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Abstract: Drone navigation is critical, particularly during the initial and final phases, such as the
initial ascension, where pilots may fail due to strong external disturbances that could lead to a crash.
In this ongoing work, a drone has been successfully trained to perform an ascent of up to 6 meters
with external disturbances simulating wind pushing it up to 24 mph, with the DQN algorithm
managing external forces affecting the system. It has been demonstrated that the system can control
its height, position, and stability in all three axes (roll, pitch, and yaw) throughout the process. The
learning process is carried out in the Gazebo simulator, which emulates interferences, while ROS is
used to communicate with the agent.

Keywords: machine learning; DQN; gazebo; navigation

1. Introduction

One of the main problems when carrying out a flight with a drone is to be successful in the
initial ascension maneuver since these are the most critical phases in a flight, whether manned or
not, and where adverse conditions as external disturbances can act more unpredictably, being able to
generate accidents when executing these maneuvers. Neural Networks have proven useful to solve
and improve flight control tasks. Therefore, in this work, and through the use of Artificial Intelligence,
a vertical ascension of a UAV in adverse conditions is performed while using Reinforcement Learning
[1] and the Deep Q-Network (DQN) algorithm [2].

Although external forces can severely affect the trajectory of a drone’s initial lift and stability, this
disturbance is often not considered in training sessions carried out in simulators. For this reason, an
external disturbance system was implemented in the Gazebo simulator [3] to be able to carry out the
drone training.

For this, a drone was trained with the aim of reaching a certain height of 6 meters inside the
simulator. Six meters is a distance that can be considered sufficient in a vertical elevation of a drone
to observe how the UAV is affected by external disturbances and to train it with a sufficiently wide
sample.

Reinforcement learning was used for the elevation maneuver, employing the DQN algorithm so
that it was able to find the best solution while it was being affected by these external forces, based on
the knowledge that it acquired during the initial exploration in its training.

For this, the reward function [4] was tuned, which would model the behavior of the drone in
order to reduce both the oscillation in the orientation and to be able to increase its stability, as well as
for its position when taking off. We needed to reward the agent positively or negatively to promote a
behavior that optimized the ascension maneuver under these conditions.

This work has demonstrated how a drone can face adverse conditions, such as coping with
external disturbances while performing a vertical elevation by using DQN, and how, throughout the
training, it has been able to increase its stability against external wind forces of up to 24 mph speed.

2. Background

Flight control with an autonomous vehicle is a complex task. One of the main reasons is the
limitations in sensor technology that lead to problems when measuring wind turbulence [5]. To build
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an accurate model within a simulated real-world environment, it is essential to employ a paradigm
capable of handling continuous control tasks, such as Reinforcement Learning. This learning method
does not make any preconceived assumptions about the dynamics of the aircraft or the environmental
conditions. Therefore, it is capable of creating optimal control policies.

However, not all reinforcement learning approaches are equally helpful when facing a non-discrete
environment. Within reinforcement learning, some algorithms obtain the best results when performing
actions in a manageable environment, but become useless when trying to perform a discretization
of a real environment, since it faces the problem known as “Curse of dimensionality” [6]. In other
words, when we face a simulation of a real and continuous environment, such as a vertical lift with
unpredictable forces applied, the dimensionality of the possible states becomes so large that it is almost
impossible for the model to identify or correlate any patterns.

Additional research has introduced an innovative adaptive neural network (NN)
zeta-backstepping control method tailored for uncertain nonlinear systems, facilitating the
damping ratio adjustment. This method incorporates a second-order Lyapunov function to ensure
system stability [7]. In addition to this, alternative control strategies, including an observer-based
adaptive fuzzy finite-time attitude control for UAV maneuvering, have been developed [8].

Furthermore, certain proposals advocate for sliding mode-based control systems, specifically
employing the Proportional Integral Derivative sliding surface control with backstepping (hybrid
control). This approach aims to enhance quadcopter flight tracking performance during take-off and
soft landing in challenging environmental conditions characterized by disruptions and strong winds
[9].

Lastly, robust adaptive control has demonstrated its effectiveness and remains a viable solution. It
continues to be employed, featuring adaptive control schemes designed to tackle uncertain parameters
[10].

Regarding the use of artificial intelligence, some authors have made recent use of machine learning
to predict future disturbances by comparing prediction accuracy [11] between a KNN algorithm
(K-closest neighbor) and an LSTM (long-term memory) network. Other authors explore different
methods for attitude control [11] by using the PPO2 algorithm [12] (Reinforcement algorithm within
the category policy optimization), and synthesizing the neural network on a physical controller,
significantly reducing the reality gap (jump between the simulator and the real world).

On the other hand, authors have used Deep reinforcement learning along with visual hardware
input implementations (cameras) and ground markers to locate the drone in space through the camera
and ease maneuvers [13]. For this, they have used markers on the ground to guarantee a straight
vertical elevation, using the camera as an input sensor to verify the correct performance. After that,
they check the efficiency of 3 algorithms in the same maneuver: DQN, Double DQN, and Dueling
DON.

Lastly, several authors [14] propose solutions for obstacle avoidance in the AirSim environment
[15]. As for external disturbances implementations, some experiments use Deep reinforcement learning
strategies to land a drone in a moving platform while being pushed by an always front-facing force
[16] and ultimately use the camera to recognize the platform and approach it.

However, most of these experiments in the field of Al have been conducted in environments free
of external disturbances, and those that have taken such forces into account have only addressed the
problem of landing with a consistent and unidirectional external force. In the experiments that were
analyzed as state-of-the-art, the external disturbance exerted a constant force and originated from
virtually the same direction, resulting in no unpredictable conditions encountered by the agent.

This work aims to introduce a neural network capable of coping with erratic external disturbances
in terms of intensity, duration, and direction, all within the simulator during a vertical elevation. This
would present a challenge in training from the very first episode and ultimately enable the formation
of a drone model capable of responding to these situations in a real environment as they might occur.
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For this, our methodology encompasses several key steps. First, we present the mathematical
model of a quadcopter. Subsequently, we create a simulated environment using ROS (Robot Operating
System) and Gazebo to replicate real-world conditions. We model wind effects to challenge the take-off
maneuver to introduce additional complexity. For the control and adaptation of the quadcopter in the
face of these external forces, we employ a reinforcement learning algorithm, specifically DON (Deep
Q-Network), chosen for its capability to handle dynamic environments. We then initiate training,
continually refining the reward function until convergence is achieved, ensuring a successful take-off
at a height of 6 meters. Finally, we present the observations gleaned from this training process and
discuss the conclusions derived from our experimentation.

3. Mathematical Modeling of Quadcopter Dynamics

The quadcopter is assumed to be a rigid body, allowing the use of the Newton-Euler equations
to describe its dynamics [17]. If we consider a body-fixed frame, in the absence of any external
disturbances, the forces required for the acceleration of mass mVp and the centrifugal force v x (mVp)
are equal to gravity RTG and the total thrust of the rotors Tg:

mVg 4+ v x (mVg) = RTG + Tp (1)

In the inertial frame, the centrifugal force is nullified. Thus, only the gravitational force and the
magnitude and direction of the thrust contribute to the acceleration of the quadcopter:

m¢ =G + RTg 2)

Where ¢ = [xyz] and G is the gravity vector. This model is only suitable for ideal conditions,
where external disturbances are not considered. One of the most relevant disturbances is the
aerodynamic drag effect. Drag force is defined by the well-known relation:

D= %vaSCD, (3)
where p is the air density, v is the aerodynamic speed, S is the lifting body surface, and Cp the
coefficient of drag. To consider these effects, and additional term must be added to Equation 2:

mé = G+ RTg — QSAp, 4)
where Ap is a diagonal matrix containing the drag force coefficients (Cp,, Cp,,Cp,), and Q = % plxyz)T
is a vector denoting dynamic pressure. A more detailed description of this aerodynamic model
implementation can be found in the literature [18].

In the body frame, the angular acceleration of the inertia Iv, the centripetal forces v x (Iv), and
the gyroscopic forces I' are equal to the external torque T:

I+ox (Iv)+T =7 (5)

The angular accelerations in the inertial frame are obtained from the body frame accelerations
using the inverse transformation matrix W1 and its time derivative:

d d
= W) v= (W) + Wy (4) ©)

Where 77 = [¢ 0 ¢]T are the Euler angles, v are the angular velocities, and W is the transformation
matrix.
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4. Methodology

Once the mathematical model has been briefly described, we will develop a methodology to train,
test and evaluate the algorithm. The proposed goal was to achieve a vertical elevation up to 6 meters
high and maintain the drone stable in its vertical rise while experiencing external disturbances of up to
24 mph speed.

4.1. Possible actions

The first step is to define the actions that can be carried out by the drone. By collectively or
individually increasing or decreasing the angular velocity of each of the four rotors, the quadcopter is
capable of performing a total of 8 actions, including: going up, going down, Yaw +, Yaw -, Pitch +,
Pitch -, Roll +, and Roll -. Video showing the possible actions to perform

4.2. Environment

After defining the actions, we have to set up the simulation environment. We started using Ubuntu
on a clean machine. For the communication with the agent that trains in the Gazebo environment we
employed Mavros [19], a package that allowed us to either publish (send) or subscribe (receive) orders
or topics to the PX4 [20] flight controller that our agent incorporated.

Initially, the quadcopter is loaded in the Gazebo environment in its initial state. A random wind
is then generated and the disturbance is applied to the agent. The controller would then perform
an action sending the signal to its motors, which would put it in a new state and receive a positive
or negative reward based on its reward system. A diagram of this setup is shown in Figure 1. A
screenshot of the simulation environment can also be found in Figure 2.

Random
Wind

l

8 possible .
"?Gf—» pass® Environment

T Reward

A

28 inputs
(7 x 4 timesteps)

Figure 1. Working Framework
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Figure 2. Iris UAV inside gazebo simulator ready for training
4.3. Agent

For this training, we used the PX4's Iris optical flow model, a quadcopter with a lidar distance
sensor for allowing correct measurement of the agent’s distance to the ground, along with other
orientation sensors such as an IMU.

Our agent initially had 7 inputs, which referred to the states in the current timestep we wanted to
observe: 3 axes for the drone position (x,y, z) and rotation in its 4 quaternion components. Aside from
that, we took these 7 inputs in the previous 3 timesteps so we network would be able to determine
both the acceleration and direction of the agent, making a total of 28 inputs.

For the output, as mentioned above, the drone was able to perform 8 actions, which included
going up, down, yaw +/—, pitch +/—, and roll +/—.

4.4. Deep Q-Network

By using a traditional Q-learning algorithm, a table would have to be generated with each of the
g values for each of the actions, and exploring all these possible states would generate oversized value
tables, with unrealistic consumption of time and resources. The algorithm is explained by Equation 7:

Q(s,a) = Ex[Gt | St =5, Ar =4, %)

where Q(s,a) represents the Q-value or the action-value function, which is a mathematical
function that estimates the expected total reward when taking action a in state s. In reinforcement
learning, this function helps determine the quality of different actions in different states. E,; denotes
the expected value operator under policy 7z. In other words, it represents the expected value of a
random variable when following a particular policy 7r. In the context of Q-learning, it signifies taking
the expected value over future rewards while following a policy.

The part [G¢|S¢ = s, A; = a] specifies the conditional expectation. It calculates the expected sum
of rewards G; given that, at time step t, the environment is in state S; = s and the agent takes action
At = a. In reinforcement learning, G; typically represents the cumulative rewards obtained from time
step t onwards.
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So, the equation as a whole represents the expected cumulative future rewards Q(s,a) when
starting in state s, taking action a, and following policy 7t to make decisions. It's a fundamental concept
in reinforcement learning used for action selection and policy improvement.

That’s why we opted for the DQN algorithm in our training, as we needed the capacity to deal
with a large number of states that would shape the continuous space we were training in. For that
purpose, DON is made up of two elements, a Q-Learning algorithm in the traditional sense and the
inclusion of a convolutional network. The objective of the DQN algorithm was to optimize the optimal
action-value function.

The DQN (Deep Q-Network) equation is an adaptation of the Bellman equation:

Q(s,a) = E[Ry11 + v -max(Q(s',a’))] ®)
Where:

Q(s, a) is the action-value (Q-value) function.
Ry is the immediate reward.
< is the discount factor.

max(Q(s’,a")) is the maximum expected Q-value for future actions in the next state s’.

In the DQN (Deep Q-Network) adaptation, we use a deep neural network to estimate Q(s,a)
for all possible actions in the current state s. The network takes s as input and produces Q(s, a) for
all actions a. The agent selects the action with the highest Q(s, a) for exploration/exploitation, and
then observes the immediate reward R, and the next state s”. We use experience replay to store and
sample batches of past transitions (s, a, R;11,s") to train the neural network. The network is trained
to minimize the difference between the current Q-value estimate and a target estimate based on the
Bellman equation. This training process iterates over time to improve Q-value estimations and allows
the agent to make optimal decisions in complex reinforcement learning environments.

This algorithm works in three steps:

1. The Q-table is generated (table where each action has an associated g value) from a Traditional
Q-learning algorithm by a neural network. For that, it makes use of two neural networks, the
policy /main network and the target network.

2. The best optimal action is chosen using the epsilon greedy strategy.

3. The weights of the model are adjusted according to the Bellman equation [21].

4.5. External Disturbance Implementation

For the implementation of external disturbances, we directly apply the disturbance to the aircraft,
necessitating the creation of a conversion rate from an external force to the drag it would generate in
the aircraft. This required taking into account: the air density, approximately p ~ 1.2 kg-m? at Normal
Temperature and Pressure (NTP) conditions; the drag coefficient, approximated by Cp, = Cp, =
Cp, = Cp = 1.1; and the motor distance to its Center of Gravity (CG), approximately dcg ~ 0.26
m. The drag coefficient was assumed to be constant and equal in all three axes to account for the
quadcopter symmetry in a worst-case scenario. In reality, the coefficient of drag is typically lower
for a quadrotor UAV [22]. This results in an actual aircraft capable of supporting even larger wind
disturbance speeds.

The disturbance behavior was then emulated and the unpredictable acceleration was applied to
the UAVs as follows:

* The disturbance was generated parallel to the ground in a random direction and speed.
e [t then accelerated from 0 to max speed (up to 24 mph) at half of its lifetime and decelerated after
that
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¢ This force would persist for 0 to 5 seconds and then subside for another 0-5 seconds range.
¢ Finally, a new disturbance was generated, determined by a random variance with the previous
one’s direction.

4.6. Training

Once we have defined the environment, the agent, the actions, and the implementation of external
perturbations, it is time to carry out the training. The drone training was set to 1000 episodes and
some supervision was made in the initial episodes to check any terminal states or incidents. The agent
had the goal to reach a certain height of 6 meters while maintaining its position and stability to the
maximum possible. After some tuning, the hyperparameters that gave the best results for the training
are referenced in Table 1.

Table 1. DQN Hyperparameters

Hyperparameter Value
Learning Rate 2.5x 1072
Decay 3x107*
Batch Size 5

The flowchart shown in Figure 3 describes how the rewards were sorted in terms of importance,
being stability crucial in achieving the experiment, as taking off and reaching the goal with an unstable
orientation was not desirable. The agent was rewarded for being stable and close to the vertical
position and for getting closer to the end position. An additional maximum reward was included
when the drone would stay within a range of 0.5 m of the goal. On the other side, the agent was
punished for consecutive orientation error increases and for getting further from the vertical elevation
guideline. For reference, some of the rewards are included in Table 2.

Take Off

Is it

going up Max penalty

Is it stable Reduce stability error

Reduce position error

0.5m from

objective Keep training

Max Reward

Figure 3. The vertical maneuver logic for shaping the reward function
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Table 2. Some of the Rewards in function

Reward Value

Getting Closer 0.2

Surpassing Height —0.2

Stability Orientation Error

In Figure 4, we can observe the evolution of the neural controller’s training over 1000 episodes.
Initially, during the first 1000 episodes, the agent struggled to achieve takeoff because it needed to
explore various actions. Consequently, it often encountered difficulties, such as being dragged by
strong winds and experiencing crashes, as it had not yet capitalized on the position and orientation
rewards and errors, as illustrated in Episode 250.

As exploration decreased and exploitation actions increased, the drone became more attuned to
its environment. This allowed it to attain significant heights, even though it remained distant from the
ultimate goal, as evidenced in Episode 750.

After fine-tuning the reward system, the drone ultimately converged around Episode 1000,
successfully reaching its objective while maintaining minimal errors in both attitude and position
metrics.

Episode 1

Episode 250

Episode 750 Episode 1000

Figure 4. NN takeoff learning process during the 1000 episodes


https://doi.org/10.20944/preprints202309.1469.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 September 2023 doi:10.20944/preprints202309.1469.v1

90f13

4.7. Reward Function

Some tuning on the reward function was required, as the agent learned to maximize its reward by
not following the expected behavior and not taking off, as the reward for being stable in the ground
was bigger than being unstable while going up, leading to a Cobra Effect Situation [23]. To fix this, we
included a maximum penalty to the agent for not moving at all, forcing it to go up.

Also, the reward for going up was not perfectly tuned, so the agent would take off as fast as
possible and wouldn’t stop at the destination, as it was getting rewarded for reaching a higher position
and therefore the drone would keep going up due to its inertial speed. Therefore, we added a reward
for the motor’s output, so it would be rewarded for slowly decreasing its speed while getting closer to
the objective height of 6 meters.

5. Results and discussion

In this section, we will discuss the training results and demonstrate the effectiveness of the
algorithm for take-off in windy conditions. The attitude and position errors were selected as the
performance metrics. We measured attitude and position errors at the end of each training episode to
evaluate the performance of the algorithm. The results have been compiled in Figures 5 and 7.

20 1
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00 1

yavi, pitch,roll

-05
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e
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T T T
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Figure 5. Orientation error in 1000 episodes

5.1. Attitude Error

If we focus on the attitude error first, it can be observed how the yaw, pitch, and roll errors
(represented by orange, blue, and green lines, respectively) were significantly reduced while it was
suffering from similar strength external force disturbances during the training. Values went from
peaks of 2 rad (114 degrees) to values around 0.5 rad (28 degrees) in worst-case scenarios.

The first episodes proved to be hard for the agent, as external forces hit with the same strength
all over the training and were flipping the drone upside down, having to reset the episode in several
cases.

5.2. Location/Position Error

As shown in Figure 7, the drone deviation due to these external forces pushing in both x and y
horizontal axes was reduced from 7 meters to a maximum detour of 1 m while it was performing the
vertical ascension. It showed a big improvement over the first 200 episodes where it was constantly
taken out of the training area by the external disturbance (3 meters), and slowly started learning to
recover its position after being pushed away, and finally facing this force so it could compensate the
negative drag of it.
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Figure 6. Position error in 1000 episodes
5.3. Actions Required

Finally, the agent learned to perform the lift from the ground by using fewer and fewer actions
each time. Figure 7 represents the number of steps it took the drone to reach the elevated target at 6
meters. The captured data is for the last training. This means it belongs to the first time the agent is
able to converge and solve the problem. In this graph, blue represents total actions, which is the sum
of both exploration (orange) and exploitation actions(green). It can be seen how due to the Epsilon
greedy policy, the number of exploration steps was reduced as long as it learned to converge and did
not need any exploration to understand the environment. It started by using around 200 actions to
perform the elevation and was able to reduce the needed actions to around 50 by the end of training
in episode 1000. Thus, we have demonstrated that the algorithm is capable of developing successful
take-offs with a smaller number of actions even in adverse wind conditions.
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Figure 7. DQN for takeoff maneuver in the last training. The upper images show the zenithal heatmap,
while the bottom images show the lateral one

6. Conclusion

In this paper, we proposed a reinforcement learning method for taking off with a drone under
wind conditions that are not suitable for human piloting, with wind disturbances of up to 24 mph.
The proposed system utilized the DQN algorithm to train the agent to achieve vertical elevation
within a simulator. After 1000 episodes, the agent demonstrated its capability to maintain stability
under these challenging conditions. In future research, we plan to explore individual motor control,
implement it on hardware to test its performance against real-world forces and compare its capacity
and responsiveness with that of a trained human pilot.

Supplementary Materials: The following supporting information can be found at: https://youtu.be/
elm8rH1PTaE, Video S1: Training of the proposed Neural Network.
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