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Abstract: The resonance spectrum of surface resistance derivative in quasi-two dimensional layered

organic conductors has been calculated numerically for the out-of-plane and in-plane magnetic

field. Not all but some of the resonances in a given series of transitions are present in the spectra.

They are observed at the positions corresponding to the maxima in the surface resistance derivative

curve and are in a good agreement with previously calculated magnetic field resonance positions.

For tilted magnetic fields, there are more resonances present in the spectrum than in the case of a

non-tilted field. Apart from the resonances corresponding to the transitions between the adjacent

surface states there also appear resonances involving the transitions between the more distant surface

states. This is correlated with the specific topology of Fermi surface of the organic conductors. The

presented calculations will allow correct interpretation of the experimental curves for the resonance

spectrum, and also to obtain information on the surface properties of these materials for their possible

implementation in fabrication of devices based on organic molecular conductors.

Keywords: organic conductors; surface resistance derivative; resonances; oscillation spectrum; tilted

magnetic field.

1. Introduction

Surface effects are important for characterization of the surface properties that are essentially

different from those observed in the bulk of the material, and are significant since the materials interact

with the environments through their surfaces. In strongly anisotropic systems, the surface effects

behave quite differently and are more complex than in isotropic systems. For example, the layered

organic materials are characterized with a strong anisotropy due to their reduced dimensionality which

makes them interesting for studying the surface phenomena, especially in tilted magnetic fields, since

their properties strongly depend on the plane of field rotation. The interest in investigation of rather

complex surfaces of such materials is increasing mostly due to their importance for various scientific

and industrial applications. The investigation of the surface influence in anisotropic layered materials

will allow not only for more accurate determination of characteristic parameters necessary for more

precise Fermi surface reconstruction in such materials but also for determining some of the quantities

typical for surface electrons. This refers to a wide class of materials such as organic conductors, high-Tc

cuprates, dichalcogenides of transition metals and other similar materials with a layered structure.

The surface electrons are moving along so called skipping trajectories positioned very closely to the

surface itself in the skin layer of the conductor. Their velocity is essentially parallel to the surface thus

having an important contribution to the surface currents.

Organic layered conductors, based on charge transfers salts and known for its rich physics and

multi-functionalities,[1] represent a large class of materials utilized for building organic electronic

devices. Their interest for applications is increasing significantly due to their importance as an

active layer in fabrication of the organic bilayer films used for development of flexible electronic

sensors. These films are simple and low-cost to fabricate, and are characterized with a high-performing
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multi-functionality at room temperatures. By far, several charge transfer salts have been confirmed

to act as active materials including but not limited to those based on BEDT-TTF[2,3], BEDO-TTF[4,5],

MDF-TSF[6] donor molecules with various possible acceptors such as I3[2,3], IxBr1−x[7], IxBr3−x[8]. As

the size of the devices developed nowadays reduces, the surface-environment interactions become

crucial for the device performance. As in that case the surface effects become more prominent, this

emphasizes even more the need for studying these effects. Some of them can be beneficial for applying

in organic electronic devices which can pave the way for realization of new applications that will

create opportunities for development of new technology based on the organic layered compounds. In

order to understand and properly exploit the surface transport phenomena in organic bilayer films

for achieving better device performance, the behaviour of these effects in the organic material itself

which is used as an active layer in fabrication of the bilayer films must be understood well. Indeed,

the experimental investigation of photoemission spectra of quasi-1D organic conductors has shown

that electronic correlations in the valence band spectra are strongly affected by surface effects and may

even be completely obscured [9].

The surface impedance of the material is the proper quantity to measure in order to describe

the material’s response to an external electromagnetic microwave/millimeter field. For molecular

conductors, such measurements might give further insights in the understanding of the rapid

oscillations of the magnetoresistance as well as additional information on the dynamical properties of

various ordered states occurring in these materials. For example, some previous works on microwave

surface impedance measurements performed in the quasi-1D organic conductor (TMTSF)2ClO4 at 16.5

GHz show that the transition from the metallic to the field-induced spin-density-wave state is not as

sharp as previously observed in the dc regime (see Ref. [10] and references therein).

In this letter, we investigate the microwave properties of layered organic conductors through the

numerical analysis of the surface resistance derivative for both out-of plane and in-plane magnetic

field. The differences in surface properties in these materials in correlation to the different planes

of rotation of the magnetic field are discussed through the changes in resonance spectra of surface

resistance derivative.

2. Theoretical aspects of the surface impedance derivative calculation

The magnetic oscillation spectrum of surface resistance derivative in a non-tilted in-plane magnetic

field has been recently studied in detail in Ref. [11]. Here we extend the calculations to the case of a

tilted magnetic field in order to examine how the change of the surface-state energies and geometric

characteristics of the skipping trajectory affect the appearance of the resonances in the spectrum. The

expressions for the surface resistance derivative for two magnetic field geometries, out-of-plane and

in-plane field rotations, will be given. The corresponding surface-state energies and wave functions

necessary to numerically calculate the oscillation spectrum are taken from Ref. [12,13]. We will first

calculate the surface resistance derivative for an out-of-plane magnetic field as this configuration

involves more steps to determine the matrix elements of the electric field due to their dependence on

the electron momentum projection on the magnetic field pB.[12] This dependence significantly affects

both the shape and amplitude of the resonances in the spectrum. The corresponding expression in case

of a tilted in-plane magnetic field is similar to that obtained for a non-tilted in-plane field[11] due to

negligibly small dependence of matrix elements on pB. The angular dependence of matrix elements is

determined only by the angular dependence of the surface wave functions at a given plane of rotation

of the magnetic field [12,13].

The surface impedance derivative for an electric field polarized in the x direction and propagating

along the normal to the plane of the layers in an organic conductor, E(z) = (Ex(z), 0, 0), is calculated

using the formula[14–18]

∂Zxx(B)

∂B
= − e2τ

(2πh̄)2
[Zxx(0)]

2 ∂

∂B

∫ pF

−pF

dpyvx ∑
m,n

α2
mn

i(ωmn − ω)τ + 1
. (1)
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Here Zxx(0) = iωµ0(Ex(0)/E′
x(0)) is the non-resonant part of surface impedance where Ex(0), E′

x(0)

are the electric field strength and its derivative at the surface, µ0 is the vacuum permeability. pF is the

Fermi momentum. The term 1/τ takes into account the effect of finite lifetime on the surface states due

to phonon scattering.[18] In that regard, τ is the mean-free time between successive phonon scattering

events. ω and ωmn are the frequency of the incident electric field and the difference frequency of

two surface states with quantum numbers m and n. The sum over m and n takes into account the

contribution from all pairs of surface states involved in the formation of the resonance spectrum.

αmn are the matrix elements of the electric field Ex(z) that depend on the form of the electric field

and surface wave functions Φ which are in general functions of the distance from the surface z, the

magnetic field magnitude B and the tilt angle between the magnetic field and conductor’s surface θ,

B = (0, B cos θ, B sin θ),

αmn =
1

Ex(0)

∫ ∞

0
Φn(z, B, θ)Ex(z)Φm(z, B, θ)dz. (2)

In addition to the above equations, the complete system of equations necessary to obtain the

expression for the surface resistance derivative consists of the equation for the electric field, the

Boltzmann’s transport equation[19] and the equation for the current density

d2Ex(z)

dz2
= iωµ0 jx(z), (3)

(1/τ − iω)Ψ + vz
∂Ψ

∂z
+

∂Ψ

∂tB
= evxEx(z), (4)

jx(z) = − 2e

(2πh̄)3

∫

vx
∂ f0

∂ε
Ψ(z)d3 p = σxxEx(z), (5)

where tB is a coordinate in momentum space, which indicates the position of a charge on its trajectory

in a magnetic field in accordance with the equations of motion dp/dt = e(v × B) and Ψ is the

non-equilibrium correction to the equilibrium Fermi distribution function f0(ε) [19].

We consider an electric field propagating along the normal to the surface of a conductor in the

half-space z ≥ 0. Using the Fourier method, we continue the electric field E(z) evenly to the region of

negative values of z and obtain the following relation for the Fourier component Ex(k)

Ex(k) =
−2E′

x(0)

k2 − iωµ0σxx(k)
. (6)

The Fourier component of the in-plane electrical conductivity σxx(k) can be obtained by using the

Fourier component of the transport equation solution (Eq. 4)

Ψ(k) = eEx(k)
ν

ν2 + k2

1

vz

∫ t

−∞
vx(t

′)eν(t′−t)dt′, (7)

where ν = −iω + 1/τ.

The corresponding expression that determines the in-plane electrical conductivity is then written

as

σxx(k) = − 2e2

(2πh̄)3

∫

ν

ν2 + k2

vx

vz

∂ f0

∂ε
d3 p

∫ t

−∞
vx(t

′)eν(t′−t)dt′. (8)

To further proceed with the calculations, it is convenient to transfer to new variables, i.e., from

px, py and pz to those that describe electron’s motion in the presence of an external magnetic field such

as the energy ε, electron momentum projection on the magnetic field direction pB and time t. This is
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correlated with the specific form of the energy spectrum of quasi-two dimensional organic conductors

in the form

ε(p) =
p2

x + p2
y

2m∗ + tc cos
( cpz

h̄

)

(9)

as obtained by using the tight-binding approximation [1]. The introduction of the new variables is

indeed convenient, as in a tilted magnetic field the closed orbits on Fermi surface are obtained as

cross-sections on the Fermi surface by the plane ε(p) = εF, pB = const. In the above equation, px

and py are the electron momenta components in the plane of the layers, and pz is the momentum

component along the least conductive axis of the conductor that is normal to the plane of the layers.

m∗ is the electron effective mass in the plane of the layers, tc is the hopping transfer integral in the

interlayer direction, c is the interlayer distance and h̄ is the Planck constant divided by 2π.

The change of variables yields the term eB in the expression for σxx(k) thus transforming Eq. 8

into the following one

σxx(k) = − 2e3B

(2πh̄)3

τ

1 − iωτ

∫ 0

−πh̄ sin θ
c

1

1 + k2v2
z τ2

(1−iωτ)2

dpB

∫ ∞

−∞

∂ f0

∂ε
dε ×

∫ 2π
Ω

0
vx(t)dt

∫ t

−∞
vx(t

′)eν(t′−t)dt′, (10)

where Ω = eB sin θ
m∗ is the electron cyclotron frequency and pB = py cos θ + pz sin θ. The integration over

ε yields -1 since
∂ f0
∂ε = −δ(ε − µ) where µ is the chemical potential. In addition, since vx = v⊥ cos(Ωt),

v⊥ = p⊥/m∗, vz = − ctc
h̄ sin( cpz

h̄ ) = − ctc
h̄ sin[ c

h̄ (
pB

sin θ − py cot θ)] and p2
⊥ = 2m∗(ε − tc cos[ c

h̄ (
pB

sin θ −
py cot θ)] one can calculate the integrals over pB and t and arrive to the following relation for σxx(k)

σxx(k) =
e2τ sin θ

(πh̄)2
(

(1 − iωτ)2 + Ω2τ2
)

c
(I1 + I2), (11)

where

I1 =
∫ 0

− πh̄ sin θ
2c

µ

1 + k2l2 sin2[ c
h̄ (

pB
sin θ − py cot θ)]

dpB = − µ√
1 + k2l2

×
(

Arctan
(
√

1 + k2l2 cot(
cpy

h̄
cot θ)

)

+ Arctan
(
√

1 + k2l2 tan(
cpy

h̄
cot θ)

)

)

, (12)

and

I2 =
∫ 0

− πh̄ sin θ
2c

tc cos[ c
h̄ (

pB
sin θ − py cot θ)]

1 + k2l2 sin2[ c
h̄ (

pB
sin θ − py cot θ)]

dpB =

tc

kl

(

Arctan
(

kl cos(
cpy

h̄
cot θ)

)

− Arctan
(

kl sin(
cpy

h̄
cot θ)

)

)

. (13)

Here l = l0
1−iωτ , l0 = vFτ where vF is the Fermi velocity.

In order to calculate the matrix elements αmn, the form of the electric field Ex(z)

Ex(z) = −2E′
x(0)

π

∫ ∞

0

cos(kz)

k2 − iωµ0σxx(k)
dk (14)

appropriate for the moderate anomalous skin-effect regime (kl > 1) is required. This is because, in

organic conductors, the electronic surface states are in general confined in the thin layer of a width δ

near the surface. Their wave functions are attenuated at a distance smaller than δ [12,13,20] signifying
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that the condition kl > 1 is satisfied, in general, but constrained only to the small region close to the

surface. This allows to keep only the term (kl)2 in the square root and the terms up to kl in the power

series expansion of the function Arctan in kl. Considering a specular reflection of the electrons from

the surface, the expression for the Fourier component of electrical conductivity, σxx(k), is obtained as

follows

σxx(k) =
e2τ sin θ

(πh̄)2
(

(1 − iωτ)2 + Ω2τ2
)

(1 − iωτ)2

cl2
0

×

(

µπkl0
1 − iωτ

+ µ
(

tan ξ + cot ξ
)

+ tc

(

csc ξ − sec ξ
)

)

. (15)

where ξ =
cpy

h̄ tan θ .

Using Eqs. (2), (14) and (15) and making the corresponding substitution into Eq. (1), the following

relation for the surface impedance derivative in the case of an out-of-plane magnetic field is obtained

∂Zxx(B)

∂B
=

e2τvF h̄x

(πh̄)2c
(

ωµ0

π
)2 ∂

∂B

∫

cpF
h̄x

− cpF
h̄x

dξ ∑
m,n

1

i(ωmn − ω)τ + 1
×

(

∫ ∞

0

∫ ∞

0

k2 cos(kz)Φn(z, B, θ)Φm(z, B, θ)dkdz

k4 − iωτµ0e2x

(πh̄)2

(

̟2+(Ωτ)2

)√
1+x2

̟2

cl2
0

(

µπkl0
̟ + µΞ(ξ) + tcΣ(ξ)

)

)2

. (16)

where Ξ(ξ) = tan ξ + cot ξ, Σ(ξ) = csc ξ − sec ξ, ̟ = 1 − iωτ and x = tan θ.

A similar procedure is also applied to obtain the formula for the surface impedance derivative in

case of an in-plane magnetic field rotation at angle ϕ, B = (B sin ϕ, B cos ϕ, 0). The difference is that, in

this case the corresponding matrix elements αmn, do not depended on the momentum projection on the

magnetic field pB (since pB ≃ pF). The corresponding formula is simpler for numerical calculations, it

is similar to the one obtained for a non-tilted in-plane magnetic field[11] and reads as

∂Zxx(B)

∂B
=

2e2τεF

(πh̄)2
(

ωµ0

π
)2 ∂

∂B ∑
m,n

1

i(ωmn − ω)τ + 1
×

(

∫ ∞

0

∫ ∞

0

k2 cos(kz)Φn(z, B, ϕ)Φm(z, B, ϕ)

k4 − 2iωτµ0e2

(2πh̄)2cl2
0

(

πkl0
̟ (µ − tc) + 2tc

)dkdz

)2

. (17)

3. Results and Discussion

In the following, the magnetic resonance spectra of surface resistance derivative (real parts of

the Eq. 16 and 17) are calculated numerically for the two magnetic field geometries. The general

features of the calculated curves are analyzed and then compared in order to obtain a perspective

on how the rotation of the field in different planes affects the appearance of the resonances in the

spectrum. The numerical analysis of the theoretical formulas might give insights of what is expected

to be observed in the experimental curves for the surface resistance derivative once they would be

obtained. The experimental data are very much desirable since they will allow the values of parameters

that characterize the electrons moving in the very small region near the surface to be derived. The

frequency of the external electric field ω can be changed but ωmn is fixed in order to obtain the

resonance fields for all the transitions from the six series. For obtaining the resonance spectra in this

work we use ω/2π = 80 GHz and ωmn/2π = 46 GHz in order for more resonances from the six series

to be visible in the spectrum. For a given tilt angle, the resonances take place by varying the magnetic

field because the magnetic field dependence of matrix elements αmn(B) is mainly determined by the

field dependence of surface wave functions Φn(B).
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3.1. Oscillations of the surface resistance derivative in an out-of-plane magnetic field

In Figure 1 numerically calculated curves for the surface resistance derivative are shown, as a

sum of six series of transitions between the surface quantum states and for magnetic field orientations

θ = 16.7◦ and θ = 40◦. The corresponding surface-state energies and wave functions used to obtain

the resonances are given in Ref. [12]. The resonance curves are obtained for a field resolution of

∆B = 0.003 T. The numerically determined positions of some of the representative resonances in the

spectrum, which correspond to the maxima in the ∂R/∂B curve, are in a good agreement with the

calculated resonance positions for the out-of-plane magnetic field geometry (Table 2 in Ref. [12]).

a)

2→1

4→1

6→2
6→3

5→3

3→2

6→4

4→3

4→2

1 2 3 4
B (T)

-30

-20

-10

10

20

30

40

R (arb. units)

b)

2→1

6→3

5→3
3→2

6→4

4→3

4→2

1 2 3 4 5
B (T)

-20

-10

10

20

R (arb. units)

Figure 1. Magnetic oscillations of the surface resistance derivative for the sum of six series and

magnetic field rotated from the surface at a) θ = 16.7◦ and b) θ = 40◦. The resonances that appear in

the oscillation spectrum, representing the possible transitions for the out-of-plane magnetic field, are

indicated on the calculated ∂R/∂B curve. The change in the shape, width and the number of resonances

with increasing the tilt angle from the surface is evident.

We find that, the number of resonances appearing in the spectrum for higher tilt angle is reduced

compared to that for smaller angles when the magnetic field is close to the surface. The amplitude

of the resonances is also decreasing with increasing the tilt angle. This is expected as the electrons

responsible for the transitions between the surface states are moving along skipping trajectories located
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very closely to the surface. These comprise from elliptical parts that are tilted in the direction of the

field and become more elongated as the field is rotated away from the surface (see Fig. 1c in Ref.

[12]). In that case, the trajectories have larger dimensions (compared to those for a non-tilted and

a tilted in-plane magnetic field) especially those of the higher-lying states, and thus are positioned

at larger distance from the surface. Hence, the electrons spend more time in the conductor’s skin

layer than in the case of smaller tilt angles before reaching the surface again where they are specularly

reflected several times. While spending more time in the skin layer, the electrons are more prone to the

phonon scattering and scattering from the bulk electrons situated in the vicinity to the thin skin layer.

This decreases their effective interaction with the incident electric field leading to a reduced number

of possible transitions between the states and therefore less resonances are visible in the oscillation

spectrum.

The increased scattering can be one of the reasons for a reduced amplitude and increased width

of the observed peaks although the dependence of the matrix element αmn on the electron projection

on the magnetic field direction pB has also a significant role in the observed behaviour. As evident

from Figure 1a,b the scattering mostly affects the peaks corresponding to transitions between the

lower-lying states, as some of the transitions are completely absent at higher tilt angles although they

are dominant at smaller angles. This is correlated to the fact that the skipping trajectories for these

states are the closest to the surface and the electrons responsible for the transitions between these states

are more prone to the scattering from the surface phonons.

Another aspect to emphasize is that while the spectrum obtained at smaller tilt angles is

characterized with a plethora of peaks nevertheless the dominant transitions are mainly those between

the adjacent lower-lying states for which the corresponding matrix elements are the largest. On the

contrary, at higher angles one can say that dominant transitions are those between the higher-lying

states. Moreover, there is an unusual change in the peak height observed in Figure 1b. Indeed, the

peak 6→4 is much higher than the peaks 4→3 and 2→1, which contradicts the general trend that the

transitions between adjacent surface levels are expected to be the dominant ones in the resonance

spectrum. The rather unusual peak heights seen in Figure 1b might be due to a number of reasons.

First, the non-monotonic dependence of the peak height on the field might indicate that it depends

principally on the probability of the transitions between levels, determined by the density of the

states and their population. Second, the interference between the series also significantly affects the

appearance of the peaks in the sum curve in a sense of their width, shape and amplitude. Third,

the matrix elements αmn depend on the range of penetration of the electric field, i.e., on the skin

depth δ which influences largely the relative amplitude of different peaks in the sum oscillatory curve.

Fourth, the apparent larger amplitude of the B64 peak might be due to the decrease in the amplitude of

neighbouring resonances on the low-field side (such is the significant reduction of the amplitude of

B21 resonance).

3.2. Surface resistance derivative oscillations in an in-plane magnetic field

We present in Figure 2 the calculated sum curve of surface resistance derivative of six series and

in-plane magnetic field orientations ϕ = 10◦ and ϕ = 20◦. Not all but some of the transitions within

a given series with a quantum number n are present in the ∂R/∂B curve. The field resolution used

to numerically calculate the curves is ∆B = 0.0055 T. The position of the resonances observed in the

spectrum are in a very good agreement with the previously obtained values for the resonance fields

for this field geometry (Table 3 in Ref. [13]).
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a)

2→1

6→2

4→2

3→2

4→3

6→5

5→4
6→4

1.5 2.0 2.5 3.0
B (T)

-20

-10

10

20

R (arb. units)

b)

2→1
4→2 6→3

6→4

5→4

6→5

4→3

3→2

2.0 2.2 2.4 2.6 2.8 3.0
B (T)

-20

-10

10

20

30

40

R (arb. units)

Figure 2. Magnetic oscillations of the surface resistance derivative for the sum of six series and magnetic

field rotated in the plane of the surface at a) ϕ = 10◦ and b) ϕ = 20◦. The resonances that appear in the

sum spectrum, representing the possible transitions between the surface states in organic conductors

for an in-plane magnetic field, are indicated on the calculated ∂R/∂B curve.

The general feature of the oscillation spectra for the in-plane field rotation is that resonances

corresponding to the transitions between the adjacent surface states are those that are mainly present

in the sum spectrum. However, similar to the case of out-of-plane magnetic field, the resonances

corresponding to the transitions between more distant states are also present in the spectra for the

given magnetic field directions. Interestingly, we find that, independently on the plane of magnetic

field rotation, similar transitions in a given series with a quantum number n are present in the sum

spectra, as evident form Figures 1 and 2.

In further comparing the numerical aspects of the spectra for different planes of field rotation,

we notice that there is a difference in the width of the observed resonances. This characteristic

differentiates the spectra for which py is strongly dependent on the momentum projection pB from

those where py is almost independent on pB. Additionally, the unusual peak heights is also evident

in the resonance spectra for the in-plane magnetic field, moreover, here it is more pronounced than

in the case of out-of-plane field rotations. Indeed, instead observing the highest peak heights for

the resonances between the lowest-lying states, the opposite is seen as those corresponding to the
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transitions between the highest-lying states are dominant in the spectra. Aside for the possible above

mentioned reasons for this scenario, we also would like to note that the strong anisotropy in q2D

organic conductors with regard to the crystal planes as a source for observing the different behaviour

also cannot be neglected. Indeed, in both cases of field rotations there is a strong dependence of the

distance between the surface levels on the angle of magnetic field rotation. By considering the schematic

representation of the surface levels at different tilt angles for out-of-plane[12] and in-plane[13] rotations

one can see that some of the higher lying states are closer to each other than the lower lying ones.

This means that the distance between the higher lying surface states can be smaller, for a given tilt

angle and frequency of the incident electric field, which increases the probability for the transitions

between these states to occur. Moreover, some of these transitions appear to be dominant over those

occurring between the lower states although the opposite is expected. Obviously, the non-equidistant

distribution of the surface levels is even more prominent when there is a significant dependence of py

on the momentum projection pB. Therefore, apart from the interference effects between the surface

states on the appearance of the sum spectrum, the strong angular dependence of the surface levels

distribution in a magnetic field has also an important contribution in the outlook of spectra.

Another observation for the in-plane field rotation is that, some peaks in the final curve may occur

very closely to each other because of a possible overlap of the wave functions of the corresponding

surface states with the electric field in the skin layer. This will also affect the amplitude and shape

of the resonances. In q2D organic conductors, this is much more possible than in ordinary metals

because the closed electron orbits, responsible for the observed transitions, are located in the belly

part of the Fermi surface (Fig. 1a in Ref. [13]) and are not only small but also very close to each other.

Thus transitions with different quantum numbers, n and m, might have very close resonance positions

Bmn. Such are the 3 → 2, 4 → 2 transitions occurring at B32 = 2.08 T, B42 = 2 T (for ϕ = 10◦) and

4 → 3, 6 → 4 transitions occurring at B43 = 2.84 T, B64 = 2.86 T (for ϕ = 20◦). This is because, the

closed orbits on Fermi surface, involved in the transitions between the states for larger tilt angles

have similar area. These orbits are located in the more inner part of the belly of the corrugated Fermi

cylinder. Therefore, the resonances in the spectrum corresponding to these transitions appear with

similar amplitude for the given numerical resolution.

4. Conclusions

With the development of organic bilayer films of molecular conductors for building various

efficient and eco-friendly devices, the surface properties of molecular conductors are becoming more

important for obtaining devices with improved performances for their utilization in various sensing

applications. By far, several molecular conductors with a quasi-2D energy spectrum have been used for

this purpose. We investigate the behaviour of the surface resistance oscillations in such conductors in

order to obtain information on the important processes occurring in the region close to the surface. In a

presence of a magnetic field, the transitions between the quantum surface states appear as resonances

in the surface resistance derivative spectrum. The resonance spectra of six series of transitions have

been obtained numerically for rotations of the magnetic field in different planes with respect to the

surface, i.e., for field rotations away from the surface and rotations in the plane of the surface. We find

that in a tilted magnetic field, the resonance spectra consist of more resonances than in the case of a

non-tilted magnetic field. Although all of the resonances corresponding to the transitions in the six

series are not visible in the spectra, the presence of those arising as a result of transitions between more

distant states, in addition to those between the adjacent surface states, is evident. We suggest that the

observed behaviour is mainly due to interference effects and angular dependence of the surface levels

distribution. The former is expected when more series are represented together in a spectrum and the

latter arises from the specific topology of the Fermi surface of organic conductors in a form of a weakly

corrugated cylinder which is reflected in the different shape of the skipping orbits near the surface for

magnetic field rotations in different crystal planes.
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