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Article
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560 059, India; kmahesh_vs@isibang. ac. in, kmaheshak@gmail.com

Abstract: Let (Q, 1), (A,v) be measure spaces. Let ({fu}acq, {Tu}acq) and ({gp}pea {wp}pea)
be unbounded continuous 1-Schauder frames for a Banach space X'. Then for every x € (D(6y) N

D(6g)) \ {0}, we show that
(1) plsupp(65x) )v(supp(6x)) > (

1
sup Ifa(wﬁ)|)< sup gﬁ<m>|)

xeQ,BEA KeQ,BEA
where

0p:D(0) > x = 0px € L1 p); Opx: Q3 a— (0px)(a) := falx) €K,

0 : D(6g) > x> bgx € L1(A,v); Byx: AD B (6x)(B) := gp(x) € K.

We call Inequality (1) as Unbounded Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty
Principle.  Along with recent Functional Continuous Uncertainty Principle (derived in
[arXiv:2308.00312v1 [math.FA], 1 August 2023]), Inequality (1) also improves Ricaud-Torrésani
uncertainty principle [IEEE Trans. Inform. Theory, 2013]. In particular, it improves Elad-Bruckstein
uncertainty principle [IEEE Trans. Inform. Theory, 2002] and Donoho-Stark uncertainty principle
[SIAM ]. Appl. Math., 1989].
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1. Introduction

Given a collection {’rj};?:l in a finite dimensional Hilbert space H over K (R or C), define
Or:H>hw— 0ch = (<h,”l.’j>);l:1 e K"

Most general form of discrete uncertainty principle for finite dimensional Hilbert spaces is the
following.

Theorem 1.1. (Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principle) [1-3] Let
{7j}i1, {wj}j_y be two Parseval frames for a finite dimensional Hilbert space H. Then

Vi € #\ {0}.

<|l9rhllo+ [16ehllo
2

2
) 2 ocloluil > ———
1<jkan K

Recently, Theorem 1.1 has been derived for Banach spaces using the following notion.

Definition 1.2. [4] Let (Q), u) be a measure space. Let {7y }4cq be a collection in a Banach space X and
{futacq be a collection in X*. The pair ({ fu tucq, {Ta}acq) is said to be a continuous p-Schauder frame
for X (1 < p < o0) if the following holds.

(i) Forevery x € X, themap Q) > « — fo(x) € Kis measurable.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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(ii) For every x € X,
57 = [ a0l dn(e).
Q

(iii) For every x € X, the map Q) 3 o — fo(x)7, € X is weakly measurable.
(iv) Foreveryx € X,

x= [ fu@mdpe)
(@)

where the integral is weak integral.

Given a continuous p-Schauder frame ({fx }aecq, {Ta }ucq) for X, define
O : X2 x—=0x € LP(Qu); Ox: Q3 am (0px)(a) = fu(x) €K

Theorem 1.3. (Functional Continuous  Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani
Uncertainty Principle) [4-6] Let (Q,u), (A,v) be measure spaces. Let ({fa}uca, {Tatuca) and
({gp}pen, {wp}pen) be continuous p-Schauder frames for a Banach space X. Then

(i) for p > 1, we have

1 1 1
supp(0rx))Pv(supp(fox))1 > —m————, Vx e X\ {0};
.u( PP( f )) ( pp( g )) sup |fﬂé(wﬁ)| \{ }
acQ),BeA
1 1 1
v(supp(fex)) P u(supp(0sx))7 > ——— —, Vx € X\ {0}.
(supp(8y)? (supp(6) T 2 — \ {0}
acQ),peA
where q is the conjugate index of p.
(ii) for p =1, we have
H(supp(67x)) > ——— -, v(supp(fx)) = ——— )
F0= Tsup fulwp)l’ ST Tsup [gp(n)l
acQ),BeA xc€Q),BeA

In this paper, we derive an unbounded uncertainty principle which contains Theorem 1.1 as a
particular case.

2. Unbounded Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principle

We first generalize Definition 1.2 using unbounded linear functionals. Our motivation to do so is
the theory of unbounded frames (also known as semi frames or pseudo frames) for Hilbert and Banach
spaces, see [7-10].

Definition 2.1. Let (Q), u) be a measure space. Let {T, } 4y be a collection in a Banach space X and { fo }yey
be a collection of linear functions on X (which may not be bounded). The pair ({ fu }acq, {Ta }ucq) is said to be
a unbounded continuous p-Schauder frame or continuous semi p-Schauder frame for X if the following
conditions holds.

(i) Forevery x € X, themap Q) > « — fo(x) € Kis measurable.
(ii) The map

0p:D(0f) 2 x> Opx € L1 p); Opx: Q3 a s (05x)(a) = fu(x) €K

is well-defined (need not be bounded).
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(iii) For every x € X, the map QO > a — fo(x)7, € X is weakly measurable.
(iv) For every x € D(0y),

x= [ fumdp(e)
Q

where the integral is weak integral.

Theorem 2.2. (Unbounded Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principle)

Let (Q, 1), (A,v) be measure spaces. Let ({fu}ucq, {Tataca) and ({gp}pen, {wp}pea) be unbounded
continuous 1-Schauder frames for a Banach space X. Then for every x € (D(6¢) N D(6y)) \ {0}, we have

1

sup |foc(wﬁ)|>< sup |gﬁ(Tﬂc)>

acQ),BEA acQ),BEA

®)

p(supp(65x))v(supp(6gx)) > (

Proof. Let x € D(6¢) \ {0}. Then

ol = [s@lan@) = [ If@ldp@ = [ |5 (/gﬁ(X)wlde(ﬁ)> ap (@)
Q supp(6yx) supp(0yx) A
= [ |[s@hpa@)|d@ = [ | [ gpofiwp)dv(p)| dulw)
supp(fyx) 14 supp(6yx) pupp(fex)

< [ ls@falplavp)an)

supp(Gfx) supp(ﬂgx)

g( sup |fa<wﬂ>|) [ Ise@ldv(e)uta)

aeQ),BEA
p supp(ﬂfx) supp(fgx)

=( sup |fa<wﬁ>|> plsupp(@rx) [ [gp(x)|dv(p)
xe0,BeA

supp(fgx)

=< sup |fa(w;;)|> p(supp(05x)) || Ogx]].

acQ),BeA

Therefore

1
Fotwp) 10771 < #(supp(87x)) ]| W

sup
acQ),BeA
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On the other way, let x € D(6;) \ {0}. Then

ozl = [Igs)av(p) = [ Igsx)lavp) = [
A

% ( [ Fom du(a)) v (p)
Q

supp(6gx) supp(fgx)
= | [ h@g@daw|a@ = [ | [ f@gpm)du)] dv(p)
supp(fgx) 10 supp(6gx) pupp(frx)
< [ [ h@gpm)ldu@) dv)
supp(fgx) supp(6fx)
g( sup |g,;(ra>|> [ ] @@
acQ pen supp(ng) supp(Gfx)
=< sup |g/5(Ta)|>V(5uPP(9gx)) / |fae ()| dpe(a)
x€Q),peEA supp(f)fx)
=< sup |gﬁ(Ta)|> v(supp(Bx)) |05 x|
a€Q),BEA
Therefore
1
m||9gx|| < v(supp(Ogx))||0rx]|. )
xeQ),BeA

Multiplying Inequalities (4) and (5) we get

1

( sup |fa(wﬁ)|> (:up 185 ()|

acQ),BeEA O,BeA

) 10x]18gx]| < p(supp(8x))v(supp(8x)) 818y

Vx € (D(65) ND(6g)) \ {0}
A cancellation of [|0;x||||6;x|| gives the required inequality. [

Corollary 2.3. Let <{fj }}1:1/ {Tj}?zl) and ({gk}Z‘zl, {wk}szl) be collections in a Banach space X such that
n m
x=Y fi(0)7 =Y s(x)wp, VreX.
j=1 k=1

Then for every x € X \ {0},

1

7
. T‘
(m 'ff<“’k>') (m 18 ( ]>|)

10¢xlol[0gx]l0 >

where
Op: X >x— (fj(x));?:1 € 61([14]); O : X > x = (g(x))iL; € El([m]).

Even though by multiplying two inequalities in (2) we get Inequality (3) for continuous 1-Schauder
frames, observe that the conclusion in (2) is stronger (with stronger assumption) than that of Theorem
2.2.
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Note that proof of Theorem 2.2 does not work for unbounded continuous p-Schauder frames for
p > 1 (even by using Holder’s inequality). We are therefore left over with following problem.

Problem 2.4. What is the unbounded version of Theorem 2.2 for p > 1?
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