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Article

Thermoreversible Gelation with Supramolecularly
Polymerized Cross-Link Junctions

Fumihiko Tanaka

Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura,

Kyoto 615-8510, Japan; ftanaka@kmj.biglobe.ne.jp

Abstract: Structure and reversibility of cross-link junctions play pivotal roles in determining the

nature of thermoreversible gelation and dynamic mechanical properties of the produced polymer

networks. We attempt to explore new types of sol–gel transitions with mechanical sharpness by

allowing cross-links to grow without upper bound. We consider thermoreversible gelation of the

primary molecules R{A f } carrying the number f of low molecular weight functional groups (gelators)

A. Gelators A are assumed to form supramolecular assemblies. Some examples are: telechelic

polymers ( f = 2) carrying π–π stacking benzene derivatives at their both ends, trifunctional star

molecules ( f = 3) bearing multiple hydrogen-bonding gelators. The sol–gel transition of the primary

molecules becomes sharper with the cooperativity parameter of the stepwise linear growth of the

cross-links. There is a polymerization transition (crossover without singularity) of the junctions

in the postgel region after the gel point is passed. If the gelator A tends to form supramolecular

rings competitively with linear chains, there is another phase transition in the deep postgel region

where the average molecular weight of the rings becomes infinite (Bose-Einstein condensation of

rings). As a typical example of binary cross-links where gelators A and B form mixed junctions,

we specifically consider metal-coordinated binding of ligands A by metal ions B. Two types of

multi-nuclear supramolecular complexes are studied: (i) linear stacking (ladder) of the sandwich

A2B units, (ii) linear train of egg-box A4B units. The average molecular weight, the gel fraction, the

average length of the cross-link junctions are calculated for all of these models as functions of the

functionality f , the concentration of the solute molecules, and temperature. Potential candidates for

the realization of these new types of thermoreversible gelation are discussed.

Keywords: thermoreversible gelation; supramolecular cross-linking; cooperative polymerization;

Bose–Einstein condensation of rings; metal-coordinated supramolecules; ladder junction; egg-box

junction

1. Introduction

Thermoreversible gelation (TRG) in solutions of polymers, as well as of low molecular weight

molecules, has been attracting researcher’s interest [1–7] because of its scientific importance and vast

mechanical and biomedical applications of the produced gels. Many examples of the phase diagrams

with sol–gel transition lines have been reported in the literature. Some original researches, reviews

and conceptual works have appeared with relation to responsive gels [8–12], hydrogels for biomedical

applications [6,7,13], and hydrogen-bonding and π-functional supramolecular gelators [14–19]. The

use of weak non-covalent interactions for cross-linking with self-assembly processes in synthetic

systems to realize complex multicomponent reversible materials promises possible new attractive

functionalities as adhesives, gelators, batteries, anti-fouling coatings, and regenerative medicines.

Specific examples of non-covalent interactions utilized are metal–ligand interactions, multiple

hydrogen bonding, π-π stacking, host-guest inclusion interactions, and electrostatic interactions.

Most of the researches so far have, however, been concerned on the cross-links of polymers that

are confined in small spatial regions. For instance, hydrogen-bonding cross-links are mostly formed

by complementary pair of functional groups attached on the primary molecules. Metal-coordinated

cross-links are formed by stoichiometric complexes of metal ions and ligands. The cross-linking
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regions of these interactions are spatially localized in small regions. In contrast, micellar cross-links

of hydrophobic short chains, as seen in hydrophobically-modified water-soluble polymers [20–26]

(associating polymers), have intermediate size (several tens of hydrophobic groups), but their stable

size has an upper limit.

In this paper, we eliminate such restriction on the number of functional groups in a cross-link

junction (referred to as cross-link multiplicity k), and study TRG with cross-links that can grow without

upper bound, such as seen in supramolecular assembly. The specific systems we consider are functional

groups (gelators) incorporated within macromolecular structures in several different ways such as, at

polymer chain ends, at the termini of the arms of combs/brushes, or within the polymer main chain.

They form supramolecular assemblies such as twisted chain (zig-zag array of hydrogen bonds), rings

of fibrillar random coils [27–30], ladders, and egg-boxes. The polymer architecture and number of

gelator units per polymer chain (referred to as the functionality f ) are also adjusted to afford stable

supramolecular gels to permit multiple sites of association per polymer chain.

Specific examples of such functional polymers are: hydrogen-bonding polyacrylates with

side chains functionalized by ureidopyrimidone (UPy), or adenine-thymine functionalised

polymethacrylate co-polymerised with polybutacrylate [29,30], telechelic polysiloxanes endcapped

with UPy used as an adhesive, or telechelic poly(isobutylene) with aminoacid residues used [31],

telechelic macromonomers forming metal-ligand supramolecular complexes [32–35]. Combination

of the conventional covalent bonding with macrocycle-based host-guest interactions [36] is another

powerful method to realize supramolecular polymer networks.

2. Theoretical Method

The model solution we consider is an associating solution in which the number N of reactive

(associative) molecules with degree of polymerization n (denoted by R{A f }) are dissolved in the

number N0 of solvent molecules (S). We refer to the solution as R{A f }/ S. Molecules can be any type,

such as high molecular weight linear polymers, star polymers, or low molecular weight polyfunctional

molecules, etc. Each molecule carries the number f of functional groups A which can form interchain

cross-links made up of variable number k of A-groups (multiplicity k) [4,37–39].

In this paper, we specifically consider low-mass gelators as the functional groups A which

are capable of forming supramolecular assembly without upper bound of the multiplicity k.

Some examples of such reactive molecules are telechelic polymers ( f = 2) carrying multiple

hydrogen-bonding gelators (oil gelators) [29,30], or carrying π–π stacking benzene derivatives [17], at

their both chain ends, trifunctional star molecules ( f = 3) bearing multiple hydrogen-bonding gelators

at their arm ends []. In the solutions of such reactive molecules, self-association of functional groups A

takes place.

In contrast to such self-association, we can consider supramolecular assembly consisting of

complementary functional groups A and B. Gelation phenomena in such solutions with mixed

cross-link junctions can be observed in the mixed solutions R{A f }/R{Bg}/S. To study the nature

of TRG with supramolecular binary cross-link junctions, we consider metal-coordinated binding of

ligands A by metal ions B. The functionality of a metal ion is regarded as g = 1. We study two types of

multi-nuclear coordinate complexes with metal ions: (i) linear stacking (ladder) of sandwich units A2B,

(ii) linear train of egg-box units A4B.

2.1. Self-Association

Let us start from the self-association. We are based on the lattice-theoretical picture of polymer

solutions [40,41], and divide the system volume V into cells of size a of the solvent molecule, each

of which is assumed to accommodate a statistical repeat unit of the reactive molecules. The volume

of a reactive molecule is then given by n, and that of a solvent molecule is n0 ≡ 1 in the unit of the

cell volume. We assume incompressibility of the solution, so that we have Ω = nN + N0 for the total

volume. The volume fraction of each component is then given by φ = nN/Ω for the reactive molecule,
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φ0 = N0/Ω for the solvent. In terms of the functional groups, the number concentration of A-groups

on the reactive molecules is ψ = f φ/n.

In our previous work [39,42], we studied TRG and phase separation in solutions of functional

molecules with unary (self) cross-linking. We started from the equilibrium condition

nk

n1
k
= Kk(T) (2.1)

for the number concentration nk of the cross-link junctions of multiplicity k. Here, Kk(T) is the

equilibrium constant of the cross-linking reaction, and n1 is the concentration of the free A groups. Let

pk be the probability for an arbitrarily chosen A group to belong to a cross-link junction of multiplicity

k (conventinally referred to as equilibrium conversion). Then, we have the relation

ψpk = knk (2.2)

because there are k of A groups in a k-junction. The equilibrium condition leads to the relation

ψpk = kKkzk (2.3)

for the reactivity given in terms of the number concentration of the free groups z ≡ ψp1. From the

normalization condition of pk, we find the conservation law

ψ = zu(z) (2.4)

where

u(z) ≡ ∑
k≥1

kKkzk−1 (2.5)

In what follows, we assume, as in the classical theory of gelation [43–48], that (i) all functional

groups A are equally reactive (principle of equal reactivity), and (ii) three-dimensional cross-linked

polymers take a tree structure; there is no cyclic structure (tree statistics). However, the restriction of

covalent pairwise reaction is eliminated so that we can treat arbitrary multiplicity k with the conversion

pk given by (2.3) in terms of the equilibrium constants [37–39].

To study TRG with such multiple cross-links, we go back to Good’s theory [49–51] of cascade

processes, and introduce the probability generating function (p.g.f.)

W̃(θ) ≡ ∑
m≥1

Wmθm (2.6)

where Wm is the molecular weight distribution of the cross-linked polymers (m-mers), and θ is a

mathematical dummy index to transform it to p.g.f. We then apply cascade analysis of the branching

processes [49], and find the recursion equations

W̃(θ) = θũ(x) f (2.7a)

x = θũ(x) f−1 (2.7b)

for the tree structure, where x is the probability for an arbitrarily chosen unreacted functional group to

belong to the sol part. It is referred to as extinction probability in the cascade theory because it means

the probability that any reacted path starting from an unreacted functional group A does not continue

to infinity. The cascade function ũ(x) is defined by

ũ(x) ≡ ∑
k≥1

pkxk−1 (2.8)
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For TRG for which equilibrium condition (2.3) holds, we have

ũ(x) =
1

ψx ∑
k≥1

kKk(xz)k =
z

ψ
u(xz) =

u(xz)

u(z)
(2.9)

for the cascade function written in terms of the function u(z) for the description of the conservation

law. In the pregel region, we have x = 1 by definition.

On the basis of these cascade equations, we calculate the weight-average molecular weight M̄w

measured in terms of the molecular weight M of the primary molecule [39,42], and find that in the

pregel region it is given by

Pw ≡
M̄w

M
=

1 + κ(z)

1 − f ′κ(z)
(2.10)

where f ′ ≡ f − 1, and

κ(z) ≡ ∑
k≥2

(k − 1)pk =
d ln u(z)

d ln z
(2.11)

is the average branching number of the cross-links. Hence, for the gel point where M̄w diverges, we

have the condition

D(z) ≡ 1 − f ′κ(z) = 0 (2.12)

The average branching number is related to the average multiplicity defined by

µ̄w ≡ ∑
k≥1

kpk (2.13)

through the relation

κ(z) = µ̄w(z)− 1 (2.14)

(For counting the number of reacted paths going out from a cross-link junction, one path coming into

it must be subtracted.)

In the postgel region where the gel point is passed, we must go back to the cascade recursion

relation (2.7b) of the branching process. For the dummy parameter of p.g.f. θ = 1, it is an equation

x = ũ(x) f ′ (2.15)

Detailed discussion of this equation is given in the paper by Gordon [49] and Good [50,51]. Fukui and

Yamabe [37] also derived the same equation by applying the method of steepest descent to find the

molecular weight distribution in the postgel region from p.g.f. For the pairwise reaction as seen in

covalent cross-linking, this equation is reduced to Flory’s postgel treatment. For TRG, the equation to

find the extinction probability x can be transformed to

H(x) ≡ x1/ f ′u(z)− u(xz) = 0 (2.16)

It has a solution x1 (0 < x1 < 1) apart from the trivial solution x = 1. Because x1 has the physical

meaning of the probability for an arbitrarily chosen unreacted (free) A group to belong to the sol part,

the weight fraction of the sol part Wsol = W̃(θ = 1) is given by

Wsol = W̃(θ = 1) = x1ũ(x1) = x1
f / f ′ (2.17)

from the first equation (2.7a). Then the gel fraction is given by

Wgel = 1 − Wsol = 1 − x1
f / f ′ (2.18)
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Similarly, the weight-average molecular weight of the sol part is found to be

P
(s)
w =

1 + κ(x1z)

1 − f ′κ(x1z)
(2.19)

Therefore, in the postgel region, we have only to replace z by x1z to find the average quantities referring

to the sol part. While the total average multiplicity of the cross-link junctions is

µ̄w = κ(z) + 1 (2.20)

by definition, the average multiplicity of cross-link junctions in the sol part is

µ̄
(s)
w = κ(x1z) + 1 (2.21)

To summarize, the conservation law (2.4), the gel-point condition (2.12) and the equation for the

extinction (2.16) serve as a complete set for the study of TRG with unary cross-linking as functions of

the given concentration, temperature, and functionality.

Some examples of the supramolecular cross-linking are shown in Figure 1 and Figure 2. In

Figure 1, cross-linked networks consisting of low molecular weight trifunctional molecules are shown.

Functional groups (low-mass gelators) on a molecule are assumed to form either linear chains or rings

of arbitrary length. The multiplicity k of a cross-link junction is therefore equivalent to the length of

chains and rings. In order to apply the conventional tree statistics (cascade theory) for the study of

gelation, we assume all networks take the tree form without forming cycles. Rings considered here

are therefore not the network cycles, but expanded branch points (branch zones). The smallest ring

consists of three reacted functional groups. The molecules bearing more than one reacted functional

groups in a network serve as branch points [52].
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(b) tri-functional molecule

(f = 3)

(c) minimum ring

(k = 3)

ring (k = 6)

chain (k = 16)

(a) network with spramolecular 

chain/ring cross-links  

branch molecule

Figure 1. (a) A network of a tree type consisting of low molecular weight trifunctional ( f = 3) molecules

shown in (b) with cross-link junctions of linear chains and rings. A chain of the length k (dotted line)

is regarded as a connected cross-link junction of multiplicity k. Similarly, each ring of the length k is

regarded as a cross-link junction of multiplicity k in the loop form. There are branching points where

the primary reactive molecules have more than one reacted functional groups. (c) The smallest ring has

the size k = 3.

In Figure 2, networks consisting of telechelic polymers (n >> 1) carrying gelators at their both

ends ( f = 2) are shown. Gelators on a molecule are assumed to form either linear chains or rings of

arbitrary length as in Figure 1. Although physical properties of the formed gels are very different from

those of low-mass trifunctional molecules, the nature of TRG can be studied from a unified theoretical

scheme by properly tuning the functionality f and the molecular weight n.
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network of telechelic polymers with chain/ring cross-links

chain (k = 8)

ring (k = 7)

Figure 2. A network consisting of high molecular weight bifunctional ( f = 2) molecules (telechelic

polymers) with coexisting cross-link junctions of linear chains and rings. Functional groups (low-mass

gelators) are shown by the blue thick rods at the ends of molecules.

2.2. Linear growth of the Cross-Link Junctions

Let us first consider the simplest case of stepwise linear growth without rings. The association of

A groups starts from the nucleation process

J(1) + J(1) ⇋ J(2) :
n2

n1
2
= λ2 (2.22)

where a symbol J(k) means a junction of multiplicity k, nk is their number concentration, and λ2 is the

association constant of the dimerization. The following step is the repetition of

J(k − 1) + J(1) ⇋ J(k) :
nk

n1nk−1
= λk (k = 3, 4, · · · ) (2.23)

with the equilibrium constant λk of the k-th step. The total equilibrium constant is then given by

Kk = λ2λ3 · · · λk (2.24)

In the special case where all stepwise constant is the same (called isodemic association [29]), it is simply

Kk = λk−1 (2.25)

We have already studied TRG and phase separation with such isodemic cross-linking in detail [38].

In the cooperative association, we assume the nucleation process requires highly restricted conditions

leading to a small equilibrium constant λ2 compared to the all subsequent steps. The simplest model

λ2 = σλ with all other constants λk equal to λ has been extensively studied [27–29]. We then have

Kk = σλk−1 (2.26)

with small constant σ (referred to as cooperativity parameter). (For σ larger than 1, the model is referred

to as anti-cooperative associaition [29].)
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This cooperative model with two constants λ and σ can be extended to include variable size s of

the nucleus [] such as

λk = σλ (k = 2, · · · , s − 1), λk = λ (s ≥ k) (2.27)

Also, we can extend this model for the cross-links for which the s-th step is very difficult to go through

compared to others. We then have the equilibrium constants

λk = λ (k 6= s), λs = σλ (2.28)

for such a bottle-neck model. This model may be applied to the chelate effect as seen in metal-coordinated

complex formation.

For the cooperative growth of linear assembly, we have

u(z) = 1 + uC(λz) (2.29)

where the function uC(z) is defined by

uC(z) ≡ σ ∑
k≥2

kzk−1 = σ
z(2 − z)

(1 − z)2
(2.30)

Since the concentration z is always scaled by the factor λ, in what follows we write λz as z. The

conservation law then takes the form

a = zu(z) (2.31)

where

u(z) = 1 + uC(z) =
1 − 2(1 − σ)z + (1 − σ)z2

(1 − z)2
(2.32)

and

a ≡
λ(T) f

n
φ (2.33)

is the scaled concentration of the primary molecules. Because the equilibrium constant λ depends on

the temperature, we have explicitly indicated its temperature dependence. Therefore, as far as TRG is

concerned, the concentration and temperature always appear as a single combined variable λ(T)φ.

Simple differentiation leads to the average branching number

κ(z) =
2σz

(1 − z)[1 − 2(1 − σ)z + (1 − σ)z2]
(2.34)

Its proportionality to the parameter σ leads to a sharp sol–gel transition of a cooperative chain growth.

To see the nature of TRG with cross-links of supramolecular chain growth, we first numerically

solve the three fundamental coupled equations described above. The conservation law (2.31) takes the

form

F(z) ≡ a(1 − z)2 − z{1 − 2(1 − σ)z + (1 − σ)z2} = 0 (2.35)

from which we can find the concentration z = z(a) of unreacted functional groups as a function of

the total concentration a. At the gel point, the condition (2.12) gives the numerical value of z = zg.

Together with the conservation law, we find the gel-point concentration (temperature) is given by

ag =

[

f

n
λ(T)φ

]

g

=
2 f ′σzg

2

(1 − zg)3
(2.36)

In the post-gel region, we have to numerically solve extinction (2.16) for a given z. Because z is a

function of a, we find x1 = x1(a) as a function of the concentration a. Then, the gel fraction Wgel is
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given by (2.18). The reciprocal average length of the cross-links µ̄−1
w (2.13), and the fraction of the

reacted functional groups

WC = 1 − z(a)/a (2.37)

are also calculated.

To capture an entire view of TRG, we show in Figure 3 all of these important observables plotted

as functions of the volume fraction of the primary trifunctional low-mass molecules ( f = 3, n = 6) for

a given association constant λ = 5.0. The cooperativity parameter is fixed at σ = 10−3 as a typical

example. We see that the transition region of TRG where Pw goes to infinity is very narrow. At the

gel-point concentration φ = φg, the extinction probability x1 deviates from unity, and decreases with

the concentration. The average chain length µ̄w increases with the concentration. At a concentration

above the gel point, just after the gel point is passed, it increases sharply in a narrow concentration

region. This point can be regarded as polymerization point [27,28], although it is not a true phase

transition accompanied by a singularity, but a very sharp crossover change.

volume fraction  φ

P
w

-1
, 
 x

1
, 
 W

g
e

l, 
 μ

w
-1
, 
W

C

σ = 10-3

P
w

-1

P(s)
w

-1

x
1 W

gel

W
C

μ
w

-1

polymerization transition

Figure 3. The reciprocal weight-average molecular weight (red solid lines) P−1
w in the pregel region,

and P
(s)
w

−1
in the postgel region, the gel fraction Wgel (blue broken line), the extinction probability

x1 (red broken line), the reciprocal average chain length µ̄−1
w (black line), and the fraction WC of the

reacted functional groups (green line) plotted against the volume fraction of the primary molecules for

f = 3, n = 6, λ = 5.0. The cooperativity parameter is fixed at σ = 10−3. The sol–gel transition is very

sharp. There is a polymerization point just after the gel point is passed.

To see how TRG depends on the cooperativity of cross-linking, we also plot these properties

in Figure 4 by varying the cooperativity parameter. Figure 4 (a) plots the reciprocal weight-average

molecular weight P−1
w in the pregel region, and that of the sol part P

(s)
w

−1
in the postgel region, together

with the gel fraction Wgel. We can clearly see that TRG becomes sharper and sharper with decrease of σ

(stronger cooperativity). Since the gel fraction rises sharply after the gel point, we expect the dynamic

mechanical modulus of the solution goes up sharply at the gel point, leading to easy experimental

detection of the transition point. Similarly, Figure 4 (b) plots the reciprocal chain length of the cross-link

junctions µ̄−1
w together with the gel fraction Wgel. We can see that polymerization transition also

becomes sharper with decrease of σ.
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W
g

e
l, 
μ

w
-1

σ = 100

f = 3

n = 6

volume fraction  φ

σ = 101

σ = 102

σ = 103

σ = 105

polymerization transition

W
gel

μ
w

-1

volume fraction  φ

P
w

-1
, 
 P

(s
) w

-1
 ,
 W

g
e
l

σ = 101

σ = 102

σ = 103

σ = 100

f = 3

n = 6

σ = 105

(a) (b)

Figure 4. (a) The reciprocal weight-average molecular weight (red solid lines) P−1
w in the pregel region,

and P
(s)
w

−1
in the postgel region, and the gel fraction Wgel (blue broken lines) plotted against the volume

fraction of the primary molecules. (b) The reciprocal average chain length µ̄−1
w (black lines), and the gel

fraction Wgel (blue broken lines) plotted against the volume fraction of the primary molecules, both

for f = 3, n = 6, λ = 5.0. The cooperativity parameter is varied from curve to curve from σ = 100 to

σ = 10−5. Both the sol–gel transition and the polymerization transition become sharper and sharper

with decrease in the cooperativity parameter.

To study TRG near the gel point in more detail, let us expand Pw(z)−1 in the pregel region in

powers of the small deviation of ǫ ≡ (zg − z)/zg. Simple calculation leads to

Pw(z)
−1 ≃

f ′κ(zg)

1 + κ(zg)
κ2(zg)ǫ + O(ǫ2) (2.38)

where

κ2(z) ≡
d ln κ(z)

d ln z
(2.39)

At the gel point, we find

κ2(zg) = 1 +
(1 − σ)(1 − zg)2

f ′σ
≃

1

σ
(for σ << 1) (2.40)

Hence, the amplitude of divergence in Pw becomes smaller in proportional to σ.

2.3. Chain/Ring Supramolecular Cross-Link Junctions

Let us next consider the effect of ring formation. We assume that the functional group A forms

either linear chains with equilibrium constants K
(C)
k , or rings with K

(R)
k (see Figure 1 and Figure 2). We

then have

u(z) = 1 + uC(z) + uR(z) (2.41)

where

uC(z) ≡ ∑
k≥2

kK
(C)
k zk−1 (2.42)

and

uR(z) ≡ ∑
k≥3

kK
(R)
k zk−1 (2.43)
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(A minimum ring has the size k = 3.) The average branching number is then given by

κ(z) ≡
d ln u(z)

d ln z
= WC(z)κC(z) + WR(z)κR(z) (2.44)

where

WC(z) ≡
uC(z)

u(z)
, WR(z) ≡

uR(z)

u(z)
(2.45)

are the weight fraction of chain cross-links and of ring cross-links. Assuming the uniform association

constants λC = λ and λR = µλ, we have

K
(C)
k = σCλk−1 (2.46)

for the chain growth as above. For the ring formation, we have assumed random growth in contrast to

the directional linear growth of chains. If we assume Gaussian chain statistics for the growth, the ring

closure probability [53–56] is proportional to 1/k5/2. Hence we have

K
(R)
k = σR

(µλ)k

k5/2
(2.47)

Scaling the variable z by λ, we have the conservation law in the form (2.31) with

u(z) = 1 + σC
z(2 − z)

(1 − z)2
+

σR

z
Φ(µz; 3/2) (2.48)

where

Φ(z; α) ≡ ∑
k≥3

zk

kα
(2.49)

is essentially Truesdell function [57] of order α. (k = 1, 2 are excluded from the summation.) We then

have

κC(z) =
2

(1 − z)(2 − z)
(2.50)

and

κR(z) =
Φ(µz; 1/2)

Φ(µz; 3/2)
− 1 (2.51)

The concentration z of the unreacted groups is physically limited to the range 0 < z < 1 in the

case of chain growth, and to the range 0 < z < 1/µ in the case of ring growth. If µ < 1, the function

uC(z) goes to infinity before uR(z) does. The cross-links are dominated by the chain formation. TRG

in such cases is essentially similar to the one we studied above. On the contrary, if µ > 1, the function

uR(z) goes to infinity before uC(z) does, and therefore only the region 0 < z < 1/µ is physically

meaningful. At the upper limit

z∗ ≡ 1/µ (2.52)

the function Φ(µz; 3/2) in (2.48) takes a finite value

Φ(1; 3/2) = ζ(3/2)− 1 −
1

23/2
= 1.258 (2.53)

where ζ(3/2) = 2.612 is the numerical value of Rieman’s zeta function at 3/2. In what follows

therefore, we focus on the case µ > 1.
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With increase in the scaled concentration a, the concentration of unreacted functional groups z

takes a unique value as the solution of the conservation law (2.31). The system then reaches the gel

point z = zg where the gel-point condition

D(z) = 1 + uC(z)[1 − f ′κC(z)] + uR(z)[1 − κR(z)] = 0 (2.54)

is fulfilled.

In the postgel region, when a reaches a critical value a∗ given by

a∗ ≡ z∗u(z∗) (2.55)

the total concentration of rings of finite length is fixed at this value because the function Φ(z; 3/2) has a

finite value at µz = 1 but it goes to infinity above this value. We then have a situation similar to the

Bose-Einstein condensation (BEC) of ideal Bose gases. The parameter z plays a role of the activity of an

ideal Bose gas. Above the concentration a > a∗, the concentration of the chain is fixed at a∗C = z∗uC(z
∗),

and that of the finite rings at a∗R = z∗uR(z
∗). Because the summation in uR(z) does not include the

contribution from rings of infinite size k = ∞, the remaining part a − a∗ should be regarded as rings of

infinite size. More precisely, for a system of finite particle number N, the upper limit of the summation

k is bound by the total number of functional groups kmax = f N. Therefore the number of rings with

k = kmax increases to the order N as soon as the concentration a exceeds the critical value a∗, leading

to the finite fraction of the infinite rings. Because the activity is fixed at z = z∗, the fraction of linear

chains is given by WC = a∗C/a, that of finite rings by WR = a∗R/a. As a result, the fraction of infinite

rings by aR
∗
∞ = 1 − a∗/a.

Figure 5 shows some important physical quantities plotted against the association constant λ(T)

for telechelic polymers f = 2, n = 30. Instead of changing the volume fraction φ, we change λ for

tuning the scaled concentration a to cover a wide range of its value. Changing φ with a constant λ

is not enough to cover a range for observing BEC of rings. As an example, parameters are fixed at

σC = 3.000, σR = 0.050, µ = 1.2, and the concentration is fixed at a constant φ = 0.2. In the region of

small λ (high temperature), we have only the sol part. The chain fraction WC is much larger than the

ring fraction WR in this sol region because the former is proportional to z2 while the latter is to z3. At

the gel point, the gel fraction starts to appear and the extinction probability x1 deviates from unity.

The cross-links are dominated by linear chains in the critical regions.

However, as λ increases (temperature is lowered) in the postgel region, chain fraction WC shows a

peak where ring fraction WR starts to increase. Eventually, the solution with mixed sol and gel reaches

the BEC point. At this point the fraction of infinite rings WR∞ starts to appear. It increases sharply

after the BEC point, while chains and finite rings show kinks (discontinuous slopes) and decrease. The

average molecular weight of P
(s)
w of the sol part stays constant in this region.
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Figure 5. Variation of physical properties characteristic to ring/chain competing TRG of telechelic

polymers ( f = 2, n = 30) plotted against the strength λ of the association constant. The reciprocal of

the weight-average molecular weight Pw
−1 (red line) of the three-dimensional cross-linked polymers

in the pregel region, that of the sol parts P
(s)
w

−1
(red line) in the postgel region are shown. In the

postgel region, we also plot gel fraction Wgel (blue broken line), and extinction probability x1 (red

broken line). Fraction of chain cross-links WC (green line), that of ring cross-links WR (green broken

line) are plotted in both regions. The fraction of infinite rings WR∞ (black line) start to appear at deep

point inside the postgel region. The cooperativity parameters are fixed at σC = 3.00, σR = 0.05. In this

model calculation, TRG occurs at log λ = 2.3, while the second transition (BEC of rings) takes place at

log λ = 4.6, deep in the postgel region.

3. Metallo-Supramolecular Cross-Link Junctions

Let us move to TRG with binary supramolecular cross-linking. To study mixed cross-link junctions,

we consider a model polymer solution consisting of two species of reactive molecules, referred to as

R{A f }(A molecule) and R{Bg} (B molecule), in a common solvent S, mostly water, each carrying the

number f of functional groups A, and g of groups B. Let nA be the number of statistical repeat units

on an A molecule, and nB on a B molecule. The molecular weights of them are then MA = M
(A)
0 nA

and MB = M
(B)
0 nB, where M

(A)
0 and M

(B)
0 are the molecular weights of their statistical repeat units.

Let Nα be the number of molecules of the component α in the solution. The volume fraction of

each component is then φA = nANA/Ω for R{A f }, φB = nBNB/Ω for R{Bg}, and φ0 = N0/Ω for the

solvent, where Ω ≡ nANA + nBNB + N0 is the total volume. The number concentration of A groups

and B groups are then given by ψA = f φA/nA and ψB = gφB/nB.

Let us first briefly review our theoretical scheme for the study of TRG with binary cross-linking [39,

42]. For the stepwise reversible formation of the cross-link junctions

k1J(1, 0) + k2J(0, 1) ⇄ J(k1, k2) (3.1)

with the multiplicity type (k1, k2) varied from small ones to larger, we have the equilibrium conditions

ψA pk1,k2
/k1

(ψA p1,0)k1(ψBq0,1)k2
=

ψAqk1,k2
/k1

(ψA p1,0)k1(ψBq0,1)k2
= Kk1,k2

(3.2)
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where pk1,k2
is the probability for an arbitrarily chosen A group to belong to a junction J(k1, k2), and let

qk1,k2
be that for a B group. They are the counterparts of the conventional reactivity of the functional

groups.

We then have

pk1,k2
= p1,0k1Kk1,k2

zA
k1−1zB

k2 (3.3a)

qk1,k2
= q0,1k2Kk1,k2

zA
k1 zB

k2−1 (3.3b)

where

zA ≡ ψA p1,0 zB ≡ ψBq0,1 (3.4)

are the concentration of the free functional groups that remain unreacted in the solution. The

conservation laws are given by

ψA = zAuA(zA, zB) (3.5a)

ψB = zBuB(zA, zB) (3.5b)

where functions uA, uB are defined by

uA(zA, zB) ≡ ∑
k1≥1,k2≥0

k1Kk1,k2
zA

k1−1zB
k2 (3.6a)

uB(zA, zB) ≡ ∑
k1≥0,k2≥1

k2Kk1,k2
zA

k1 zB
k2−1 (3.6b)

in terms of the equilibrium constants. They have physical meanings of the reciprocal unreactivity

uA(zA, zB) = 1/p1,0, uB(zA, zB) = 1/q0,1. The coupled conservation equations must be solved for the

two unknown variables zA, zB as functions of the concentration ψA, ψB given in the preparation stage

of the experiments.

In our previous paper [39,42], we derived the weight-average molecular weight of the

three-dimensional polymers (clusters) connected by cross-links. Under the simplifying assumption

for the molecular weight M
(A)
0 = M

(B)
0 ≡ M0, the result (equation (26) in the literature [42]) of

Pw ≡ M̄w/M0 is

φPw = nAφA + nBφB +
1

D

{

nA
2ψA[κA,A − (g − 1)Dκ ] + nB

2ψB[κB,B − ( f − 1)Dκ ]
}

+
nAnB

D
(ψAκA,B + ψBκB,A) (3.7)

where φ ≡ φA + φB is the total solute volume fraction. Elements of the branching matrix κ̂ are defined

by the logarithmic derivatives

κα,β ≡
∂ ln uα

∂ ln zβ
(3.8)

and Dκ ≡ κA,AκB,B − κA,BκB,A is its determinant. The denominator D in Pw is defined by

D(zA, zB) ≡ 1 − f ′κA,A − g′κB,B + f ′g′Dκ (3.9)

It was referred to as Gordon determinant because it was first presented in his cascade theory of

gelation [49] for the mixtures of multi-component reactive molecules. Abbreviated notations f ′ ≡ f − 1

and g′ ≡ g − 1 have been used since they will frequently appear in the following.

At the gel point, the weight average molecular weight goes to infinity, and hence we have

D(zA, zB) = 0 (3.10)
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for a gel to appear. We have D(zA, zB) > 0 for the pregel region, and D(zA, zB) < 0 for the postgel

region. Materials conservation laws (3.5a) and (3.5b), together with the gel point condition (3.10), leads

to the relation between ψA and ψB, and therefore gives the sol–gel transition line on the ternary phase

plane when parameters zA and zB are eliminated in favor of φA and φB.

In the postgel region where the gel point is passed, we have to find the extinction probabilities x1

and y1, i.e., the probability for an arbitrarily chosen unreacted A, or B, group to belong to the sol part.

They are given by the non-trivial solutions of the coupled equations

HA(x, y) ≡ x1/ f ′uA(zA, zB)− uA(xzA, yzB) = 0 (3.11a)

HB(x, y) ≡ y1/g′uB(zA, zB)− uB(xzA, yzB) = 0 (3.11b)

In what follows in this paper, we focus on the metallo-supramolecular cross-linking [32–35] by

assuming that B molecule is a metal ion. It has functionality g = 1, and of low molecular weight

nB = 1, but can form multiple cross-links. The gel-point condition is simplified to

D(zA, zB) = 1 − f ′κA,A = 0 (3.12)

Obviously, we have only a trivial solution y1 = 1 for y because g′ = 0.

3.1. Ladder Model

The first model of our supramolecular metal-coordinated cross-link junction is a ladder form in

which elementary units of the type J(2, 1) (bridge or sandwich) are piled up one by one in layered

structure (see Figure 6). The first step is to form a sandwich

2J(1, 0) + J(0, 1) ⇋ J(2, 1) :
n2,1

n1,0
2n0,1

= λ1
2 (3.13)

Then, subsequent piling steps follow

J(2k − 2, k − 1) + J(2, 1) ⇋ J(2k, k) :
n2k,k

n2k−2,k−1n2,1
= λ2 (3.14)

The multiplicity index of a ladder junction is specified by

(k1, k2) = (2k, k) (k = 1, 2, · · · ) (3.15)

where k is the number of layers, or equivalently of metal ions, in the cross-links. Let λ1 be the

association constant of an A group within a sandwich unit in (3.13), and let λ2 be the binding constant

between the adjacent layers in (3.14). The equilibrium constant then takes a form

Kk ≡ K2k,k = (λ2
1)

kλ2
k−1 = σ(λ2

1λ2)
k (3.16)

where σ ≡ 1/λ2 plays a role of the cooperativity parameter for ladder formation.
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(a) cross-linker (metal ion)

(b) mononuclear cross-link unit

(c) network with ladder cross-links

ladder (k = 8)

branch molecule

multiplicity index (2,1)

Figure 6. Network structure with cross-link junctions of ladder form made up of trifunctional ( f = 3)

low-mass (n = 6) molecules. (a) Cross-linker (metal ion) is shown by a red sphere. (b) The elementary

unit of a cross-link is a sandwich complex with multiplicty index (2, 1). (c) A network is made up of

ladder cross-links and branch molecules [52] bearing more than one reacted functional groups.

Scaling the concentrations ψA, zA by λ1, and ψB, zB by λ2, we find

pk ≡ p2k,k = 2µkzk/a, qk ≡ q2k,k = kzk/b (3.17)

Then, the conservation laws are transformed to

a = zA + 2µzu(z) (3.18a)

b = zB + zu(z) (3.18b)

where a ≡ λ1ψA and b ≡ λ2ψB are the scaled concentrations,

z ≡ zA
2zB (3.19)

is a combined concentration variable, and

µ ≡ λ1/λ2 (3.20)

is the ratio of the intra- and interlayer association constant. The function u(z) is defined by

u(z) ≡ ∑
k≥1

kzk−1 =
1

(1 − z)2
(3.21)

as in the unary cross-linking.

Solving these equations for zA and zB, and substituting the results into the definition (3.19) of the

variable z, we find a single equation

F(z) ≡ z − {a − 2µzu(z)}2{b − zu(z)} = 0 (3.22)

for z for the conservation law.
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To find the branching matrix, we take logarithmic derivatives of uA and uB. Simple calculation

leads to

κ̂(z) = zu(z)

[

2µ
a {1 + 2κ(z)},

2µ
a {1 + κ(z)}

2
b{1 + κ(z)}, 1

b κ(z)

]

(3.23)

for the κ̂-matrix with

κ(z) ≡
d ln u(z)

d ln z
=

2z

1 − z
(3.24)

The gel-point condition is then given by

D(z) ≡ 1 −
2 f ′µ

a
zu(z){1 + 2κ(z)} = 0 (3.25)

We have numerically solved these equations and constructed phase diagrams showing the sol–gel

transition lines on the ternary phase plane. Figure 7 shows an example of low-mass trifunctional

molecules ( f = 3, n = 6) cross-linked by metal ions (g = 1, nB = 1) in a solvent. The ratio of the

association constants is fixed at µ = 1 while λ is changed from curve to curve. The gel region takes a

dome shape, whose top indicates the optimal mixing ratio of the solute components.

0.5 0.5

0.5

λ =3

6

9

12

15

u
1

u
2

GEL

Figure 7. Ternary phase diagram for the ladder model of low-mass (n = 6) trifunctional ( f = 3)

molecules showing reentrant sol–gel–sol transition (red lines). The association constant λ of the ladder

unit is changed from curve to curve at a constant ratio µ = 1.0. For a given solute volume fraction φ,

there are two composition u1 and u2 for the gel point; the former from sol to gel, and the latter from gel

to sol.

To see the behavior of TRG across the gel region, let us introduce the solute volume fraction

φ ≡ φA + φB, and the mixing ratio (composition) u ≡ φB/φ of the solute molecules. Then we have

a = a1φ(1 − u), b = b1φu (3.26)

where a1 ≡ µλ f /nA and b1 ≡ λg/nB. For the numerical calculation, we fix φ and plot physical

properties as functions of the composition u.

In the postgel region, the extinction probability for a metal ion is y1 = 1 because its functionality

is g = 1, and hence unrected free ions can exist only in the sol part. The extinction probability of a

functional group A should satisfy

H(x) ≡ a(1 − x1/ f ′)− 2µz{u(z)− xu(x2z)} = 0 (3.27)
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By using the non-trivial solution x1 of this equation, fraction of the sol part is calculated to be

Wsol = (1 − u)x1
f / f ′ + uũB(x1, 1) (3.28)

where

ũB(x1, 1) =
1

b

{

b − zu(z) + x1
2zu(x1

2z)
}

(3.29)

The average molecular weight of the clusters in the sol part in the postgel region is given by

P
(s)
w = Pw(x1

2z) (3.30)

where Pw(z) is given by (3.7). The average length of ladders, including both sol- and gel part, is

calculated by the definition

µ̄w = ∑
k≥1

kqk =
1

b
{zB(z) + zu(z)[1 + κ(z)]} (3.31)

Figure 8 shows overviews of the reentrant sol–gel–sol transition of the ladder model for low-mass

trifunctional molecules with (a) µ = 1.0 and (b) µ = 10−4. Excess metal ions brings the solution back

to a sol phase because of the lack of A groups. The average molecular weight P−1
w in the sol region

(u < u1, u2 < u), P
(s)
w

−1
in the gel region (u1 < u < u2), and the gel fraction Wgel, the extinction

probability x1 of the functional group A, the average length µ̄−1
w of the ladder cross-link junctions, are

all plotted as functions of the solute composition u. We can clearly see that TRG becomes sharper with

smaller ratio µ, or equivalently decrease of the cooperative parameter σ.

In the postgel region between the solute composition u1 and u2, the fraction of the gel part shows

a peak at a certain value of u. It is therefore regarded as the optimal ratio for the gel formation. The

extinction x1 takes a minimum value near (but not exactly at) this optimal gel point. The average

length of the ladder junctions also takes a maximum value near this point.
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Figure 8. Reentrant TRG with ladder cross-link junctions for trifunctional ( f = 3) low-mass (nA = 6)

molecules. (a) µ = 1.0, λ = 8.0, (b) µ = 10−4, λ = 5.5 × 10−3. There are a pregel region (u < u1), a

postgel region (u1 < u < u2), and a reentrant sol region (u1 < u). The average molecular weight P−1
w

in the sol region, P
(s)
w

−1
in the gel region, and the gel fraction Wgel, the extinction probability x1 of the

functional group A, the average length µ̄−1
w of the ladder cross-link junctions, all plotted as functions of

the solute composition u. The total solute volume fraction is fixed at φ = 0.3.
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3.2. Egg-Box Model

The second model we consider for supramolecular metal-coordinated cross-link junction is an

egg-box form [58–60] in which elementary units of the type J(4, 1) (egg-box) are piled up one by one in

layered structure (see Figure 9). The nucleation of a egg-box is the process

4J(1, 0) + J(0, 1) ⇋ J(4, 1) :
n4,1

n1,0
4n0,1

= λ1
4 (3.32)

Then, subsequent piling processes follow

J(2k, k − 1) + J(2, 1) ⇋ J(2k + 2, k) :
n2k+2,k

n2k,k−1n2,1
= λ2 (3.33)

The multiplicity index of an eggbox junction is then specified by

(k1, k2) = (2(k + 1), k) (k = 1, 2, · · · ) (3.34)

where k is the number of layers (number of metal ions) in a cross-link. Let λ1 be the association

constant of an A group within an eggbox unit in (3.32), and let λ2 be the binding constant between the

adjacent layers in (3.33). The equilibrium constant then takes a form

Kk ≡ K2(k+1),k = λ1
4(λ1

2λ2)
k−1 = σ(λ2

1λ2)
k (3.35)

where σ ≡ λ1
2/λ2 plays a role of the cooperativity parameter for the egg-box formation. The

reactivities are then given by

ψA pk ≡ ψA p2(k+1),k = 2(k + 1)KkzA
2(zA

2zB)
k (3.36a)

ψBqk ≡ ψBq2(k+1),k = kKkzA
2(zA

2zB)
k (3.36b)

Scaling the concentrations ψA, zA by λ1, and ψB, zB by λ2, we find

pk = 2µ(k + 1)zAzk/a (3.37a)

qk = kzAzk/b (3.37b)

with

µ ≡ λ1/λ2 (3.38)

The conservation laws are transformed to the simple ones

a = zA{1 + 2µzAu0(z)} (3.39a)

b = zB{1 + zA
4u1(z)} (3.39b)

where

z ≡ zA
2zB (3.40)

again, and u functions are defined by

u0(z) ≡ ∑
k≥1

(k + 1)zk−1 =
2 − z

(1 − z)2
(3.41a)

u1(z) ≡ ∑
k≥1

kzk−1 =
1

(1 − z)2
(3.41b)
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We can solve the conservation laws for zA, zB as functions of z. From (3.39b), we have

zB =
b

1 + zA
4u1(z)

(3.42)

Substituting into (3.39a), we find zA satisfies the equation

2µzu0(z)zA
2 + zA − a = 0 (3.43)

Hence

zA = zA(z) ≡
1

4µzu0(z)

{

√

1 + 8aµzu0(z)− 1

}

(3.44)

By the definition (3.40) of z, we have a single equation

F(z) ≡ z −
bzA(z)

2

1 + zA(z)
4u1(z)

= 0 (3.45)

to find a solution of z as a function of the concentrations a, b.

networks of functional molecules with egg-box cross-links

egg-box (k = 3)

(b) telechelic polymers(a) tri-functional molecules

branch molecules

branch molecules

egg-box (k = 7)

egg-box unit (4,1)

Figure 9. Networks formed by egg-box cross-link junctions made up of (a) trifunctional low-mass

( f = 3, nA ∼ 1) molecules, (b) telechelic polymers ( f = 2, nA >> 1). Cross-linkers (metal ions) are

indicated by red spheres. The elementary unit of a cross-link is an egg-box complex with multiplicity

index (4, 1). A network is made up of linear assembly of egg-boxes and branch molecules bearing more

than one reacted functional groups A.

By partial differentiation of the conservation laws, we have for the branching matrix

κ̂(z) = zzA(z)
2

[

2µ
a u0(z){3 + 2κ0(z)},

2µ
a u0(z){1 + κ0(z)}

2
b u1(z){2 + κ1(z)}, 1

b u1(z)κ1(z)

]

(3.46)

with

κ0(z) ≡
d ln u0(z)

d ln z
=

z(3 − z)

(1 − z)(2 − z)
(3.47a)

κ1(z) ≡
d ln u1(z)

d ln z
=

2

1 − z
(3.47b)
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The gel-point condition is then given by

D(z) ≡ 1 − f ′
2µ

a
zA(z)

2zu0(z){3 + 2κ0(z)} = 0 (3.48)

The equation for finding the extinction probability of A groups in the postgel region takes the form

H(x) = a(1 − x1/ f ′)− 2µzA(z)
2z{u0(z)− x3u0(x2z)} = 0 (3.49)

By using the non-trivial solution x1 of this equation, the fraction of the sol part is calculated to be

Wsol = (1 − u)x1
f / f ′ + uũB(x1, 1) (3.50)

where

ũB(x1, 1) =
1 + (x1zA(z))

4u1(x2
1z)

1 + zA(z)4u1(z)
(3.51)

The average molecular weight of the clusters in the sol part is then given by

P
(s)
w (z) = Pw(x1

2z) (3.52)

where Pw(z) is calculated by using (3.7). The average length of egg-boxes, including both sol- and gel

part, is calculated by the definition as

µ̄w = ∑
k≥1

kqk =
1 + zA(z)

4u2(z)

bzA(z)2
(3.53)

with

u2(z) ≡ ∑
k≥1

k2zk−1 =
1 + z

(1 − z)3
(3.54)

Figure 10 shows an overview of the reentrant TRG with metallo-supramolecular egg-box cross-link

junctions for the different ratio of the association constants: (a) µ = 1.0, and (b) µ = 10−4. For a fixed λ,

the ratio µ plays a role of the cooperativity parameter. We can clearly see that both sol–gel and gel–sol

transition become sharper for smaller µ. Though quantitatively different, nature of TRG with egg-box

cross-link junctions essentially similar to that with ladder junctions. In the postgel region between

the solute composition u1 and u2, the fraction of the gel part shows a peak at a certain value of u. It is

therefore regarded as the optimal ratio for the gel formation. The extinction x1 takes a minimum value

near this optimal gel point. The average length of the egg-box junctions also takes a maximum value

near this point.
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Figure 10. Rentrant TRG with egg-box cross-link junctions for telechelic polymers. (a) µ = 1.0, λ = 40

and (b) µ = 10−4, λ = 1.9 × 103. The average molecular weight P−1
w in the sol region (red lines), P

(s)
w

−1

in the gel region (red line), and the gel fraction Wgel (blue broken line), the extinction probability x1 of

the functional group A (red broken line), the average length µ̄−1
w of the egg-box cross-link junctions

(green line), all plotted as functions of the solute composition u. The total solute volume fraction is

fixed at φ = 0.3.

4. Discussion

On the basis of the observed gel points, we can infer the microscopic parameters from macroscopic

measurements. For example, equation (2.36) for the chain model results in

ln φ =
∆H − T∆S

kBT
+ A( f , n, σ) (4.1)

for the gel-point concentration, because the association constant takes a form

λ(T) = exp [−(∆H − T∆S)/kBT] (4.2)

in terms of the enthalpy ∆H(< 0) and entropy ∆S of the binding. The additive part A is a shift constant

A( f , n, σ) ≡ ln

{

2nσ f ′zg
2

f (1 − zg)3

}

(4.3)

which depends only on the functionality and the cooperativity parameter. Therefore, from the

experimental measurements of the gel-point concentration as a function of the temperature by

rheology, for instance, we can obtain the enthalpy of cross-linking as in the conventional Eldridge-Ferry

analysis [61,62]. Still more, by changing the functionality f with other molecular parameters fixed,

information on the cooperativity σ can be obtained.

For the ring closure probability, we applied Gaussian chain statistics, and found it proportional to

∼ 1/k5/2 (including the symmetry number). If the piling of gelators does not obey Gaussian statistics

but obeys the scaling law due to the excluded volume effect, the ring closure probability is proportional

to 1/kτ , where τ = νd + γ − 1. (d = 3 is the space dimensions, ν = 0.6 is the Flory’s exponent [41] of

the radius of gyration of a chain, and γ = 1.13 is the exponent of the total number of self-avoiding

random walks [63].) The exponent τ changes from 2.5 to 2.96, but the nature of the functions Φ(z; τ)

(Φ(z; τ), Φ(z; τ − 1) are finite while Φ(z; τ − 2) is infinite at z = 1) remains the same, so that the

singular behavior of the conservation law remains the same.
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As for the metal-coordinated supramolecular cross-linking, we have used the composition u of

the metal ions. In a usual experiment, however, metal ions are added into the solutions of functional

molecules. The number of metal ions relative to the number of functional groups

R ≡
b

a
=

a1(1 − u)

b1u
(4.4)

is more convenient variable to describe the composition of solute molecules [64,65]. All graphs can

easily be transformed for this purpose by taking R as the horizontal axis.

5. Conclusions

We have presented a very broad theoretical framework for the study of thermoreversible gelation

with cross-link junctions that can grow without upper limit. The nature of the sol–gel transition

with such supramolecularly polymerized cross-link junctions sensitively depends on the structure of

the supramolecules and cooperativity in forming them, as characterized by the stepwise association

constants. As frequently observed examples, we have presented four fundamental types: (i) linear

(zigzag) array and ring formation in one-component cross-linking, (ii) ladder complex and egg-box

complex in binary cross-linking. For each of them, the nature of its thermoreversible gelation is

summarized in a single unified graph in which variations of the important physical quantities

are plotted against either the concentration or the temperature. In particular, it is shown that the

cooperativity of supramolecular formation plays a crucial role for exhibiting a sharp sol–gel transition.

From the results of the model calculation, the following conclusions can be drawn:

(1) Chain Model: In addition to the sol–gel transition, there occurs a polymerization transition at a

certain concentration just after the gel point is passed under a fixed temperature. The transition

is not a true phase transition in the sense that it is not accompanied by any singularity in

the physical properties. In particular, the average chain length grows to infinity only in the

inaccessible limit of complete reaction. However, its variation becomes sharper and sharper with

the cooperativity parameter, leading eventually to a singularity at finite reactivity. The increasing

sharpness of the sol–gel transition with cooperativity parameter, in particular sharp rise of the

gel fraction, makes the experimental detection of the gel point easier.
(2) Chain/Ring Model: Under a certain simple condition on the association constants, a new phase

transition occurs at a low temperature (large λ) deep in the postgel region, where the average

length of rings goes to infinity. There appears a discontinuity in the physical properties at

this condensation point of rings. The average molecular weight of the cross-linked polymers,

the extinction probability, and the gel fraction all stay constant below this temperature. The

transition is analogous to the Bose-Einstein condensation of an ideal Bose gas where finite fraction

of particles falls into the condensate of zero momentum.
(3) Ladder Model: A ladder is one of the simplest structures of multi-nuclear metal-coordinated

complexes. As a function of the composition u of metal ions, there occur two transitions:

one from sol to gel at a low value u1, and the other from gel back to sol at a higher value

u2 (reentrant gel–sol transition). In the gel phase between them, there is a composition u at

which the gel fraction reaches a maximum (optimal gel point). The average length of the ladder

increases around this optimal gel point, but is limited within a finite value, and hence there is

no polymerization transition. The ratio µ between the intra-layer association constant and the

inter-layer one plays a role of the cooperativity parameter. The transitions become sharper with

its decrease.
(4) Egg-Box Model: Overall variation of physical observables is the same as the ladder model,

although there are some quantitative differences. For instance, the gel fraction becomes

asymmetric in the postgel region.
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The model solutions proposed in this study have obvious advantages in finding the microscopic

parameters regarding the cross-linking reaction, such as association constants, cooperativity parameter,

and cross-link multiplicity, etc, from macroscopic measurements on the gelation concentration, or

temperature. Thus, supramolecular polymerization is incorporated into the conventional framework

of the thermoreversible gelation to have a unified picture of polymer chemistry and supramolecular

chemistry. We hope detailed experimental data on thermoreversible gelation with supramolecular

cross-link junctions as treated here will be reported in the near future.
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