median 0.283 0.532 0.283 0.410 0.168 Median 0.355 0.596 0.355 0.262 0.069
STD 0.041 0.038 0.041 0.103 0.080 STD 0.040 0.034 0.040 0.082 0.043

Decision Tree XGBoost

MSE RMSE MAE R-value R2 MSE RMSE MAE R-value R2

Min 0.275 0.525 0.275 0.026 0.001 Min 0.246 0.496 0.246 0.149 0.022
Max 0.464 0.681 0.464 0.445 0.198 Max 0.406 0.637 0.406 0.496 0.246
Mean 0.367 0.603 0.367 0.259 0.093 Mean 0.325 0.567 0.325 0.328 0.124
Median 0.355 0.596 0.355 0.300 0.091 Median 0.319 0.565 0.319 0.357 0.127
STD 0.070 0.058 0.070 0.157 0.073 STD 0.062 0.054 0.062 0.120 0.080

ANFIS ANFIS-GWO

MSE RMSE MAE R-value R2 MSE RMSE MAE R-value R2

Min 0.203 0.450 0.203 0.367 0.134 Min 0.188 0.434 0.188 0.426 0.181
Max 0.319 0.565 0.319 0.562 0.316 Max 0.275 0.525 0.275 0.606 0.368
Mean 0.273 0.521 0.273 0.441 0.202 Mean 0.234 0.482 0.234 0.514 0.271
Median 0.304 0.552 0.304 0.386 0.149 Median 0.246 0.496 0.246 0.472 0.222
STD 0.047 0.047 0.047 0.084 0.078 STD 0.038 0.039 0.038 0.085 0.090

8. Conclusions

This study introduced a hybrid adaptive neural fuzzy expert system that utilizes Grey Wolf

Swarm Optimization (GWO) in Matlab’s Simulink for distinguishing between liver disease and healthy

conditions. By employing this recommended approach, the classification accuracy can be improved

by 7% compared to the ANFIS system based on the dataset. Statistical analysis was employed to

develop meaningful attributes and fuzzy rules. The significance of identifying significant and relevant

fuzzy rules without relying on specialists highlights the potential for knowledge discovery. The key

advantages of using the fuzzy inference system (FIS) as a knowledge acquisition mechanism include

the adaptability to handle varying numbers of rules and the ability to efficiently explain the acquired

rules. These findings suggest promising research avenues for utilizing GWO and fuzzy expert systems

in various classification problems. Based on the results, the proposed hybrid system outperforms

previously studied approaches in terms of accuracy and reliability.
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