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Article

Unbounded Donoho-Stark-Elad-Bruckstein-Ricaud-
Torrésani Uncertainty Principle

K. Mahesh Krishna

Post Doctoral Fellow, Statistics and Mathematics Unit, Indian Statistical Institute, Bangalore Centre, Karnataka

560 059, India; kmahesh_vs@isibang. ac. in, kmaheshak@gmail.com

Abstract: Let (Ω, µ), (∆, ν) be measure spaces. Let ({ fα}α∈Ω, {τα}α∈Ω) and ({gβ}β∈∆, {ωβ}β∈∆)

be unbounded continuous 1-Schauder frames for a Banach space X . Then for every x ∈ (D(θ f ) ∩

D(θg)) \ {0}, we show that

(1) µ(supp(θ f x))ν(supp(θgx)) ≥ 1


 sup
α∈Ω,β∈∆

| fα(ωβ)|







 sup
α∈Ω,β∈∆

|gβ(τα)|





.

where

θ f : D(θ f ) ∋ x 7→ θ f x ∈ L1(Ω, µ); θ f x : Ω ∋ α 7→ (θ f x)(α) := fα(x) ∈ K,

θg : D(θg) ∋ x 7→ θgx ∈ L1(∆, ν); θgx : ∆ ∋ β 7→ (θgx)(β) := gβ(x) ∈ K.

We call Inequality (1) as Unbounded Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty

Principle. Along with recent Functional Continuous Uncertainty Principle (derived in

[arXiv:2308.00312v1 [math.FA], 1 August 2023]), Inequality (1) also improves Ricaud-Torrésani

uncertainty principle [IEEE Trans. Inform. Theory, 2013]. In particular, it improves Elad-Bruckstein

uncertainty principle [IEEE Trans. Inform. Theory, 2002] and Donoho-Stark uncertainty principle

[SIAM J. Appl. Math., 1989].
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1. Introduction

Given a collection {τj}
n
j=1 in a finite dimensional Hilbert space H over K (R or C), define

θτ : H ∋ h 7→ θτh := (〈h, τj〉)
n
j=1 ∈ K

n.

Most general form of discrete uncertainty principle for finite dimensional Hilbert spaces is the

following.

Theorem 1.1. (Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principle) [1–3] Let

{τj}
n
j=1, {ωj}

n
j=1 be two Parseval frames for a finite dimensional Hilbert space H. Then

(

‖θτh‖0 + ‖θωh‖0

2

)2

≥ ‖θτh‖0‖θωh‖0 ≥
1

max
1≤j,k≤n

|〈τj, ωk〉|
2

, ∀h ∈ H \ {0}.

Recently, Theorem 1.1 has been derived for Banach spaces using the following notion.

Definition 1.2. [4] Let (Ω, µ) be a measure space. Let {τα}α∈Ω be a collection in a Banach space X and

{ fα}α∈Ω be a collection in X ∗. The pair ({ fα}α∈Ω, {τα}α∈Ω) is said to be a continuous p-Schauder frame

for X (1 ≤ p < ∞) if the following holds.

(i) For every x ∈ X , the map Ω ∋ α 7→ fα(x) ∈ K is measurable.
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(ii) For every x ∈ X ,

‖x‖p =
∫

Ω

| fα(x)|p dµ(α).

(iii) For every x ∈ X , the map Ω ∋ α 7→ fα(x)τα ∈ X is weakly measurable.
(iv) For every x ∈ X ,

x =
∫

Ω

fα(x)τα dµ(α),

where the integral is weak integral.

Given a continuous p-Schauder frame ({ fα}α∈Ω, {τα}α∈Ω) for X , define

θ f : X ∋ x 7→ θ f x ∈ Lp(Ω, µ); θ f x : Ω ∋ α 7→ (θ f x)(α) := fα(x) ∈ K

Theorem 1.3. (Functional Continuous Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani

Uncertainty Principle) [4–6] Let (Ω, µ), (∆, ν) be measure spaces. Let ({ fα}α∈Ω, {τα}α∈Ω) and

({gβ}β∈∆, {ωβ}β∈∆) be continuous p-Schauder frames for a Banach space X . Then

(i) for p > 1, we have

µ(supp(θ f x))
1
p ν(supp(θgx))

1
q ≥

1

sup
α∈Ω,β∈∆

| fα(ωβ)|
, ∀x ∈ X \ {0};

ν(supp(θgx))
1
p µ(supp(θ f x))

1
q ≥

1

sup
α∈Ω,β∈∆

|gβ(τα)|
, ∀x ∈ X \ {0}.

where q is the conjugate index of p.
(ii) for p = 1, we have

µ(supp(θ f x)) ≥
1

sup
α∈Ω,β∈∆

| fα(ωβ)|
, ν(supp(θgx)) ≥

1

sup
α∈Ω,β∈∆

|gβ(τα)|
. (2)

In this paper, we derive an unbounded uncertainty principle which contains Theorem 1.1 as a

particular case.

2. Unbounded Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principle

We first generalize Definition 1.2 using unbounded linear functionals. Our motivation to do so is

the theory of unbounded frames (also known as semi frames or pseudo frames) for Hilbert and Banach

spaces, see [7–10].

Definition 2.1. Let (Ω, µ) be a measure space. Let {τα}α∈Ω be a collection in a Banach space X and { fα}α∈Ω

be a collection of linear functions on X (which may not be bounded). The pair ({ fα}α∈Ω, {τα}α∈Ω) is said to be

a unbounded continuous p-Schauder frame or continuous semi p-Schauder frame for X if the following

conditions holds.

(i) For every x ∈ X , the map Ω ∋ α 7→ fα(x) ∈ K is measurable.
(ii) The map

θ f : D(θ f ) ∋ x 7→ θ f x ∈ L1(Ω, µ); θ f x : Ω ∋ α 7→ (θ f x)(α) := fα(x) ∈ K

is well-defined (need not be bounded).
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(iii) For every x ∈ X , the map Ω ∋ α 7→ fα(x)τα ∈ X is weakly measurable.
(iv) For every x ∈ D(θ f ),

x =
∫

Ω

fα(x)τα dµ(α),

where the integral is weak integral.

Theorem 2.2. (Unbounded Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principle)

Let (Ω, µ), (∆, ν) be measure spaces. Let ({ fα}α∈Ω, {τα}α∈Ω) and ({gβ}β∈∆, {ωβ}β∈∆) be unbounded

continuous 1-Schauder frames for a Banach space X . Then for every x ∈ (D(θ f ) ∩D(θg)) \ {0}, we have

µ(supp(θ f x))ν(supp(θgx)) ≥
1

(

sup
α∈Ω,β∈∆

| fα(ωβ)|

)(

sup
α∈Ω,β∈∆

|gβ(τα)|

) . (3)

Proof. Let x ∈ D(θ f ) \ {0}. Then

‖θ f x‖ =
∫

Ω

| fα(x)| dµ(α) =
∫

supp(θ f x)

| fα(x)| dµ(α) =
∫

supp(θ f x)

∣

∣

∣

∣

∣

∣

fα





∫

∆

gβ(x)ωβ dν(β)





∣

∣

∣

∣

∣

∣

dµ(α)

=
∫

supp(θ f x)

∣

∣

∣

∣

∣

∣

∫

∆

gβ(x) fα(ωβ) dν(β)

∣

∣

∣

∣

∣

∣

dµ(α) =
∫

supp(θ f x)

∣

∣

∣

∣

∣

∣

∣

∫

supp(θgx)

gβ(x) fα(ωβ) dν(β)

∣

∣

∣

∣

∣

∣

∣

dµ(α)

≤
∫

supp(θ f x)

∫

supp(θgx)

|gβ(x) fα(ωβ)| dν(β) dµ(α)

≤

(

sup
α∈Ω,β∈∆

| fα(ωβ)|

)

∫

supp(θ f x)

∫

supp(θgx)

|gβ(x)| dν(β) dµ(α)

=

(

sup
α∈Ω,β∈∆

| fα(ωβ)|

)

µ(supp(θ f x))
∫

supp(θgx)

|gβ(x)| dν(β)

=

(

sup
α∈Ω,β∈∆

| fα(ωβ)|

)

µ(supp(θ f x))‖θgx‖.

Therefore

1

sup
α∈Ω,β∈∆

| fα(ωβ)|
‖θ f x‖ ≤ µ(supp(θ f x))‖θgx‖. (4)
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On the other way, let x ∈ D(θg) \ {0}. Then

‖θgx‖ =
∫

∆

|gβ(x)| dν(β) =
∫

supp(θgx)

|gβ(x)| dν(β) =
∫

supp(θgx)

∣

∣

∣

∣

∣

∣

gβ





∫

Ω

fα(x)τα dµ(α)





∣

∣

∣

∣

∣

∣

dν(β)

=
∫

supp(θgx)

∣

∣

∣

∣

∣

∣

∫

Ω

fα(x)gβ(τα) dµ(α)

∣

∣

∣

∣

∣

∣

dν(β) =
∫

supp(θgx)

∣

∣

∣

∣

∣

∣

∣

∫

supp(θ f x)

fα(x)gβ(τα) dµ(α)

∣

∣

∣

∣

∣

∣

∣

dν(β)

≤
∫

supp(θgx)

∫

supp(θ f x)

| fα(x)gβ(τα)| dµ(α) dν(β)

≤

(

sup
α∈Ω,β∈∆

|gβ(τα)|

)

∫

supp(θgx)

∫

supp(θ f x)

| fα(x)| dµ(α) dν(β)

=

(

sup
α∈Ω,β∈∆

|gβ(τα)|

)

ν(supp(θgx))
∫

supp(θ f x)

| fα(x)| dµ(α)

=

(

sup
α∈Ω,β∈∆

|gβ(τα)|

)

ν(supp(θgx))‖θ f x‖.

Therefore

1

sup
α∈Ω,β∈∆

|gβ(τα)|
‖θgx‖ ≤ ν(supp(θgx))‖θ f x‖. (5)

Multiplying Inequalities (4) and (5) we get

1
(

sup
α∈Ω,β∈∆

| fα(ωβ)|

)(

sup
α∈Ω,β∈∆

|gβ(τα)|

)‖θ f x‖‖θgx‖ ≤ µ(supp(θ f x))ν(supp(θgx))‖θgx‖‖θ f x‖,

∀x ∈ (D(θ f ) ∩D(θg)) \ {0}.

A cancellation of ‖θ f x‖‖θgx‖ gives the required inequality.

Corollary 2.3. Let ({ f j}
n
j=1, {τj}

n
j=1) and ({gk}

m
k=1, {ωk}

m
k=1) be collections in a Banach space X such that

x =
n

∑
j=1

f j(x)τj =
m

∑
k=1

gk(x)ωk, ∀x ∈ X .

Then for every x ∈ X \ {0},

‖θ f x‖0‖θgx‖0 ≥
1

(

max
1≤j≤n,1≤k≤m

| f j(ωk)|

)(

max
1≤j≤n,1≤k≤m

|gk(τj)|

) ,

where

θ f : X ∋ x 7→ ( f j(x))n
j=1 ∈ ℓ

1([n]); θg : X ∋ x 7→ (gk(x))m
k=1 ∈ ℓ

1([m]).

Even though by multiplying two inequalities in (2) we get Inequality (3) for continuous 1-Schauder

frames, observe that the conclusion in (2) is stronger (with stronger assumption) than that of Theorem

2.2.
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Note that proof of Theorem 2.2 does not work for unbounded continuous p-Schauder frames for

p > 1 (even by using Holder’s inequality). We are therefore left over with following problem.

Problem 2.4. What is the unbounded version of Theorem 2.2 for p > 1?
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