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Abstract: The autosomal recessive disorder Ataxia-Telangiectasia is caused by dysfunction of the stress
response protein ATM. In the nucleus of proliferating cells, ATM senses DNA double-strand breaks and
coordinates their repair. This role explains T-cell dysfunction and tumor risk. However, it remains unclear
whether this function is relevant for postmitotic neurons and underlies the cerebellar atrophy, since ATM is
cytoplasmic in postmitotic neurons. Here, we used ATM-null mice that survived early immune deficits by
bone-marrow transplantation, and reached initial neurodegeneration stages at 12 months of age. Global
cerebellar transcriptomics demonstrated ATM depletion to trigger upregulations in most neurotransmission
and neuropeptide systems. Downregulated transcripts were found for the ATM interactome component Usp2,
many non-coding RNAs, ataxia genes Itprl, Grid2, immediate early genes and immunity factors. Allelic splice
changes affected prominently neuropeptide machinery, e.g. Oprml. Validation experiments with stressors
were performed in human neuroblastoma cells, where ATM localized only to cytoplasm, similar to brain. Effect
confirmation in SH-SY5Y cells occurred after ATM depletion and osmotic stress better than nutrient / oxidative
stress, not after ATM kinase inhibition or DNA stressor bleomycin. Overall, we provide pioneer observations
from a faithful A-T mouse model, which suggest general changes in synaptic and dense-core vesicle stress
adaptation.

Keywords: cerebellar ataxia; cytoplasmic ATM; synaptic pathology

1. Introduction

The disease Ataxia Telangiectasia (A-T) is autosomal recessively inherited, shows a prevalence
of 1:100,000 inhabitants, manifests in childhood and shortens lifespan to 25 years on average [1-3].
The diagnostic initial signs include problems of equilibrium (ataxia) and speech, together with
uncontrolled eye movements, due to progressively impaired motor coordination in the cerebellar
neural circuits, as well as a dilatation of capillary blood vessels (telangiectasia). Blood tests will reveal
an abnormal elevation of the prenatal osmosis regulator AFP (alpha-fetoprotein), which should
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normally be downregulated in postnatal life to be substituted by albumin [4, 5]. Recently,
neurofilament light chain (NfL) has been described as a potential biomarker for neurodegeneration
from early stages of A-T [6, 7]. In subsequent years, a combined immune deficiency will lead to
infections of sinus and lungs, and over time to bronchiectasis [8]. Among classical A-T patients, IgA
deficiency correlates with the poorest prognosis [9]. Gonadal atrophy will ensue, with gametogenesis
undergoing meiotic arrest in early prophase, due to abnormal synaptonemal complex assembly
resulting in fragmented chromosomes [10, 11]. Body weight and height decline with age,
accompanied by deficient secretion of growth hormone (GH) and trophic factors such as blood IGF-
1, suggesting age-associated nutrient regulation stress [12-14]. A-T patients are particularly
vulnerable to ionizing radiation and ultraviolet B light (UVB wavelength is responsible e.g. for
sunburns of skin), so their risk of cancer is elevated, manifesting particularly lymphoma and
leukemia in childhood, and breast cancer in adulthood [15, 16]. Among these disease phenotypes,
only immune deficits, infertility, and cancer risks have been mechanistically explained by the crucial
role of nuclear ATM (the protein kinase Ataxia Telangiectasia Mutated, where nonsense or missense
mutations usually trigger the A-T phenotype) for the detection and repair of DNA double-strand
breaks (DSB) [17]. These DNA damage responses (DDR) coordinated by ATM are required to
generate adequate antibody diversity in rapidly proliferating lymphocytes via V(D)] and class switch
recombination [18, 19]. However, there is an ongoing debate (1) why the osmotic regulator AFP
increases and blood vessels dilate, (2) why nutrients are inadequately controlled in growth, and (3)
why selectively post-mitotic neurons in the cerebellum should undergo insidious atrophy [20-23].
More detailed insights about ATM cellular expression, its subcellular redistribution, its stable
interaction partners and its transient phosphorylation targets, together with its downstream signaling
effects, are urgently needed. Such knowledge would help to understand the cerebellar pathogenesis
and to design therapeutic approaches. Currently we only know that cerebellar ATM is expressed
mainly in excitatory glutamatergic granule neurons, but also in efferent inhibitory GABAergic
Purkinje neurons [24], other cerebellar neurons and afferent neural projections from the brainstem
(see https://mouse.brain-map.org/gene/show/11706), as well as glial and endothelial cells. Its
expression levels change with stress / stimulus responses [25]. Immunohistochemical and
ultrastructural evidence showed neuronal ATM to localize to the cytoplasmic more than the nuclear
compartment [24, 26]. In immunoblots of nuclear versus cytoplasmic protein extracts from mice at
maximal age 6 weeks, cytoplasmic ATM was solidly detected in cerebellum but not in spleen or in
thymus, while nuclear ATM remained strongly predominant even in cerebellum at this young age
[27]. However, this might change in adult animals when neuronal circuitry and myelination are
complete. Regarding the ATM interactome, it is important to note that ATM is a member of the PIKK
family (phosphoinositide 3-kinase-related kinases), which is anchored at membranes via the FATC
domain [28, 29]. Most other PIKKs phosphorylate inositol lipids, while ATM and its homolog ATR
were reported to target selectively serine or threonine followed by glutamine (SQ-TQ motif) amino
acids within several hundred protein substrates identified so far [17]. ATM mutation affects the
membrane interface between endoplasmic reticulum and mitochondria [30], as well as endosomes,
peroxisomes, lysosomal and autophagic vesicles [24, 31, 32]. Upon endosomal association, ATM was
found to interact with beta-Adaptin (AP1B1 / AP2B1) and Neuronal Adaptin-like beta-subunit
Protein (beta-NAP) [33]. The cytoplasmic portion of ATM prompted different studies about altered
pathways there, and about additional ATM functions [34-37], but a conclusive mechanistic scenario
has not emerged yet. Association of ATM with presynaptic neurotransmitter-containing vesicles was
also demonstrated [38], with a preferential binding to excitatory vesicles that contain VGLUT1 as
glutamate transporter to control their quantal size [39, 40]. Pre- and post-synaptic swelling and loss
of cytosolic texture were detectable by electron microscopy in ATM-null mouse cerebellar cortex
already at age 2 months [41]. Cerebellar Purkinje pathology involves defects in calcium spike bursts
and calcium currents, as well as the progressive reduction in spontaneous action potential firing
frequency, from the age of 6 weeks to their maximal lifespan of 5 months in the absence of treatment
[42]. Overall, the absence of ATM protein from its physiological membrane association in neuronal
cytoplasm clearly triggers age-associated neurodegeneration, but it remains unclear to what degree
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ATM acts via its physical interactions with membrane lipids and proteins, versus its protein kinase
activity.

With regard to ATM presence as opposed to its kinase activity, it is important to know that mice
expressing the kinase-deficient ATM exhibit an early embryonic lethality phenotype [43, 44], whereas
ATM-null mice are viable and their affection becomes apparent only for the immune system at early
adult ages. This might suggest that the absence of ATM is sensed and mostly compensated by cells,
whereas substituting ATM function becomes much more difficult if it occupies the correct positions
within its interactome, but fails to signal upon stress events. In mouse, the ATM deficiency usually
results in shortened survival of hematopoietic cells, early frequent occurrence of lymphomas, and a
lifespan over few months only, so the manifestation of ataxia and cerebellar atrophy is usually
prevented by an untimely death due to the immune deficit [41, 45]. A dramatic extension of life
expectancy from 4 to 12 months was achieved by bone-marrow transplants in ATM-null mice, and in
such animals a decreased cerebellar size index was observed upon brain imaging at the age of 8
months [46].

Activation of normally inactive homodimeric ATM is differently regulated, when distinct
stressors are applied. Variance in post-translational modifications and interaction partners of ATM
exist. The DNA damage-dependent activation (e.g. by the DNA strand breaking drug bleomycin, or
ionizing radiation) involves Ser1981 autophosphorylation, Lys3016 acetylation by KATS5, interaction
with the MRN protein complex (MRE11, RAD50 and NBS1) and ATM monomerization [47-49]. In
neuronal cells, strong excitation promotes immediate-early gene transcription via DNA-DSB, which
are mediated by topoisomerase-1 cleavage complexes (TOP1cc), and have to be eliminated by ATM
activation, otherwise toxic accumulation of R-loops will occur [50, 51]. It is thought that ATM senses
TOP1cc / R-loops and organizes their removal, in a process that is impaired upon oxidative damage
[17]. Indeed, elevated levels of R-loops were observed in ATM-null mouse testis, but not in brain
tissue, at the age of 1 month [52]. Importantly, the R-loop activation of ATM promotes chromatin
displacement of late-stage spliceosomes, so the alternative splicing in ATM mutants may be changed
in genome-wide manner [53]. Some ATM-dependent changes in RNA processing were reported to
be mediated by the nuclear splice regulator SAM68 [54]. Thus, RNA neurotoxicity via R-loops and
SAMBG68, protein aggregation and unbalanced excitability have been proposed to underlie the ataxia
and cerebellar atrophy in A-T, in view of similar clinico-pathological findings in other monogenic
spinocerebellar ataxias where mutant AOA2, FRDA, ATXN2, ITPR1 trigger similar cytosolic
pathways in pathogenesis [17, 55-57]. However, few other data are available to judge the overlap in
pathogenesis between diverse monogenic ataxias, and to decide which other cerebellar ataxias are
closest to A-T.

In contrast to these mechanisms following DNA and RNA damage, the activation of ATM upon
osmotic stress (e.g. by the drug chloroquine, or hypotonic shock) involves its interaction with ATMIN
[47, 58].

Furthermore, activation of nuclear ATM via nutrient deprivation (by 2-deoxyglucose exposure)
is mediated by inefficient assembly of a protein complex between endoplasmic reticulum and
mitochondrial membranes, which is composed by IP3R1 (gene symbol ITPR1), GRP75 (gene symbol
HSPA9), and VDACI. This inadequate assembly results in impaired release of Ca? and excitability
in the human bronchial epithelial cell line HBEC3-KT [30].

Finally, the activation of ATM via oxidative stress (e.g. by the drug sodium arsenite, abbreviated
as NaARS, or by hydrogen peroxide H202) involves Cys2991 disulfide bonds linking active ATM
homodimers, but appears independent from the MRN complex [59]. Again, ATMIN plays a relevant
role in the protection against oxidative stressors [60]. All these mechanistic insights were obtained in
cell culture or in young adult animals. Thus, at present it remains completely unclear which of these
stressors and molecular response mechanisms would play the prominent role in cerebellum when
the age-associated pathology manifests.

For the present study, we analysed cerebellar homogenates from bone-marrow-transplanted, 12-
month-old ATM-null mice, documenting their global transcriptome by oligonucleotide microarrays,
in the hope to elucidate the impact of ATM for RNA-mediated stress responses. With this approach,
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we hoped to answer the following questions: (1) Which impact exists on transcript levels of known
ATM interactors, or known ATM phosphorylation substrates? (2) Which dysregulations occur in
phosphoinositide pathway membrane factors, in vesicular factors, or in calcium homeostasis factors?
(3) To what degree is the altered neuronal excitability reflected by dysregulations of
neurotransmission factors or immediate early genes? (4) Were some dysregulations already observed
in telangiectasia, in general growth deficit, or selective cerebellar atrophy, e.g. as known disease
genes of other cerebellar ataxias? Such findings would define the mechanistic overlap with other
genetic disorders. (5) Are there strong dysregulations of novel character outside these already
explored pathways?

Validation work in vitro with further methods and samples was performed to answer additional
questions: (6) Whether ATM in adult cerebellum is still mostly nuclear with solid cytosolic presence,
and if the human neural SH-SY5Y cell line is a good model of ATM distribution, was assessed with
differential detergent fractionation. (7) To understand if ATM kinase activity or ATM protein
presence triggers such dysregulation events, we exposed the human neuroblastoma cell line SH-SY5Y
either to the ATM kinase inhibitor drug KU-55933, or to stable ATM knockdown (KD) via shRNA,
and quantified transcript alterations with RT-qPCR. (8) To identify which specific stressor agents
provide the best model for the age-effect on dysregulated cerebellar transcripts in ATM-null mice,
human SH-SY5Y cells with ATM-KD were assessed with RT-qPCR and quantitative immunoblots.

Overall, in ATM-null mice at advanced age, several strong cerebellar mRNA dysregulations
were documented, and their reproducibility in cell culture after ATM depletion and stressor
administration provided criteria to distinguish primary from secondary effects.

2. Materials and Methods

2.1. Animal model of Ataxia-Telangiectasia

To study the cerebellar atrophy of A-T, we used ATM-null mice (strain 002753 from the Jackson
depository, also denominated as Atm™AwbF or ATM-null or Afm") [45] in the 129/SvEV genetic
background. Animal procedures were approved by the regional authority (RPDA number FK/2000).
Mice were housed in accordance with the German Animal Welfare Act, Council Directive of 24
November 1986 (86/609/EWG) Annex II, ETS123, and the EU Directive 2010/63/EU, at the FELASA-
certified Central Animal Facility (ZFE) of Frankfurt University Medical School, employing type II L
cages (365 x 207 x 140 mm?, floor area 530 cm?), with mutants and wildtype (WT) controls being bred
and aged in parallel, under controlled conditions of temperature, humidity, and light/dark cycles of
12 h, providing food and water ad [ibitum. Genotyping of ear-punch DNA was done by PCR
procedures are described previously [61].

2.2. Intravenous transplantation of whole bone marrow cells

As conditioning regimen, the recipient mice received 0.125 mg/ml anti-CD4 antibody (clone
GK1.5, Sigma, Steinheim, Germany) and 0.125 mg/ml anti-CD8 antibody (clone 53-6.7, Sigma) 7 days
before bone marrow transplantation (BMT), and then a second dose of each antibody together with
200 mg/kg cyclophosphamide (80 mg/ml, Sigma-Aldrich, St. Louis, Missouri, USA) 1 day before BMT
for nonmyeloablative conditioning. Bone marrow cells were harvested in sterile manner from CD-
90.2 depleted ATM-competent donor animals on the day of BMT, and 5 x 10° bone marrow cells were
injected intravenously into conditioned recipients [46, 62]. Ageing of mutants and sex- / age-matched
WT animals until 12 months was closely monitored after the intervention, continuously assuring that
lymphoma and immunological deficits were not threatening the mice. Dissection of 4 ATM-null
versus 4 matched WT mice occurred after cervical dislocation, snap-freezing the fresh cerebellar
tissue in liquid nitrogen for oligonucleotide microarray surveys and subsequent validation
experiments by RT-qPCR.

2.3. Global transcriptome survey

doi:10.20944/preprints202309.1287.v1


https://doi.org/10.20944/preprints202309.1287.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1287.v1

5

Total RNA was extracted from frozen tissue using TRIzol reagent (Sigma-Aldrich, St. Louis,
Missouri, USA), according to manufacturer’s instructions. The RNA integrity number (RIN) was
assessed using a 2100 Bioanalyzer RNA 6000 Nano Assay (Agilent Technologies, Santa Clara,
California, USA) and its concentration determined with NanoDrop Spectrophotometer (Thermo
Fisher Scientific, Waltham, Massachusetts, USA). Samples were kept at -80 °C until use. Then, 1 pg
of RNA was pre-treated with DNase amplification grade (Invitrogen, Carlsbad, California, USA). The
Gene Chip™ WT PLUS Reagent Kit (Applied Biosystems, Waltham, Massachusetts, USA) was used
to generate single-stranded cDNA (ss-cDNA), which was fragmented and labeled right before
hybridization to Clariom D arrays (Thermo Fisher Scientific, Waltham, Massachusetts, USA). The
signals were documented with the Affymetrix Gene Chip Scanner, and data were processed with the
Transcriptome Analysis Console (TAC) 4.0.1 (Applied Biosystems, Waltham, Massachusetts, USA)
software using default algorithm parameters. The complete gene expression data set was deposited
publically in the Gene Expression Omnibus under accession number GSE241955.

2.4. Bioinformatics analysis of global transcriptome data

The distribution of all microarray oligonucleotides that showed differential dysregulation with
actual significance (false discovery rate FDR P-value < 0.05) in cerebella of 12-month old Atm-deficient
mouse cerebella were displayed as volcano plot in Figure 2a (a logarithmic display where log2 values
of fold change make downregulations in green color and upregulations in red color easily comparable
on the X-axis, and -log10 of FDR P-values on the Y-axis enables graphic representation of outliers).
The absolute numbers and percentages of downregulations and upregulations with nominal
significance (gene level p-value < 0.05, fold change >1.2 or <-1.2) across the transcriptome, and the
overrepresentation of Non-Coding transcripts among downregulations, versus overrepresentation of
coding and Multiple-Complex transcripts among upregulations, are displayed as pie charts in Figure
2b. In the Clariom D microarray there are nine predefined oligonucleotide groups: Non-Coding,
Multiple Complex (containing more than one of the other groups), Coding, Pseudogene, Precursor
microRNA, small RNA, Ribosomal, Unassigned, and tRNA. All transcript dysregulations with
nominal significance were subjected to Gene Ontology (GO)-enrichment analysis via PANTHER
(http://geneontology.org/). Fisher’s Exact was used for statistical evaluation, and correction was done
by FDR. PANTHER Overrepresentation Test was carried out separately for upregulations (Figure 2d)

and downregulations (Figure 2c), in each case calculating the enrichment for GO biological process
(upper panel) and GO molecular function (lower panel). The resulting GO terms were sorted by Fold
Enrichment, and the top 10 hits are displayed as bar graphs. Given that the Clariom D microarrays
represent practically each exon of all coding transcripts, further analyses of alternative splicing were
possible at genome-wide level (Figure 5). As filtering criteria, genes with exon splicing index > 5 or
< -5, and significance with FDR P-value < 0.25 were selected (Figure 5a). Among them, pathway
enrichment studies by the STRING (Search Tool for the Retrieval of Interacting Genes/Proteins)
webplatform  (https://string-db.org/) demonstrated an overrepresentation for the terms
“Neuropeptide signaling pathway”, “Regulation of neurotransmitter levels” and “Synapse
organization” (shown as interaction plot in Figure 5b).

2.5. Neuroblastoma Cell Culture and Treatments

Parental SH-SY5Y human neuroblastoma cell line was cultured in high glucose DMEM (Thermo
Fisher Scientific, Waltham, Massachusetts, USA, 21969-035) supplemented with 10% FCS (Thermo
Fisher Scientific, Waltham, Massachusetts, USA, A3160802), 1% L-Glutamine (Thermo Fisher
Scientific, Waltham, Massachusetts, USA, 25030-024) and 0.1% Penicillin / Streptomycin (Thermo
Fisher Scientific, Waltham, Massachusetts, USA, 15140-122). ATM knockdown SH-SY5Y cells were
kept in selection medium, as explained later.

Stable knockdown of ATM in SH-SY5Y was achieved via lentiviral transduction of five different
MISSION short hairpin RNAs targeting ATM (shRNA, commercially available at Sigma-Aldrich, St.
Louis, Missouri, USA) and one non-targeting control shRNA, targeting no known mammalian genes
(Sigma-Aldrich, St. Louis, Missouri, USA, SHC002, hereafter referred to as NT CTRL, gift from Prof.
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Dr. Kogel) in mammalian expression vector pLKO.1. The shATM sequences were: shATM#1-
5 CCGGCCAAGGTCTATGATATGCTTACTCGAGTAAGCATATCATAGACCTTGGTTTTTTG-3’

(cat.no TRCNO0000194861), shATM#2-
5 CCGGTGGTCAAATACTTCATCAAATCTCGAGATTTGATGAAGTATTTGACCATTTTTG-3’
(cat.no TRCNO0000245108), shATM#3-
5 CCGGTGATGGTCTTAAGGAACATCTCTCGAGAGATGTTCCTTAAGACCATCATTTTTG-3’
(cat.no TRCNO0000010299), shATM#4-
5 CCGGCCTTTCATTCAGCCTITTAGAACTCGAGTTCTAAAGGCTGAATGAAAGGTTTTITG-3’
(cat.no TRCNO0000039948), shATM#5-

5 CCGGGCCTCCAATTCTTCACAGTAACTCGAGTITACTGTGAAGAATTGGAGGCTTTTTG-3’
(cat.no TRCNO000039951). Stable KD cells were generated by transfecting 2 ug of the respective
shRNA or NT CTRL plasmid DNA, 1.5 ug gag/pol plasmid DNA (psPAX2, Addgene #12260) and 0.5
ug VSV-G envelope plasmid DNA (pMD2.G, Addgene #12259) into HEK293T cells using FuGENE
HD transfection reagent (Promega, Fitchburg, WI, USA, E2311) following the manufacturer’s
instructions. psPAX2 was a gift from Didier Trono (Addgene plasmid # 12260;
http://n2t.net/addgene:12260; RRID:Addgene_12260). pMD2.G was a gift from Didier Trono
(Addgene plasmid # 12259; http://n2t.net/addgene:12259; RRID:Addgene_12259). After 16h and 40h
post-transfection, the viral supernatant was collected, pooled, sterile-filtered (0.45 pm) and applied
to the SH-SY5Y cells in an 1:1 mixture with fresh medium supplemented with 3 ug/mL polybrene
(Sigma-Aldrich, St. Louis, Missouri, USA, TR-1003). SH-SY5Y cells were transduced for 24h and
selected via bulk selection using puromycin (Santa Cruz Biotechnology, Dallas, Texas, USA, sc-
108071). To achieve this, the SH-SY5Y culture medium was supplemented with 1.25 pg/mL
puromycin as determined by kill curve in parental cells. Cells were generally maintained in
puromycin selection medium in order to reduce the probability of KD loss.

After expansion, shATM containing cells were assessed on protein and RNA level, and shATM#2
was selected for further experiments after achieving the best KD.

For stress experiments, parental and knockdown cells were treated with chloroquine (CQ,
Sigma-Aldrich, St. Louis, Missouri, USA, C6628) for osmotic stress, bleomycin (BLEO, Merck
Millipore, Burlington, Massachusetts, USA, 203408-250MG) for genotoxic stress, sodium arsenite
(NaARS, Sigma-Aldrich, St. Louis, Missouri, USA, S7400-100G) for oxidative stress, and LY-294002
(LY, Cayman Chemical Company, Ann Arbor, Michigan, USA, 70920) for trophic stress via
phosphoinositide 3-kinase (PI3K) inhibition. 20 uM chloroquine was administered for 24 h with
sterile water as control. BLEO treatment was at 5 pM for 8 h, with DMSO as control condition. NaARS
was delivered at 0.5 mM for 45 min, water serving as a control. LY was administered at a
concentration of 10 ug/mL for 24 h, with DMSO as control. For pre-treatment of parental SH-SY5Y
cells with the ATM inhibitor KU-55933 (KU, Selleckchem, Houston, Texas, USA, 51092), 10 pM were
used over 30 min, prior to the cell stress exposure, with DMSO as a control.

Cells were harvested in Phosphate Buffered Saline (PBS) using cell scrapers. After
centrifugation, pellets were frozen until usage in either nucleic acid analysis via RT-qPCR, or protein
analysis via immunoblotting or subcellular fractionation.

2.6. Reverse Transcriptase real-time quantitative Polymerase Chain Reaction (RT-gPCR)

Total RNA was isolated from either mouse cerebellum or cell pellets. RNA extraction was
performed using TRI reagent (Sigma-Aldrich, St. Louis, Missouri, USA) following the manufacturer’s
protocol. To generate cDNA from RNA samples the SuperScript IV Kit (Invitrogen, Carlsbad,
California, USA) was used. A total amount of 1 ug RNA was first digested with ezDNase enzyme
(Invitrogen, Carlsbad, California, USA) for purification and finally reverse transcribed following the
manufacturer’s instructions. For gene expression analysis, RT-qPCR was performed using TagMan
Gene Expression Assays™ (Thermo Fisher Scientific, Waltham, Massachusetts, USA). For this
purpose, cDNA from 10 ng total RNA was used with 2x FastStart Universal Probe Master ROX
(Roche, Basel, CHE) and the corresponding TagMan Assay. The reaction was performed in a
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StepOnePlus Real-Time PCR Cycler (Applied Biosystems, Waltham, Massachusetts, USA). Data was
analysed using the 2744¢" method [63].

The following TagMan Assays were used for murine transcripts: Atm - Mm01177457_m1; Atmin
— Mm01251229_m1; Ecell - Mm00469610_m1; Foxo3 — Mm01185722_m1; Grid2 - Mm00515053_m1;
Grin2b — Mm00433820_m1; Grin2c - Mm00439180_m1; Grm4 - MmO01306128_m1; Itprl -
MmO00439907_m1; Mme — Mm00485040_m1; Nr4al — Mm01300401_m1; Nr4a2 — Mm01278507_g1;
Nr4a3 - MmO00450074_m1; Oprml (Exon 2-3) - Mm01188089_m1l; Oprml (Exon 5-6) -
MmO01188387_m1; Perl - Mm00501813_m1; Rora - Mm01173766_m1; Slc17a6 — Mm00499876_m];
Slc32a1 - Mm00494138_ml; Sst - Mm00436671_m1; Tacl - Mm00436880_ml; Tacrl -
Mm00436892_m1; Tbp - Mm00446973_m1; Usp2 - Mm00497452_m1.

The following TagMan Assays were used for human transcripts: ATM - Hs01112311_m1;
ATMIN - Hs00739820_m1; CAMK2A — Hs00947041_m1; CAMK4 - Hs00174318_m1; ECEL1 -
Hs00191400_m1; FOXO3 - Hs00818121_m1; GRID2 - Hs00910017_m1; ITPR1 — Hs00976045_m1;
MME - Hs01115452_m1; NR4A1 - Hs00374226_m1; OPRM1 - Hs01053957_m1; OPRM1 (Exonl-2) —
Hs01053956_m1; OPRM1 (Exon 3-4) — Hs00168570_m1; PER1 - Hs00242988_ml; RORA -
Hs00536545_m1; RRAGD — Hs00222001_m1; SGKI — Hs00178612_m1; TBP - Hs9999910_m1; USP2 -
Hs00275859_m1.

2.7. Immunoblotting

For protein analysis in cerebellum, the tissues were lysed, homogenized in urea lysis buffer and
sonicated on medium power (three 10 second bursts). Lysates were centrifuged at 18,000 x g for 15
min. Protein content of the lysate was estimated using the Pierce 660nM protein assay kit (Thermo
Fisher Scientific, Waltham, Massachusetts, USA). Equal amounts of protein lysates (10 pg) were
separated by SDS-Polyacrylamide gel electrophoresis (PAGE) (Bio-Rad, Hercules, California, USA)
and transferred to nitrocellulose membrane (Merck Millipore, Burlington, Massachusetts, USA).
Non-specific binding was blocked using 5% nonfat dry milk/ TBS-T for 1 h at room temperature and
then the membrane was incubated with a primary antibody against ATM (#2873, Cell Signaling
Technology, Danvers, Massachusetts, USA) or with p-Actin (ACTB, #4970, Cell Signaling
Technology, Danvers, Massachusetts, USA) at 4°C overnight in 5% BSA/TBS-T. The next day,
membranes were washed with TBS-T (3 x 5 minutes each) and incubated with anti-rabbit IgG (H+L)
(DyLight™680 Conjugate) secondary antibody for 1h. Antibody binding was visualized on the LI-
COR Odyssey NIR (near infrared) imaging system.

For protein analysis in SH-SY5Y cells, samples were first lysed in RIPA buffer (50 mM TRIS/HCl
pH 8.0, 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% sodium dodecylsulfate = SDS),
containing HALT phosphatase inhibitors (Thermo Fisher Scientific, Waltham, Massachusetts, USA)
and cOmplete proteinase inhibitors (Roche, Basel, CHE) for 30 min on ice. Following that, the lysates
were briefly sonicated and subjected to Pierce BCA Protein Assay Kit (Thermo Fisher Scientific,
Waltham, Massachusetts, USA) for determination of protein concentration following the
manufacturer’s instructions. For the SDS-PAGE, 25 ug protein was used and denatured at 90 °C for
5 min. SDS-PAGE was done following standard procedures. Proteins were transferred on 0.2 um
nitrocellulose membranes (Bio-Rad, Hercules, California, USA) and blocked in 5% bovine serum
albumin (BSA, Carl Roth GmbH, Karlsruhe, GER) in TBS-buffer containing 0.1% Tween-20 (Sigma-
Aldrich, St. Louis, Missouri, USA) for 1 h. Primary antibodies were rabbit anti-ATM (Cell Signaling
Technology, Danvers, Massachusetts, USA, #2873), mouse anti-pATM (51981, Cell Signaling
Technology, Danvers, Massachusetts, USA, #4526), mouse anti-a-tubulin (=TUBA, Sigma-Aldrich, St.
Louis, Missouri, USA, T9026), mouse anti-GAPDH (Calbiochem, St. Louis, Missouri, USA, CB1001),
mouse anti-vinculin (=VCL, Proteintech, Rosemont, Illinois, USA, 66305-1-Ig), mouse anti-HSP60
(Santa Cruz Biotechnology, Dallas Texas, USA, sc-13115), rabbit anti-LAMIN-A/C (=LAMIN, Abcam,
Cambridge, GBR, ab169532), rabbit anti-IP3 receptor (=ITPR1, abcam, Cambridge, GBR, ab5804),
rabbit anti-PER1 (Proteintech, Rosemont, Illinois, USA, 13463-1-AP), rabbit anti-USP2 (Proteintech,
Rosemont, Illinois, USA, 10392-1-AP). Incubation was performed over night at 4 °C. Membranes were
incubated with the respective secondary antibody IRDye 800CW goat anti-rabbit (LI-COR, Lincoln,
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Nebraska, USA, 926-32211), IRDye 680RD goat anti-rabbit (LI-COR, Lincoln, Nebraska, USA, 926-
68071), IRDye 800CW goat anti-mouse (LI-COR, Lincoln, Nebraska, USA, 926-32210), IRDye 680RD
goat anti-mouse (LI-COR, Lincoln, Nebraska, USA, 926-68070) for 1 h and subsequently imaged in
LI-COR Odyssey Infrared Imager (Lincoln, Nebraska, USA).

2.8. Fractionation

Subcellular fractionation of cells was done as previously described [64]. Briefly, cell pellets were
resuspended in cytosolic extract buffer (CEB; 250 mM sucrose, 70 mM KCl, 137 mM NaCl, 4.3 mM
Na:HPOs, 1.4 mM KH2POs) supplemented with 400 pg/mL digitonin (Sigma-Aldrich, St. Louis,
Missouri, USA, D141-100MG), 100 uM PMSF (Carl Roth GmbH, Karlsruhe, GER, S367.1), 10 pg/mL
leupeptin (AppliChem, Darmstadt, GER, A2183,0010) and 2 pug/mL aprotinin (Carl Roth GmbH,
Karlsruhe, GER, A162.1). The cytoplasmic fraction was removed after centrifugation, and the
mitochondrial fraction was generated from the pellets via incubation in mitochondrial lysis buffer
(MLB; 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 2 mM EDTA, 2 mM EGTA, 0.2% Triton X-100, 0.3%
NP-40) supplemented with 100 uM PMSEF, 10 pug/mL leupeptin and 2 pg/mL aprotinin. Extracts were
centrifuged and the mitochondrial fraction was removed, before nucleic lysates were prepared from
pellets in RIPA buffer, which contained HALT phosphatase inhibitors (Thermo Fisher Scientific,
Waltham, Massachusetts, USA) and cOmplete proteinase inhibitors (Roche, Basel, CHE). The nuclear
extracts were centrifuged to remove RIPA insoluble debris. Protein concentration in each fraction
was quantified by BCA assay. Purity of the fractions was assessed via presence of GAPDH in cytosolic
fractions, HSP60 in mitochondrial fractions and LAMIN-A/C in nuclear extracts via quantitative
immunoblots.

Subcellular fractionation of cerebellar tissue was performed as previously described [65]. In
brief, one cerebellum was first homogenised in Buffer A (150 mM NaCl, 50 mM HEPES pH 7.4, 1 M
hexylene glycol) supplemented with 400 pug/mL digitonin, 100 uM PMSF, 10 pg/mL leupeptin and 2
pg/mL aprotinin using a pestle motor mixer. Samples were further homogenised via centrifugation
through a QIAshredder (Qiagen, Venlo, NLD). After a 10 min incubation period, samples were
centrifuged to obtain the cytoplasmic fraction. Pellets were resuspended in Buffer B (150 mM NaCl,
50 mM HEPES pH 7.4, 1% NP-40, 1 M hexylene glycol) supplemented with 100 uM PMSF, 10 pug/mL
leupeptin and 2 pg/mL aprotinin. Extracts were incubated for 30 min and centrifuged to generate
mitochondrial fractions. Finally, pellets were incubated with 500 U benzonase nuclease (Sigma-
Aldrich, St. Louis, Missouri, USA, E1014-25KU) to digest DNA. Nuclei were lysed by 10 min
incubation with Buffer C (150 mM NaCl, 50 mM HEPES pH 7.4, 1 M hexylene glycol, 0.5% sodium
deoxycholate, 0.1% SDS) supplemented with 100 pM PMSF, 10 ug/mL leupeptin and 2 ug/mL
aprotinin, and nuclear extracts were harvested as supernatant after centrifugation. The fractions were
subjected to BCA assay for determination of protein concentration. Purity of fractions was again
assessed via presence of GAPDH in cytosolic fractions, HSP60 in mitochondrial fractions and
LAMIN-A/C in nuclear extracts via immunoblotting.

2.9. Statistics

Data were statistically analysed using GraphPad Prism 8 Software. Grouped data was analysed
via 2-way ANOVA followed by Sidak’s post-hoc test for multiple comparisons. Independent data
was analysed via 1-way ANOVA followed by Tukey’s post-hoc test for multiple comparisons.
Comparisons of two conditions were performed with unpaired t-test with Welch’s correction.
Asterisks represent significance (* = p < 0.05, ** = p < 0.01, ** = p <0.001, *** = p < 0.0001). P-values
0.05 < p < 0.10 were considered as statistical trend (T) and are displayed as exact values. Data are
displayed as mean * standard error of the mean (SEM) with or without additional single values.
Protein and transcript ratios are displayed as fold changes, relative to the untreated control condition.

3. Results

3.1. The cerebellar transcriptome profile of ATM-null mice at 12 months of age
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As shown in Figure 1a, the global transcriptome analysis of cerebellar tissue was performed in
4 WT versus 4 ATM-null mice, aged in parallel until 12 months in pairs of identical sex. The genotype
of analysed mice was controlled by breeding protocols, PCR from ear-punch DNA, RT-qPCR of Atm
mRNA and quantitative immunoblots of ATM protein (Figure 1b/c). The global transcriptome profile
of the ATM-null cerebellum was documented in Table S1. To ensure data reproducibility among
different organisms in this strongly affected tissue at advanced age, we compared our ATM-null
mouse cerebellar transcriptome profile at age 12 months with a published [66] proteome survey of
A-T patient cerebellar post-mortem samples (although distortions by altered tissue composition at
end-stage will generate artefacts, and mass-spectrometry will detect maximally some 10,000 among
all existing proteins), annotating the consistent findings in Table S1. The comparison of our 12-month-
old ATM-null mouse cerebellar transcriptome profile with previous A-T patient cerebrospinal fluid
proteome data [67] revealed parallel reductions for Reln, Fat2, Omd, Cntné (down) and C4b (up). This
transcriptome was then interrogated in the context of known ATM functions and phenotypes, as far
as known in the current literature. Given the scarcity of 12-month-old ATM-null mice with cerebellar
anomalies, and in view of the massive widespread transcriptome changes observed (which are
probably a direct consequence of altered phosphorylation cascades that alert to membrane stress and
modulate nuclear transcription), we also performed extensive validation work in stressed cell models
to elucidate the role of prominent molecular events.
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Figure 1. Workflow and quality control for genome-wide cerebellar transcriptome analysis from
12-month-old Atm-KO mice. (a) Schematic representation of the workflow performed in age and sex-
matched Atm** versus Atm’ mice (n = 4 vs 4). mRNA was extracted from cerebella of these animals
using Trizol, and ClariomD microarray hybridisation was then performed. Data were analysed using
the TAC Software provided by Affymetrix, and by PANTHER Overrepresentation analysis of
pathway enrichments. (b) Mouse genotype validation via RT-qPCR, detecting the quantity of WT Atm
transcript versus its reduction due to exon deletion and nonsense-mediated RNA decay in the Atm-
KO samples, using Tbp transcript as normalizer (n =4). (c) Mouse genotype validation via quantitative
immunoblots, regarding ATM protein absence versus beta-actin (ACTB) as loading control (WT vs
Atm-KO, 3 vs 4). Asterisks reflect significance: *** = p <0.001. Data are displayed as mean + SEM.

In Figure 2a, a volcano plot displays the overall distribution of transcript dysregulations with
actual significance (FDR < 0.05, corresponding to p<0.0017), identifying particularly relevant coding
transcripts by their gene symbols. Prominent upregulations of neurofilament medium and light chain
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mRNAs (Nefin and Nefl) reflect the axon pathology at this disease stage and presumably represent
cellular efforts to compensate the progressive neurofilament loss that is known to occur in A-T [6].
As noteworthy finding, ATM depletion was responsible for significant downregulations of mostly
non-coding transcripts, whereas the upregulations concerned almost exclusively coding transcripts.
The strongest downregulated microRNA was miR-495 (fold change -3.85, p=0.0002) as angiogenesis-
hypoxia-autophagy-synaptic depression modulator [68-73]. An even greater downregulation was
detected for the non-coding RNA TC0500000412.mm.1 (fold-change FC -10.77, p=6.30E-07) as a prime
example for the massive impact of ATM-loss on non-coding RNAs in general. The cellular roles of
TC0500000412.mm.1 are unknown at present. In Figure 2b, pie charts reflect this massive contrast
between non-coding downregulations versus coding upregulations, providing absolute numbers and
percentages. Extreme upregulations of several factors that are selectively expressed in the choroid
plexus whose presence in the cerebellar samples was not controlled were interpreted as artefacts. A
bioinformatics survey of gene ontology terms in biological processes and molecular functions by
PANTHER software indicated prominent deficits in corticotropin-dependent stress responses as well
as presynaptic machinery and vesicle priming (Figure 2c), versus prominent excess transcripts for
neurotransmitter loading and channel activity (Figure 2d). The upregulations of neurotransmission
components occurred without selectivity for any cell type, involving e.g. glutamate, GABA, glycin,
muscarinic and nicotinic acetylcholine, as well as dopamine receptor transcripts. Notably, the
neuropeptide signaling pathway (GO:0007218) was the 17% most enriched term among upregulations
(FDR p=2.02E-05) and also showed a non-selective pattern in general, involving somatostatin,
tachykinin, neurotensin, endothelin, vasohibin, encephalin, opioid mu and kappa3 signaling
components. Further more detailed bioinformatics studies showed significant enrichment on the
STRING webplatform for ataxia genes, vesicular factors, calcium homeostasis factors, and immediate
early genes. The factors involved in these enrichments were annotated in Table S1, together with all
ATM protein interactome components and the ATM kinase target proteins known at present.
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Figure 2. Genome-wide survey of transcript levels in cerebella from 12-month-old ATM-null mice.
(a) Global transcriptome documentation via Clariom D microarrays, visualized as Volcano plot with
symmetry due to logarithmic scales, where the X-axis shows down- versus up-regulations (in green
versus red color, respectively) while the Y-axis shows the significance of changes via false detection
rates (FDR), identifying factors with relevance for pathway enrichments and for follow-up studies by
their gene symbols. (b) Total amount of detected transcripts (65956) and ratio of transcripts that
passed the filter criteria (8257, 12.52%). Of these, 43.42 % (3585) are upregulated and 56.58 % (4672)
are downregulated. The upregulations and downregulation were further classified into different
transcript categories, namely ribosomal, coding, precursor micro-RNA, pseudogene, small RNA, non-
coding, tRNA and multiple complex, highlighting a prominent downregulation of non-coding RNAs.
(c+d) Gene Ontology (GO) enrichment analysis of downregulated (green graphs) and upregulated
(red graphs) transcripts, showing biological processes in the upper panel (prominent enrichment for
cellular response to corticotropin-releasing hormone stimulus among downregulated transcripts,
prominent enrichment for neurotransmitter loading into synaptic vesicle among upregulated
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transcripts), molecular functions in the lower panel (prominent enrichment for structural constituent
of presynaptic active zone among downregulated transcripts, prominent enrichment for inhibitory
extracellular ligand-gated ion channel activity among upregulated transcripts). (e) Dysregulation
validation via RT-qPCR in these 12-month-old mouse cerebella (WT vs Atm-KO, n = 4 vs 4) for key
factors in ATM interaction, excitability, neurotransmission and neuropeptide signaling. For statistical
trends, the precise p-value was shown. Asterisks represent significance: * = p < 0.05, ** = p < 0.01, ***
=p <0.001, ns = non-significant. Data are displayed as mean + SEM.

In the disease context, the transcriptome showed dysregulated expression with nominal
significance for genes responsible for phenotypes of ataxia (compiled according to the Online
Mendelian Inheritance of Man database, https://www.ncbi.nlm.nih.gov/omim/). Downregulations
were observed for Atm, Itprl, Synel, Grid2, Grik2, Fgf14, Rora, Gba2, Reln, in good agreement with a
previous proteome study of cerebrospinal fluid from A-T patients [67]; a significant enrichment was
detected by the STRING webserver for “abnormal cerebellar granule neuron morphology” (q=0.0014)
for the cluster of ATM, RORA [74] and GRID2 [75] proteins; an enrichment for “postsynapse”
(q=0.0182) was detected for ITPR1 [66, 67, 75, 76], SYNE1, GRID2 [75] and GRIK2 [77]; upregulations
were observed for the ataxia genes Mme, Ebf3, Vamp1, Ppp2r2b, Svbp, without significant enrichment,
but VAMP1 being a vesicle-associated factor like ATM. Significant expression changes existed also
for genes responsible for the pathogenesis of telangiectasia (upregulation of Sst, Sstr1, Sstr2, Tacl,
Tacr1, Svbp) [78-81], and for general growth (Sst, Sstr1, Sstr2) [82].

The significant dysregulation of ATM interactome components Atmin, Nr4al and Foxo3 / Foxol
(but not the ATM interactome components Mrell / Rad50 / Nbs1, nor its downstream effectors Chk2
and Tp53) argued against neural ATM functions at this cerebellar age in DNA damage repair, instead
suggesting osmotic / oxidative / nutrient stress [83-85]. Interestingly however, the deubiquitinase
USP2 was reported recently to function in the ATM / NBS1 interactome [86], and showed strong
downregulation within the ATM-null cerebellar transcriptome. Even the relatively weak Kat5
induction observed may be relevant, in view of the known role of KAT5-dependent ATM Lys3016
acetylation.

Finally, among previously reported ATM phosphorylation target proteins [87-89] with
significant dysregulation (see Table S1 annotations) in the 12-month-old ATM-null mouse cerebellar
transcriptome, RTN4 (NOGO-A), DOCK10, FSCN1, SOX10, SEPT9 and CCNL2 were already
implicated in glutamatergic synapse and dendrite effects [90-95]. Unexpectedly, the transcript
upregulations concerned all neurotransmitter and neuropeptide pathways, rather than a signaling
balance between glutamate-excitation on the one hand versus GABA-inhibition on the other hand
[39].

Validation experiments by the independent method RT-qPCR in the remaining cerebellar tissue
from these 12-month-old ATM-null and WT mice confirmed these dysregulations for practically all
factors studied. These experiments focused on ATM interactors, ataxia genes, neurotransmitter
loading factors, glutamate receptors, immediate early response components, and neuropeptide
signaling molecules (Figure 2e). The RT-qPCR validation of these selected dysregulations was
extended to cerebellar tissue from 1.5-3-month-old ATM-null versus age- / sex-matched WT mice,
showing similar dysregulations to occur early on for Nr4al, Nr4a2, Oprml, and Tacrl (Figure S1).
Furthermore, the 12-month-old ATM-null cerebellar transcriptome confirmed previous RT-qPCR
results in ATM-null cerebellum at the age of 2 months [67] regarding the downregulations of Itpr1,
Atp2b2 and Grin2c, versus the upregulations of Grin2b and Cyp46a1 mRNA levels.

3.2. In human neural cells with stable ATM-knockdown, cerebellar hallmark dysrequlations are recapitulated
best after osmotic stress, and partially after trophic stress

ATM-deficiency was studied further in cell culture, to assess the reproducibility of these findings
in human and to identify the most suitable stressor in vitro that mirrors such age-associated
dysregulations while enabling us to generate unlimited samples for mechanistic studies. We used the
human SH-SY5Y neuroblastoma cell line, introduced wvarious ATM shRNAs via lentiviral
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transduction, and produced a stable ATM KD cell line that achieved high ATM protein and mRNA
reduction for further analysis. The most efficient KD was produced by shRNA#2 (hereafter be
referred to as shATM), triggering obvious changes in cellular morphology (Figure S2a), and
reductions of ATM transcript to 36% (Figure S2b) and protein to 9.5% (Figure S2c), compared to the
non-target shRNA control (NT CTRL) condition. In this human neural cell line, the application of the
osmotic stressor chloroquine (CQ) did not alter the abundance of ATM protein, but induced
phosphorylation at ATM residue S1981 (1.8-fold, with p=0.1408 in three biological replicates), an
expected event for DDR-triggered autophosphorylation / activation of this stress sensor molecule
(Figure S2d).

To assess whether SH-SY5Y neuroblastoma cells have a similar distribution of ATM in
subcellular fractions as adult cerebellar tissue, differential detergent isolation of nuclear,
mitochondprial, and cytoplasmic fractions was performed firstly in cerebellum from WT versus ATM-
null mice at the age of 3.5 months (Figure 3a), and secondly in SH-SY5Y NT CTRL cells compared to
shATM cells (Figure 3b). Even though there was some leakage from the GAPDH-immunopositive
cytoplasmic (cyto) fraction to the HSP60-positive mitochondrial (mito) and the LAMIN-A/C-positive
nuclear (nuc) fraction, ATM was clearly located in the cytoplasmic rather than the nuclear fraction in
mouse cerebellum (Figure 3a). This finding is novel, since previous analyses until maximal cerebellar
age of 6 weeks, after completion of Purkinje neuron maturation and granule cell precursor migration
[96-98], had observed ATM more in nuclear than cytosolic fractions.

A localization in the cytosolic fraction was also clearly observed for ATM in SH-SY5Y cells,
although the gels exhibited some leakage of the nuclear fraction to the mitochondrial fraction (Figure
3b). Importantly, this cytoplasmic localization of ATM in vitro was not altered by administration of
the osmotic stressor CQ or the genotoxic stressor bleomycin (BLEO) in several independent
experiments (Figure S3a/b). One experiment with LY stress, and one experiment with NaARS stress
also failed to detect an ATM localization change. These results indicate that the ATM knockdown in
SH-SY5Y neuroblastoma cells can be used as useful in vitro models for neural Atm-deficiency,
regarding transcript and protein levels, stress induction and subcellular fractionation.
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Figure 3. ATM localization in subcellular fractions by differential detergents. The workflow
scheme is shown on the left side. On the right side, samples represent cell fractions of cytoplasm
(cyto), mitochondria (mito) and nucleus (nuc). The purity of each aliquot was assessed by the markers
GAPDH for cytoplasm, HSP60 for mitochondria, and LAMIN-A/C for nucleus. The size markers in
kilodaltons (kDa) on the right margin of each gel confirm the expected molecular weight of each
protein studied. (a) Immunoblot detecting ATM in WT versus Atm-KO mouse cerebella from 3.5-
month-old mice. (b) Immunoblot detecting ATM in non-target shRNA transduced control (NT CTRL)
versus shATM transduced mutant SH-SY5Y neuroblastoma cells.

3.3. The ATM-null cerebellar mRNA dysregulations are mimicked in SH-SHS5Y cells by ATM knockdown
rather than ATM kinase antagonism, and by CQ better than trophic / oxidative / genotoxic stress

To understand whether the cerebellar dysregulations of old ATM-null mice are due to ATM
absence as platform for protein complex formation, or absent ATM kinase activity, we assessed if
they are recapitulated after stress in neuroblastoma cells upon KD of ATM mRNA, or after treatment
with KU-55933 (KU) as pharmacological inhibitor of ATM-mediated phosphorylation (scheme and
control of ATM mRNA levels in Figure 4a/b). As representative transcripts under control of ATM, we
chose upstream effectors such as USP2 in view of its role within the ATM-interactome, and PER1 as
immediate-early transcript modulated by phosphorylation cascades (Figure 4c-f). Figure 4c shows
the expected significant downregulation of USP2 after CQ administration in the ATM-KD cells (to
65% of control after CQ, and further reduction to 48% and 38% in shATM cells with and without CQ-
stress), while in KU-treated cells downregulation of USP2 was only generated by CQ-treatment but
not the kinase inhibition. Similarly, Figure 4d shows significant ATM dependent CQ stressor effect,
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with the significant 1.5 fold induction of PER1 by CQ stressor being abolished to control levels in
shATM cells. Again this effect was not reproduced in KU-treated cells. For USP2 (Figure 4e),
genotoxic and oxidative stress were unable to trigger the downregulation, only trophic stress by
treatment with the PI3K-inhibitor L'Y-294002 resulted in a significant ATM-dependent reduction. For
PER1 (Figure 4f), all other stressors were ineffective. Exploiting the availability of a specific and
sensitive anti-PER1 antibody, a reduction of PER1 protein was found in neuroblastoma cells with
stable ATM KD even before the application of acute stress (Figure 4g). The administration of CQ
resulted in a PER1 reduction in NT CTRL cells, but a converse PER1 protein induction in shATM
cells. Thus, a combination of ATM-KD with CQ-stress appeared to represent the best in vitro
modelling approach in SH-SY5Y neuroblastoma cells, to investigate the roles of cerebellar mRNA
dysregulations in aged ATM-null cerebellum.
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Figure 4. ATM-KD successfully models the dysregulations found in vivo, while inhibition of ATM
kinase function is not effective. (a) Scheme of chloroquine (CQ) stressor treatment in ATM-KD SH-
SY5Y cells (upper panel) and corresponding ATM transcript levels determined via RT-qPCR (n = 3,
lower panel). (b) Scheme of CQ stressor treatment in parental SH-SY5Y cells with KU-55933 ATM
kinase inhibitor pretreatment (upper panel) and corresponding ATM transcript levels determined via
RT-qPCR (n = 3, lower panel). (c) Comparison of ATM interactor USP2 mRNA and (d) immediate
early transcript PER1 levels in ATM-KD (left) vs ATM-kinase-inhibited parental cells (right) after CQ
stress, as determined via RT-qPCR (n = 3). (e) Reduction of USP2 transcripts upon CQ-stress and in
ATM-KD is largely reproduced by LY-294002 stressor treatment, but not after BLEO and NaARS
treatment of ATM-KD cells (n = 3). (f) BLEO, NaARS and LY-294002 stressor treatments do not
reproduce the ATM dependent PER1 transcript induction present in aged ATM-null cerebellum,
which was however successfully modelled after CQ-stressor treatment of ATM-KD cells (n = 3) as
seen in panel (d). (g) PER1 protein is reduced by CQ-stress administration in NT CTRL cells and
generally in sShATM cells, as determined by quantitative immunoblots (n = 3). For statistical trends,
the precise p-value was shown. Asterisks display significance. *=p <0.05, **=p <0.01, ***=p <0.001,
*#% = p <0.0001, ns = non-significant. Data were displayed as bar plots with data points, mean + SEM.

3.4. Also in human cells, ATM-deficiency impacts key pathomechanism factors like interactor ATMIN,
immediate-early mRNA FOXO3, osmotic requlator RRAGD, vasoconstriction regulator ECEL1, and ataxia
transcripts GRID2, ITPR1 and MME

Although the global transcriptome profile of old ATM-null cerebellum identified many novel
pathogenesis events, it remained unclear to what degree these findings are conserved in human, and
whether they can be explained by osmotic stress. Therefore, validation experiments were conducted
with RT-qPCR and quantitative immunoblots to assess key factors in human SH-SY5Y cells with
ATM-KD, unstressed or after CQ administration. For validation of individual dysregulations, we
selected crucial effectors of ATM function and critical determinants of the phenotypes that
characterize A-T.

In parallel to the desired reduction of ATM in SH-SY5Y knockdown cells documented in Figure
4a, these further studies (see Figures 5 and S4) confirmed strong genotype-dependent
downregulations for ATMIN mRNA (to 71% and 76%) as mediator of ATM responses to osmotic and
oxidative stress. NR4A1 and FOXO3 mRNA as immediate-early mediators of phosphorylation
signals to the nucleus, both were found to be responsive to CQ-stressor treatment (1.5-fold and 1.6-
fold increase, respectively), while displaying abrogated induction in shATM cells (Figure 5a, Figure
S4a). Also the CQ-triggered inductions of calcium-dependent kinases CAMK2A and CAMK4 mRNA
(4.1 fold and 1.3 fold, respectively) were significantly impaired upon ATM-KD (Figure S4a).
Importantly, an ATM-dependent mRNA downregulation (to 32% and 37% for unstressed and
stressed condition, respectively) was also observed for the ataxia gene ITPR1 and might therefore be
interpreted as a loss-of-function that may have a primary role in the pathogenesis of autosomal
recessive A-T, while the other ataxia genes GRID2 [99, 100] and MME [101] showed ATM-dependent
mRNA upregulations (2.4 fold and 3.4 fold for GRID2; 1.6 fold and 3.0 fold for MME, in unstressed
and stressed ATM-KD cells) that may represent compensatory efforts, and the ataxia transcript RORA
[102, 103] exhibited only a response to osmotic stress (1.8 fold increase in CQ treated cells; Figure 5a).
As further evidence for compensatory reactions to osmotic stress, RRAGD mRNA (encoding Ras-
related RagD amino acid sensor [104, 105]) showed significant upregulation after CQ treatment, and
even bigger upregulation after ATM-KD (4.0 fold induction in NT CTRL cells and 8.1 fold increase in
stressed shATM cells, Figure 5a). Also SGK1 transcript was induced only upon CQ treatment in
shATM cells (1.4-fold, p = 0.3903 and 2.4-fold, p = 0.0007) corroborates the presence of osmotic stress
(Figure S4a). As putative modifier of vasodilatation, ECEL1 mRNA [106, 107] was found upregulated
after CQ stress in NT CTRL cells (1.4-fold, Figure 5a) and after oxidative stress in ATM-KD cells (1.4-
fold), as well as after CQ stress during ATM kinase inhibition (1.2-fold) (Figure S4b).
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Figure 5. The stressor chloroquine provides the most effective model in SH-SY5Y ATM-KD cells,
for representative strong dysregulations in different pathways, which were previously documented
in aged ATM-null cerebellum. (a) ATMIN mRNA (n = 6) was analysed as interactome component of
ATM. NR4A1 (n = 6) was analysed as immediate early gene. RRADG (n = 3) transcript levels were
analysed as positive controls for osmotic stress elicited by CQ. ECEL1 (n = 3) and MME (n = 3) were
analysed for the group of neuropeptide endopeptidases. mRNAs for GRID2 (n = 3), ITPR1 (n =3) and
RORA (n = 3) were analysed as known ataxia disease genes. (b) The protein Inositol-1,4,5-
Trisphosphate receptor (IP3R, encoded by ITPRI) was also significantly reduced in shATM cells
compared to NT CTRL cells as determined by quantitative immunoblots, while induction by CQ
stressor treatment did not reach significance (n = 3). The double band around 315 kDa was quantified
by densitometry. Tubulin A (TUBA) was used as sample loading control and normalizer, in view of
its high abundance similar to IP3R. (¢) USP2 protein appeared unchanged in quantitative
immunoblots (n = 3) of shATM cells compared to NT CTRL cells, despite the transcript induction
shown in Figure 3e. For statistical trends, the precise p-value was shown. Asterisks reflect
significance: * = p <0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001, ns = non-significant. Data were
displayed as bar plots with data points, mean + SEM.

Quantitative immunoblots were conducted when commercial antibodies were available to us
with sufficient specificity and sensitivity to detect the endogenous protein levels. For the human IP3R
protein encoded by ITPR1 transcript, these experiments confirmed a strong reduction of abundance
(to about 35%) upon ATM-deficiency (Figure 5b). In contrast, the quantitative immunoblots indicated
the protein levels of USP2 to be unchanged by CQ and by ATM-KD (Figure 5c), so apparently the
significant USP2 mRNA reduction after CQ and ATM-KD demonstrated in Figure 4c does not rapidly
impact the steady-state immunoreactivity, and it may be that posttranslational control of USP2 and
its MDM4/HDMX-MRN-complex-association [86, 108, 109] are more decisive for short-term USP2
activity regulation than its resynthesis. Still, our mRNA findings confirm USP2 as very consistently
ATM-dependent factor whose expression is modified by cytosolic ATM in neural cells, and which
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functions very upstream in the ATM-dependent stress response pathways — so it might be a useful
target of novel preventive therapies.

3.5. ATM-null mouse cerebellum alternatively spliced mRNAs are enriched for neurotransmission and
neuropeptide signaling factors

For rapidity, stress responses are conveyed through the cytoplasm by phosphorylation signals
to adapt transcription of immediate-early genes in the nuclear chromatin, but even more directly
stress signaling readjusts the alternative splicing of existing transcripts in the nucleus and the editing
of actively translated transcripts in the cytosol. Since the ClariomD microarrays employed for
cerebellar transcriptome profiling represent almost all exons, we also assessed splice dysregulations
in this dataset from aged ATM-null mice, employing the “Alt Splice View” function in the
Transcriptome Analysis Console from AppliedBiosystems. Interestingly, upon filtering for
significant changes (p-value < 0.05, FDR p-value < 0.25) with strong fold-change (Exon Splicing Index
>/< +/- 5), a set of 40 alternatively spliced transcripts was identified. Of these, 31 displayed an overall
increased exon splicing index, while 9 showed reduced exon splicing index (Figure 6a). More detailed
assessment revealed that most of them represent altered quantities of a single exon within a
dysregulated transcript, and because of concerns that not all oligonucleotide probes within a mRNA
can be expected to exhibit parallel linear signal changes and might therefore mimic alternative
splicing artificially, we decided to annotate such observations for the main candidates (Table S1,
second datasheet). Again the neuropeptide signaling pathway (FDR q=1.16e-6), regulation of
neurotransmitter levels and synapse organization were prominent, as identified by the STRING Web
browser (Figure 6b).

Oprm1 stood out with an overall exon splicing index of 39.17, which is summarized graphically
(Figure 6c) by the Transcriptome Analysis Console (Applied Biosystems) for each oligonucleotide
probe along the transcript structure. Extrapolating probes within individual exons or at the junction
between known exons or cryptic exons from these data in mouse onto known facts in human, we
tested the credibility of these Oprm1 splice changes by RT-qPCR in human neuroblastoma cells. It
should also be taken into account that an oligonucleotide probe within an exon may show a
differential increase or decrease, while a Taqgman assay is usually quantifying the amplification
product at the junction between two adjacent exons, so a splice change may be detectable by a specific
RT-qPCR assay but not the neighboring assay, and the effects may not be conserved between species,
with differing exon number nomenclature. As shown in Figure 6d, the exon 2-3 boundary of Oprm1
exhibited a 15-fold signal increase in old ATM-null cerebellum, while the exon 5-6 junction signal
was unaltered. In the human SH-SY5Y cells, the RT-qPCR results of exon 1-2 and exon 3-4 boundaries
in OPRM1 transcript also showed a massive dysregulation upon ATM deficiency (reduction to 5%),
with no significant change after osmotic stress (Figure 6e). This downregulation was not detected
upon ATM kinase inhibitor treatment (Figure S4c), where OPRM]1 transcript levels remained stable.
OPRM1 transcript downregulation exclusively in the ATM-KD condition was robustly reproduced
also in experiments with BLEO, NaARS and LY-294002 (Figure S4c), reflecting stressor-independent
effects of ATM deficiency itself. Thus, although the splicing details may differ between species and
cell type, with cerebellar tissue even revealing opposite effects than cultured neuroblastoma cells, the
mouse microarray data and validation experiments by RT-qPCR in mouse cerebellum and human
neuroblastoma cells clearly identified the opioid mu receptor as mRNA under control of ATM.
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Figure 6. Genome-wide survey of alternative splicing in cerebella from 12-month-old ATM-null mice
reveals enrichment for neuropeptide signaling pathways and neurotransmission. (a) Table of all
transcripts that display excessive alternative splicing (Filter criteria: Exon Splicing Index >/< +/- 5,
Exon p-value < 0.05, Exon FDR p-value < 0.25 and Group: Multiple Complex and Coding). Increased
exon splicing index is highlighted in red, decreased exon splicing index in green. (b) String functional
connection networks (https://string-db.org/) of these alternatively spliced transcripts. Red buttons
belong to the neuropeptide signaling pathway, blue buttons are implicated in regulation of
neurotransmitter levels, and green buttons exert functions during synapse organization. (c) Structure
view of the Oprm1 transcript structure with splicing indexes displayed in line plots for WT (grey) and
Atm-KO (purple) cerebellum. Validation experiments in (d) cerebellum of 12-month-old Atm-KO vs
WT (4 vs 4) mice and (e) SHSY5Y-KD cells under CQ-stress. Asterisks reflect significance: *=p <0.05,
*=p<0.01, **=p <0.001, ns = non-significant.
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4. Discussion

Overall, the novel transcriptome profile of 12-month-old ATM-null cerebellum shed light on the
primary role of osmotic stress in A-T pathogenesis, identified molecular correlates of A-T phenotypes
such as incipient ataxia / vasodilatation / growth impairment, defined dysregulations of interactor
molecules of cytosolic ATM that may represent useful upstream targets of neuroprotection, and
documented generalized affection of neurotransmission and neuropeptide signaling — presumably
mediated by cytoplasmic vesicles that have ATM protein associated to them. Given that the
validation experiments were able to reproduce faithfully many dysregulations in human cell culture
models of A-T, it is worthwhile to take all cerebellar dysregulations seriously and discuss the novel
evidence extensively.

4.1. The cerebellar transcriptome profile of ATM-null mice at 12 months of age

This cerebellar transcriptome profile was exceptionally informative, probably because protein
kinases such as ATM are part of phosphorylation cascades that relay information on membrane
events to the nucleus, governing transcriptional responses to stimuli versus stress. Before
experiments in a cell culture model of ATM dysfunction validated whether individual dysregulations
are reproducible in human, and how they depend on stress, it is important to understand the
relevance of these key factors within the complex pathogenesis of cerebellar A-T. Thus, we feel the
necessity to discuss the integration of all the strong dysregulations with multiple weaker effects
within the same significantly enriched pathway, because often upstream events are small while
subsequent signaling cascades will amplify the fold-changes of downstream molecular events. After
identifying relevant changes in upstream coordinators and mechanisms of each affected pathway, it
is important to explore how they are connected to ATM and how they overlap with other cerebellar
ataxias. This discussion text aims to describe a coherent scenario where the failure of stress responses
and the underlying toxic agents can be understood better.

To better understand the observations, it may help to consider the analogies between the
cerebellar pathology in A-T on the one hand, versus the common sunburn on the other hand. Ionizing
radiation and ultraviolet-B-light (UVB) light are typical causes of DNA-DSB in the nucleus, which
are sensed by ATM to coordinate repairs. UVB is also the typical cause of sunburns in skin tissue,
where not only DNA-DSB is known to ensue, but also cytoplasmic effects like calcium-dependent
excitation with chemokine / cytokine release, vasodilatation, inflammation, pain, and keratinocyte
death or carcinogenesis [110, 111]. It is already known that ATM is needed after sunburns to mitigate
UVB damage and restore normal cell growth [112-114], so ATM deficiency is indeed expected to
result to impact cytoplasmic homeostasis, including prolonged vasodilatation, edema and pain via
peptide signaling. The present transcriptome data provide the molecular details for a similar scenario
of pathomechanism in cerebellar tissue.

Regarding the prominent neurotransmission effects of cytosolic ATM, previous investigations
had reported it to be key for glutamatergic excitation, while ATR was implicated in a complementary
role for inhibitory GABAergic neurotransmission [39]. Indeed, our hypothesis-free microarray
profiling observed a widespread profound affection of the glutamatergic pathway, reflected by
downregulations of receptors Grid2 (which is responsible for Spinocerebellar Ataxia type 18 [115]),
Grid2ip [116], Gria4, Grik2, Grin2c, Grm1 (responsible for autosomal recessive Spinocerebellar Ataxia
type 13, and autosomal dominant Spinocerebellar Ataxia type 44 [117, 118]) and Grm4, the glial high
affinity glutamate transporter Slc1a3 (encoding EAAT1 / GLAST which is responsible for Episodic
Ataxia type 6 [119, 120]) and Sic1a6 (encoding EAAT4 which is involved in Spinocerebellar Ataxia
type 5 [121, 122], the mitochondrial glutamate transporter Slc25a22, and an eye-catching contrast
between downregulation of transporter Slc17a7 (encoding VGLUT1 in parallel fibers of the cerebellar
cortex), versus massive upregulation of Slc17a6 (encoding VGLUT?2 in climbing fibers of the deep
cerebellum) [123]. Glutamatergic upregulations also affected Grm5, Grm3, Grm8, Grin2b, Grin3a,
Gridl, Slclal (encoding EAAT3), Slcla2 (encoding EAAT2 / GLT1), Slcla4 (encoding ASCT1), the
AMPA-receptor interactor Nsg2 [124], the glutamate receptor interactor Grip1 [125], and excitation-
repressing Cnrl [126].
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While extending our notions about a glutamate-focused ATM role, this transcriptomic approach
permitted the additional insight that ATM loss also upregulates receptors in the inhibitory GABA-
pathways (Gabra3, Gabra5, Gabra2, Gabrg1, Gabrg3, Gabrg2, Gabrq, Gabre, Gabrb1, Gabarapll (contrasted
by downregulation only for Gabra6), together with upregulation of GABA-transporters Slc6all and
Slc32al, as well as receptors in the inhibitory glycine (Glral, Glra3, Glra2, Glra4), and in the dopamine
(Drd2, Drd5), acetylcholine (Chrm2, Chrna4, Chrm3, Chrna7, Chrna6, Chrm5, Chrnb4, Chrnb3) systems.
These data suggest that ATM plays a main role for stress adaptation of synaptic vesicles not only for
excitatory but also for inhibitory signaling, possibly via the regulation of vesicle availability / loading
/ release / recycling.

Regarding neuropeptides and their receptors, additional general affection of these signaling
pathways was documented, with upregulations of somatostatin (Sst, Sstrl, Sstr2), neurotensin (Nfs,
Ntsrl, Ntsr2), tachykinin (Tacl, Tacrl, Tacr3), neuropeptide-Y (Npy, Npylr, Npy4r) mRNAs, and
Resp18 mRNA encoding a factor responsible of neuropeptide packing in dense core vesicles [127-129],
as well as Qpct encoding a factor responsible for the N-terminal pyroglutamyl residues of
neuropeptides and cytokines [130]. Also Oprm1 as mu-type (morphin-type), Oprll as kappa3-type
(nociception-type), and Oprkl as kappal-type (for alpha-neoendorphins and dynorphins) of opioid
receptors showed upregulated transcripts. These cerebellar findings identify molecular mechanisms
how ATM deficits trigger not only excessive changes in neurotransmission, but may come to impact
vasodilatation / telangiectasia and inflammatory edema (via tachykinins, Ecel1), growth and fertility
(via somatostatin and neuropeptide-Y), immunity and lipid metabolism (via neurotensin), as well as
pain perception (via opioids). As one of the strongest upregulated transcripts, Rgs4 is a known
regulator of G-protein signaling downstream from mu- and kappa-opioid signaling [131-134]. Even
the neuropeptide activator Pcsk1 and its inhibitor Pcsk1n, as well as neuropeptide inactivators like
Mme (which is responsible for Spinocerebellar Ataxia type 43 [101]) and Ecell were upregulated.
These data suggest that ATM plays a stress adaptor role in general also for dense core vesicles where
neuropeptides are stored.

Regarding the atrophy of aged cerebellum in A-T, it is plausible to pay attention to
neurotrophins and other cytokines, which are stored in large dense core vesicles (LCDV) before their
release and where ATM might play a similar role as for neuropeptides. Indeed, upregulations of
neurotrophin receptors Gfral and Gfra2 [135, 136], inhibitory neurite growth modulators Slitrk3 [137,
138], Slitrk5 [139] and Slitrk6 [140], neuronal sorting receptors Sorcsl and Sorcs2 [141-144], stress-
dependent transcription factor Jun with its kinase Mapk9 / Jnk2 [145, 146], and heavy-metal-toxicity-
inducible death executor Ngfrapl [147, 148] suggest at first glance that LCDV pathology might
contribute to a trophic imbalance in the cerebellum. Furthermore, a downregulation of the ligands
Nrgl and Nrg3 with converse upregulation of their receptor Erbb3 and Erbb4 transcripts was observed
[149]. However, while systematic interrogation confirmed exclusively upregulations as in
neurotransmission and neuropeptide pathways, a similar systematic interrogation of cytokine
receptors and their ligands did not reveal a similarly uniform effect. Crucial downregulations of
neurotrophin N#f3 with its receptor Ntrk3, as well as the sorting receptor Sorl1 [150] were observed.
On the one hand, increased transcript levels were documented for Tgfbr1, Tgfbr2, Pdgfra (with ligand
Pdgfc), Ephad, Epha5, Epha5 (with ligands Efna2, Efna3, Efnab), Fgfr3 (with ligands Fgf18 and Fgf5),
Fgfrlop2, Csflr, Bmprlb, Lifr, Atp2b4, Tnfrsfl3c, Tnfrsf21, FzdS8, Sfrp5, Kdr, and ligands Bmp2, Fgfl3,
Efnb3, 1118, 1133, 1134, Igf1 without their receptors. On the other hand, a smaller number of conversely
decreased transcript levels were documented for Fzd4 (with downregulated ligands Wnt3, Wnt7a),
Igf2r (with downregulated ligand Igf2), Igflr1, Epha3, Pdgfrl, Sfrp1, Kit, Socs7, 1120rb, and ligands Bmp1,
Bmp7, Fgfl4, 1116 without their corresponding receptor. Thus, while a systematic effect of ATM on all
cytokines and neurotrophins is doubtful, specifically the deficits of N#f3 and Ntrk3 are relevant for
the survival of cerebellar granule neurons in a mechanism via Phospho-inositol-3’-kinase (PI3K).
Importantly, the vesicle release of neurotransmitters, neuropeptides and neurotrophin-3 has a
common upstream mediator in Cadps2, which showed decreased cerebellar mRNA levels [151-156].
The balance between neurotrophin support and glutamate neurotoxicity is known to be critical also
for the survival of Purkinje neurons [157-160].

doi:10.20944/preprints202309.1287.v1
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What other pathways were impacted in several components across the cerebellar transcriptome
profile of ATM-null mice, given that the hypothesis-free global transcriptomics approach might give
novel clues to understand A-T pathogenesis better? Second messengers downstream from
neuropeptide receptors appeared altered, in view of the G-protein signaling factors Rgs4, Rasgrf2 and
Gpr165 upregulations [131, 161, 162], and the dysregulation of calcium modulators Necabl (up) [163]
versus Itpr1 (down, its loss-of-function being the cause of autosomal dominant Spinocerebellar Ataxia
types 15 and 29, as well as autoimmune cerebellar ataxia) [57, 164-166]. The decreased mRNA levels
of inositol-trisphosphate receptor Itprl, and of Cadps2 (the Ca*-dependent release activator for
neurotransmitters, neuropeptides and neurotrophins), might be underlying contributors to this
generalized pathology, given that loss-of-function of both downregulated factors results in cerebellar
ataxia [154, 164, 167-169]. As further potentially upstream coordinators of pathology, the deficits of
inositol-triphosphate-associated Astn2, Sorll, and Mpp4 levels could lead to inappropriate
localization of membrane proteins away from the tip of neural processes [170, 171].

Regarding upstream factors within the protein interactome of ATM, the following
dysregulations deserve discussion: As a key modulator much farther upstream in the
pathomechanism, the increased levels of ATM interactor Atmin mRNA probably represent a
compensatory response to ATM dysfunction, possibly affecting synaptic adhesion [172, 173]. The
Atmin upregulation upon ATM deficiency was unexpected, since both factors were thought to
stabilize each other, with ATMIN levels being reduced upon ATM decrease, and vice versa [60, 83].
The ATM-interacting MRN complex responsible for DNA damage signaling did not show any
changed mRNA levels, but the NBS1 stabilizing factor Usp2 mRNA displayed a downregulation of
similar effect size and significance as Atm mRNA [86]. USP2-null mice show impaired motor
coordination and equilibrium [174], so its deficiency in ATM-null cerebellum might contribute to
ataxia pathogenesis. This deubiquitinase is also known as regulator of circadian clock components
[175], and indeed several USP2 effectors also showed deficient transcript levels, such as Cryl and
Cry2. In view of the role of KATS5 for the regulation of ATM activity it may also be relevant that a
transcript reduction in our dataset was observed for the KAT5-dependent kinase Chka, which is
responsible for phospholipid biosynthesis [176, 177].

Overall, excitation and growth stimuli in the ATM-null mouse cerebellum appeared to elicit
deficient nuclear responses, in view of the downregulation of immediate-early genes Nr4a3 / Nr4a2 /
Nr4al, Duspl, Fos / Fosl2, Npas4, Perl / Per2 / Per3, Foxo3 / Foxol, and Homerl. A parallel
downregulation of the NPAS4 protein interactor Arnt and its binding partner Hif3a mRNA were
observed, as well as reduced transcript levels of downstream factors Slc2a12 and Rora (which is
responsible for ataxia and intellectual deficits [178, 179]), contrasting with upregulation of the
alternative interactor Arnt2 mRNA [180-184]. With relevance to the osmotic homeostasis in ATM-null
cerebellum, a strong downregulation was observed for Dbp as the transcription factor that controls
the expression of alpha-fetoprotein and albumin (whose dysregulation is characteristic for A-T [4, 5]),
and is crucial for circadian regulation of synaptic plasticity [185-187]. The notion of changed nutrient
and osmotic regulation was also supported by the downregulation of amino acid-sensing Rragd [104].
Downregulation was prominent for immune-regulating and damage-responsive protein kinase
transcripts Smg1, Sikl and Sgk1 [188-190], findings that also implicate altered RNA surveillance,
osmotic and nutrient homeostasis in A-T pathology.

A deficit in inflammatory responses was also evident from the downregulated transcripts of
Ccl27a, Sidt1, 1116, Rnf122 and Serinc2 [191-195]. The deficiency of immunoglobulin/fibronectin-
domain-containing Boc may contribute to the observed upregulation of many protocadherin,
cadherin, and contactin pathway members (Cdh6, Cdh9, Cdh10, Cdh19, Pcdh7, Pcdh10, Pcdh11x, Pcdh17,
Pcdh18, Pcdhl19, Cntn4, Cntnb and Cntnap5a) [196].

In conclusion, pathway enrichment analyses of the transcriptome profile supported the novel
concept that failure of ATM-mediated adaptation to osmotic / nutrient and perhaps oxidative stress,
via altered USP2 / ATMIN signals, leads to a generalized abnormality in neurotransmitter-
neuropeptide signals from synaptic and dense core vesicles, with reduced immediate-early signals
and impaired synaptic adhesion.
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4.2. The alternative splice profile of ATM-null mouse cerebellum at 12 months of age

Previous studies of ATM dysfunction demonstrated its impact on alternative splicing [53], and
of course the stimulus- / stress-dependent changes in phosphorylation cascades would first impact
the splice apparatus before topoisomerase-dependent immediate-early reactions and more
cumbersome chromatin unpackaging events permit the subsequent transcription adaptations.
Overall, our interrogation of the transcriptome for factors with strong exon splicing index effects
confirmed significant enrichments in three pathways. Neurotransmission (Slc17a6, Slc18a2, Sic7a3,
Sic5a7, Slcola4, Scn3b, Kcngb, Gabrq, Glral, Glra3, Dbh, Wnkl, Car9, Micu3), neuropeptides /
neurotrophins (Oprm1, Baiap3, Gnas, DIk1, DIg2, Rasgrf2, Ngef, Ecell, Dgkk, Ccl27a, Pcsk5, Cpne6, Ptprd,
Gfral) and synaptic adhesion (Fxyd5, Cbin4, Cbin2, Nrip2) modulation was prominent. Baiap3 splice
changes could contribute to impaired biogenesis of secretory vesicles, with consequences for the Ca?*
stimulated release of neurotransmitters and neuropeptides [197]. While cerebellar tissue has a broad
expression profile, a neural cell culture model would express only a small subset of these molecules,
so further validation experiments were focused on Oprml, which exhibited the exceptional exon
splicing index of 39.7, and acts to dampen glutamatergic neurotoxicity in the contacts between
cerebellar granule neuron projections (parallel fibers) and Purkinje neuron dendrites [198-200], which
is the cerebellar site most vulnerable to ataxia pathogenesis [201, 202]. With a prominent negative
exon splicing index of -5.03 (p=0.005), Slc17a6 (encoding VGLUT?2) also displayed evident adaptation
of its exon structure, providing additional evidence that also glutamatergic climbing fiber signaling
is modulated by ATM. In contrast, Slc17a7 (VGLUT1 in parallel fibers) showed a change only for its
3’-exon with nominal significance and an exon splicing index of 1.6. While the ClariomD microarray
has oligonucleotides to detect sequences within most exons, the Tagman RT-qPCR assays in contrast
are optimized to detect exon-exon-boundaries, so a validation experiment by RT-qPCR can only
confirm the dysregulation of a specific mRNA overall, and may detect whether it disappears for a
specific exon, but will not quantify the selective inclusion / exclusion of an exon. Overall, it is
important to be cautious regarding the value of this splicing profile, because dysregulations of a
complete mRNA may not be equally represented by every oligonucleotide, mimicking true
alternative splice changes, and because experimental quantitative validation across species is
cumbersome. Thus, we consider these data as preliminary screen.

4.3. Differential detergent fractionation of adult mouse cerebellum and SH-SY5Y neuroblastoma cells detects
ATM mainly in cytosol

For validation of these mouse findings in the human species, a knockdown of ATM in
neuroblastoma SH-SY5Y cells was employed, taking into account the previous usefulness of such
human in vitro modelling projects in autophagy and chemoresistance studies of ATM [203, 204].
Neuroblastoma cell lines are known to represent a mixed population, termed N-type (neural) and S-
type (substrate-adherent, epithelial like) cells. While N-type cells are neuroblast-like with little
cytoplasm and few neuritic processes, the S-type cells have bigger cytoplasm and flattened
morphology with strong attachment to the substrate [205-208]. Unexpectedly, ATM-KD SH-SY5Y
cells displayed gross alterations in appearance, with larger and flattened cell bodies without
processes, while the non-targeting control (NT CTRL) cells retained an overall neuroblast-like
appearance and displayed short neuritic processes (Figure 52). Thus, flattened cells without processes
that are predominant for ATM-KD cells could reflect a shift in neuroblastoma cell populations
towards S-type cells. The remodelling of Ca?* signaling was already demonstrated to be altered in S-
type cells [206]. Given that SH-SY5Y cells were already shown to require ATM mediated
phosphorylation of CREB protein at serine 133, to enable retinoic acid induced differentiation [209],
this change of gross morphology in ATM-KD cells may represent a loss of differentiation. Indeed,
dysregulation of retinoic-acid dependent differentiation regulators was also evident in the 12-month-
old ATM-null mouse cerebellar transcriptome, where most components of this well characterized
pathway [210-212] were strongly dysregulated, displaying increased Nrip2 (Fig. 2a), Nrip3, Rorb,
Creb5, Crebl2 and Zfhx3 mRNA levels versus decreased expression of Tcf4, Crtc2, Foxo3 and the ataxia
disease gene Rora, as well as downstream Itpr1 [213, 214]. A more proliferative state of the ATM-KD
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cells may result in reduced expression of many neurotransmission factors, potentially explaining the
drastic downregulation of OPRM1 in ATM-KD neuroblastoma cells, as opposed to increased Oprm1
in ATM-null cerebellum (Figure 6d). Although some dysregulations of neuropeptide signaling were
massive in the old ATM-null mouse cerebellum and were very relevant for phenotypes of A-T, e.g.
the increases in mRNA of growth hormone inhibitor somatostatin (Sst), vasodilator preprotachykinin
(Tacl) and the tachykinin receptor (Tacrl), as well as the glutamate-excitability factor VGLUT2
(encoded by Sic17a6), the SH-SY5Y neuroblastoma line did not express these genes. It is also
important to consider that glutamate availability is very restricted for excitable neurons in vivo, but
provided constantly in overdose to cultured neuroblastoma cells. Thus, our in vitro model had very
limited value to model and study the ATM-dependent stress-adaptations of neurotransmitter- and
neuropeptide-containing vesicles, but seemed quite helpful for the study of upstream factors in the
interactome of ATM and of immediate-early responses in the nucleus.

The use of differential detergents to achieve subcellular fractionation of the old adult mouse
cerebellum and of SH-SY5Y neuroblastoma line localized ATM mainly to the cytosol, both in
unstressed and in stressed conditions, in WT cells and ATM-KD cells (Figure 3, Figure S3). The
absence of ATM from the nucleus is in excellent agreement with subsequent findings that
characteristic ATM-null cerebellar transcriptome profile anomalies such as USP2 and PERI
downregulations could not be elicited robustly by the DNA DSB stressor bleomycin in vitro, but were
mirrored best by osmotic stress instead (Figure 4). Our observations that ATM is almost exclusively
found within cytoplasmic fractions of cerebellum and SH-SY5Y cells are in excellent agreement with
a previous immunohistochemical study that localized ATM in the cytosol of cerebellar tissue Purkinje
neurons from this mouse mutant [32], but they contrast with human reports and with the
immunohistochemical observation of ATM in the nucleus of cerebellar Purkinje and granule neurons,
once they are dissected and kept in organotypic slice cultures [215, 216]. While nuclear ATM clearly
has a role for DNA repair in proliferating cells, these fractionation findings emphasize the urgent
need to understand what the functions of cytosolic ATM in postmitotic neurons are, and how
impaired stress adaptation there might trigger a neurodegenerative process. Given the inefficiency
of ATM kinase inhibition by KU-55933 to reproduce transcript changes observed in cerebellar tissue
and upon ATM-KD in vitro, we consider the possibility that cytoplasmic ATM acts as a protein
scaffold and interaction platform, rather than a kinase in cytoplasmic signaling. This was already
proposed when cytoplasmic ATM was demonstrated to serve as docking site for PP2A to
dephosphorylate AKT and thereby regulate cell death upon ER-stress via an ATM-AKT-GSK3-
aNAC/yTX signaling axis [217]. Further research is necessary to elucidate the potential functions of
ATM as a protein scaffold in the cytoplasm.

4.4. Validation work in SH-SY5Y cells shows ATM-deficiency to impair the CQ-triggered requlation of
postsynaptic calcium release channel ITPR1, in parallel to immediate-early transcripts PER1T/NR4A1

The mechanistic validation experiments (Figure 4, 5, 54) focused on A-T-phenotype-related
factors, documenting consistent reductions for ITPR1 levels upon ATM deficiency. Given that ATM
is a member of the phosphatidylinositol 3" kinase-like kinase (PIKK) enzyme family, it may have
functional interaction with the inositol-1,4,5-trisphosphate-receptor IP3R, so this decrease of ITPR1
mRNA and IP3R abundance may also represent a crucial primary loss-of-function event in autosomal
recessive A-T. Genetic loss-of-function of IP3R has a profound impact on calcium-dependent
excitability of Purkinje neurons and was repeatedly observed as sufficient to cause hereditary
progressive cerebellar neurodegeneration, with deletion of one ITPRI gene copy vVia
haploinsufficiency triggering ataxia inheritance in autosomal dominant manner [218, 219]. Thus, our
observation of IP3R abundance reduction below 50% in ATM-KD neuroblastoma cells (Figure 5b)
emerges from the transcriptome profile validation work as arguably the most important molecular
event, which might explain the preferential affection of cerebellar neurons [57]. In this context it is
important to note that parallel loss of IP3R together with two more ataxia-responsible proteins was
previously demonstrated in cerebellar tissue of A-T patients [66], namely the calcium homeostasis
factor INPP5A (also known as Type I Inositol 1,4,5-Trisphosphate 5-Phosphatase) [220] and the CAS8
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(also known as Carbonic Anhydrase 8) [221, 222]. Furthermore, a protein complex of ITPR1 as
endoplasmic reticulum Ca?* homeostasis regulator with the mitochondrial HSP70-family member /
chaperone GRP75 (=HSPAY) and the mitochondrial voltage-gated Ca?* homeostasis channel VDAC1
was previously shown to mediate ATM dysfunction in bronchial cells after nutrient stress [30]. A
very similar expression alteration in the ATM-null mouse cerebellar transcriptome may therefore be
relevant, where downregulation of the ataxia gene Itpr1 occurred in parallel with downregulation of
the HSP70-family member / chaperone Hspal2a and several voltage-gated Ca2?* homeostasis channels
in the plasma membrane (Cacnala, Cacnalc, Cacnald, Cacnalg). Cytosolic HSPA12A protein has a very
specific role, modulating its interactor SORL1 with downstream GFRA1/2 [223, 224], all of which
showed downregulated mRNA levels in our ATM-null mouse cerebellar transcriptome profiling
study, suggesting that the sorting of trophic signaling receptors is abnormally regulated. Also the
receptor tyrosine kinase ERBB2 is regulated both by SORL1 and by USP2 [225, 226], and this may
underlie the reduced cerebellar levels of Erbb2ip as a factor responsible for the surface localization of
glutamate receptors [227]. In analogy to the impact of nutrient deficits as stressors via ATM onto
endoplasmic reticulum and mitochondria homeostasis as previously published [30], the
transcriptional dysregulation of ITPR1, HSPA12A (instead of HSPA9/GRP75) and its interactors
SORL1 and ERBB2 in ATM-null cerebellum may therefore constitute the primary pathogenesis
pathway and explain why neurotransmitter receptors / transporters / neuropeptide modulators are
not in the right position in polarized processes, trophic signaling deficits ensue, and tissue shrinkage
ensues over time. Given that SORL1, GFRA1/2, ERBB2, are poorly or not expressed in SH-SY5Y
neuroblastoma cells according to the Human Protein Atlas, we made no attempt to model this trophic
pathogenesis cascade in vitro.

The reduction of IP3R would also mediate a postsynaptic excitability deficit, and contribute to
the diminished transcriptional response of immediate-early transcripts such as PER1 and NR4A1.

5. Conclusions

Overall, our genome-wide RNA profile provided useful knowledge to identify factors that might
underlie the growth deficit (somatostatin and neuropeptide-Y) and vasodilatation phenotypes
(tachykinins and Ecel1) of A-T, and to define the mechanistic overlap of A-T with the Itprl-triggered
monogenic variants of cerebellar ataxia. The data in this project suggested that the presence of
cytosolic ATM in postmitotic cerebellar neurons serves an important modulator of the transcriptional
regulation of excitability factors in response to ageing, and to osmotic stress more than nutrient or
oxidative stress. Validations in neuroblastoma culture could largely reproduce crucial insights and
the prominent alterations found in the cerebellar transcriptome: Strong reduction of Atm levels was
reflected by similar strong decreases of its interactor Usp2, the mainly Purkinje-neuron-expressed
Ca?-excitability modulator Itprl mRNAs, and immediate-early signaling factors such as Perl and
Nr4al.
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Insulin Like Growth Factor 2

Insulin Like Growth Factor 2 Receptor

IGF Like Family Receptor 1
Immunoglobulin G

Interleukin 16

Interleukin 18

Interleukin 20 Receptor Subunit Beta
Interleukin 33

Interleukin 34

Type I Inositol 1,4,5-Trisphosphate 5-Phosphatase
Inositol 1,4,5-Trisphosphate Receptor Type 1
Jun Proto-Oncogene

Lysine Acetyltransferase 5

Potassium Voltage-Gated Channel Subfamily Q Member 5

knockdown

Kinase Insert Domain Receptor

KIT Proto-Oncogene

knockout

KU-55933

Large Dense Core Vesicles

LIF Receptor Subunit Alpha

LY-294002

Mitogen-Activated Protein Kinase 9

MDM4 Regulator Of P53

Mitochondrial Calcium Uptake Family Member 3
microRNA

mitochondrial lysis buffer

Membrane Metalloendopeptidase

MAGUK P55 Scaffold Protein 4

Double-Strand Break Repair Protein MRE11
MRE11-RAD50-NBS1

messenger RNA

Sodium Arsenite

Nibrin

N-Terminal EF-Hand Calcium Binding Protein 1
Neurofilament Light Chain

Neurofilament Medium Chain

nanogram

Neuronal Guanine Nucleotide Exchange Factor
Nerve Growth Factor Receptor Associated Protein 1
Neuronal PAS Domain Protein 4

Neuropeptide Y

Neuropeptide Y Receptor Y1
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NPY4R
NR4A1
NR4A2
NR4A3
NRG1
NRG3
NRIP2
NRIP3
NSG2
NT CTRL
NTF3
NTRK3
NTS
NTSR1
NTSR2
OMD
OPRK1
OPRL1
OPRM1
PBS
PCDHI0
PCDH11X
PCDH17
PCDHI18
PCDH19
PCDH7
PCSK1
PCSKIN
PCSK5
PDGFC
PDGFRA
PDGFRL
PER1
PER2
PER3
PI3K
PIKK
PMSF
PP2A
PPP2R2B
PTPRD
QPCT
RADS50

Neuropeptide Y Receptor Y4

Nuclear Receptor Subfamily 4 Group A Member 1
Nuclear Receptor Subfamily 4 Group A Member 2
Nuclear Receptor Subfamily 4 Group A Member 3
Neuregulin 1

Neuregulin 3

Nuclear Receptor Interacting Protein 2

Nuclear Receptor Interacting Protein 3
Neuronal Vesicle Trafficking Associated 2
Non-targeting control shRNA

Neurotrophin 3

Neurotrophic Receptor Tyrosine Kinase 3
Neurotensin

Neurotensin Receptor 1

Neurotensin Receptor 2

Osteomodulin

Opioid Receptor Kappa 1

Opioid Related Nociceptin Receptor 1

Opioid Receptor Mu 1

Phosphate Buffered Saline

Protocadherin 10

Protocadherin 11 X-Linked

Protocadherin 17

Protocadherin 18

Protocadherin 19

Protocadherin 7

Proprotein Convertase Subtilisin/Kexin Type 1
Proprotein Convertase Subtilisin/Kexin Type 1 Inhibitor
Proprotein Convertase Subtilisin/Kexin Type 5
Platelet Derived Growth Factor C

Platelet Derived Growth Factor Receptor Alpha
Platelet Derived Growth Factor Receptor Like
Period Circadian Regulator 1

Period Circadian Regulator 2

Period Circadian Regulator 3

Phosphoinositide 3-kinase

Phosphoinositide 3-kinase-related kinases
Phenylmethylsulfonyl fluoride

Protein phosphatase 2A

Protein Phosphatase 2 Regulatory Subunit Bbeta
Protein Tyrosine Phosphatase Receptor Type D
Glutaminyl-Peptide Cyclotransferase

RADS50 Double Strand Break Repair Protein
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RASGRF2
RELN
RESP18
RGS4
RIN
RNA
RNF122
RORA
RORB
RRAGD
RTN4
RT-qPCR
SAM68
SCN3B
SDS-PAGE
SEM
SEPT9
SERINC2
SFRP1
SFRP5
SGK1
shATM
shRNA
SIDT1
SIK1

Ras Protein Specific Guanine Nucleotide Releasing Factor 2
Reelin

Regulated Endocrine Specific Protein 18

Regulator Of G Protein Signaling 4

RNA integrity number

Ribonucleic acid

Ring Finger Protein 122

RAR Related Orphan Receptor A

RAR Related Orphan Receptor B

Ras Related GTP Binding D

Reticulon 4

Reverse transcription-quantitative polymerase chain reaction
Src-Associated In Mitosis 68 KDa Protein

Sodium Voltage-Gated Channel Beta Subunit 3

Sodium dodecyl-sulfate polyacrylamide gel electrophoresis
Standard error of the mean

Septin 9

Serine Incorporator 2

Secreted Frizzled Related Protein 1

Secreted Frizzled Related Protein 5

Serum/Glucocorticoid Regulated Kinase 1

shRNA targeting ATM

Short hairpin RNA

SID1 Transmembrane Family Member 1

Salt Inducible Kinase 1

SLC17A6 / VGLUT Solute Carrier Family 17 Member 6

2
SLC17A7 /
VGLUT1
SLC18A2
SLC1A1l
SLC1A2
SLC1A3
SLC1A4
SLC1A6
SLC25A22
SLC2A12
SLC32A1
SLC5A7
SLC6A11
SLC7A3
SLCO1A4
SLITRK3

Solute Carrier Family 17 Member 7

Solute Carrier Family 18 Member A2
Solute Carrier Family 1 Member 1
Solute Carrier Family 1 Member 2
Solute Carrier Family 1 Member 3
Solute Carrier Family 1 Member 4
Solute Carrier Family 1 Member 6
Solute Carrier Family 25 Member 22
Solute Carrier Family 2 Member 12
Solute Carrier Family 32 Member 1
Solute Carrier Family 5 Member 7
Solute Carrier Family 6 Member 11
Solute Carrier Family 7 Member 3
Solute Carrier Organic Anion Transporter Family Member 1A2

SLIT And NTRK Like Family Member 3
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SLITRK5
SLITRK6
SMGI1
SOCS7
SORCS1
SORCS2
SORL1
SOX10
ss-cDNA
SST
SSTR1
SSTR2
SVBP
SYNE1
TAC
TAC1
TACR1
TACR3
TBP

TBS
TBS-T
TCF4
TGFBR1
TGFBR2
TNFRSF13C
TNFRSF21
TOP1cc
TP53
tRNA
TUBA
USP2
UVB
V(D))
VAMP1
VCL
VDAC1
WNK1
WNT3
WNT7A
WT
ZFHX3
aNAC
vYIX
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SMG1 Nonsense Mediated MRNA Decay Associated PI3K Related Kinase

Suppressor Of Cytokine Signaling 7

Sortilin Related VPS10 Domain Containing Receptor 1
Sortilin Related VPS10 Domain Containing Receptor 2
Sortilin Related Receptor 1

SRY-Box Transcription Factor 10

single-stranded cDNA

Somatostatin

Somatostatin Receptor 1

Somatostatin Receptor 2

Small Vasohibin Binding Protein

Spectrin Repeat Containing Nuclear Envelope Protein 1
Transcriptome Analysis Console

Tachykinin Precursor 1

Tachykinin Receptor 1

Tachykinin Receptor 3

TATA-Box Binding Protein

Tris Buffered Saline

TBS with 0.1% Tween-20 detergent

Transcription Factor 4

Transforming Growth Factor Beta Receptor 1
Transforming Growth Factor Beta Receptor 2

TNF Receptor Superfamily Member 13C

TNF Receptor Superfamily Member 21
Topoisomerase-1 cleavage complexes

Tumor Protein P53

transfer RNA

a-tubulin

Ubiquitin Specific Peptidase 2

Ultraviolet B

Variability — Diversity — Joining Rearrangement
Vesicle Associated Membrane Protein 1

Vinculin

Voltage Dependent Anion Channel 1

WNK Lysine Deficient Protein Kinase 1

Wnt Family Member 3

Wnt Family Member 7A

Wildtype

Zinc Finger Homeobox 3

Nascent Polypeptide Associated Complex Subunit Alpha

Y-taxilin
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