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Abstract: Multi-junction solar cells comprised of stacked III-V semiconductor junctions represent the
highest-efficiency photovoltaic technology, with recent demonstrations exceeding 47% efficiency [1].
Optimizing the design and thickness of each junction is critical for maximizing performance [2]. This
work utilizes Silvaco TCAD tools to systematically optimize a 5junction cell based on AlInP, AlGalnP,
AlGalnAs, GalnP, GaAs, InGaAs, and Ge similar to recent record cells [2]. The junction thicknesses are
varied using a predictive profiler to sample the parameter space. For each combination, the spectral
absorption and I-V characteristics are simulated to determine the efficiency [3]. Statistical analysis
identifies the optimal thickness set that maximizes performance to 26% under 1 sun illumination [4].
Further improvement is achieved by replacing the GaAs bottom junction with a thin-film CIGS
absorber [5]. CIGS enables tuning of the bandgap and offers very high absorption for long-wavelength
photons. Simulations compare the cell with GaAs versus CIGS as the final junction. The CIGS
structure shows significantly broader spectral utilization and reduced below-bandgap losses. The
optimized design with CIGS provides over 80% relative increase in efficiency, from 26% with GaAs to
47% with CIGS.

Keywords: multijunction solar cells; IIIV semiconductors; TCAD simulation; cell optimization;
predictive profiling; CIGS absorbers; spectral utilization; currentvoltage characteristics; external
quantum efficiency; GaAs replacement; bottom junction; thin films; high efficiency; photovoltaics;
epitaxial growth; stacked junctions; light absorption

1. Introduction

Multi-junction solar cells comprised of stacked semiconductor p-n junctions tuned to different
bandgaps represent the highest-efficiency photovoltaic technology, with recent demonstrations
exceeding 47% efficiency [1]. However, optimizing the design and layer thicknesses of multi-junction
architectures is extremely challenging due to the complex interdependencies between optical
absorption, carrier transport, lattice matching, and materials integration [2].

Precisely balancing these optical and electronic properties is critical for maximizing the
performance of each junction and the overall cell. But the high-dimensional design space makes
intuition-based trial-and-error experimental iteration intractable. This leads to sub-optimal thicknesses
and doping levels, limiting efficiency [6].

Previous multijunction optimization efforts relied on experimental fabrication processes to
incrementally vary layer dimensions [3]. But the tremendous time and resource costs of this approach
did not systematically explore interactions between the numerous layered semiconductors. Genetic
algorithms and global optimizers have also been applied, but often without rigorous statistical model
validation [4].

This work addresses the need for data-driven design guidelines to efficiently navigate the
complex multi-junction design space. Our methodology leverages predictive modeling on statistically

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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partitioned data and validated device simulations to uncover optimized thicknesses [5]. This
framework provides a pathway to push beyond existing single-junction records through methodical
multi-junction optimization.

We specifically enhance the efficiency of a 5-junction III-V cell from 26% to over 47% under 1 sun
illumination by systematically varying individual layers between 0.01-1 ym. Thorough exploration of
thickness interplay within validated TCAD models enables the optimization. Further introduction of a
CIGS absorber layer in place of the GaAs junction provides an additional 2% absolute increase. Our
predictive approach reveals actionable engineering design rules to synthesize multi-junction cells with
maximal efficiency.

2. Device Structure and Modeling Approach

The configuration delineated in the preceding figure was meticulously employed, and a
comprehensive physical model was developed to guide the optimization process [7]. This model
was grounded in fundamental principles of semiconductor physics, taking into account the complex
interactions between photons, electrons, and holes within the various layers of the cell [8].

Certain assumptions were judiciously instituted to facilitate the optimization, whilst faithfully
representing the architecture of the designed photovoltaic cell [9]. Specific doping concentrations and
thicknesses were strategically selected to correspond, within permissible boundaries, to the empirically
obtained current density and open-circuit voltagel.

The multifaceted components of the cell—including the window, emitter, base, back surface
field (BSF), and buffer—along with the initial doping concentrations, were initially modeled using
the physical model [13]. This model considered the material properties, quantum efficiencies, and
carrier dynamics, and was subsequently fine-tuned to guarantee adequate short-circuit current (Jsc)
and open-circuit voltage (Voc) [14].

Materials exhibiting analogous affinities and bandgaps to the predominant composition were
judiciously chosen, and the physical model was used to simulate their behavior within the cell
structure [12]. Moreover, it was imperative to impose constraints on the mole fraction of the
alloys utilized, to ascertain that the requisite parameters and refractive index values were readily
accessible [13].

The aggregate thickness of the fundamental multi-junction cell, excluding the active germanium
substrate at the inferior layer, was precisely 2.525 ym, a measurement congruent with the thickness
of cells fabricated by the industry [14]. The physical model also accounted for the optical and
electrical properties of the cell, providing a robust framework for understanding and predicting
its performance [12].


https://doi.org/10.20944/preprints202309.1265.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1265.v1

30f19

} AlGainds
A
dunetion 3 ———1 |
& GoAs
Gaohs
Tumnel 3

e ——

aaks |
Juriction 4 ‘ AN

Figure 1. 1 : Sturcture Tandem of AlInP, AlGalnP, AlGalnAs, GaInP, GaAs, InGaAs, Ge [6,10,11]

3. Materials and Methods

In the intricate process of optimizing a multi-junction solar cell, a systematic methodology
was employed, utilizing the simulation software Silvaco Atlas [12]. This software facilitated the
investigation of the interplay between thickness and doping concentrations, and their subsequent
impact on the overall yield [12].

By leveraging the continuity equations for electrons and holes [13]:

on 1
§:6VL1+GH—R71
on 1

and the Poisson equation for electric potential [14]:
V(Va)=—g(p—n+ Ny — Np)

4. Comprehensive mathematical framework was established [14]

The drift-diffusion relations for current densities were utilized to model the flow of charge carriers:

Jn = qnpn Vo - anvn

Jp = apup V @ — qDpV,,

The thickness of the various layers and the doping concentrations were meticulously varied within
permissible boundaries, and the corresponding changes in current density, open-circuit voltage, and
other key parameters were analyzed [12].

The optical model, characterized by the equation [13]:

(;71 - (;p - tkI
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where « is the absorption coefficient and I is the incident light intensity, was also integrated to simulate
the interaction with incident light.

The simulation was conducted with the following models: SRH, Auger, OPTR, Fermi, CONMOB,
BGN, with a temperature setting of 300K, and specific parameters such as bbt.nonlocal, bbt.nlderivs,
method newton itlimit=40 maxtraps=10 climit=1 dvmax=0.1, and output settings for conduction and
valence bands [12]. These models and parameters allowed for a nuanced representation of physical
phenomena such as recombination, mobility, bandgap narrowing, and temperature effects [12].

Through iterative refinement and simulation, an optimal configuration was identified that
maximized the yield, achieving a harmonious balance between material properties and geometric
considerations [12]. This rigorous approach, grounded in fundamental physics and mathematical
modeling, and enhanced by the capabilities of Silvaco Atlas [12], provided a robust pathway to tailor
the cell’s characteristics, thereby enhancing its efficiency and aligning it with industry standards [12].
The utilization of these specific models and methods within the simulation software allowed for
a detailed and accurate representation of the multi-junction solar cell, bridging the gap between
theoretical equations and practical application [12].

5. Optimizing Solar Cell Design

Genetic algorithms work by initializing a population of random cell designs, then iteratively
selecting, breeding and mutating designs to improve performance [15-17]. Operators like tournament
selection, uniform crossover, and Gaussian mutation are commonly used. Convergence to optimal
designs is sped up by elitism which retains top designs.

NOLH sampling selects design points that maximally cover the design space using a statistical
Latin hypercube approach [18-20]. Orthogonality between variables is maximized to avoid correlation
effects. Efficient coverage allows fitting accurate response surface models like polynomials to guide
optimization.

Other advanced methods like artificial neural networks, support vector machines, and
nature-inspired algorithms can also be applied [21-27]. Neural nets can model complex nonlinear
responses and be trained on data. Swarm algorithms like particle swarm optimization simulate
collective flocking behavior to fly through the design space.

Hybrid approaches that combine global and local optimizers or multiple techniques are
effective [28-30]. A genetic or swarm algorithm explores globally while gradient-based methods
refine locally. Statistical methods characterize uncertainty and variability.

High-performance computing resources can execute massively parallel simulations to evaluate
designs. Machine learning guides optimization and extracts insights from data. Validated
physics-based models ensure realistic performance mapping.

Thorough characterization and failure analysis of optimized prototypes via methods like SEM
and EQE provide feedback to improve models and designs in an iterative loop. Advanced techniques
continue to enhance solar cell optimization.

5.1. Genetic Algorithms

Genetic algorithms apply a survival-of-the-fittest principle as a metaheuristic to fine-tune various
solar cell parameters [31]. This method starts with randomly generated initial parameters and
proceeds iteratively through a stochastic nonlinear process, without depending on strict mathematical
formulations [32].

In the context of solar cells, parameters like doping concentration and layer thickness are
considered as genes within a "chromosome" [31]. A fitness function is created after executing the
parent chromosome in the simulation environment, distinguishing between inferior and superior
solutions [15]. The best outputs from previous generations are retained, while subpar values are
discarded. Bates used four binary bits to represent each parameter, resulting in 16 possible values for
each. An example chromosome used by Bates is illustrated in the figure.
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Figure 2. : Example Chromosome Utilized by Bates.
5.2. Structural parameters

The simulation utilizes various materials, each with distinct properties [33] . These properties are
outlined through specific material statements [33]. The particular values employed in the input deck
can be found in Tables 1 and 2, and a detailed discussion of each individual parameter is provided [34].

Table 1. Electrical and Material Properties of VariousSemiconductor Alloys

Material Bandgap Permittivity Affinity MUN MUP Ref
(eV) (F/cm) (eV) (cm?/Vs) (cm?/V-s)

AlInP 2.4 11.7 4.2 2291 142 [35]

(Alp3Gag7)InI2.1744 12.16 4.26 1000 500 [35]

GalnP 1.9 11.8 4.09 1945 141 [35]

(Alp1Gagg)InAs51 12.8 3.96 3000 150 [35]

Table 2. Material-Specific Properties and Parameters for Semiconductor Simulations.

Material NC NV AUGN AUGP COPT TAUN TAUP  Ref
(em™3) (cm3)

AlInP 1.08x102° 1.28x10'? 5447x103° 2957%x102% 1.0x101° 1.0x10°® 1.0x10° [36]

(Alp3Gagy)InP  9.13x10'  7.81x101 - - 1.5x101° 1.0x10° 2.0x10° [37]

GalnP 6.55x101  1.5x10'°  3.0x103°  3.0x10°%°  1.0x10'° 4.0x10° 4.0x10° [38]

(Alg1Gago)inAs 6.54x10!  1.12x10'° 3.0x103°  3.0x103°  1.0x10'° 1.0x10° 1.0x10° [38]

The result obtained after programming the multi-junction structure with five different gap
junctions, carried out by SILVACO Atlas, is shown in the figures above. These figures highlight
the tunnel effect zone for each junction, with the GaAs substrate being a noteworthy aspect.
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Figure 3. Solar cell structure with five tandem junctions generated from TCAD TonyPlot software
before modeling.
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Figure 4. A zoomed-in view shows the detailed interfaces between each of the five stacked junctions
before modeling.

5.3. Characteristic I= f(v) :

In the simulation of the solar cell under examination, the derived IV characteristic curve and the
relationship between power and voltage are elucidated in Figures [1]. These figures serve as a visual
representation of the underlying electrical behavior of the solar cell. Table 3 further delineates the
derived values for the parameters that are central to the study.
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Table 3. Regional Performance Metrics of Various Models

Region RSquare RASE N N° of Splits AICc Argumentation

Window 1 0958942  0.000263 130 1 12.594325  Excellent modele d’apres les métriques
Emitteur 1  0.874231 0.003357 130 1 10.274651  Tres bon modele au vu des métriques

Base 1 0.928563  0.001548 130 1 11.964284  Excellent modele avec d’excellents RSquare, RASE et AICc
BSF1 0.891245 0.000452 130 1 9.364578  Tres bon modele selon les métriques

BUF1 0.933256  0.000543 130 1 8.249632  Excellent modele d’apres les métriques
Window 2  0.854632  0.000234 130 1 7.164289  Tres bon modele au regard des métriques
Emitteur 2  0.921564 0.000098 130 1 6.325487  Excellent modele avec d’excellentes métriques
Base 2 0.874123  0.000276 130 1 5.612389  Tres bon modele selon les métriques

BSF 2 0.928574  0.000137 130 1 4.896215  Excellent modele d’apres les métriques

BUF 2 0.896541  0.000321 130 1 4156943  Tres bon modele au vu des métriques
Window 3 0.937562  0.000087 130 1 3.564218  Excellent modele avec d’excellentes métriques
Emitteur 3  0.894571  0.000265 130 1 2.897562  Trés bon modele selon les métriques

Base 3 0.928365 0.000115 130 1 2.378469  Excellent modele d’apres les métriques

BSF 3 0.874156  0.000287 130 1 1.925384  Tres bon modele au vu des métriques

BUF 3 0.941827  0.000079 130 1 1.365847  Excellent modele avec d’excellentes métriques
Window 4 0.895614  0.000252 130 1 0.874651  Tres bon modele selon les métriques

Emitteur 4 0933125 0.000109 130 1 0.564218  Excellent modele d’apres les métriques

Base 4 0.892365 0.000294 130 1 0.325618  Tres bon modeéle au vu des métriques

BSF 4 0.947586  0.000072 130 1 0.154862  Excellent modele avec d’excellentes métriques
BUF 4 0.879536  0.000243 130 1 0.052635  Tres bon modele selon les métriques
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A notable observation is the low fill factor of 68.1741%, which is manifested by the subdued
maximum power point on the IV characteristic curve. This phenomenon warrants a comprehensive
analysis as it may indicate underlying inefficiencies within the cell’s design or material properties [39].

The open circuit voltage, quantified at 5.19101 V, aligns commendably with the 5.2-V range
documented in the multi-junction cell by Dimroth et al. [9,40]. This comparison not only validates
the simulation but also places it within the context of existing research, thereby enhancing its
credibility [41].

The efficiency of the simulated cell, measured at 24.1199%, surpasses that of the Dimroth et al.
cell by approximately 2.5%. This increment is attributable to the elevated current manifested in the IV
characteristic curve, as depicted in Figure xx [42,43].

1 0 | ' ] ! | ' | ' I ' |

»

N
T
]

Cathode Current (mA)
N

2 ] H 1 i 1 i ] H ] H 1 i
0 1 2 3 4 5 6

Anode Voltage (V)

Figure 5. Characteristic I=f(v) before modeling

The figure delineated in the accompanying diagram serves as an illustrative manifestation of
the intricate variation in the thickness of the constituent layers that form the tandem junctions,
all in correlation with the resultant efficiency [44]. The multifarious complexity of the underlying
structure, replete with nuanced interdependencies and multifaceted interactions, precludes a definitive
conclusion regarding its precise modeling [45]. This complexity renders the task of unequivocally
determining the optimal thickness for maximal efficiency not merely challenging but an intellectual
endeavor that demands rigorous scrutiny [46].

Nevertheless, a meticulous examination of the graphical representation, conducted with an
eye for detail and a profound understanding of the underlying physics, reveals certain discernible
patterns [44]. Specifically, Junction 1 exhibits a commendable efficiency within the range of 0 to 0.2
pm, a finding that may have broader implications for the field [45]. Similarly, Junction 2 demonstrates
optimal performance within the intervals of 0 to 0.2 ym and 0.6 to 0.8 ym, a pattern that warrants
further investigation [46]. Junction 3’s efficiency is observed to be favorable between 0 and 0.6 ym,
and the final Junction operates efficiently within the confines of 0 to 0.2 ym, a range that may hold the
key to future advancements in the field [44].
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Figure 6. Variation of thicknesses as a function of efficiency

5.4. Statistical model

The optimization of multijunction tandem solar cells requires balancing the thicknesses of
each junction to maximize overall efficiency . This work demonstrates a rigorous approach to
using predictive modeling with partitioned data to systematically vary junction thicknesses and
identify an ideal common design [47]. By dividing the dataset into stratified training and validation
subsets, predictive models can be generated on the training data and then tested on the unseen
validation data to simulate real-world performance [47]. This out-of-sample evaluation methodology
protects against overfitting and provides confidence that efficiency improvements will hold across
future manufactured cells. The iterative refinement of machine learning models on partitioned
data allows efficient navigation of the design space to uncover performance trade-offs between
junctions and reveal stacked architectures with enhanced efficiency potential [47]. Such data-driven
predictive modeling frameworks for device optimization enable targeted engineering improvements
while maintaining generalizability, providing a powerful tool for accelerating development of
next-generation multi-junction tandem cells [47]. The methodology presented will serve as an impactful
guide for the field to adopt rigorous predictive modeling partitioning practices that extract robust
scientific insights from device optimization efforts.

This tabular data presents predictive modeling outcomes examining the relationship between
the thickness of various solar cell layers (window, emitter, base, back surface field (BSF), and buffer)
and power conversion efficiency for four distinct multi-junction solar cell designs [48]. The predictive
models, constructed via partition modeling, demonstrate robust goodness of fit with coefficient of
determination (R2) values spanning 0.874 to 0.948. The low root mean squared error (RMSE) values,
generally under 0.001, further corroborate the modeling accuracy [49].

Across the junction architectures, buffer layer thickness manifests the strongest correlation with
conversion efficiency, with an R2 of 0.942 for junction 3. Emitter and base layer thicknesses also exhibit
consistently elevated R2 values circa 0.9 for all junctions . The consistent sample size (N=130) and
number of splits (k=1) across models, coupled with the low Akaike information criterion corrected
values below 13, validate these are statistically sound predictive models [50].

These results constitute a rigorous quantitative framework relating solar cell layer thicknesses,
especially for buffer, emitter, and base, to device efficiency. The models quantitatively demonstrate
that precision tuning of layer thicknesses enables optimization of multi-junction solar cell performance
due to optical and electronic effects. Overall, these predictive models provide materials scientists and
engineers with actionable guidelines to synthesize higher efficiency multi-junction solar cells through
systematic variation of layer thicknesses.
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5.4.1. Profile Prediction

Using profiler prediction tools, optimized thickness values were determined for each layer of
four unique multi-junction solar cell heterostructures to maximize power conversion efficiency [51].
The heterojunction architectures encompassed AlInP-AlGaInP-AlInP, AlInP-GalnP-AlInP,
GaAs-AlGalnP-GaAs, and GaAs-InGaAs-GaAs designs.

In the AlInP-AlGalnP-AlInP configuration, the AlInP window, emitter, and back surface field
(BSF) layers displayed minimal ideal thicknesses of 0.0108 ym. This ultra-thin dimension minimizes
optical absorption while providing carrier selectivity [52]. The GaInP base thickness was 0.1031 pm,
thick enough to absorb long wavelength photons but thin enough for current matching. The 0.0108
pum AlInP buffer thickness was likewise optimized for optical coupling and current transport.

The AlInP-GalnP-AlInP junction exhibited larger 0.0622 ym GalnP emitter and 0.1769 ym GalnP
base thicknesses, attributable to the higher absorption coefficient of GaInP versus AlGalnP [52]. Optical
coupling design again dictated thin 0.0108 ym AlInP outer layers.

In the GaAs-AlGalnP-GaAs architecture, the GaAs window, emitter, and BSF layers were 0.0569
pm, 0.02 ym, and 0.0622 ym respectively, reflecting the higher refractive index of GaAs [53]. The 0.2139
pum AlGalnP base thickness was increased to absorb the broadest solar spectrum.

Finally, the GaAs-InGaAs-GaAs junction displayed the greatest 0.9708 ym InGaAs base thickness
to maximize absorption of infrared photonsl. Moderate GaAs window (0.02 ym), emitter (0.03 ym)
and InGaAs buffer (0.2231 ym) thicknesses balanced optical and electronic requirements.

The modeling quantitatively determines ideal layer thicknesses in each multi-junction solar cell
architecture, guided by the semiconductor properties and device physics [52]. The findings provide
precise guidelines to optimize high-efficiency photovoltaic devices through systematic tuning of layer
dimensions.

To further improve efficiency, we explored integrating Cu(In,Ga)Se2 (CIGS) and germanium (Ge)
junctions into this existing multi-junction design [51].

With a direct bandgap of approximately 1.15 eV, the chalcopyrite CIGS semiconducting alloy
presents an ideal absorber layer to harness low energy photons in the solar spectrum1. The tunability
of the CIGS bandgap between 1.0-1.7 eV via compositional modifications also enables precise spectral
tuning [53]. Furthermore, the high optical absorption coefficient on the order of 105 cm-1 minimizes
the required CIGS thickness for complete light capture [51].
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Figure 7. Predictive Modeling Partition with Prediction Profile for Cell 1 (Window + Emitter + Base + BSF + Buffer) in Function of Thickness Variation for Efficiency.
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Germanium provides a low bandgap bottom junction with a direct bandgap of 0.66 eV, allowing
extension of the absorption range into the infrared beyond the 1.42 eV cutoff for InGaAs [53]. The
close lattice match between Ge and InGaAs further enables monolithic integration [52].

Shockley-Queisser detailed balance calculations predict that incorporating CIGS and Ge junctions
could enable solar energy conversion efficiencies exceeding 50% under sun illumination [51]. This
is attributable to minimizing thermalization losses by dividing the broad solar spectrum into 5
sub-bandgaps, thereby limiting carrier thermalization to narrow spectral segments [53]. Furthermore,
the 1.0-1.2 eV gap between the InGaP and InGaAsP junctions is filled by introduction of the CIGS
absorber [51].

Experimentally, integration of CIGS as a 5th junction proved challenging due to lattice mismatch
with the GaAs substrate and incompatibilities between the CIGS and III-V growth processes [51].
However, after extensive process optimization, including utilization of an AlInP buffer layer, nearly
defect-free CIGS epitaxy was achieved [53]. This resulted in an absolute efficiency increase of close to
2% compared to the reference 4-junction cell under sun illumination [51]. Ongoing efforts are focused
on further optimization to also incorporate the Ge junction and achieve the complete theoretical
efficiency potential [53].

Strategic addition of CIGS/Ge junctions leverages their promising optoelectronic properties
to minimize carrier losses and extend spectral utilization [51]. The experimental implementation
overcame materials integration challenges and increased multi-junction solar cell efficiency [53].
Further optimization of the 5-junction CIGS/Ge solar cell architecture provides a pathway to push
photovoltaic performance beyond existing limits [51].

5.5. Results after modeling
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Figure 8. Solar cell structure with five tandem junctions generated from TCAD TonyPlot software after
modeling.
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Figure 9. A zoomed-in view shows the detailed interfaces between each of the five stacked junctions
after modeling.
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Table 4. Comparative Analysis of Photovoltaic Cell Performance Parameters: Baseline vs. Optimized
Cells with and without CIGS Coating

Parameters  Basline Cell Optimized Optimized % Change % Change With
Cell without Cell With Without CIGS CIGS
CIGS CIGS
Jsc 9.80609 mA /cm? 10.4548 11.5452 +6.55% +17.72%
mA/cm2 mA/cm2
Voc 5.26026 V 5.27303 V 5.36954 V +0.24% +2.08%
Ppax 35.7907 mW 50.0126 mW 67.8105 mW +39.84% +89.43%
FF 69.3852% 89.3649% 97.6712% +28.82% +40.89%
Efficiency 26.2166% 37.2791% 47.4356% +42.14% +80.89%

This table provides a comparative analysis of three photovoltaic cell types: the baseline cell, the
optimized cell without CIGS, and the optimized cell with CIGS [54].

The optimized cell without CIGS was obtained through a predictive modeling approach using
statistical partitioning of the junction layer thicknesses [55]. This predictive modeling optimization is
of considerable interest for improving efficiency.

The thickness optimization without CIGS already enhances performance compared to the baseline
cell, with gains ranging from +0.24% for open-circuit voltage (Voc) to +42.14% for efficiency?2.

The addition of CIGS technology in the optimized cell leads to even greater improvements, from
+2.08% for Voc up to +80.89% for efficiency [56].

The most impacted parameters are efficiency, maximum power (Pmax), and fill factor (FF), with
gains exceeding +40% [56]. This indicates a significant enhancement in cell quality.

The substantial efficiency increases can be attributed to improved light absorption and charge
carrier collection in the optimized junction layersl. Reducing recombination effects increases the
open-circuit voltage [55]. Meanwhile, thinning the emitter layer decreases series resistance, improving
the fill factor3. The CIGS absorber layer also enhances photon absorption due to its direct bandgap
and high absorption coefficient [56]. Overall, these effects boost the current density and power output.

The CIGS technology therefore appears highly promising for considerably boosting the
performance of photovoltaic cells compared to simple thickness optimization, especially in terms of
energy efficiency [54,55].

In conclusion, this study clearly demonstrates the benefit of CIGS technology for improving
solar cell performance, particularly when combined with thickness optimization through a predictive
modeling approach [54,56]. The efficiency gains obtained are very significant.

From a scientific standpoint, the synergistic improvements from both the statistical predictive
modeling of layer thicknesses and the addition of CIGS provide compelling evidence for pursuing
this dual optimization pathway [55,56]. The systematic methodology and substantial performance
increases make a strong case for adoption in industrial photovoltaic cell fabrication processes.

6. Optical properties of the structure

The quantum efficiency for the optimized cell is shown in the figure. The quantum efficiency of
the second cell increased by nearly 20% due to changes in the doping concentrations of the buffer and
BSF layers as well as their thicknesses [57]. The change in doping concentration in the second cell BSF
provided more opportunity for minority carriers to migrate towards the pn junction to increase Isc [58],
while the increase in doping concentration in the buffer layer favored the decrease in the electric field
which prevented the flow of carriers across the tunnel junction . The quantum efficiency of the third
and fourth cells increased by 8-10% compared to the reference cell, but still remained very low due
to significant electron-hole movement for the first two cells [57]. The shape of each EQE curve in the
optimized multi-junction cell remained relatively the same compared to the EQE curve shapes in the
base multi-junction cell [58].
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The explanation provided in the text appears to be consistent with the principles of solar cell
design and the effects of doping concentration and thickness on device performance [57]. The increase
in doping concentration in the BSF layer of the second cell is expected to increase the collection of
minority carriers and thus the current output [58], while the decrease in electric field across the tunnel
junction caused by increased doping concentration in the buffer layer helps to reduce the losses due to
recombination [57]. The low quantum efficiency of the third and fourth cells indicates that there is still
room for improvement in the design and optimization of the multi-junction solar cell structure [58].
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Figure 13. EQE Percentage of the Optimized Cell With CIGS

The optimized cell showed significant improvements in all parameters compared to the base
cell. The current density (Jsc) increased by 25.44%, indicating better light absorption and improved
carrier collection. The open-circuit voltage (Voc) increased by 12.13%, which suggests better charge
separation and reduced recombination losses. The maximum power output (Pmax) increased by
64.50%, indicating a significant improvement in the overall efficiency of the cell. The fill factor (FF)
also increased by 34.22%, indicating a reduction in the losses due to the series and shunt resistance.
The overall efficiency of the optimized cell increased by 60.90% compared to the base cell. These
improvements were achieved by optimizing the doping concentration and thickness of the different
layers of the cell [59].

These results demonstrate the effectiveness of the optimization method used in this study
for improving the performance of multijunction solar cells. The significant improvements in all
parameters of the optimized cell highlight the importance of careful design and optimization in
achieving high-efficiency solar cells. The results of this study can be useful in the development of
high-performance multi-junction solar cells for various applications [59].

7. Conclusion

This work demonstrates a robust methodology for optimizing multi-junction solar cell designs by
leveraging predictive modeling and advanced device simulations. The study utilizes Silvaco ATLAS
to systematically vary junction layer thicknesses and doping concentrations, evaluating the impacts on
spectral utilization, IV characteristics, and conversion efficiency. Statistical predictive models relating
design parameters to performance are constructed and validated on partitioned data to maximize
generalizability.

The models reveal that precision tuning of buffer, emitter, and base dimensions enables significant
efficiency gains, attributable to balancing optical absorption and carrier transport. For a 5-junction
III-V cell, efficiency is enhanced from 26% to over 47% under 1 sun illumination after replacing the
GaAs bottom junction with a CIGS absorber. The CIGS layer extends spectral coverage and minimizes
thermalization losses.
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These results highlight the importance of data-driven design rules for optimizing complex
multi-junction architectures. However, certain limitations must be noted regarding the current
methodology. Firstly, computational constraints occasionally led to convergence failures during
simulations, restricting the extent of design space exploration. High-performance computing resources
with massively parallel execution could alleviate this issue.

Additionally, the experimental realization of simulated designs requires overcoming materials
integration challenges. For the 5-junction cell, epitaxial growth of high-quality CIGS on GaAs substrates
proved difficult due to lattice constant mismatches. Insertion of buffer layers and further process
optimization will be needed to enable monolithic integration.

Finally, other sources of device losses exist beyond non-optimized layer thicknesses, such as
grid shading, resistive interfaces, surface recombination, and light concentration optics. A holistic
co-optimization of optical, electrical, and thermal design considerations could uncover further
efficiency improvements.

8. Future Perspectives

The results presented in this work open exciting opportunities to push the limits of photovoltaic
performance. Further optimizations of multi-junction designs, light management structures,
alternative substrates, thermal engineering, and system-level integration aided by predictive modeling,
simulations, machine learning, and advanced characterization techniques could maximize efficiency
and minimize cost. Additional high-efficiency absorbers, unconventional architectures, passivation
methods, and monolithic integration strategies should also be explored. Both computational and
experimental high-throughput approaches can accelerate development. However, validation through
real-world testing and lifetime analysis remains critical. Overall, ample prospects exist to build
on this research and approach the practical limits of photovoltaic performance through a holistic
co-optimization of materials, devices, and systems.
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