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Abstract: Thermally-assisted-occupation density functional theory (TAO-DEFT) has been an efficient
electronic structure method for studying the ground-state properties of large electronic systems with
multi-reference character over the past few years. To explore the time-dependent (TD) properties
of electronic systems (e.g., subject to an intense laser pulse), in this work, we propose a real-time
(RT) extension of TAO-DFT, denoted as RT-TAO-DFT. Besides, we employ RT-TAO-DFT to study the
high-order harmonic generation (HHG) spectra and related TD properties of molecular hydrogen
H, at the equilibrium and stretched geometries, aligned along the polarization of an intense linearly
polarized laser pulse. The TD properties obtained with RT-TAO-DFT are compared with those
obtained with the widely used time-dependent Kohn-Sham (TDKS) method. In addition, issues
related to the possible spin-symmetry breaking effects in the TD properties are discussed.
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1. Introduction

Over the last thirty years, Kohn-Sham density functional theory (KS-DFT) [1] has been a popular
electronic structure method for the ground-state (GS) properties of physical systems in the presence of
static external potentials at zero electronic temperature (§,; = 0), due to its low computational cost
and reasonable accuracy [2-5]. Conventional time-dependent density functional theory (TD-DFT)
[6] (also called the time-dependent Kohn-Sham (TDKS) method, real-time TD-DFT (RT-TD-DFT) or
real-time density functional theory (RT-DFT)), which is the time-dependent (TD) extension of KS-DFT,
has been recently applied to explore the TD and excited-state properties of electronic systems under the
influence of TD external potentials [7-9]. Recently, a frequency-domain formulation of linear-response
TD-DFT (LR-TD-DFT) [10] has also been adopted to obtain excitation energies (i.e., limited to the
weak-field perturbative regime), owing to its computational efficiency and reasonable accuracy [7-9].
Nevertheless, for the study of TD phenomena or excitation energies beyond the linear response,
conventional TD-DFT [6], which involves propagating the TDKS equation in the time domain without
any restriction to the TD external potentials, remains a promising method.

In KS-DFT [1], since the exact exchange-correlation (xc) energy functional Ey[p], in terms of
the GS density p(r), has not been discovered, it remains necessary to adopt density functional
approximations (DFAs) for Ey[p] to perform practical calculations [2-5]. The xc energy functionals
based on the frequently adopted DFAs, such as the LDA (local density approximation) [11,12] and
GGAs (generalized gradient approximations) [13], are computationally efficient for the study of large
systems. However, the DFA xc energy functionals have a few intrinsic shortcomings [2-5], and can yield
the following qualitative errors: the self-interaction error (SIE), non-covalent interaction error (NCIE),
and static correlation error (SCE). Since conventional TD-DFT [6], which usually takes the GS of a
physical system as the initial state, and often employs the GS xc potential (i.e., the functional derivative
of Exc[p]) evaluated at the instantaneous density p(r, t) in the so-called adiabatic approximation [7-9],
the qualitative errors of Exc[p] can also degrade the accuracy of conventional TD-DFT results [14-19].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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These qualitative errors can generally be reduced with the modification of the DFA functionals.
For example, the SIE can be reduced by mixing the Hartree-Fock (HF) exchange energy into the
parent DFA functionals (commonly called hybrid functionals) [20-23]. The NCIE can be reduced
by combining the parent DFA functionals with the dispersion energy correction (also known as
dispersion-corrected functionals) [24,25] or with the second-order Meoller-Plesset (MP2) correlation
energy (often called double-hybrid functionals) [23,26]. The SCE can be reduced by incorporating
a fully nonlocal correlation energy component, such as the RPA (random phase approximation)
correlation energy [27,28], into the parent DFA functionals. Nonetheless, the DFA, dispersion-corrected,
hybrid, and double-hybrid functionals fail to resolve the SCE problem, while the RPA and related
functionals are very demanding in computational expense, and hence are impractical for large systems.

To circumvent the SCE problem at low computational cost, thermally-assisted-occupation density
functional theory (TAO-DFT) [29] (i.e., a density functional theory with fractional orbital occupations)
has been recently developed. Note that TAO-DFT is an electronic structure method for the GS properties
of physical systems at zero electronic temperature (8,; = 0), even though it adopts a reference system
of noninteracting electrons at some fictitious temperature 6. The xc energy functionals developed in
KS-DFT can also be used in TAO-DFT [29-32]. Nonetheless, in strong contrast to KS-DFT, TAO-DFT
even with the commonly used DFA, dispersion-corrected, and hybrid functionals can approximately
describe strong static correlation effects, especially when an appropriate value of 6 is chosen [29-31].
Consequently, TAO-DFT is very promising for studying the GS properties of large systems with strong
static correlation effects [33—45]. Other TAO-DFT extensions include the schemes that determine the
system-independent [46] and system-dependent [47] values of 8, TAO-DFT-based ab initio molecular
dynamics (for equilibrium thermodynamic and dynamical properties) [48], and TAO-DFT-based
polarizable continuum model (for solvation effects) [49].

Within the framework of TAO-DFT, Yeh ef al. have recently proposed a frequency-domain
formulation of linear-response time-dependent TAO-DFT [50], denoted as TDTAO-DFT (or more
precisely, LR-TDTAO-DEFT by its inherent linear-response (LR) nature), allowing excitation energy
calculations in the frequency domain (i.e., using Casida’s formulation [10]). In TDTAO-DFT, the TD
effective one-electron potential (see Eq. (6) and Eq. (B6) of Ref. [50]) is defined with the TD pure
state |¥1a0(f)) of a noninteracting reference system (also see Appendix B1 of Ref. [50]). However,
the TD density p(r, t) (see Eq. (5) of Ref. [50]) in TDTAO-DFT is generally not associated with a TD
noninteracting pure state |¥ao(t)), but associated with a TD noninteracting ensemble (which should
be described by a TD density operator, as will be discussed later). For example, in TDTAO-DFT (with
6 # 0), at the initial time ¢y, the initial density p(r, t) is simply the TAO-DFT GS density p(r) (see Eq.
(1) of Ref. [50]), which should be associated with a thermal ensemble [29] (i.e., not associated with a
pure state) of noninteracting electrons at a nonvanishing fictitious temperature (6 # 0). Therefore, the
underlying assumption of TDTAO-DFT (i.e., that the TD density p(r, t) is assumed to be associated
with the TD pure state [¥1a0(t)) of a noninteracting reference system) is generally incorrect, except
only for the 8 = 0 case (wherein TDTAO-DFT reduces to conventional TD-DFT [6] or more precisely,
LR-TD-DFT [10] by its inherent LR nature).

To resolve the aforementioned inconsistency of TDTAO-DFT (especially for 8 # 0) [50], in the
work, we reformulate the TD extension of TAO-DFT by introducing a new reference system, consisting
of an ensemble of noninteracting electrons moving in a TD local potential. This real-time (RT) extension
of TAO-DFT is denoted as RT-TAO-DFT. Besides, since the assumption of a weak perturbation is not
required in RT-TAO-DFT, we also employ RT-TAO-DFT to study strong-field electron dynamics in
molecules as well as high-order harmonic generation (HHG) [51-68].

The rest of this paper is organized as follows. In Section II, we review TAO-DFT and discuss
closely related electronic structure methods. The formulation of RT-TAO-DFT is presented in Section
IIL. In Section IV, we describe the details of our RT-TAO-DFT calculations for the HHG spectra and
related TD properties of molecular hydrogen Hj at the equilibrium and stretched geometries, aligned
along the polarization of an intense linearly polarized laser pulse. The TD properties computed using
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RT-TAO-DFT are discussed, and compared with the results of conventional TD-DFT [6]. Moreover,
issues related to the possible spin-symmetry breaking effects in the TD properties are also discussed.
Our conclusions are provided in Section V.

2. Ground-state theory: TAO-DFT

2.1. Overview of TAO-DFT

Consider a physical system of N interacting electrons moving in an external potential vex(r)
at zero electronic temperature (6,; = 0). In TAO-DFT [29], the GS density p(r) of the physical
system is represented by the thermal equilibrium density of a reference system (called the
thermally-assisted-occupation (TAO) reference system) of noninteracting electrons in the presence of a
local potential vt (r) (called the TAO potential) at some fictitious temperature 6 (i.e., the temperature
of the TAO reference system). In other words, p(r) is represented by the TAO orbitals {¢;(r) } and TAO
orbital occupation numbers (TOONS) { f]} (atomic units (a.u.) are adopted throughout this work):

r) =3 filo; (0> ey
]

Here, f; is the occupation number of the j-th TAO orbital ¢;(r), given by the Fermi-Dirac (FD)
distribution function

fi={1+expl(ej—pn)/0]} 7", ¢)

where 0 < f; <1, ¢; is the energy of the j-th TAO orbital ¢;(r), and p is the chemical potential chosen
to conserve N (i.e., the number of electrons):

Y {1 +expl(ej—p)/0]} 7 = N. 3)
]
On the basis of the Hohenberg-Kohn (HK) theorems [69] for the physical system at §,; = 0 and
the Mermin theorems [70] for the TAO reference system at the fictitious temperature 6, a set of
self-consistent equations (i.e., the TAO equations) that determine the TAO orbitals {¢;(r)}, the TAO
orbital energies {¢;}, and hence the TOONS {f;} (see Egs. (2) and (3)) and the GS density p(r) (see Eq.
(1)) are given by [29]
htao(x)pi(xr) = €;¢;(x). (4)

Here, fitao(r) is the TAO effective one-electron Hamiltonian:

~ 1 5

hrao(r) = —5Vi + ota0(1), ®)
with the TAO potential (i.e., the TAO effective one-electron potential)

5EH [P] 5Exc9 [P}
so(r) — dp(r) (6)
= UeXt(r) =+ Z)H(r) =+ che(f)/

UTAO<r) = Z)ext(l') +

where Vet (1) is the external potential of the physical system, vy (r) = OEulpl f dr’ p [ is the Hartree

op(r)
potential (i.e., the functional derivative of the Hartree energy functional Ey[p] = 5 f dr [ dr’ elr = Je r(/r| ) ),
and vyeg(r) = 5?;“(9 [)p] is the xcf potential, which is the functional derivative of the xc energy functional

Eyolp] = Exclp] + Eglp], with Exc[p] being the xc energy functional (as defined in KS-DFT [1]) and
Eg[p] being the 6-dependent energy functional (e.g., see Eq. (14) of Ref. [29]).
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In TAO-DFT [29], to obtain the GS density p(r) (i.e., represented by Eq. (1) with the TAO orbitals
{#;(r)} and TOONS {f;}) of the physical system, Equations (1) to (6) should be solved self-consistently.
After the self-consistency is achieved, the GS energy E|p] of the physical system (at 6,; = 0) is given by

Elp) = [ dr p()vex(x) + AL{fy ¢} + Enlo] + Exclp], @

where the first term is the external potential energy, Exy[p] and E,g[p] are the Hartree and xc6 energy
functionals, respectively, and Af[{fj, ¢;}] is the noninteracting kinetic free energy at the fictitious
temperature 6:

AU 93 = TE S, 93] + ESHH, ®)
i.e., the sum of the kinetic energy
15,91 = Zf] [ e ;) 929;() ©)
and entropy contribution
ES[{f;}] = 92 In(f;) + (1— f;) In(1 - f£;)] (10)

of noninteracting electrons at the fictitious temperature 6, which can be exactly computed using the
TAO orbitals {¢;(r)} and TOONSs {f;}. Note that for the special case of 6 = 0, Eg—g[o] = 0 and
TAO-DFT (with Eyeg[p]) [29] reduces to KS-DFT (with Exc[p]) [1].

2.2. Density representation in TAO-DFT

The GS density p(r) of a physical system is interacting v-representable (I-VR), as the exact p(r)
belongs to a GS wavefunction of an interacting N-electron Hamiltonian for some external potential
vext (1), which can be exactly computed using the full configuration interaction (FCI) method at the
complete basis set limit [71]. Besides, the exact p(r) can be represented by the natural orbitals {x;(r)}
and natural orbital occupation numbers (NOONS) {n;} [72]:

pFCI Zn]|)(] ’ (11)

where the NOONS {#;} satisfy the following conditions,

0<n<1, ) mj=N. (12)
J

Nevertheless, in KS-DFT [1], p(r) is assumed to be noninteracting pure-state v-representable
(NI-PS-VR), as it belongs to a one-determinantal GS wavefunction of a noninteracting N-electron
Hamiltonian (i.e., the Kohn-Sham (KS) Hamiltonian) for some local potential (i.e., the KS potential)
[73-75]. Accordingly, in KS-DFT, p(r) is represented by the occupied KS orbitals {¢<5(r)}:

pxs(r Z | (13)

As have been shown in a number of studies [74-79], there are some reasonable GS densities (e.g., the
GS densities of some electronic systems with strong static correlation effects) that are not NI-PS-VP.
Apparently, these GS densities cannot be obtained with KS-DFT even adopting the exact xc energy
functional Ex[p].

doi:10.20944/preprints202309.1546.v1
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On the other hand, in TAO-DFT [29], p(r) (given by Eq. (1)) is assumed to be noninteracting
thermal ensemble v-representable (NI-TE-VR), as it belongs to a thermal ensemble of a reference
system of noninteracting electrons in the presence of a local potential (i.e., the TAO potential) at some
fictitious temperature 6. Consequently, in TAO-DFT, p(r) is represented by the TAO orbitals {¢;(r)}
and TOONS {f;}:

prao(r) = ) filg; (1) . (14)
]
where the TOON {f;} (given by the FD distribution function) satisfy the following conditions,

0<f;<1, ) fi=N. (15)
j

Owing to the similar expressions of the TAO-DFT GS density prao(r) (see Eq. (14)) and the exact
GS density prci(r) (see Eq. (11)), the fictitious temperature 6 in TAO-DFT can be so chosen that the
distribution of TOON:Ss is close to the distribution of the exact NOONSs, which is closely related to the
stability (i.e., the single-reference (SR) / multi-reference (MR) character) of the GS of an electronic
system [29]. Accordingly, the exact GS density is more likely to be NI-TE-VR with this choice of 6. In
contrast to KS-DFT (i.e., TAO-DFT with 6 = 0), TAO-DFT has an extra degree of freedom in choosing
the 0 value to improve the GS density representability.

2.3. Approximate energy functionals and fictitious temperatures in TAO-DFT

Since the exact xcf energy functional E,[p] (i-e., one of the key ingredients in TAO-DFT), in
terms of the GS density p(r), has not been known, it remains necessary to employ DFAs for E,|p] to
perform practical calculations using TAO-DFT. Conventional DFAs, such as the LDA and GGAs, for
Exclp] (i-e., the DFA xcf energy functional EDEA[p]) can be adopted [29,30]. In addition to TAO-DFA
(i.e., TAO-DFT with the DFA functional EPEA[p]), TAO-DFT with the exact exchange [31] and related
hybrid functionals [31,32] may also be employed.

For the GS of an electronic system, the fictitious temperature 6 of a given energy functional in
TAO-DFT should be so selected that the distribution of TOONs simulates the distribution of the exact
NOON:Ss. In this situation, the static correlation associated with the electronic GS can be properly
captured by the entropy contribution (see Eq. (10)) in TAO-DFT [29]. In other words, the optimal ¢
should be closely related to the SR / MR character of the electronic GS. For systems with electronic
ground states possessing SR character (i.e., SR systems), all the NOONSs should be close to either 0
(fully empty) or 1 (fully occupied), and hence, the optimal 6 values in TAO-DFT should be sufficiently
small. However, for systems with electronic ground states possessing MR character (i.e., MR systems),
the distributions of NOONSs (and hence the optimal 6 values) can be highly system-dependent. While
it remains very challenging to devise a scheme that always yields the best 6 of each system for a given
energy functional in TAO-DFT, some progress has been achieved in recent years.

For a given energy functional in TAO-DFT, if the optimal 8 values of electronic systems can be
kept within a narrow range of values, it would be very useful to define an optimal system-independent
8 value. Recently, TAO-DFT with the optimal system-independent  scheme [29-31,46], which is as
efficient as KS-DFT (i.e., TAO-DFT with 6§ = 0) in computational cost, can be comparable to KS-DFT in
performance for various SR systems [29-31,46,49], and can outperform KS-DFT for several MR systems
[29-31,33-46,48,49]. To improve the optimal system-independent 6 scheme, a self-consistent scheme
that determines the optimal 8 values of electronic systems has been recently proposed [47].

2.4. Comparison of KS-DFT, TAO-DFT, and FT-DFT

Here, we compare three generally different electronic structure methods (see Table 1): KS-DFT
[1], TAO-DFT [29], and FT-DFT (finite-temperature density functional theory, also called the


https://doi.org/10.20944/preprints202309.1546.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 September 2023 doi:10.20944/preprints202309.1546.v1

6 of 25

Mermin-Kohn-Sham (MKS) method) [1,70], each of which employs a reference system of noninteracting
electrons in the presence of a local potential at some fictitious temperature 6.

Table 1. Comparison of KS-DFT [1], TAO-DFT [29], and FT-DFT [1,70].

KS-DFT TAO-DFT FT-DFT
Electronic Temperature 6,; 0 0 >0
Fictitious Temperature 6 0 >0 >0
Is 6 = 6,; assumed? Yes No Yes
Electronic Property GS GS Thermal Equilibrium
Electron Density GS GS Thermal Equilibrium
Density Representation NI-PS-VR NI-TE-VR NI-TE-VR
Universal Functional Hohenberg-Kohn  Hohenberg-Kohn Mermin
Approximate Functional Exc[p] Excolp] o [0%]

Both KS-DFT and TAO-DEFT are electronic structure methods for the GS properties of physical
systems at zero electronic temperature (§,; = 0). Note that § = 6, = 0 is assumed in KS-DFT,
while the fictitious temperature (6 > 0) can be different from the electronic temperature (6,; = 0) in
TAO-DFT. Accordingly, the GS density p(r) of a physical system at 6,; = 0 is assumed to be NI-PS-VR
in KS-DFT and NI-TE-VR in TAO-DFT. Besides, in KS-DFT, the HK universal functional (i.e., the sum
of the interacting kinetic energy and the electron-electron repulsion energy at 6,; = 0) [69], which is a
functional of the GS density p(r), is given by

Frk[p] = Ts[{¢{°}] + Enlo] + Exclo], (16)

where T;[{¢¥°}] (exactly computed using the occupied KS orbitals {¢¥5(r)}) is the noninteracting
kinetic energy at zero fictitious temperature (6 = 0), and Exc[p] is the xc energy functional, which needs
to be approximated for practical KS-DFT calculations. By contrast, in TAO-DFT, the HK universal
functional [69], which is a functional of the GS density p(r), is expressed as

Fuxlp] = A%[{fj, ¢;}] + Enlp] + Excolo], (17)

where Af[{f;, ¢;}] (exactly computed using the TAO orbitals {¢;(r)} and TOONs {fj}) is the
noninteracting kinetic free energy at the fictitious temperature 8, and E,[p] is the xcf energy functional,
which needs to be approximated for practical TAO-DFT calculations. Note that TAO-DFT (with 6 = 0)
reduces to KS-DFT.

On the other hand, FT-DFT (i.e., the MKS method) is an electronic structure method for the
thermal equilibrium properties of physical systems at finite electronic temperatures (6,; > 0), and
0 = 6, is assumed in FT-DFT. Therefore, the thermal equilibrium density p% () of a physical system
at 0,; is assumed to be NI-TE-VR in FT-DFT. Besides, in FT-DFT, the Mermin (M) universal functional
(i.e., the sum of the interacting kinetic free energy and the electron-electron repulsion energy at 6,;)
[70], which is a 6,;-dependent functional of the thermal equilibrium density p% (r), is given by

Fi[o%] = A% [{ MRS, gMKS}) 1 Eggfof] + F [0, (18)

where A% [{ FMES, pMKSY] (exactly computed using the MKS orbitals {¢M<5(r)} and MKS orbital
occupation numbers { f,leKS}) is the noninteracting kinetic free energy at the fictitious temperature
6 = 6,, and ng’ [0%] is the xc free energy functional, which needs to be approximated for practical
FT-DFT calculations. Note that FT-DFT (with 6,; = 0) reduces to KS-DFT.

Consequently, for the GS properties of physical systems at 8,; = 0, FI-DFT reduces to KS-DFT,
while TAO-DFT (with 6 # 0) can be very different from KS-DFT (especially for MR systems) [29,41,46,
49].
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2.5. TAO-DFT-related methods

2.5.1. TAO-DFT with Eyg[p] ~ Exc|p]

Here, we compare two approximate methods (see Table 2) that are closely related to TAO-DFT
[29] and FT-DFT (i.e., the MKS method) [1,70].

Table 2. Comparison of TAO-DFT (with E,[p] = Exc[p]) [29] and FT-DFT (with g [0%] ~ Exc[0%])

[1,70].

TAO-DFT (with Eyqg[o] ~ Exclp]) FT-DFT (with F%¢ [p%] ~ Eyc[0%])
Electronic Temperature 6,; 0 >0
Fictitious Temperature 0 >0 >0
Is 6 = 6,; assumed? No Yes
Electronic Property GS Thermal Equilibrium
Electron Density GS Thermal Equilibrium
Density Representation NI-TE-VR NI-TE-VR
Approximate Functional Exc[p] Exc[0%]

As mentioned previously, TAO-DFT is an electronic structure method for the GS properties of
physical systems at zero electronic temperature (6,; = 0). In TAO-DFT, the xcf energy functional
Eyco[p] = Exclp] + Eglp]. At zero fictitious temperature (6 = 0), Eg—_o[p] = 0 and hence E,g[p] = Exc[p]-
At a sufficiently small fictitious temperature (f ~ 0), the magnitude of Eg~[p] should remain small
compared to that of Exc[p], and hence the approximation E,.g[p] ~ Exc[p] can be reasonably justified.
Clearly, TAO-DFT with E,[p] ~ Exc[p] (also called TAO-DFT without Ey[p]) is an approximate
TAO-DFT method (good for 6 ~ 0), which may be adopted to describe the strong static correlation
effects of some GS systems (wherever § ~ 0 can be an appropriate fictitious temperature) at 6,; = 0.

On the other hand, FT-DFT is an electronic structure method for the thermal equilibrium properties
of physical systems at finite electronic temperatures (6,; > 0), wherein § = 6,; is assumed. In FT-DFT,
at zero electronic temperature (6,; = 0), Fla=0100a=0] = E [o]. Ata sufficiently small electronic
temperature (6,; ~ 0), the approximation e [0%] ~ Exc[p%] can be reasonably justified. Apparently,
FT-DFT with F.¢ [0%] a Exc[p%] is an approximate FT-DFT method (good for 6 = 6,; ~ 0), which may
be used to study the temperature effects of thermal equilibrium systems at 6,; ~ 0 [80,81].

According to their mathematical expressions, TAO-DFT with E,g[p] =~ Exc[p] [29] is strikingly
similar to FT-DFT with F£¢ [0%1] ~ Exc[p%] [1,70]. However, owing to their distinctly different physical
meanings, one can easily distinguish the two approximate methods simply based on the electronic
properties computed. For example, for the GS properties of physical systems at 6,) = 0, FI-DFT
with Fld [0%] ~ Exc[0%] reduces to KS-DFT with Ey.[p], while TAO-DFT with E,[o] ~ Exc|p] ata
nonvanishing fictitious temperature (6 # 0) can be very different from KS-DFT with Ey.[p] (especially
for MR systems) [29,41,46,49]. Therefore, a number of recent studies on the GS properties of physical
systems at 6,; = 0 [82-86] have actually been performed using TAO-DFT with E,[p] ~ Exc[p] [29],
rather than FT-DFT with F%¢ [0%] a2 Exc[p%] (which, in fact, should reduce to KS-DFT with Ey¢[p] at
6., = 0) [1,70].

2.5.2. KS-DFA with the rTAO Energy Correction

On the basis of the TAO-DFA (with some fictitious temperature 6) energy expression [29,30], Yeh,
Yang, and Hsu have recently proposed a post-KS energy correction, called the rTAO energy correction
[87], which is a 8-dependent energy correction evaluated with the KS-DFA (i.e., KS-DFT with the DFA
xc energy functional) orbitals. Owing to the post-KS nature, for clarity, we denote this method as the
KS-DFA+rTAO method.

doi:10.20944/preprints202309.1546.v1
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For a small fictitious temperature (¢ < 40 mhartree), the KS-DFA+rTAO method has been shown
to approximately reproduce the TAO-DFA results for some selected electronic properties [87]. This
may in part be due to the post-KS nature (i.e., good for small ) and a very limited amount of test data.
For a considerably large 6 (e.g., the optimal 6 of TAO-DFT with the exact exchange for the dissociation
of molecular hydrogen Hj [31,46]) or for other electronic properties (e.g., atomization energies), the
results obtained with this method can be very different from those obtained with TAO-DFT.

More importantly, the GS density obtained with the KS-DFA+rTAO method (with any value of 6)
is the same as the KS-DFA GS density (i.e., NI-PS-VR). In other words, some reasonable non-NI-PS-VP
GS densities (e.g., the GS densities of some MR systems) cannot be obtained with KS-DFA and the
KS-DFA+rTAO method (with any value of 6) [74-79].

In particular, whenever the spin-symmetry constraint [3,4,29,88] on the singlet GS density of
an electronic system is violated with KS-DFA (which can commonly happen for MR systems), it
must also be violated with the KS-DFA+rTAO method (with any value of 8). In such a situation,
the spin-unrestricted KS-DFA / KS-DFA+rTAO results can be very different from the corresponding
spin-restricted KS-DFA / KS-DFA+rTAO results, yielding unphysical spin-symmetry breaking effects
in the spin-unrestricted KS-DFA / KS-DFA+rTAO calculations. By contrast, the spin-symmetry
breaking issues can be greatly resolved by TAO-DFA (with an appropriate ) [29-31,33,36,37,46—-49],
highlighting the significance of the GS density representation in TAO-DFT.

3. Real-time theory: RI-TAO-DFT

3.1. RT-TAO equation

Consider a physical system of N interacting electrons moving in a TD external potential vext(r, ).
The Hamiltonian operator of the physical system is given by

A N

H(t) = T+ Vee + Oext(t), (19)
containing the operators of the kinetic energy

N
T=--Y Vi, (20)

the electron-electron interaction

N
Vee =) ) ——, (21)
i=1j>i i — ]
and the TD external potential
N
Dext (t) = Zvext<ri/t)- (22)
i=1

Let |¥(t)) be the TD state of the physical system. For most TD cases of physical interest, in this work,
the time propagation is assumed to start from the GS [¥gs) (i.e., the lowest energy eigenstate of H(ty),
which is a stationary state) of the unperturbed physical system at time t = ty, and |¥gg) is assumed
to be non-degenerate. Accordingly, the TD state |¥(t)) of the physical system is a solution of the TD
Schrodinger equation (TDSE):

i—[¥() = H(H)[Y (1)), (23)

with the initial state
|"P(t0)> = |‘Pcs>. (24)
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From the TD state [¥(t)), the TD density p(r, t) of the physical system can be determined by

¥()), 25)

where p(r) = YN, §(r — 1;) is the number density operator. In particular, the initial density p(r, t) of
the physical system is given by the GS density pgs(r) of the unperturbed physical system:

p(r)

p(r,to) = pcs(r) = <‘I’Gs ‘ch>- (26)

According to the Runge-Gross (RG) theorems for the physical system (i.e., consisting of a TD pure
state) [6], the TD state [¥(t)) is a functional of the TD density p(r, t) [i.e., formally depending on the
density p(r, ') at all previous times ' < t] and the initial state ['¥(t9)), i.e, [¥(t)) = [¥[o, ¥ (t0))] (1))
In this work, the initial state [¥(fo)) = |¥gs) is a functional of the initial density p(r, to) = pgs(r)
based on the HK theorems [69]. Since the dependence of initial state ['¥(fo)) is implicitly included in
the TD density p(r, t), for brevity, [¥[p, ['¥(f0))](t)) is denoted as [¥[p](t)) hereafter. Now, we define
the action functional of the physical system:

Al = i (20| (i5; - A0 ¥l
~ [ <w[p}(t)’ (z; T Ve ﬁext(t)) “I’[p](t)> @)

fo

= B[p] — /:1 dt/dr o(t, t)vext (1, 1),

t

where B[p] is a universal functional of the TD density p(r, t):

Blo] — /t: dt <"I’[p](t)‘ (’aat e v) "I’[p](t)>. 28)

Note that the action functional A[p] has a stationary point at the exact TD density p(r, t) of the physical
system, given by the Euler equation:

6Afp] _ 4Blp]
op(r,t)  op(rt)

In order to develop an RT method compatible with TAO-DFT [29], we introduce the RT-TAO
reference system, consisting of an ensemble of noninteracting electrons moving in a TD local potential
vs(r, t). The RT-TAO reference system can interchange electrons with its environment, and hence, the
electron number N, in the RT-TAO reference system can be varied from 0 to co. The Hamiltonian

- ZJext(r/ t) =0. (29)

operator of the RT-TAO reference system is given by

A

Hs(t) = Ts + UAs(t)/ (30)

containing the operators of the kinetic energy Ts and the TD local potential (t).

At time t = ty, the time propagation starts from the grand canonical ensemble (i.e., a stationary
ensemble) of the TAO reference system at some fictitious temperature 6, obtained with TAO-DFT [29].
Therefore, the initial density operator [s(ty) of the RT-TAO reference system is given by the TAO
density operator I'tao (i.e., the grand canonical density operator [89] of the TAO reference system at
the fictitious temperature 6):

Fs(to) =Trao =YY wn,n

N, 7

D) (PR (31)
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with the equilibrium statistical weights
o =PI (Brn = iN/6] @)
7 T, L exp[— (Enn — #Ne) /0]
satisfying the following conditions,
0<wnn <1, ) ) wn,=1 (33)

N, n

Here,

Ng,n> denotes the n-th N,-electron eigenstate of Hs(t) = Hrao (i.e., the Hamiltonian operator
of the TAO reference system) and Ey, , the corresponding energy eigenvalue.

Fort > ty, the noninteracting ensemble of the RT-TAO reference system is generally non-stationary
due to the presence of the TD local potential v;(r, t). According to the TDSE

0 .
i PN (1) = Hs(£)|Pn,n(£)), (34)

with the initial state | Py, . (to)) = ’CD(I’\]M% we know how the TD state |®y, ,(t)) evolves in time.
Therefore, the TD noninteracting ensemble of the RT-TAO reference system can be properly defined by
the following TD density operator ['s(t):

ZZwNE ’cDNer ><q>Ne, ( )

(35)

where the statistical weights wy;, ,, which are assumed to be time-independent, are given by Eq. (32),
i.e., the initial statistical weights. Note that the TD density operator ['s(t) of the RT-TAO reference
system is a solution of the Liouville-von Neumann equation:

i—Ts(t) = [Hs(t),Ts(t)], (36)

with the initial density operator T's(ty) = I'tao (given by Eq. (31)). From the TD density operator I's (),
the TD density ps(r, t) of the RT-TAO reference system can be determined by

pulet) = Te{ B0 o)} = HRL (@nn(0)] 0

<I>Ne,n(t)>, (37)

where ps(r) is the number density operator [89]. In particular, the initial density ps(r, o) of the RT-TAO
reference system is given by the thermal equilibrium density ptao(r) (see Eq. (14)) of the TAO reference
system [29], which is the same as the GS density pcs(r) of the unperturbed physical system (note that
pcs(r) is assumed to be NI-TE-VR with this #) and hence, the initial density p(r, t9) of the physical
system (see Eq. (26)):

ps(r, to) = prao(r) = Tr{rTAOPs } ZZwNe, <¢?\]L,,n ps(r)

= pcs(r) = p(r, to).

@Y n>
e (38)

Here, we seek for vs(r, t) that yields the same solution ps(r, t) = p(r, t), for t > ty. According to
the Li-Tong (LT) theorems for the RT-TAO reference system (i.e., consisting of a TD noninteracting
ensemble) [90], the TD density operator ['s(t) is a functional of the TD density ps(r, t) [i.e., formally
depending on the density ps(r, ') at all previous times t < t] and the initial density operator ['s(tp),
ie., T's(t) = Ts[os, Ts(to)](t). In this work, the initial density operator I's(ty) = I'tao (see Eq. (31)) is a
functional of the initial density ps(r, ty) = prao(r) (see Eq. (14)) based on the Mermin theorems [70].
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Since the dependence of initial density operator ['s () is implicitly included in the TD density ps(r, t),
for brevity, ['s[os, 's (t0)] () is denoted as I's[ps] () hereafter. Now, we define the action functional of
the RT-TAO reference system:

Adp = / arte{ o) (i3, - A0 ) |

=, "t Tr{ slos] (¢ )( aat — Ty —ﬁs(t)>} (39)
= Bs[ps] — /t: dt/dr ps(x, t)vs(r, t),

where Bs[ps] is a universal functional of the TD density ps(r, t):

e = [ arte{ tlou)io (ig; - 7.) | (40)

Note that the action functional A;[ps] has a stationary point at the exact TD density ps(r, t) of the
RT-TAO reference system, given by the Euler equation:

S Asps] _ 9Bs [os]
Ops(r,t)  Ops(r,t)

In RT-TAO-DFT, the universal functional B|p] (given by Eq. (28)) is partitioned as

—vs(r, ) = 0. 41)

Blp] = Bs[p] — Anlpo] — Axcolpl, (42)

where the universal functional B;[p] is given by Eq. (40), Ag[p] is the Hartree action functional:

Anlp :7/ dt/dr/dr’p , prt)p(r,t) (43)
o r7r|

and A,cgp] is the xcf action functional:

Axcolo] = Bs[p] — Ble] — Anle], (44)
which is a universal functional of the TD density p(r, t). Applying Eq. (42) to Eq. (29), we obtain

0Bs[p]  SAm[p]  FAxlP]
so(r,t)  dp(rt)  dp(rt)

Comparing Eq. (41) with Eq. (45) shows that the same solution ps(r, t) = p(r, t) can be obtained, if we
choose the TD effective one-electron potential vs(r, t) (up to a purely TD function C(t)) of the RT-TAO
reference system as

- vext(rr t) =0. (45)

5AH [P] 5Axc9 [P]
op(r,t) ~ op(xt) (46)
= Vext(1,t) + vH (1, t) + Oxea (T, 1),

Us(r/ t) Uext( ) +

where vex (1, t) is the TD external potential of the physical system, vy (r, t) = 0Aule] [dr't (r/’f?

the TD Hartree potential, and vy (r, t) = {;ZX(CB [‘)’ | is the TD xc@ potential.
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Since the RT-TAO reference system consists of a TD noninteracting ensemble, the Hamiltonian
A (t) (see Eq. (30)) is separable, with the RT-TAO effective one-electron Hamiltonian

A 1
hs(x, 1) = =5 Vi +0s(n 1), (47)

where the TD effective one-electron potential vs(r, t) (denoted as the RT-TAO potential) is given by
Eq. (46). The RT-TAO orbitals {¢;(r, )} evolve in time according to the effective one-electron TDSE
(denoted as the RT-TAO equation):

i%@(r, t) = hs(x, t)p;(x, 1), (48)

with
¢;(x,to) = ¢ (x), (49)

i.e.,, the initial j-th RT-TAO orbital ¢;(r, ) is given by the j-th TAO orbital (p](.)(r) (the j-th energy
eigenfunction of /i(r, tg) = fitao(r) (see Eq. (5)), associated with the GS of the unperturbed physical
system) [29]. The TD density p(r, ) of the physical system, which is the same as the TD density ps(r, t)
(given by Eq. (37)) of the RT-TAO reference system, can be computed using [89]

p(rt) = ps(x,t) =} filg;(x.1)%, (50)
]

where the occupation number f; of the j-th RT-TAO orbital ¢;(r, t), which is time-independent, is
given by Eq. (2), i.e,, its initial occupation number [29], also satisfying the conditions: 0 < f; < 1 and
Yjfi=N.

For the special case of § = 0, RT-TAO-DFT (with the xcf action functional A[p]) reduces to
conventional TD-DFT (with the xc action functional Axc[p]) [6], providing that at time t = ¢, the initial
state of the physical system is the non-degenerate GS of the unperturbed physical system.

Here, we discuss the representation of the TD density p(r, t) of a physical system in conventional
TD-DFT [6] and RT-TAO-DFT. In conventional TD-DFT, p(r, t) is assumed to be TD noninteracting
pure-state v-representable (TD-NI-PS-VR), as it belongs to a TD one-determinantal wavefunction of
a noninteracting N-electron Hamiltonian for some TD local potential. By contrast, in RT-TAO-DFT,
p(r,t) (given by Eq. (50)) is assumed to be TD noninteracting ensemble v-representable (TD-NI-E-VR),
as it belongs to a TD noninteracting ensemble (described by a TD density operator, e.g., see Eq. (35)) in
the presence of a TD local potential (i.e., the RT-TAO potential).

In RT-TAO-DFT, since we specify the initial state |¥(ty)) = |¥gs) of the physical system and
the initial density operator ['s(tg) = I'tao of the RT-TAO reference system, the two conditions: (i)
the same initial density p(r,ty) = ps(r, to) and (ii) the same initial time derivative of the density
9o(rt)] —y = 90s(1,1)| i—t, = 0, can be satisfied for the physical and RT-TAO reference systems,
providing that the GS density pgs(r) of the unperturbed physical system is NI-TE-VR with a given
value of 0 (see Eq. (38)). Note that conditions (i) and (ii), which ensure the existence of TD-NI-PS-VR
densities [91], may also be the conditions for the existence of TD-NI-E-VR densities [92].

In particular, condition (i) highlights the significance of the initial density representability or
the GS density representability (for most TD cases of physical interest, the initial state is chosen
as the GS of the unperturbed physical system). For an MR system, condition (i) can be violated
with conventional TD-DFT, since the corresponding GS theory, i.e., KS-DFT, can suffer from the
aforementioned issues related to the GS density representability [74-79] and the spin-symmetry
constraint [3,4,29,88]. By contrast, these issues can be greatly resolved by TAO-DFT (i.e., the underlying
GS theory of RT-TAO-DFT) [29-31,33,36,37,46—49], when an appropriate 6 is chosen.
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3.2. Matrix representation

In RT-TAO-DFT, the j-th RT-TAO orbital ¢;(r, t) can be expanded in the orthonormal one-electron
basis {<p2(r)}, spanned by the GS TAO orbitals (i.e., the TAO orbitals associated with the GS of the
unperturbed physical system) [29]:

rt) =) Cp(t)gp(r), (51)
P

where {C,;(t)} are the TD expansion coefficients. Accordingly, the TD density p(r, t) (see Eq. (50)) can
be expressed as

ZPM )p (1)) (x), (52)

where P(t) is the one-electron density matrix at time ¢, with matrix elements
P P‘? Zf] P] (53)

Besides, at time ¢, F(t) is the RT-TAO matrix (commonly known as the Fock matrix), which is the
matrix representation of the RT-TAO effective one-electron Hamiltonian his (r,t) (see Eq. (47)), with
matrix elements

Fog(t) = [ dx g3 (1) (1, )5 o). (54

In the orthonormal one-electron basis {gbp (r)}, the RT-TAO equation (given by Eq. (48)) can be
reformulated in terms of the TD one-electron density matrix P(t) [8]:

.d
i P(t) = [E(t), P(t)]. (55)

As the time propagation is assumed to start from the GS of the unperturbed physical system at time
t = 0 (without loss of generality, the initial time ¢y = 0 is assigned hereafter), the initial one-electron
density matrix is given by

Ppqg(0) = fpdpq, (56)

and the initial RT-TAO matrix is given by

Fpq(0) = €p0pg, (57)

where f, and €, are the occupation number and energy, respectively, of the p-th GS TAO orbital 4)2 (r)
[29].
The formal solution of RT-TAO equation (see Eq. (55)) for the TD one-electron density matrix P(#)
is given by [68,93,94]
P(t) = U(t,0)P(0)U(t,0). (58)

Here, U(ty, t;) is a unitary time propagator from f; to t:
o f
U(ty, ty) = ’Texp{— i/ dat’ F(t’)], (59)
tq

where 7~ denotes time-ordering. However, since F(t,) does not necessarily commute with F(t;,) for
tq # tp (see Eq. (59)), it remains challenging to obtain P(t) directly from P(0) (see Eq. (58)) for a long
time interval [0, {| in RT-TAO-DFT.
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In practical calculations, to reduce the error in the propagation for a long time interval [0, t], U(¢,0)
is commonly split into a product of multiple time propagators, each corresponding to a small time step
At:

m—1
U(t0) = [T Ultns ta), (60)
n=0

where t, = nAt denotes the value of t at the n-th time step, noting that ¢ty = 0 and t,, = mAt = t.
U(t,,41, tn) is the time propagator from t, to t, 1 = t, + At, given by

A Y
U(tyi1,tn) = Texp [ - i/ ar’ F(t’)], (61)

tn

which takes P(t;) to P(¢,,41):
P(tn+1) = U(tn+lrtn)P(tn)UJr(thrl/tn)- (62)

We denote U, = U(#,,41,t,) and P, = P(t,) for brevity, and apply Eq. (60) to Eq. (58). Accordingly, the
density matrix P,, = P(t;,) = P(t) can be obtained from the initial density matrix Py = P(ty) = P(0)
via the following expression:

m—1 m—1 t
P, = ( I Un>PO( I Un> =U,_1U, »---UUgpPoUiUT ..Ut Ut . (63)
n=0 n=0

For a sufficiently small time step At, F(t,) remains nearly commutative with F(t, + At), and hence,
U, = U(t,41,tn) (see Eq. (61)) can be computed without considering the time-ordering. Note, however,
that the exact time-ordered propagator can only be obtained in the limit of an infinitesimal time step
(i.e., At — 0).

Recently, various algorithms [68,93,94] have been developed for the numerical construction of
the time propagation of TDKS equation [6], which may also be adopted for the time propagation of
RT-TAO equation.

In short, it takes the following key steps to run an RT-TAO-DFT calculation for describing the
time evolution of the electron density following a perturbation:

e Construct the initial one-electron density matrix P(0) (see Eq. (56)) and the initial RT-TAO matrix
F(0) (see Eq. (57)) for the GS of the unperturbed physical system at time ¢+ = 0, using TAO-DFT
(i.e., the respective GS theory).

¢ Apply the TD field to the physical system for t > 0, and propagate the one-electron density
matrix P(t) and the RT-TAO matrix F(t) in the time domain, according to the RT-TAO equation
(given by the matrix representation, e.g., see Eq. (55)).

e Post-process the resulting TD observables (electron density, dipole moment, etc.).

4. HHG spectra from RT-TAO-DFT

HHG from an electronic system (e.g., an atom or molecule) is a nonlinear optical process driven by
an intense laser pulse, wherein the laser frequency can be converted into its integer multiples [51-68].
HHG has recently attracted much attention, since it can be used to explore the structure and dynamics
of electronic systems and chemical reactions on a femtosecond timescale. In addition, HHG can be
employed to generate attosecond pulse trains as well as individual attosecond pulses [53,54].

HHG can be qualitatively described by the semiclassical three-step model [51,52]. First, an electron
tunnels out from an electronic system in an intense laser field (i.e., tunnel ionization). Second, the
electron is driven away from or back to the parent ion by the laser field. Finally, the electron recombines
with the parent ion, emitting a high-energy photon.

In this work, we perform RT-TAO-DFT calculations to explicitly obtain the HHG spectra and
related TD properties of molecular hydrogen Hj at the equilibrium and stretched geometries:
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¢ Hj with an equilibrium bond length of 1.45 bohr (= 0.767 A).
¢ H, with a stretched bond length of 3.78 bohr (=~ 2.00 A).

Here, the nuclei of H, are positioned along the z-axis (i.e., the laser polarization) with the center of
mass being located at the origin.

To obtain the HHG spectrum, the electronic system Hj, which starts from the GS at time ¢ = 0,
experiences an intense laser pulse for t > 0. In order to mimic the commonly used Ti:sapphire laser
[95], the strong-field interaction is generated by a laser pulse with an oscillating electric field linearly
polarized along the z-axis (see Figure 1):

T
Dpaser (1, ) = 2A( cos? {za(t - (Tp):| cos[wy(t — op)]. (64)
p
Here, the interaction with the electric field is treated in the dipole approximation and the length gauge
[96]. The electric-field amplitude of the laser pulse Ag = 0.0534 a.u. (corresponding to the peak intensity
Iy ~ 1 x 10 W/cm?), the laser frequency (also called the fundamental frequency) wy = 1.5498 eV

(corresponding to the wavelength Ay ~ 800 nm), and ¢}, = 500 a.u. (~ 12.1 fs) are adopted.

0.06

0.04

0.02

0

—0.02

Electric Field (a.u.)

—0.04

—0.06 | | | |
0 200 400 600 800 1000

Time (a.u.)
Figure 1. Electric field of the laser pulse adopted.

In the HHG process, the electron released by tunnel ionization can travel far away from the
center of the electronic system Hj. To capture strong-field ionization process and to remove artificial
reflections induced by the finite extent of Gaussian basis set (which will be adopted to describe the
TAO / RT-TAO orbitals), a complex absorbing potential (CAP) [68], —ivcap(r), is also employed for
t > 0. For an electronic system consisting of N4 atoms, the CAP function vcap(r) is defined as the
minimum of the values of the atom-centered spherical absorbing potentials:

UCAP(r) = mil‘l{gl(l'),...,gNA (1‘)} (65)
Here, g;(r) is a spherical absorbing potential around the I-th nucleus:

0, for |r—Ry| <rp
g1(r) =< n(jr—Ry| —19)% for ry<|r—Rf| <79+ /Vimax/7 (66)
Vimax, for 1o+ +/ Vmax/’? < |I‘ - RI|
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for I =1, ..., N4, where R;j is the position of the I-th nucleus. The cutoff radius r¢ should be small
enough to interact with the electron density (because the space extended by the Gaussian basis set
is finite), while it should be large enough to not overly perturb the original electronic system. Here,
we adopt the cutoff radius ry = 9.524 bohr (= 5.040 A), the curvature 1 = 4.0 hartree/bohr?, and the
maximum potential value Vimax = 10 hartree.

To sum up, in the present HHG study, the RT-TAQ effective one-electron Hamiltonian /5(r, t) (see
Eq. (47)) is given by

~ R(x, 1), for t<0
_ ) h = 7
hs(x, ) { RO(x,t) + Vpaser (1, ) — ivcap(r), for >0 67)

where 19 (r, t) is the field-free RT-TAO effective one-electron Hamiltonian, vjaee, (1, t) (see Eq. (64)) is
the strong-field interaction, and —ivcap(r) (see Eq. (65)) is the CAP.

To propagate the one-electron density matrix P(t) in the time domain, we adopt a time step of At
=0.02 a.u. (= 0.484 as) and a total propagation time of T = 1000 a.u. (= 24.1 fs), which corresponds to a
total of 5 x 10* time steps. The modified mid-point unitary transformation (MMUT) algorithm [93,94]
is employed for the numerical time propagation of P(t). As the use of the CAP breaks the conservation
of the norm of the RT-TAO orbitals, the time propagation is no longer unitary [68].

Following sufficient time propagation, the TD one-electron density matrix P(t) is determined,
and the TD density p(r, t) is given by Eq. (52), yielding various TD properties. While the RT-TAO
orbital occupation numbers, which are the same as the GS TOONS {f;}, are time-independent, the
norm of the RT-TAO orbitals can decrease with time t due to the CAP. To describe electron ionization,
the number of bound electrons is computed using

Not) = [drp(nt) = [dr ¥ flgin ) = Te(P(1)}. (68)
]

Besides, the induced dipole moment along the laser polarization (i.e., the z-axis) is calculated by

u(t) =— /dr zp(x, t). (69)
Accordingly, the HHG spectrum can be computed using [9,97]
_ Pu(t) ot
H(w) = 271‘/0 dtwir (1) E et (70)

where the HHG spectrum has been smoothed using the Hamming window function
27t
wi(t) = 0.54 — 0.46 cos( %) (71)

to reduce the numerical noise. In the HHG spectrum, the harmonic order is defined as w/wy, with wy
being the fundamental frequency (see Eq. (64)).

Here, we present the approximations made in the RT-TAO-DFT calculations, the computational

details, and the numerical results. As the exact TD xcf potential vyqg(r,t) = 52;(719? (see Eq. (46))

remains unknown, approximations to vy« (r, t) are necessary for practical RI-TAO-DFT calculations.
While the exact vy(r, t) formally depends on the density p(r, ) at all previous times t' < ¢, in this
study, we make the adiabatic approximation:

che(l‘, t) ~ M ’ (72)

() |p(r)=p(r.)
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where the TD xc6 potential v,(r, f) is approximated by the GS xcf potential 5§;C(9r[)p] (see Eq. (6))
evaluated at the instantaneous density p(r, t). In the adiabatic approximation, since the exact xcé
energy functional E,.[p] also remains unknown, a DFA to E,[p] should be made as well. In this
work, we adopt the LDA (i.e., the simplest DFA) xcf energy functional ELDA[o] = ELDA[p] 4+ EFPA[p],
with ELPA[p] being the LDA xc energy functional [11,12] and EJP[p] being the LDA §-dependent
energy functional [29]. For brevity, RT-TAO-DFT with the adiabatic LDA xcf potential is denoted
as RT-TAO-ALDA. At time t = 0, the initial state (i.e., the GS of the unperturbed H; with a given
bond length) is obtained with the underlying GS theory, TAO-LDA (i.e., TAO-DFT with the LDA xcf
energy functional ELDA[p]) [29]. Note that RT-TAO-ALDA (with 6 = 0) corresponds to TD-ALDA
(i.e., conventional TD-DFT with the adiabatic LDA xc potential) [7-9], and its underlying GS theory,
TAO-LDA (with 6 = 0) corresponds to KS-LDA (i.e., KS-DFT with the LDA xc energy functional
EXPAp]) [11,12].

In this study, we also investigate the possible spin-symmetry breaking effects in the TD properties,
in analogy to the GS counterparts [3,4,29,88]. At time t = 0, the initial state (i.e., the GS of the
unperturbed H, with a given bond length) is a singlet state, and hence, the initial up-spin and
down-spin densities obtained with an exact theory must be the same based on the spin-symmetry
constraint [3,4,29,88]. Besides, for t > 0, since the TD external potential adopted is spin-independent
(see Eq. (67)), the up-spin and down-spin densities, which are equally propagated in the time domain,
must be the same at any subsequent time ¢ [98]. Therefore, the TD properties (which depend on the TD
spin densities) of Hj obtained with the spin-unrestricted formalism must be identical to those obtained
with the spin-restricted formalism.

To examine whether this spin-symmetry constraint can be satisfied by RI-TAO-ALDA, we perform
spin-restricted and spin-unrestricted RT-TAO-ALDA (with 6 =0, 7, 20, and 40 mhartree) calculations
for the TD properties, such as the number of bound electrons, induced dipole moment, and HHG
spectrum, of Hj at the equilibrium and stretched geometries (aligned along the polarization of an
intense linearly polarized laser pulse), using the d-aug-cc-pVTZ basis set and a high-quality grid
EML(99,590), containing 99 Euler-Maclaurin radial grid points and 590 Lebedev angular grid points.
For the special case of § = 0, RT-TAO-ALDA reduces to TD-ALDA. All numerical results are obtained
with a development version of Q-Chem 5.4 [99].

Since the GS of the unperturbed H, with an equilibrium bond length of 1.45 bohr exhibits mainly
SR character, the spin-symmetry constraint can be satisfied by spin-unrestricted TAO-LDA (with
0 =0, 7, 20, and 40 mhartree) [29], producing the same up-spin and down-spin densities at time
t = 0. In addition, for t > 0, owing to the use of a TD spin-independent external potential, the
up-spin and down-spin densities, which are equally propagated in the time domain, should be the
same at any subsequent time ¢ [98]. Therefore, the TD properties, such as the number of bound
electrons (see Figure 2), induced dipole moment (see Figure 3), and HHG spectrum (see Figure 4), of
H; with an equilibrium bond length of 1.45 bohr, obtained with spin-restricted and spin-unrestricted
RT-TAO-ALDA (with 6 =0, 7, 20, and 40 mhartree) are essentially the same (i.e., within the numerical
precision considered).

On the other hand, the GS of the unperturbed H; with a stretched bond length of 3.78 bohr
exhibits a noticeable MR character [29], and hence, the spin-symmetry constraint is violated with
spin-unrestricted KS-LDA (i.e., TAO-LDA with 6 = 0), producing symmetry-broken spin densities at
time t = 0. In this situation, even when a TD spin-independent external potential is applied to the
initial state (i.e., a spin-symmetry-broken GS) for t > 0, the TD effective one-electron potentials
can be spin-dependent, and hence, the up-spin and down-spin densities, which are unequally
propagated in the time domain, can be very different at any subsequent time t. As shown, the
TD properties, such as the number of bound electrons (see Figure 5), induced dipole moment (see
Figure 6), and HHG spectrum (see Figure 7), of H, with a stretched bond length of 3.78 bohr, obtained
with spin-restricted and spin-unrestricted TD-ALDA (i.e., RT-TAO-ALDA with 6 = 0) are distinctly
different, yielding unphysical spin-symmetry breaking effects in all the TD properties examined.
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Such an unphysical spin-symmetry breaking feature of spin-unrestricted TD-ALDA is apparently
undesirable for RT simulations. By contrast, the spin-symmetry breaking effects in the TD properties
obtained with RT-TAO-ALDA are shown to be reducible with the increase of 6, at essentially no
additional computational cost. In particular, the TD properties obtained with spin-restricted and
spin-unrestricted RI-TAO-ALDA (with 6 = 40 mhartree) are essentially the same, yielding essentially
no unphysical spin-symmetry breaking effects in all the TD properties examined. This desirable
feature can be attributed to the satisfaction of spin-symmetry constraint on the singlet GS density of
the stretched Hj by spin-unrestricted TAO-LDA (with 6 = 40 mhartree) [29].
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Figure 2. Number of bound electrons for H, with an equilibrium bond length of 1.45 bohr, obtained
with spin-restricted and spin-unrestricted RT-TAO-ALDA (with various ). Here, the § = 0 case
corresponds to TD-ALDA.
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Figure 3. Induced dipole moment for Hp with an equilibrium bond length of 1.45 bohr, obtained with
spin-restricted and spin-unrestricted RT-TAO-ALDA (with various 6). Here, the 6 = 0 case corresponds to

TD-ALDA.
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Figure 4. HHG spectrum for Hp with an equilibrium bond length of 1.45 bohr, obtained with spin-restricted

and spin-unrestricted RT-TAO-ALDA (with various 6). Here, the 8 = 0 case corresponds to TD-ALDA.
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Figure 5. Number of bound electrons for H; with a stretched bond length of 3.78 bohr, obtained with

spin-restricted and spin-unrestricted RT-TAO-ALDA (with various 6). Here, the 6 = 0 case corresponds to
TD-ALDA.
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spin-restricted and spin-unrestricted RT-TAO-ALDA (with various 6). Here, the § = 0 case corresponds to
TD-ALDA.
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Figure 7. HHG spectrum for H, with a stretched bond length of 3.78 bohr, obtained with spin-restricted
and spin-unrestricted RT-TAO-ALDA (with various ). Here, the 6 = 0 case corresponds to TD-ALDA.

5. Conclusions

In conclusion, we have developed RT-TAO-DFT (i.e., an RT extension of TAO-DFT [29]), allowing
the study of TD properties of both SR and MR systems. By resorting to an ensemble formalism,
RT-TAO-DFT has resolved the aforementioned inconsistency of TDTAO-DFT (especially for 6 # 0)
[50]. Since the assumption of a weak perturbation is not required in RT-TAO-DFT, spin-restricted
and spin-unrestricted RT-TAO-DFT (with various ) calculations have been performed to explore the
TD properties (e.g., the number of bound electrons, induced dipole moment, and HHG spectrum) of
H, at the equilibrium and stretched geometries, aligned along the polarization of an intense linearly
polarized laser pulse. The TD properties obtained with RT-TAO-DFT (with various 0) have been
compared with those obtained with conventional TD-DFT [6], which corresponds to RT-TAO-DFT
(with 8 = 0). Moreover, issues related to the possible spin-symmetry breaking effects in the TD
properties are also discussed.
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