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Abstract: Recanalization poses challenge in coil embolization for cerebral aneurysms. Establishing 

predictive models for post-embolization recanalization is important for clinical decision-making. 

However, conventional statistical and machine learning (ML) models may overlook critical 

parameters during the initial selection process. In this study, we automated the identification of 

significant hemodynamic parameters using a PointNet-based deep neural network (DNN), 

leveraging their inherent 3D features. Further feature analysis was conducted utilizing saliency 

mapping, an explainable artificial intelligence (XAI) technique. The study encompassed the analysis 

of velocity, pressure, and wall shear stress (WSS) in both pre- and post-coiling models derived from 

computational fluid dynamic (CFD) simulations for 59 aneurysms. Velocity was identified as the 

most pivotal parameter, supported by the lowest P-value from statistical analysis and the highest 

area under the curves (AUROC)/precision-recall curves (AUPRC) values from DNN model. 

Moreover, visual XAI analysis revealed robust injection flow zones with notable impingement 

points in pre-coiling models, as well as pronounced interplay between flow dynamics and the 

coiling plane were important 3D features in identifying the recanalized aneurysms. The 

combination of DNN and XAI was found to be an accurate and explainable approach not only at 

predicting post-embolization recanalization but also at discovering unknown features in the future. 

Keywords: CFD; DNN; XAI; PointNet; flow pattern; cerebral aneurysm; recanalization 

 

1. Introduction 

Cerebral aneurysms are abnormal focal outpouchings of cerebral arteries that are associated 

with significant morbidity and mortality [1]. They have a prevalence of 1-5% in the adult population, 

and rupture of an aneurysm can result in subarachnoid hemorrhage, a type of hemorrhagic stroke 

with a high mortality rate [2,3]. There are three options for treating intracranial aneurysms: 

observation, craniotomy with clip ligation (clipping), and endovascular occlusion using detachable 

coils (coiling) [1]. Coil embolization has been increasingly used due to its reduced physical burden 

on patients compared to clipping surgery [4]. Notwithstanding this advantage, recanalization, or the 

reopening of an aneurysm after coiling, is a significant challenge [5–7]. Therefore, the establishment 

of predictive models for the post-embolization recanalization in cerebral aneurysm is crucial for 

physicians in terms of surgery planning, decision-making and postoperative management. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
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Statistical analysis has shown that various morphological and hemodynamic features are 

significantly associated with recanalization in cerebral aneurysms. Morphological parameters, such 

as maximum size, neck width, height, area of aneurysm inlet, neck, posterior communicating (Pcom), 

as well as dimensionless parameters, such as aspect ratio, bottleneck, size ratio, area ratio and the 

ratio of the aneurysm volume to coil volume (VER), were identified as risk factors for recanalization 

[8–14]. Hemodynamic parameters acquired from computational fluid dynamics (CFD), such as 

velocity, pressure, wall shear stress (WSS) and shear rate, along with their related dimensionless 

parameters, including pressure difference (PD), aneurysmal residual flow volume and maximal force 

with porous media as coil, were also considered important risk factors [5–7,15–21]. In recent 

developments, machine learning (ML) models emerged as important tools for the prediction of 

cerebral aneurysm-related diseases. ML models, encompassing random forest, k-nearest neighbor, 

and support vector machines, were used to predict treatment outcomes with flow diverters, relying 

on predetermined hemodynamic parameters derived from CFD simulations [22]. However, both 

statistical and traditional ML models were notably constrained by their reliance on pre-defined input 

parameters. These parameters may be overlooked in the initial feature selection phase due to lack 

understanding of the pathology, or they may be difficult to determine accurately due to the 

complexity of in-vivo fluid dynamics [23,24]. Additionally, these parameters were typically 

spatiotemporally maximized or averaged zero-dimensional (0D) extracted from 3D or 4D CFD results 

(time plus 3D coordinates). 

Recent advances in deep learning (DL) techniques were applied to the automated extraction of 

3D morphological and hemodynamic features from CFD simulation results, albeit with certain 

limitations. The PointNet architecture was adopted upon its suitability for processing data from CFD 

simulation expressed as 3D point clouds, where each data point was described by its spatial 

coordinates (x, y, z) coupled with relevant hemodynamic attributes [25]. One instance developed an 

integrated model, employing PointNet to extract features for subsequent classification of aneurysm 

rupture status with traditional ML algorithm. Notably, impingement zones were predetermined in 

CFD simulation results for feature extraction [26]. An alternative instance used an End-to-End 

PointNet-based deep neural network (DNN) for the purpose of predicting aneurysm recanalization. 

This model extracted and determined automatically the key morphological and hemodynamic 

features, without the need for prior assumption or data processing. A notable drawback of this 

approach was the "black-box problem," which hindered its acceptance among medical experts and 

healthcare practitioners, who required transparency in model decision-making processes for making 

informed clinical inferences [27]. 

Recently, the technique of explainable artificial intelligence (XAI) garnered substantial attention 

in the field of medical diagnosis, providing insights into diagnoses and uncovering previously 

unknown information [28]. XAI techniques were distinguished based on three criteria [29,30]: 

• Model-based versus post hoc explanation: Model-based explanation entails the utilization of 

intelligible yet sufficiently sophisticated models, exemplified by linear regression, which 

effectively capture and elucidate the relationships between input and output variables. 

Conversely, post hoc explanation aims at analyzing a trained model to achieve insight into 

learned relationships. Saliency mapping, also called visual explanation, is the most common post 

hoc approach in medical image analysis [31]. 

• Model-specific versus model-agnostic explanation: Model-specific explanation techniques are 

constrained to specific model categories, whereas model-agnostic explanation methods operate 

independently of the neural network's architectural choice, focusing solely on the input and 

output of the neural network. 

• Local versus global explanation: Global explanation offers overarching insights by delivering 

general relationships. In contrast, local explanation focuses on elucidating the rationale behind 

individual inputs, providing a detailed explanation for the certain dataset. 

The objective of this study was twofold: first, to explore previously unknown hemodynamic 

features associated with aneurysm recanalization, and second, to develop a robust and interpretable 

predictive model. To achieve this, hemodynamic data were collected for 59 aneurysms through CFD 
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simulations, and subsequently analyzed employing two distinct methodological approaches. 

Velocity, pressure and WSS simulated in both pre- and post-coiling models were analyzed. This 

involved the utilization of a PointNet-based DNN trained with the point-cloud-formatted data in 3D. 

Additionally, the conventional statistical analysis approach was applied, focusing on spatially 

averaged scalars in 0D. By comparing the results from two approaches, the significant parameters of 

post-embolization recanalization were determined. The 3D features of these parameters were further 

analyzed using saliency mapping, the post hoc, model-specific, and localized XAI technique. 

2. Materials and Methods 

2.1. Patients 

Recanalized aneurysms were defined as aneurysms with an increase in the Raymond–Roy grade 

or enlargement within a grade resulting in retreatment, whereas the stable type was defined as 

aneurysms that showed no change or enlargement within a grade with no retreatment [32]. 

Clinical and radiological data of consecutive patients who underwent endovascular treatment 

for aneurysms between January 2007 and December 2020 were investigated. The inclusion criteria of 

this study were as follows: (1) saccular aneurysms; (2) coiling performed without stent placement; (3) 

class I or II initial aneurysm embolization results according to the Raymond–Roy classification; (4) 

volume embolization ratio (VER), the ratio of the aneurysm volume to the coil volume, over 20%; (5) 

a follow-up period of at least 1 year after endovascular coiling; and (6) pretreatment 3-dimensional 

rotational angiography (3D-RA) images available and of good quality for use in computational 

modeling [33]. 

A total of 58 intracranial aneurysms from 57 patients were included in the final analysis, 

including nine recanalized and 49 stable aneurysms. The included patients were regularly followed 

up with magnetic resonance angiography every six months after treatment. Digital subtraction 

angiography was performed when recanalization was suspected on magnetic resonance imaging and 

additional endovascular treatment was administered if needed. 

2.2. Ethics approval 

The protocol for this retrospective study was approved by the ethics committee of Kanazawa 

University (No. 1781). Written informed consent was waived due to the retrospective collection of 

clinical data; however, all patients had the right to opt-out of the study at any time. 

2.3. Workflow 

The workflow of this study was shown in Figure 1. Velocity, pressure, and wall shear stress 

(WSS) in both pre- and post-coiling models were derived from computational fluid dynamic (CFD) 

simulations for 59 aneurysms. Two approaches were utilized to identify the significant parameters 

for aneurysm recanalization. First, a PointNet-based DNN was used leveraging their inherent 3D 

features. Second, the conventional statistical analysis was conducted analyzing the spatially averaged 

parameters in 0D. Further 3D feature analysis was conducted utilizing the visual saliency mapping 

proposed in [34]. It assigns each point a saliency score to reflect its contribution to the output. A 

higher (positive) score was expected to indicate a more (positive) contribution. The scores were 

normalized to the range between 0 and 1 in this study. 
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Figure 1. Workflow of this study. Grey rounded rectangles were patients’ number; orange and blue 

rectangles were DNN and statistical approach to determine the significant parameters for aneurysm 

recanalization, respectively; red rectangles were 3D features analysis. 

2.4. CFD simulation 

Digital Imaging for Communication in Medicine format was utilized for 3D-RA (Philips 

Healthcare, Best, Netherlands). Blood vessels were extracted and converted into standard 

triangulated language data via Amira (version 5.6, Maxnet Co, Ltd, Tokyo, Japan). Inlet and outlet 

extensions were performed to generate fully developed flow profiles. Hemodynamics in the pre-

coiling and virtual post-coiling models were considered in this study. In the pre-coiling model, we 

defined the neck plane as the flat plane that divided the aneurysm and branching vessel (posterior 

communicating artery) or parent artery (internal carotid artery). Based on the pre-coiling model, the 

virtual post-coiling was created by removing the aneurysm dome, and we defined the coil plane as 

the surface of the coil mass in the same plane as the neck plane in the pre-coiling model. The inlet 

plane was defined as the section plane located 1 mm proximal to the aneurysm. For meshing, the 3D 

images were imported into ANSYS ICEM CFD software (version 16.2, ANSYS Inc., Canonsburg, 

Pennsylvania). To enhance the analytical precision of the boundary layer, seven prism element layers 

were created at the wall surface. We performed a steady-state simulation with ANSYS CFX (version 

16.2, ANSYS Inc., Canonsburg, Pennsylvania) to acquire the patient-specific hemodynamic data. 

Blood was modeled as a Newtonian fluid with a density of 1100 kg/m3 and a viscosity of 0.0036 Pa·s. 

A no-slip boundary condition was applied to the rigid vessel walls. The outflow boundary condition 

was set as 0 Pa [5–7,27]. The inlet boundary condition was a mass flow rate of 0.003465 kg/s, which 

was the value at diastole end of pulsatile profile from literature [35]. 

2.5. Parameter deviation for statistical analysis 

Morphological parameters were measured using 3D-RA, including the maximum size, neck 

width, height, area of aneurysm inlet, neck and posterior communicating (Pcom) [5,8]. Aspect ratio 

was defined as the ratio of the maximum perpendicular height to the neck diameter [9,10]. Bottleneck 

factor was defined as the ratio of the dome width to the neck diameter [11]. Size ratio was defined as 

the ratio of the maximum aneurysm height to the parent vessel diameter [12]. Area ratio was defined 

as the area ratio of the aneurysm neck to the aneurysm inlet in parent artery [13]. VER was the ratio 

of the aneurysm volume to the coil volume [14]. 

Dimensionless hemodynamic parameters were utilized for analyzing, building a model 

independent on patient-specific inflow rate [5–7,21]. Hemodynamic parameters in pre-coiling model 

included velocity in aneurysm dome (volvel), WSS, static pressure (P) and dynamic pressure (Pdyn) 

at aneurysm neck plane, which were normalized using surface-averaged velocity, WSS and P at 

aneurysm inlet in parent artery. Inflow rate ratio (FR) was defined as the ratio of the inflow rate at 
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the neck plane to the flow rate at the inlet plane [5]. In the post-coiling model, PP was defined as 

pressure change between aneurysm neck and inlet, whereas pressure difference (PD) was defined as 

the ratio of PP to Pdyn at aneurysm inlet. All hemodynamic parameters were spatially averaged. 

2.6. Statistical analysis 

All continuous parameter values were subsequently expressed as mean ± standard deviation. 

Continuous variables were analyzed using the Levene test to determine the normality. The Levene 

test was employed to examine the equality of variances between two groups with continuous 

variables. Differences in variables between the two groups were tested using Welch’s t-test for data 

with unequal variance or t-test for data with equal variance. For categorical variables, a chi-square 

test was used to examine the significant differences between the groups. A P-value less than 0.05 was 

considered statistically significant. Statistical analyses were performed using Scipy (version 1.9.3) 

[36]. 

2.7. Data preparation and augmentation for DNN 

To train the DNN, 3D morphological data including x, y, z coordinates and the relevant 

hemodynamic data were exported from CFD simulation results. The hemodynamic data included 

velocity, pressure and WSS in pre-coiling (pre_vel, pre_P, pre_WSS) and post-coiling model 

(post_vel, post_P, post_WSS) as shown in Figure 2. For all the parameters, only data at the aneurysm 

part was considered. Velocity and pressure data were exported from the internal field of the 

aneurysm, whereas WSS data were obtained from surface nodes. Voxelization with a voxel size of 

0.5mm was employed on velocity and pressure data to ensure uniform distribution in the dataset. 

Without this process, data points tended to cluster near the wall due to the presence of mesh wall 

layers in CFD simulations. 

   
(a) pre_vel (b) pre_P (c) pre_WSS 

   
(d) post_vel (e) post_P (f) post_WSS 

Figure 2. Hemodynamic training data for DNN, including velocity, pressure and WSS in (a-c) pre-

coiling (pre_vel, pre_P, pre_WSS) and (d-f) post-coiling model (post_vel, post_P, post_WSS). Only 

data in aneurysm and connected parent artery part was considered (deep blue part in (a) and (d)). 
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The DL algorithms have trouble learning when some classes dominate others [37]. The minority 

class within the training dataset was initially augmented through oversampling, involving the 

replication of instances. Subsequently, online augmentation techniques were applied during the 

training process. The morphological point cloud was augmented by randomly rotating the object 

along x, y, z axis in the range of [−180°, 180°] and by jittering its position by a Gaussian noise with a 

mean of 0 and standard deviation of 0.01 [25]. The hemodynamic data was augmented by adding a 

random type of noise (Gaussian or white noise) with a random level in the range of [0, 0.025] [27]. 

2.8. DNN model architecture and training 

This study utilized a PointNet-based DNN to extract both 3D morphological and hemodynamic 

features to predict post-embolization recanalization in cerebral aneurysm [25,27]. It consumed the 3D 

point clouds with two feature channels (morphology and hemodynamics) as inputs and predicted 

recanalization probabilities as outputs. The DNN consisted of two key modules: feature extraction 

and classification. In the first module, we approximated the model by a convolutional network; then 

its output was aggregated in a latent global feature with a vector of size 1024 by the symmetric 

function, herein, max pooling was utilized. Based on the features from the first module, the 

probability of aneurysm recanalization was decoded in the second module. In this stage, multi-layer 

perceptron (MLP) mapped the output to probability of K classes, herein, 2 events (recanalized or 

stable) for each patient. The detailed description could be found in our previous work [27]. 

Before training, the input point clouds were normalized to within [0, 1] with each parameter’s 

maximum and minimum value. A batch size of 10 and batch-norm was used in this study. Dropout 

layers were utilized for the MLP. Stochastic gradient descent optimization was used to update the 

weights and biases, herein, adaptive moment estimation (ADAM). During training, an eight-fold 

cross validation and repetition of 2000 was used. Parameters of the best epoch with lowest loss on 

validation dataset were recorded. An adaptive learning rate with an exponential decay was adopted 

with an initial learning rate of 0.0001, decay step of 200000 and decay rate of 0.7. The technique was 

implemented using the TensorFlow DNN library and executed on a PC cluster with 32 cores of 

Intel(R) Xeon(R) Gold 6242 CPU @ 2.80GHz and 1.5T RAM in total. The operating system is CentOS 

7.4.1708. 

2.9. Evaluation of DNN model 

The receiver-operating characteristic (ROC) curves were constructed after training and the area 

under the curves (AUROC) values were calculated to evaluate the predictive performance of DNN 

model. Furthermore, to address the imbalanced nature of the dataset, in which only 18% of the 

aneurysms exhibited recanalization, we utilized the area under the precision recall curve (AUPRC) 

together with AUROC as a metric for performance evaluation. This method is specially designed to 

detect rare events and are appropriate in these scenarios as they particularly show a classifier having 

a low performance if it is misclassifying most or all the minority class [38]. Results were further 

plotted in confusion matrix to analyze its performance for each class. Confusion matrix plots the 

number of correct and incorrect model-predicted outcomes (horizontal axis) against the actual 

outcomes (vertical axis). The performance examination was performed with Scikit-learn (version 

1.0.2) [39]. 
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2.10. Data and code availability 

The datasets generated for this study are protected patient information. The code is available at 

https://github.com/saradeuJP/XAI_PointNet_CA.git. 

3. Results 

3.1. Patient characteristics 

Characteristics of patients in each group are listed in Table 1. There was no significant difference 

in age, sex, rupture status and aneurysm locations between two groups. The recanalized group 

showed higher mean values for all morphological parameters except area ratio in comparison to the 

stable group. Max size, Height and Area Neck were significantly larger in the recanalized group. 

Within the hemodynamic features, volvel and PD demonstrated significant differences between the 

two groups, whereas P, PP, Pdyn, WSS and FR did not show significant differences. 

Table 1. Comparison of clinical, morphological, and hemodynamic features between patients with 

stable and recanalized aneurysms. 

 Stable (N = 49) Recanalized (N = 9) P-value 

Clinical features 

Age 64±13 65±12 0.897 

Sex | Female 44 7 0.645 

Rupture status 8 4 0.142 

Locations | ICPC 38 8 

0.848 
Locations | IC paraclinoid 8 1 

Locations | IC-Oph 2 0 

Locations | C1 1 0 

Morphological features 

Max size 8.241±3.250 11.344±4.330 0.018 

Neck width 4.825±1.468 6.311±2.353 0.117 

Aspect ratio 1.279±0.483 1.409±0.489 0.469 

Bottleneck 1.630±0.655 1.731±0.564 0.673 

Height 6.077±2.767 8.444±3.855 0.035 

Size ratio 2.047±0.883 2.456±1.026 0.226 

Diam Inflow 2.570±1.126 2.534±1.187 0.931 

Area Inflow 9.517±4.235 11.848±6.148 0.174 

Area Neck 22.616±14.350 34.336±19.490 0.042 

Area Ratio 0.494±0.235 0.385±0.160 0.193 

Pcom 1.071±0.826 1.672±1.246 0.219 

Area Pcom 1.436±1.447 3.415±3.682 0.170 

VER 24.188±4.914 20.967±7.970 0.118 

Hemodynamic features    

volvel 0.439±0.165 0.299±0.161 0.025 

PD 0.404±0.631 0.903±0.765 0.043 

P 1.031±0.049 1.046±0.047 0.401 

PP 0.043±0.038 0.055±0.037 0.425 

Pdyn 0.075±0.077 0.036±0.021 0.140 

WSS 9.535±6.202 6.176±2.794 0.123 

FR 0.001±0.001 0.002±0.004 0.060 

3.2. Model training and performance 

Figures 3 and 4 present ROC and PRC analyses on the training and testing datasets, enabling a 

performance comparison of DNN models trained with 3D velocity, pressure, and WSS in both pre- 
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and post-coiling models. On the training dataset, the model trained with velocity data from the post-

coiling model demonstrated the highest performance with AUROC/AUPRC values of 1.000/1.000, a 

statistically significant improvement over the other five models (P < 0.05). The model trained with 

velocity data from the pre-coiling model achieved also commendable results with AUROC/AUPRC 

values of 0.991/0.992. Especially, it displayed its superior performance on the testing dataset, as 

detailed in Table 2, distinguishing the two recanalized aneurysms, as highlighted by confusion matrix 

in Fig. 5. In contrast, DNN models trained with pressure and WSS data exhibited less satisfactory 

performance on both training and testing dataset. Consequently, the subsequent section focused on 

elucidating the explainability of the DNN model trained with 3D velocity data. 

 

(a) 

 

(b) 

Figure 3. (a) ROC and (b) PRC curves on training dataset trained with velocity (black), pressure (red) 

and WSS (blue) from pre- (left) and post-coiling (right) model. 

 

(a) 
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(b) 

Figure 4. (a) ROC and (b) PRC curves on testing dataset. 

 

Figure 5. Confusion matrix on testing dataset. 

Table 2. Model performance on training and testing dataset trained with velocity, pressure and WSS 

from pre- and post-coiling model. 

 AUROC Opt. cutoff Sensitivity Specificity AUPRC 

On the training dataset 

pre_vel 0.991 (0.980 - 0.999) 0.988 0.900 1.000 0.992 (0.976 - 0.999) 

pre_P 0.564 (0.462 - 0.677) 0.833 0.450 0.775 0.526 (0.411 - 0.666) 

pre_WSS 0.829 (0.748 - 0.904) 0.619 0.775 0.800 0.800 (0.692 - 0.890) 

post_vel 1.000 (1.000 - 1.000) 0.999 1.000 1.000 1.000 (1.000 - 1.000) 

post_P 0.586 (0.471 - 0.687) 0.319 0.450 0.800 0.564 (0.442 - 0.714) 

post_WSS 0.791 (0.706 - 0.863) 0.452 0.575 0.900 0.817 (0.722 - 0.890) 

On the testing dataset 

pre_vel 1.000 (1.000 - 1.000) 4.457 1.000 1.000 1.000 (1.000 - 1.000) 

pre_P 1.000 (1.000 - 1.000) -0.756 1.000 1.000 1.000 (1.000 - 1.000) 

pre_WSS 0.667 (0.455 - 0.900) -0.049 1.000 0.667 0.183 (0.071 - 0.417) 

post_vel 0.917 (0.769 - 1.000) -2.792 1.000 0.917 0.417 (0.167 - 1.000) 

post_P 0.792 (0.462 - 1.000) 0.646 1.000 0.583 0.613 (0.071 - 1.000) 

post_WSS 0.542 (0.231 - 0.846) -1.151 1.000 0.333 0.140 (0.045 - 0.352) 
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3.3. Model explainability 

Figure 6 depicts saliency maps illustrating the top ten salient points within seven recanalized 

aneurysms from the training dataset in both pre- and post-coiling models. Within the pre-coiling 

models, the recanalized cases revealed robust injection flow zones with strong impingement impact 

points at walls. These points were observed within the aneurysms for cases (a), (c), (e), and (g). For 

cases (d) and (f), these impact points manifested in secondary aneurysms, whereas case (b) exhibited 

them at the aneurysm inlet. Within the post-coiling models, our observations revealed the presence 

of three interacting modes in recanalized aneurysms. These modes encompassed the presence of 

forceful impact points in cases (a), (c), (d), (e), (f), and (g), revealing the salient points on the aneurysm 

neck plane, as well as the existence of the Pcom within the flow direction in cases (a), (c) and (e), with 

salient points observed in this artery. Additionally, substantial contact areas in the direction parallel 

to the flow were also considered as important features, with salient points found at both aneurysm 

in- and outlet in case (b). In contrast, these influential effects were conspicuously absent in stable 

cases shown in Figure 7 within both pre- and post-coiling models. 

Pre-coiling model 

    
(a) (b) (c) (d) 

   
 

(e) (f) (g)  

Post-coiling model 

(a) (b) (c) (d) 
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(e) (f) (g)  

Figure 6. (a-g) Top 10 points in saliency map of seven recanalized aneurysms on the training dataset. 

DNN was trained with 3D velocity simulation results from pre- and post-coiling models. 

Pre-coiling model 

   
(a) (b)  

Post-coiling model 

   
(a) (b)  

Figure 7. (a-b) Top 10 points in saliency map of two stable aneurysms on the training dataset. 

4. Discussion 

In this study, we identified the significant hemodynamic parameter using a DNN with PointNet 

architecture. Its important 3D features that significantly contributed to the DNN's decision-making 

process were further analyzed through XAI technique. Firstly, significant hemodynamic parameter, 

that were automatically determined by DNN, were in alignment with those identified through the 

conventional statistical analysis. DNN models trained with velocity data demonstrated superior 

performance, as evidenced by ROC and PRC curves, in both training and testing datasets compared 

to models trained with pressure and WSS data. The statistical analysis had the same conclusions, 

where velocity within the aneurysm dome in the pre-coiling model (volvel) yielded the lowest P-

value, whereas pressure and WSS exhibited no significant differentiation between the two groups. 

Secondly, the saliency map visualization technique hinted at the existence of hitherto unknown 3D 

hemodynamic features associated with recanalization. In the pre-coiling models, it identified strong 

injection flow zones with impingement impact points in recanalized aneurysms as the important 3D 

features to classify aneurysm recanalization. While this represents a novel finding in the context of 

aneurysm recanalization, it aligns with prior research in aneurysm development and rupture 
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emphasizing the significance of injection and impingement patterns [18,40]. In post-coiling models, 

the saliency map illuminated a pronounced interplay between the flow and coiling plane. The XAI 

technique effectively identified potential factors contributing to this interaction, including 

impingement points on the coiling plane, the presence of Pcom in the direction of the flow, and 

substantial contact areas. This discovery, to the best of our knowledge, marks the first report of such 

phenomena. However, it was noteworthy that the 0D parameters utilized in this study provided an 

incomplete representation of the complex 3D flow features. Future research endeavors will 

encompass a broader spectrum of 0D parameters, including flow jet angle and dispersion index, to 

corroborate the consistency between DNN and statistical analyses, as well as the features observed 

from XAI visualization [44]. Additionally, DNN models trained with velocity data from both pre- 

and post-coiling models exhibited no significant differences on the testing dataset, underscoring the 

necessity for a larger and external patient dataset for future analyses aimed at selecting the most 

effective model.  

The complexity and inherent instability of flow patterns in cerebral aneurysm ranged from 

simplistic configurations with a singular recirculation region to intricate arrangements featuring 

multiple vortical structures that could be stable, dynamic, or intermittent throughout the cardiac 

cycle. These patterns were not solely contingent upon the size and shape of the aneurysm but were 

profoundly influenced by the manner in which blood flowed from the parent vessel into the 

aneurysm, a phenomenon intricately linked to the geometry of the parent artery [19]. One widely 

employed parameter for quantitatively assessing the impact of inflow impingement on the aneurysm 

wall was WSS. Locally elevated WSS characterized concentrated inflow jets, whereas a more uniform 

WSS distribution with lower magnitudes delineated areas of stagnation within the aneurysm [41]. 

However, the complex interplay between morphology and hemodynamics engendered a contentious 

debate regarding the role of high versus low WSS in cerebral aneurysm pathophysiology [42,43]. To 

further describe the inflow and impingement pattern, one categorized inject and impingement sizes 

manually, typically as small or large, the other determined the quantitative size through predefined 

thresholds such as exceeding 80% of the maximum WSS within the aneurysm sac [15,26]. In contrast, 

our approach leveraged automatic feature extraction and determination from raw 3D flow pattern 

data. This approach eliminated the constraints associated with manual preprocessing and prior 

assumptions or knowledge. Additionally, the flexibility of the DNN model allows for the 

incorporation of various 3D hemodynamic data inputs, thereby addressing the confounding factors 

contributing to recanalization. Furthermore, this framework can be readily extended to accommodate 

4D input data, incorporating the temporal dimension to capture the temporal instability of flow 

patterns. 

This study did not consider the coiling configuration. The coil surface was represented by a flat 

and rigid plane; whereas in clinical practice, the coil surface is typically rough and allows for blood 

penetration into the coil mass. Further investigation is needed to integrate the realistic coil surface 

obtained through advanced techniques such as silent magnetic resonance angiography into the 

analysis [45]. 

Other than saliency map, we also experimented with GradCAM heatmaps but found that the 

resolution of these is too coarse to capture the fine details that are important to understand the models 

[46]. For 1024 input points in this work, the GradCAM heatmap would be 170x coarser resolution 

than the input. In comparison, saliency map have the same resolution as the input image and allow 

us to examine the predictions at the pointwise level [47]. Other XAI methods are also planned to be 

used in the future to deepen our understanding of recanalization pathology [29,30]. 

There are also other limitations to this study. First, the analysis encompassed a total of 58 

aneurysms in this study. To further evaluate the model, a larger cohort of cases will be analyzed as a 

future step. Second, this was a retrospective study. To validate the effectiveness of developed models 

as a predictive tool, a prospective study with a larger cohort involving all types of aneurysms is 

required. Third, the fluid-solid interaction between the vessel walls and blood was not considered. 

Finally, the boundary conditions were uniform for all the patients. To enhance accuracy, future 
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investigations will explore the utilization of patient-specific boundary conditions derived from 4D-

Flow MRI or Transcranial Doppler Ultrasonography, if feasible. 

5. Conclusions 

PointNet-based DNN model trained utilizing 3D velocity data exhibited significant potential in 

prognosticating post-embolization aneurysm recanalization. The integration of XAI methodologies 

provided insight into critical 3D features that played a pivotal role in the decision-making framework, 

holding the potential to unearth hitherto unexplored 3D hemodynamic characteristics in the future. 
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