
Article

Not peer-reviewed version

Speech Emotion Recognition

Using Convolutional Neural

Networks with Attention

Mechanism

Konstantinos Mountzouris , Isidoros Perikos , Ioannis Hatzilygeroudis 

*

Posted Date: 19 September 2023

doi: 10.20944/preprints202309.1202.v1

Keywords: speech emotion recognition; deep learning; Deep Belief Network; deep neural network;

Convolutional Neural Network; LSTM; attention mechanism

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/378045
https://sciprofiles.com/profile/1867592


 

Article 

Speech Emotion Recognition Using Convolutional 
Neural Networks with Attention Mechanism 

Konstantinos Mountzouris 1, Isidoros Perikos 1,2 and Ioannis Hatzilygeroudis 1,* 

1 Department of Computer Engineering and Informatics, University of Patras, 26504 Patras, Greece; 

mountzour@ceid.upatras.gr (K.M.); perikos@ceid.upatras.gr (I.P.); ihatz@ceid.upatras.gr (I.H.) 
2 Computer Technology Institute and Press “Diophantus”, 26504 Patras, Greece; perikos@cti.gr 

* Correspondence: ihatz@ceid.upatras.gr  

Abstract: Speech Emotion Recognition (SER) is an interesting and difficult problem to handle. In this paper, 

we deal with it through the implementation of deep learning networks. We have designed and implemented 

six different deep learning networks, a Deep Belief Network (DBN), a simple deep neural network (SDNN), a 

LSTM network (LSTM), a LSTM network with the addition of an attention mechanism (LSTM-ATN), a 

Convolutional neural network (CNN), and a Convolutional neural network with the addition of an attention 

mechanism (CNN-ATN), having in mind, apart from solving the SER problem, to test the impact of attention 

mechanism to the results. Dropout and Batch Normalization techniques are also used to improve the 

generalization ability (prevention of overfitting) of the models as well as to speed up the training process. The 

Surrey Audio-Visual Expressed Emotion database (SAVEE), and the Ryerson Audio-Visual Database 

(RAVDESS) database were used for training and evaluation of our models. The results showed that networks 

with the addition of the attention mechanism did better than the others. Furthermore, they showed that CNN-

ATN was the best among tested networks, achieving an accuracy of 74% for the SAVEE and 77% for the 

RAVDESS dataset, and exceeded existing state-of-the-art systems for the same datasets. 

Keywords: speech emotion recognition; deep learning; Deep Belief Network; deep neural network; 

Convolutional Neural Network; LSTM; attention mechanism 

 

1. Introduction 

Speech is the most natural way of human communication. Affective computing systems based 

on speech play an important role in promoting human-computer interaction, and emotion 

recognition is the first step. Due to the lack of a precise definition of emotion and the inclusive and 

complex influence of emotion generation and expression, accurately recognizing speech emotions is 

still difficult. Speech emotion recognition (SER) is an important problem, which is receiving 

increasing interest from researchers due to its numerous applications, such as e-learning [1], clinical 

trials [2], audio monitoring/surveillance, lie detection [3], entertainment, video games [4], and call 

centers [5]. Machine learning (ML) is a revolutionary method, in which we feed a machine an 

adequate amount of data and the machine will use the experience gained from the data to improve 

its own algorithm and process data better in the future [6]. One of the most significant approaches in 

machine learning is Neural Networks (NNs). NNs are networks of interconnected nodes, called 

neurons. NNs are loosely modeled towards the way human brain processes information. NNs store 

data, learn from it, and improve their abilities to sort new data. For example, a neural network having 

the task of identifying dogs can be fed a set of characteristic values extracted from various images of 

dogs tagged with the type of dog. Over time, it will learn what kind of image corresponds to what 

kind of dog. The machine therefore learns from experience and improves itself. Deep Learning (DL) 

is a recent ML approach, where NNs are arranged into sprawling networks with many layers that 

are trained using massive amounts of data. In DL, the sprawling artificial neural network is fed 

representations of raw data (e.g., raw image representations) and not given any other instructions. 

This means that in contrast to other ML approaches, it determines the important characteristics and 

purpose of the data itself, while storing it as experience. In other words, according to studies, Deep 
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neural networks (DNNs) can solve the data representation problem through learning a series of task-

specific transformations [7]. The network layers extract abstract representations and filter out the 

irrelevant information, which leads to a more accurate classification and better generalization. 

Temporal models were also proposed for modelling sequential data with mid to long-term 

dependencies. DL models are currently used to solve problems such as face recognition, voice 

recognition, image recognition, computational vision, and speech emotion recognition. One of the 

main advantages of DL techniques over other ML techniques is the automatic selection of features, 

which could, for example, be applied to important features inherent in audio files that have a special 

emotion in the task of recognizing speech emotions.  

When it comes to recognizing emotion through speech, deep learning models such as 

Convolutional Neural Networks (CNN), Deep Neural Networks (DNNs), Deep Belief Networks 

(DBNs) etc, approach the detection of high-level features for better accuracy compared to hand-made 

low-level features. Furthermore, the use of deep neural networks enhances the computational 

complexity of the entire model. However, according to Mustaqeem and Kwon [8] there are still many 

challenges in recognizing emotion from speech, such as the fact that the current CNN architectures 

have not shown significant improvement in speech accuracy and complexity in speech signal 

processing, or the fact that the use of Recurrent Neural Networks (RNNs) and Long Short-Term 

Memory neurons (LSTMs) are useful for training sequential data, but they are difficult to train 

effectively and are computationally more complex. Due to the above issues and challenges, we 

propose a CNN architecture with the addition of an attention mechanism. The voice characteristics 

of the speakers are extracted in the form of Mel Frequency Cepstral Coefficients (MFCCs), with the 

help of the Librosa library. 

The structure of the paper is as follows. Section 2 presents related work. In Section 3, six deep 

neural network configurations are presented. A detailed presentation of the experiments and a 

discussion of the proposed method compared to other research methods are provided in Sections. 

Finally, Section 5 concludes the paper. 

2. Related Work 

In the literature, there is a huge research interest, and several works attempt to perform emotion 

detection from speech [9][10]. DL techniques have achieved breakthrough performance in recent 

years, and as a result, have been thoroughly examined by the research community [11],[12]. Existing 

studies have focused on improving and extending DL techniques.  

In the work presented in [13], authors present a new Random Deep Belief Network (RDBN) 

method for speech emotion recognition, which consists of random subspace, DBN and SVM in the 

context of ensemble learning. It first extracts the low-level characteristics of the input speech signal 

and then applies them to the construction of many random sub-intervals. Second, it creates many 

different sub-intervals. In addition, DBN continues to use the stochastic gradient descent method to 

optimize the parameters. To solve the problem, a random space is applied for the training of the basic 

classifiers for the whole, where the same classification method is used. The best accuracies achieved 

are, 82.32% on the Emo-DB database, 48.5% on the CASIA database, 48.5% on the FAU database, and 

53.60% on the SAVEE database.  

In the work presented in [14], authors introduce a method for identifying speech emotions using 

spectrogram and a Convolutional Neural Network (CNN). The proposed model consists of three 

convolution layers and three fully connected layers, which extract distinctive features from 

spectrograph images and predictions for the seven emotions of the Emo-DB Database. Layer C1 has 

120 cores (11 x 11) applied at a rate of 4 pixels. ReLU acts as an activation function instead of the 

standard sigmoid functions that improve the efficiency of the educational process. Layer C2 has 256 

cores of size 5 x 5 and are applied to the input with one step 1. Similarly, C3 has 384 cores of size 3 x 

3. Each of these convolution layers is followed by ReLUs. Layer C3 is followed by three FC layers that 

have 2048, 2048 and 7 neurons, respectively. More than 3000 spectrograms were generated from all 

the audio files in the dataset. Overall, the proposed method achieved 84.3% accuracy. 
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In [15], authors present two Convolutional Neural Networks with a Long-Short Memory 

Network (CNN-LSTM), one one-dimensional (1D) and one two-dimensional (2D), stacking four 

designed local features learning blocks (LFBL). The 1D CNN-LSTM network is intended to recognize 

the feeling of speaking from raw audio clips, while the 2D CNN-LSTM network focuses on learning 

high-level capabilities from log-mel spectrograms. The experimental study was conducted on Berlin 

Emo-DB and IEMOCAP databases. The 1D CNN LSTM network achieved 92.34% and 86.73% 

recognition accuracy on the speaker-dependent and speaker-independent EmoDB database 

respectively, and also delivered 67.92% and 79.72% recognition accuracy on the IEMOCAP 

dependent and independent speaker database respectively. The 2D CNN LSTM network achieved 

95.33% and 95.89% recognition accuracy, on the speaker-dependent and independent speaker Emo-

DB database respectively, and delivered 89.16% and 85.58% recognition accuracy on the IEMOCAP 

experiment database depending on the speaker and independently of the speaker respectively.  

In the work presented in [16], authors proposed a new approach to the multimodal recognition 

of emotions from simple speech and text data. The attention network implemented consists of three 

separate Convolutional Neural Networks (CNNs), two for extracting features from speech 

spectrograms and word integration sequence, and one for the emotion classifier. The CNN outputs 

from word integration and spectrograms are used to calculate an attention matrix to represent the 

correlation between word integration and spectrogram in relation to emotion signaling. To evaluate 

the model, they used audio and text data from CMU-Multimodal Opinion Sentiment and Emotion 

Intensity (CMU-MOSEI) dataset. The dataset is organized by video IDs and corresponding segments 

with six emotion and sentiment labels. Video IDs are then further split into segments. The training 

set consisted of 3303 video ID and 23453 segments, while the validation set consisted of non- 

overlapping 300 video IDs and 1834 segments. The total accuracy of the proposed method was 

83.11%.  

In [17], authors present three methods based on CNNs in combination with extensive features, 

CNN + RNN and ResNet, respectively. Authors investigate different types of features as end-to-end 

frame input, including primary wave data, the Q-transform constant spectrogram (CQT), and the 

Fourier transform short-term spectrogram (STFT). In this way, authors create multiple data samples 

with slightly modified speed ratio, which helps them achieve significant improvements and handle 

the overfitting issue in the framework from end to end. For their experiments, they used the EmotAsS 

dataset. The CNN + RNN model achieved the best performance (45.12%) with data balancing, the 

CNN model in combination with features showed a performance of 34.33% with data balancing, 

while ResNet model achieved a 37.78% performance.  

In the work presented in [18], authors propose a new architecture, called attention-based 3-

Dimensional Convolutional Recurrent Neural Networks (3-D ACRNN) for recognizing emotion from 

speech, combining CRNN with an attention mechanism, because they hypothesized that calculating 

delta and delta-deltas for individual functions not only retains effective emotional information, but 

also reduces the effect of emotionally unrelated factors, leading to a reduction in misclassification. 

First, CNN 3-D is applied to the entire logarithmic-Mel spectrogram, which has been compiled into 

a patch that contains only multiple frames. The attention layer then takes a sequence of high-level 

attributes as input to generate expression-level attributes. Authors evaluated the model using the 

Berlin Emotional Speech Database (Emo-DB) and IEMOCAP databases. From the 10 speakers, for 

each evaluation they selected 8 as training data, 1 as validation and the rest as test data. The method 

achieved an accuracy of 64.74% on IEMOCAP and 82.82% on Emo-DB. 

In the work presented in [19], authors propose an attention-pooling representation learning 

method for recognizing emotions from speech (SER). Emotional representation is learned from end 

to end by applying a Deep Convolutional Neural Network (CNN) directly to speech spectrograms 

extracted from speech. Compared to existing aggregation methods, such as max-pooling and 

average-pooling, the proposed attention pooling can effectively integrate bottom-up class-agnostic 

attention maps and top-down class-specific attention maps. Given an expression, they segment it into 

2s sections for training and use an overlay of 1s to allow them to receive more training data. Each 

section corresponds to the same tag with the corresponding expression. They used a 1 × 1 
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convolutional layer after Conv5 to create a top-down attention map and used another 1 × 1 

convolutional layer to create bottom-up attention maps. The IEMOCAP improvised dataset was 

used, and the accuracy achieved by the proposed method was 71.75% for WA and 68.06% for UA.  

In [20], authors explore how to take full advantage of low-level and high-level audio features 

taken from different aspects and how to take full advantage of DNN’s ability to merge multiple 

information to achieve better classification performance. For this reason, they proposed a hybrid 

platform consisting of three units, namely, a features extraction unit, a heterogeneous unification unit 

and a fusion network unit. Besides low-level acoustic features, such as IS10, MFCCs and eGemaps 

that are extracted, high-level acoustic feature presentations named SoundNet bottleneck feature and 

VGGish bottleneck feature, are considered for speech emotion recognition task. The heterogeneous 

integration unit is a Denoising AutoEncoder (DAE), which is a multi-layer feed-forward neural 

network and is introduced in order to convert the heterogeneous space of various features into a 

unified representation space by deploying this unsupervised feature learning technique. The fusion 

network module is utilized to capture the associations between those unified joint features for 

emotion recognition task and is constructed as a four-layer neural network, containing one input 

layer and three hidden layers. They evaluated the model using the IEMOCAP database and the 

proposed method improved the recognition performance reaching an accuracy of 64%.  

In the work presented in [21], authors propose a platform that at the training layer has 3 main 

stages, such as verbal/non-verbal audio segmentation, the integration of feature extraction and the 

construction of an emotion model. Verbal sections were used to train the CNN-based emotion model 

to derive emotion features, while non-verbal sections were used to train the CNN audio model to 

extract audio features. CNN’s combined features are used as the input to the LSTM-based sequence-

to-sequence emotion recognition model. Here, the sequence-to-sequence model based on the LSTM 

with an attention mechanism was selected for emotion recognition. The LSTM and the attention 

mechanism for developing a sequence emotion recognition model contained a bidirectional LSTM 

(Bi-LSTM) as the coder for the attention mechanism and a unidirectional LSTM as the decoder for 

emotional sequence output. They evaluated the model using the NTHU-NTUA Chinese interactive 

multimodal emotion corpus (NNIME); the proposed method achieved a 52.0% accuracy. 

The work presented in [22] introduces a model that includes one-dimensional convolutional 

layers combined with dropout, batch-normalization, and activation layers. The first layer of their 

CNN receives 193 × 1 number arrays as input data. The initial layer is composed of 256 filters with 

the kernel size of 5 × 5 and stride 1. After that, batch normalization is applied, and its output is 

activated by Rectifier Linear Units layer (ReLU). The next convolutional layer consisting of 128 filters 

with the same kernel size and stride receives the output of a previous input layer. The final 

convolutional layer with the same parameters is followed by the flattening layer and dropout with 

the rate of 0.2. Their model was tested in the Berlin (EMO-DB), IEMOCAP and RAVDESS databases 

and obtains 71.61% for RAVDESS with 8 classes, 86.1% for EMO-DB with 535 samples in 7 classes, 

95.71% for EMO-DB with 520 samples in 7 classes, and 64.3% for IEMOCAP with 4 classes on speaker-

independent audio classification tasks. 

In the work presented in [23], authors present, attention-oriented parallel convolutional neural 

network encoders that capture essential features required for emotion classification. Authors 

extracted and encoded features such as paralinguistic information, and speech spectrogram data, and 

distinct CNN architectures were designed for each type of feature, and those encoded features were 

subsequently passed through attention mechanisms to enhance their representations before 

undergoing classification. Empirical evaluations were carried out on the EMO-DB and IEMOCAP 

open datasets and the proposed model achieved a weighted accuracy (WA) of 71.8% and an 

unweighted accuracy (UA) of 70.9%. Furthermore, with the IEMOCAP dataset, the model yielded 

WA and UA recognition rates of 72.4% and 71.1% respectively. 

3. Methodology 

In this section, we present six deep neural networks for recognizing emotions from speech data. 

To train and test our models, we use the RAVDESS and SAVEE databases. These databases contain 
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‘.wav’ audio files, which we process to export Mel Frequencies Cepstral Coefficients (MFCCs) [24]. 

These factors use the Mel scale, which is based on how humans perceive different signal frequencies 

(spectral content of the voice signal, as recognized by human hearing). The basic reason that we chose 

to use MFCCs is that they can provide rich feature content from the data. 

The Librosa library helped us to export the sequence of the first 40 MFCCs, shown in Figures 1 

and 2, to a RAVDESS database audio file. 

 

Figure 1. Audio file from the RAVDESS dataset. 

 

Figure 2. MFCCs of the RAVDESS dataset audio file in Figure 1. 

3.1. Deep Belief Network (DBN) 

The model of our Deep Belief network (DBN) is shown in Figure 3. The code of the deep-belief-

network-1.0.3 package from the Github repository (https://github.com/albertbup/deep-belief-

network/) was used as the basis for the implementation of this model. 
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Figure 3. Deep Belief Network Model 

We created a DBN with three hidden layers (Figure 3) with a size of 128 nodes each, which 

receives as input the time average of the 40 MFCCs. Each hidden layer can be considered a Restricted 

Bolzman Machine (RBM), with the hidden layer being the first layer of the next RBM. The values of 

the hyperparameters of the model we adopted are: 0.005 for the learning rate of the RBM hidden 

layers, 0.05 for the learning rate of the neural network output, 50 for the number of epochs of the 

RBM hidden layers. Also, we adopted the value 1000 for the number of iterations for the 

backpropagation algorithm, used by the neural network’s stochastic gradient descent algorithm, and 

32 for the batch size. Finally, we used the Dropout normalization technique, which is a thoughtful (or 

random) zeroing of a percentage of connections (which in our case is 20%), between neurons (i.e., 

setting the output of the neuron next to 0) of two fully connected layers, as well as the ReLU activation 

function. 

3.2. Simple Deep Neural Network (SDNN) 

The model of our simple deep neural network is depicted in Figure 4.  
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Figure 1. Simple Deep Neural Network model. 

The diagram in Figure 4 shows a deep neural network model that receives the average time of 

the 40 MFCCs as input. Because we want to implement a DNN model in its simplest form, we use 

Dense layers, for which it is true that each input neuron is connected to the output neuron and that 

the parameter units simply define the dimension of the output neuron. For the first (hidden) layer of 

the network we use a dense layer that receives as input a tensor of dimensions (40, 1), due to the 40 

MFCCs, and produces an output tensor of dimensions (40,128), due to the number of 128 parameters 

we defined. We use the ReLU activation function, for this layer. Also, we employ the dropout 

normalization technique, with 10% dropout rate. The reason for it is that in each iteration it trains a 

modified model that ignores the existence of some of the neurons of previous or even next layers, 

and this results in different groups of network parameters being trained without being affected from 

other parameters that have been reset, each time the code is run. Thus, our network avoids the 

problem of “overfitting”. 

For the second (hidden) layer of the network, we use a dense layer that receives as input the 

output of the previous layer, a tensor (40, 128), and an output neuron of dimension (40, 64), due to 

the number of 64 parameters we defined for this layer. The ReLU activation function and the dropout 

of 10% are also used. Successively, we use the flatten function, which reshapes the tensor to have a 

shape equal to the number of elements contained in the tensor. In our case the number of elements 

included in the tensor is 2560.  

The third network layer is also a dense layer that receives as input the flattened tensor (of 2560 

elements), and produces a tensor of size 8 or 7, depending on the database on which we train the 

model. Essentially, it categorizes the 2560 elements into those 8 or 7 emotion classes. We use the 
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“Softmax” activation function here that returns a probability distribution over the targeted classes in 

the multi-class classification problem.  

3.3. LSTM based network (LSTM) 

As a third model, we configure a DNN, which uses LSTM (Long Short-Term Memory layer) 

layers that have been found to achieve very good results in problems with sequential data. The 

architecture is depicted in Figure 5. 

Here, instead of entering the average of the MFCCs over the file in the model, we enter the 

sequence of the different MFCCs over the length of the file. As the first layer of the network, we use 

an LSTM layer that receives as input a tensor of dimensions (228, 40) for the RAVDESS, and (308, 40) 

for the SAVEE database, due to the sequence size of the 40 MFCCs (228 and 308 respectively) for each 

database. It produces an output tensor (228, 100) and (308, 100) respectively, due to the number of 

parameters (100) that we defined. 

As the second layer of the network, we use an LSTM layer that receives as input the output of 

the previous layer, and produces its output tensor of dimension 50, due to the number of 50 

parameters (cells) that we defined. We use here the dropout normalization technique to reset 50% of 

the connections, and then the flatten function, which reshapes the tensor to have a shape equal to the 

number of elements contained in the tensor (50).  

The third network layer is a dense layer that receives as input the flattened tensor, of 50 elements, 

and produces a tensor of 8 or 7 components, depending on the database we use to train the model, 

categorizing the 50 elements in those 8 or 7 classes of emotions. Finally, we use the “Softmax” 

activation function that returns a probability distribution over the targeted classes in the multi-class 

classification problem. 

 

 

Figure 2. LSTM Based Neural Network model. 

3.4. LSTM based Network with Attention Mechanism (LSTM-ATN) 

In the previous LSTM model, we add an attention mechanism, and the new created architecture 

is presented in Figure 6. As in the previous LSTM based model, we enter the sequence of the different 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 September 2023                   doi:10.20944/preprints202309.1202.v1

https://doi.org/10.20944/preprints202309.1202.v1


 9 

 

MFCCs in the file duration. As the first layer of the network, we use a same LSTM layer as the one in 

the previous model (see Figure 5).  

As the second layer of the network, we use a same LSTM layer as in the previous model, but 

without using dropout normalization and the flatten function. 

Next, we introduce the attention layer, which applies the dot-product attention mechanism, as 

it is referred to in Luong [25]. The dot-product attention mechanism calculates scores through the dot 

product between the current/last target state 𝒉𝒕 and all previous source states 𝒉෩𝒔. At each time step 

t, in the decoding phase, this approach first takes as input the hidden state 𝒉𝒕 at the top layer of a 

stacking LSTM. The goal is then to draw a context vector 𝒄𝒕 that retains relevant source information 

to help in predicting the current target-word 𝒚𝒕. The scoring function is calculated by 𝑠𝑐𝑜𝑟𝑒൫ℎ௧ ,ℎ෨௦൯ =ℎ௧் ℎ෨௦. In this attention model, an alignment vector of variable length 𝒂𝒕, whose size is equal to the 

number of time steps in the source side, is obtained by comparing the current hidden target state 𝒉𝒕 with any hidden source state 𝒉෩𝒔: 𝑎௧ሺ𝑠ሻ = 𝑎𝑙𝑖𝑔𝑛൫ℎ௧ ,ℎ෨௦൯ =
exp൫𝑠𝑐𝑜𝑟𝑒ൣℎ௧,ℎ෨௦൧൯෍ exp ቀ𝑠𝑐𝑜𝑟𝑒൫ℎ௧,ℎ෨௦ᇲ൯ቁ௦ᇲ  

Given the alignment vector as weights, the context vector 𝒄𝒕 is calculated as the dot product of 

the weighted average over the previous hidden state 𝒉෩𝒔. Given the current target state 𝒉𝒕 and the 

context vector 𝒄𝒕, we use a simple concatenation to combine information from both vectors to create 

an attentional hidden state as follows: ℎ෨௧ = 𝑡𝑎𝑛ℎሺ𝑤௖ሾ𝑐௧;ℎ௧ሿሻ. Next, we use the dropout normalization 

technique to reset the order of 50% of the connections and then the flatten function, which receives 

the tensor with the attentional vector 𝒉෩𝒕, which reshapes it to have a shape equal to the number of 

elements contained in the tensor. In our case, the number of elements in the tensor is 128.  

The third layer of the network is the same as in the previous model (see Figure 5). 
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Figure 3. Deep LSTM Based Neural Network with attention mechanism model. 

3.5. Convolutional Neural Network (CNN) 

Our next model is a convolutional network that also considers the dimension of time. The 

architecture of the convolutional network is depicted in Figure 7. 

Here, we enter the sequence of the different MFCCs in the file duration too. As the first layer of 

the network, we use a one-dimension convolutional layer (Conv1D), which receives as input a tensor 

of the dimensions (228, 40) for the RAVDESS, and (308, 40) for the SAVEE database, as previously. 

For the analysis of the model, we use the case of training it with the RAVDESS database, as shown in 

Figure 7. The first convolutional layer, in this case, will produce an output tensor of dimensions (220, 

64), due to the number of 64 filters we have defined. Additionally, we set the kernel size, which refers 

to the size of the convolution window, to 9, as we work with a convolutional layer of one dimension. 
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Next, we use the batch-normalization layer that speeds up training, as it allows the use of higher 

learning rates, given that activations are now less “sensitive” to changes in parameters. Finally, we 

use the ReLU activation function and the dropout normalization technique at a rate of 50%. 

As the second layer of the network, we use a convolutional layer of one dimension (Conv1D), 

which receives as input a tensor of dimensions (220, 64) and produces an output tensor of dimensions 

(214, 64), due to the number of 64 filters that we defined. Additionally, we set the kernel size to 9, as 

explained above. Next, we use the batch-normalization layer, which speeds up training, using the 

ReLU activation function and a dropout of 50%. 

The third layer of the network is implemented as a convolutional layer of one dimension 

(Conv1D), which receives as input a tensor of dimensions (214, 64) and produces an output tensor of 

dimensions (210, 32), due to the number of 32 filters that we defined. Additionally, we set the kernel 

size 7, and use the batch-normalization layer, to speed up training, using the ReLU activation 

function, and a dropout normalization at the rate of 50%. 

The fourth layer of the network is the same as the third one. 

The fifth layer of the network is implemented as a convolutional layer of one dimension 

(Conv1D), which receives as input a tensor of dimensions (206, 32), and produces an output tensor 

of dimensions (204, 16), due to the number of 16 filters that we defined. Additionally, we set the 

kernel size to 5, and use the batch-normalization layer, to speed up training, using the ReLU 

activation function. 

In the sequel, we use the flatten function (in this case, the tensor contains 3264 elements). Next, 

a dense layer that receives as input the flattened tensor (hence it has 3264 elements), produces a tensor 

of size 8 or 7, depending on the database we train the model, categorizing the 3264 elements into their 

8 or 7 emotion classes. Finally, we use the “Softmax” activation function.  
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Figure 4. Deep CNN model. 

3.6. Convolutional Neural Network with Attention mechanism (CNN-ATN) 

Our last model is a deep convolution network with the addition of an attention mechanism, as 

presented in Figure 8. 
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Figure 5. Deep CNN Neural Network with attention mechanism model. 

Here, we again enter the sequence of the different MFCCs in the file duration. Τhe first, the 

second, and the third layers of the network are the same as those of the plain CNN model. 

The fourth layer of the network is implemented as a convolutional layer of one dimension 

(Conv1D), which receives as input a tensor of dimensions (210, 32) and produces an output tensor of 

dimensions (206, 32). The first dimension (210) is the result of reducing the input one, due to the 

elimination of zero values, whereas the second dimension is the number of 32 filters we have defined. 

Additionally, we set the kernel size to 7. Next, we use the batch-normalization layer, which speeds 

up training, using the ReLU activation function. 

The fifth layer of the network is the same as the fifth layer of the simple CNN. 

After that, we enter the attention layer, which applies the dot-product attention mechanism, in 

the same way as in section 3.4. An alignment vector of variable length 𝒂𝒕 is calculated by the same 

formula. Next, we use the flatten function, which receives the tensor with the attentional vector 𝒉෩𝒕, 
which reshapes it to have a shape equal to the number of elements contained in the tensor (128 in our 

case). 
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Then, a dense layer is used, which receives as input the flattened tensor that has 128 elements 

and produces an 8 or 7 components tensor, as in previous models, where the “Softmax” activation is 

used. 

3.7. Implementation Tools 

For all the above implementations, except the DBN model, for which we utilized the CPU, we 

utilized Tensorflow and Keras. TensorFlow uses dataflow graphs to represent the calculation, the 

shared state, and the functions that transform that state. It maps the nodes of a data flow graph to 

multiple machines in a cluster, and within a machine on multiple computing devices, including 

multiple CPU cores, general purpose GPUs, and specially designed ASICs (Application-Specific 

Integrated Circuits), known as Tensor Processing Units (TPUs). Keras is an open-source library that 

provides a Python interface for artificial neural networks. Built on top of TensorFlow, Keras is an 

industry-strength framework that can scale to large clusters of GPUs or an entire TPU pod. As a 

Python distribution platform, we used Anaconda. For training purposes, we used the Adam optimizer, 

and “sparse categorical crossentropy” as our loss function. The BDN model utilized a learning rate of 

0.05, the simple DNN model utilized a learning rate of 1e-4 (0.0001), where the rest of the models 

(LSTM with and without attention, CNN with and without attention) utilized a learning rate of 1e-3, 

which becomes 1e-4 in 100 epochs. Also, the batch size we used for neural network training for all 

the models, except DBN, is 32. The specifications of our running system are the following: GPU: 

NVIDIA GTX 1070, CPU: Intel(R) Core (TM) i7-9750H, RAM: 16 GB. 

4. Experimental Study and Results 

In this section, we first present the datasets that we have used as well as the results of the six 

implemented models, presented in Section 3, and then compare the best of them (called ‘our method’) 

with state-of-the-art models. The models were trained, splitting both databases into a training set and 

a validation (test) set at a rate of 80% - 20%, respectively.  

4.1. Datasets 

For our experiments, we used two datasets, the SAVEE (Surrey Audio-Visual Expressed 

Emotion) database1 [26], and the RAVDESS (Ryerson Audio-Visual Database of Emotional Speech 

and Song) database2 [27].  

SAVEE is an audio-visual dataset that comprises 480 English utterances from four male actors, 

aged from 27 to 31 years, in seven different emotions, which are anger, disgust, fear, happiness, 

sadness, surprise, and neutral. Utterances are categorically labeled. Recordings consisted of 15 TIMIT 

database3 sentences per emotion (with additional 30 sentences for neutral state). Emotion assessment 

of recordings was performed by subjective evaluation under audio, visual and audio-visual 

scenarios. Speech data was labeled at phone-level in a semi-automated way. The audio data sampling 

rate used is 44.1 kHz. 

RAVDESS contains a total of 1440 speech utterances and 1012 song utterances. Each audio file 

was rated on a scale of 10 on intensity, emotional validity, and genuineness. The emotion in the 

speech includes surprise, happy, calm, fearful, sad, disgust and angry. The song section contains 

happy, calm, sad, angry, and fearful emotions. Every file has two levels of emotional intensity: normal 

and strong. The RAVDESS dataset is very rich in nature given that it does not suffer from gender 

bias, consists of wide range of emotions and at different level of emotional intensity. 

4.2. Experimental Results-Accuracy and Loss Curves 

 

1 http://kahlan.eps.surrey.ac.uk/savee/Download.html 

2 https://zenodo.org/record/1188976 

3 https://catalog.ldc.upenn.edu/LDC93s1  
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In the sequel, we present the results in the form of graphs for the accuracy and loss of our six 

models, through figures 9 to 24. Where there is need, we add some comments. It is important to note 

here that compared to the other models, the Deep Belief Network (DBN) algorithm package provides 

only loss information, so we have only one graph for each dataset. 

 

Figure 6. DBN loss training charts for RAVDESS (left) and SAVEE (right) databases. 
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Figure 3. DNN training charts for RAVDESS database. 

 

Figure 8. DNN training charts for SAVEE database. 
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Figure 9. LSTM network training charts for RAVDESS database. 

 

Figure 10. LSTM network training charts for SAVEE database. 
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Figure 11. LSTM network with attention mechanism training charts for RAVDESS database. 

 

Figure 12. LSTM network with attention mechanism training charts for SAVEE database. 
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Figure 13. CNN network training charts for RAVDESS database. 

 

Figure 14. CNN network training charts for SAVEE database. 

The model of Error! Reference source not found. and Error! Reference source not found. uses the 

batch-normalization and dropout techniques with a reset of 50%, to prevent large overfitting of the 

model, but still no good generalization is achieved. For this reason, two more variations of our model 

were tested.  

Initially, zero padding was tested on the input vectors at the hidden levels. This was to keep the 

dimensions of the vector containing the input sequence the same as the model proceeds to the next 

hidden levels (for RAVDESS 228, and for SAVEE 308). This test was performed on the RAVDESS 

database, and the accuracy and loss curves are presented in Figure 18. 

As we can see from the graphics of the test with zero padding compared to our model in Figure 

16, it is obvious that the accuracy remains the same (70.5%), as well as the overfit (30%). However, 

comparing the graph of the loss between the two implementations, we observe that the error from 

epoch 50 onwards, in the zero-padding test, gradually increases and does not stabilize after epoch 

100 on 2, as is done with the model in Figure 16. On the contrary, it continues to grow and exceeds 2. 

Then, after the first test for the RAVDESS database had not yielded the desired results, a second 

test was performed using zero padding in combination with the replacement of the ReLU activation 

function by the LeakyReLU. The ReLU activation function sets, all negative values to zero. This makes 

our network adaptable to ensure that the most important neurons have positive values (> 0). 

However, this can also be a problem, as the gradient of 0 is 0 and therefore neurons that reach large 

negative values cannot recover and stick to 0. This causes the neurons to die and for this reason this 

phenomenon is called “The dying ReLU problem”. 
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Figure 15. CNN network training charts for RAVDESS database with zero padding. 

To avoid this phenomenon, LeakyReLU was proposed, according to which negative values 

instead of zero are multiplied by a factor of 0.01: 𝑓ሺ𝑥ሻ = ൜0.01, 𝑖𝑓 𝑥 < 0

 𝑥, 𝑥 ≥ 0
 

Comparing it with ReLU, we can see that LeakyReLU has a slight negative slope, avoiding the 

entrapment of neurons with negative values at 0. There have generally been reports of success 

adopting this activation function, but the results are not always consistent. The reason we want to 

apply it to the CNN model is that through its operation we reduce the phenomenon of overfitting a 

little more, and stabilize more the instabilities of our system, which appear as abrupt changes (spikes) 

in the graphics.  

This test was performed on RAVDESS and SAVEE databases and the accuracy and loss curves 

are depicted in Figure 19 and Figure 20 respectively. 
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Figure 16. CNN network training charts for RAVDESS database with zero padding and LeakyReLU. 

 

Figure 17. CNN network training charts for SAVEE database with zero padding and LeakyReLU. 

As we can see from the graphs of the test with zero padding and LeakyReLU in the RAVDESS 

base, compared to our model in Figure 16, it is obvious that the accuracy decreases slightly (67%) and 

the overfitting increases slightly (33%). Comparing the graphs of loss between the two 
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implementations, we notice that the instability (spikes) of the system has been improved. However, 

the error from epoch 50 onwards, in the test with zero padding and LeakyReLU, increases gradually 

and does not stabilize after epoch 100 on 2, as it is done with the model in Figure 16. On the contrary, 

it continues to increase, approaching values such as 3 and 4. 

Comparing now the graph of test accuracy with zero padding and LeakyReLU on the SAVEE 

base with that of Figure 17, we notice that the accuracy increases dimly (55.7%) compared to the 

model in Figure 17 (55.2%), so there is a very minimal reduction in overfitting, of 0.5%. Then 

comparing the loss graphs between the two implementations, we notice that the instability (spikes) 

of the system has been slightly improved. The error from epoch 50 onwards, in the test with zero 

padding and LeakyReLU, increases gradually and does not stabilize, approaching 3.5. This is a small 

improvement of the system as the loss in Figure 17 approaches 4.5 in epoch 200, but from epoch 200 

onwards stabilizes. 

The above comparison of the two tests with the implementation of Figure 16 in the RAVDESS 

database concludes that our model with the use of ReLU and without zero padding gives overall 

better results in terms of accuracy and loss. Regarding the comparison of the test with zero padding 

and LeakyReLU with the implementation of Figure 17 for the SAVEE base, we observe that the test 

with zero padding and LeakyReLU achieves faintly improved overall results, in terms of both 

accuracy and loss. This may be due to the fact that this database has a smaller number of samples 

than RAVDESS. Therefore, we conclude that the model implemented with ReLU and without zero 

padding performs in general better and that the techniques tested do not give the desired results, i.e. 

reduce the overfitting effect and the loss to a significant degree. 

 

Figure 18. CNN network with attention training charts for RAVDESS database. 
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Figure 19. CNN network with attention training charts for SAVEE database. 

Because we see that the models show a degree of overfitting that cannot be further reduced, we 

performed a test, where we removed the dropout normalization technique from the model, so that 

only the batch-normalization technique remained, to see the effects. The results of this model 

(without the dropout) for the RAVDESS and SAVEE databases are depicted in Figure 23 and Figure 

24, respectively. 
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Figure 20. CNN network with attention training charts for RAVDESS database without Dropout. 

 

Figure 21. CNN network with attention training charts for SAVEE database without Dropout. 

It is obvious that with the removal of the dropout function, the model shows a significant 

increase in the overfitting effect, given that for both the RAVDESS and SAVEE datasets we observe a 

significant reduction in the accuracy of the model and some increase in loss. More specifically, for the 

RAVDESS dataset, the model without the dropout function achieves 65% accuracy, in contrast to the 
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model of Figure 21, which achieves 77% accuracy. This means that the model without the dropout 

technique overfits to a percentage of 45% on this dataset. Also, the loss of the model without the 

dropout technique fluctuates (spikes) around 2.5, while the model of Figure 21 fluctuates (spikes) 

around 1.5, and from epoch 100 onwards revolves around 1, with a minimal upward trend to 1.2. 

For the SAVEE dataset, the model without the dropout technique achieves an accuracy of 47%, 

in contrast to the model of Figure 22, which achieves an accuracy of 74%. This means that the model 

without the dropout technique overfits to a percentage of 63% on this dataset. Also, the loss of the 

model without the dropout technique from epoch 25 onwards has a steady upward trend from 1.3 to 

1.6, while the model in Figure 22 fluctuates (spikes) around 1.5. From the above it is obvious that 

proposed CNN-Attention model applying the dropout technique against overfitting is the best 

possible option. 

4.4. Experimental Results-Confusion Matrices 

For the six implemented models, the confusion matrices for each of the RAVDESS and SAVEE 

datasets are presented in this subsection, via the figures 25 to 30. The confusion matrices, as it is well 

known, contain information about the success rate of the models’ predictions for each emotion of the 

selected datasets separately. Table 1 shows the correspondence between the labels in confusion 

matrices and the two datasets. 

From the confusion matrix of DBN for the RAVDESS dataset (Figure 25), we can conclude that 

the ‘neutral’ and the ‘angry’ emotions of the dataset yields the lowest success rate (0%), as the ‘neutral’ 

emotion is most often confused with the emotion of ‘calm’ {in 9 out of 20 samples} and the emotion 

of ‘anger’ is most often confused with the emotion of ‘surprise’ {in 27 out of 36 samples}. In contrast, 

the emotion of ‘surprise’ receives the best success rate (80.5%) compared to the rest, as it identifies 33 

out of 41 samples. 

Table 1. Correspondence between the emotion labels and the emotions in the two datasets. 

Label of Emotion Emotion in SAVEE Emotion in RAVDESS 

[0] anger neutral 

[1] disgust calm 

[2] fear happy 

[3] happiness sad 

[4] neutral angry 

[5] sadness fearful 

[6] surprise disgust 

[7] - surprise 
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Figure 22. DBN confusion matrices for RAVDESS (left) and SAVEE (right). 

From the confusion matrix of DBN for the SAVEE dataset (Figure 25), we can conclude that the 

‘anger’ emotion of the dataset yields the lowest success rate (25%) by identifying only 3 of the 12 

samples, as it confuses most times with the emotion of ‘sadness’ {in 8 out of 12 samples}. In contrast, 

the emotion of ‘surprise’ receives the best success rate (66.7%) compared to the rest, as it identifies 8 

out of 12 samples. 

In the confusion matrix of DNN for the RAVDESS dataset (Figure 26), we can see that the 

‘neutral’ emotion yields the lowest success rate (14.3%), as it is most often confused with the ‘sad’ 

emotion {in 5 out of 21 samples} and the emotion of ‘disgust’ {in 5 out of 21 samples}. In contrast, the 

emotion of ‘surprise’ receives the best success rate (61%) compared to the rest, as it identifies 25 out 

of 41 samples. 

Similarly, in the confusion matrix of DNN for the SAVEE dataset (Figure 26), we can see that the 

emotion of ‘surprise’ yields the lowest success rate (33.3%) identifying only 4 out of the 12 samples, 

as it is confused most often with the feeling of ‘fear’ {in 5 out of the 12 samples}. In contrast, the 

‘neutral’ emotion receives the best success rate (91.3%) compared to the rest, as it identifies 21 out of 

23 samples. 
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Figure 23. DNN confusion matrices for RAVDESS (left) and SAVEE (right). 
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Figure 24. LSTM network confusion matrices for RAVDESS (left) and SAVEE (right). 

From the confusion matrix of LSTM for the RAVDESS dataset (Figure 27) we can conclude that 

the ‘happy’ emotion and the ‘neutral’ emotion of the dataset yield the lowest success rates achieving 

44.8% and 66.7%, respectively. This is because the ‘happy’ emotion is most often confused with the 

emotion of ‘fearful’ {in 7 out of 29 samples} and the ‘neutral’ emotion is sometimes confused with the 

‘sad’ emotion {in 3 out of 21 samples}. In contrast, the emotions of ‘calm’ and ‘surprise’ receive the 

best success rates (80% and 78%), as they identify 32 out of 40 and 32 out of 41 samples, respectively. 

From the confusion matrix of LSTM for the SAVEE dataset (Figure 27) we can conclude that the 

emotion of ‘happiness’ yields the lowest success rate (36.4%) identifying only 4 out of 11 samples, as 

it is confused several times with both the emotion of ‘anger’ and the emotion of ‘surprise’ {in 3 out of 

12 samples for each}. In contrast, the ‘neutral’ emotion receives the optimal success rate (95.6%) 

compared to the rest, as it identifies 22 of the 23 samples. 
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Figure 25. LSTM network with attention mechanism confusion matrices for RAVDESS (left) and 

SAVEE (right). 

From the confusion matrix of LSTM-ATN for the RAVDESS dataset (Figure 28), we can conclude 

that the ‘sad’ emotion achieves the lowest success rate (50%) by identifying only 22 out of 44 samples, 

as it is sometimes confused with the emotion of ‘disgust’ {in 6 out of 44 samples}. In contrast, the 

‘calm’ emotion receives the optimal success rate (95%) compared to the rest, as it identifies 38 out of 

40 samples. 

From the confusion matrix of LSTM-ATN for the SAVEE dataset (Figure 28), we can conclude 

that the emotion of ‘happiness’ yields the lowest success rate (27.3%) identifying only 3 of the 11 

samples, as it is most often confused with the emotion of ‘surprise’ {in 3 out of 11 samples}. In contrast, 

the neutral emotion receives the optimal success rate (95.6%) compared to the rest, as it identifies 22 

out of 23 samples. 
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Figure 26. CNN network confusion matrices for RAVDESS (left) and SAVEE (right). 

From the confusion matrix of CNN for the RAVDESS dataset (Figure 29), we can conclude that 

the ‘neutral’ emotion achieves the lowest success rate (28.6%) by identifying only 6 of the 21 samples, 

as it is most often confused with the emotion of ‘calm’ {in 8 out of 21 samples}. In contrast, the emotion 

of ‘calm’ receives the optimal success rate (85%) compared to the rest, as it identifies 34 out of 40 

samples. 

From the confusion matrix of CNN for the SAVEE dataset (Figure 29), we can conclude that the 

emotion of ‘disgust’ yields the lowest success rate (10%) by identifying only 1 out of 10 samples, as is 

confused several times with both the emotion of ‘sadness’ {in 4 out of 10 samples} and the ‘neutral’ 

emotion {in 3 out of 10 samples}. In contrast, the ‘neutral’ emotion receives the optimal success rate 

(82.6%) compared to the rest, as it identifies 19 out of 23 samples. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 September 2023                   doi:10.20944/preprints202309.1202.v1

https://doi.org/10.20944/preprints202309.1202.v1


 31 

 

 

 

Figure 27. CNN network with attention mechanism confusion matrices for RAVDESS (left) and 

SAVEE (right). 

From the confusion matrix of CNN-ATN for the RAVDESS dataset (Figure 30), we can conclude 

that ‘neutral’ emotion yields the lowest success rate (57%) as it is often confused with the emotion of 

‘calm’ {in 9 out of 21 samples}. In contrast, the ‘calm’ emotion receives the optimal success rate (97%) 

compared to the rest, as it identifies 39 out of 40 samples. 

From the confusion matrix of CNN-ATN for the SAVEE dataset (Figure 30), we can conclude 

that the emotion of ‘disgust’ yields the lowest success rate (60%) by identifying 6 out of 10 samples, 

as it is confused a few times with the ‘neutral’ emotion {in 2 out of 10 samples}. In contrast, both the 

emotion of ‘anger’ and the emotion of ‘sadness’ receive the best success rate (91.6%) compared to the 

rest, as it identifies 11 out of 12 samples. 

In conclusion, from all the above we observe that for the RAVDESS base our models can on 

average perceive more successfully the emotions of ‘calm’ and ‘surprise’, while they find it difficult 

to determine the ‘neutral’ emotion. This may be due to the fact that in this database there are two 

basic emotions that approach the ‘neutral’ emotion, one from a negative point of view and the other 

from a positive point of view, making it difficult to determine the right emotion. Regarding the 

SAVEE database, we observe that our models can perceive the ‘neutral’ emotion more successfully, 

as in this database it is unique, while they find it difficult to identify the emotions of ‘happiness’ and 

‘disgust’. 

4. Discussion 
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In Table 1, we present the results of the accuracy of prediction of the models we implemented 

for the RAVDESS and SAVEE databases. Deep Neural Networks (DNNs) are Feedforward Neural 

Networks and in these networks, information moves in only one direction - forward - from the input 

nodes, through the hidden nodes and to the output nodes. Deep Belief Networks (DBNs), however, 

have non-directed connections between some layers, making the topologies of these two models 

different by definition. Comparing DBN with DNNs, we notice that DBN achieves significantly lower 

accuracy results for both databases. Concerning DNNs, comparing SDNN with the two LSTM based 

networks, we observe that the specialization of LSTM in the classification, processing and making 

predictions on time series data, resulted in a significant improvement of accuracy in the large 

database (RAVDESS), in contrast to the result in the small database (SAVEE), where there was no 

improvement (deterioration in the case of simple LSTM). Then, comparing the LSTM networks with 

the Convolutional Neural Network (CNN), we notice that CNN achieved better results in the (large) 

RAVDESS database, while in the (small) SAVEE database the results are significantly reduced. This 

is because the CNN model is designed with a large number of hidden layers (5), which burdens 

performance, if the amount of data is small, while it improves performance for large amounts of data. 

The addition of the attention mechanism to the Convolutional Neural Network (as to the LSTM) 

contributes significantly to the improvement of results for both databases, as the addition of this 

mechanism equips the neural network with the ability to focus on a subset of inputs/attributes using 

weights on previous hidden state h ̃_s, thus retaining relevant information from the input side to 

assist in prediction. So, by combining the information from the input side with those in the current 

target state h_t as explained in sections 3.4 and 3.6, better prediction rates are achieved. 

Table 2. Prediction results of the models in Ravdess and Savee Databases (weighted accuracy). 

Models Input Features SAVEE RAVDESS 

DBN Average of 40 
MFCCs 47.92 32.64 

DNN Average of 40 
MFCCs 69.79 45.18 

LSTM 40 MFCCs 67 70 

LSTM-ATN 40 MFCCs 69.79 66 

CNN 40 MFCCs 55.2 70.5 

CNN-ATN 40 MFCCs 74 77 

In the following, we present the comparative study of our proposed method, which is the CNN-

ATN, with existing models in the literature that provide state-of-the-art results. The model we 

propose consists of five convolution layers, each using the batch-normalization technique and the 

ReLU activation function. The 1st, 2nd and 3rd convolution layers also use the dropout normalization 

technique to reset 50% of the connections. The result of the last convolutional layer is fed to the 

attention mechanism, which emphasizes the use of weights in a subset of inputs holding more input 

information to optimize the performance of the model prediction. 

Table 3 presents the performance of the proposed method in comparison with other state-of-the-

art proposals, for the SAVEE database. Sivanagaraja et al. [28] proposes a Multi-scale Convolution 

Network (MCNN) for SER using rawWav to train a DNN, which consists of 3 stages: i) the signal 

transformation stage, ii) the local convolution stage and iii) the global convolution stage. Latif et al. 

[29] introduce a Deep Belief Network (DBN) with three RBM layers using the eGeMAPS features set. 

Fayek et al. [30] developed a Deep Neural Network (DNN) that recognizes emotions from a one 

second frame of raw speech spectrograms. Chenchah and Lachiri et al [31] utilize the Hidden Markov 

Model (HMM), categorizing the characteristics exported using Linear Frequency Cepstral 

Coefficients (LFCCs) and Mel-Frequency Cepstral Coefficients (MFCCs). It is obvious that our 

method significantly outperforms the other efforts. 
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Table 3. Comparison with the previous works using SAVEE Database. 

Models Input Features SAVEE - Test accuracy (%) 

MCNN Sivanagaraja [28] rawWav 50.28 

DBN Latif [29] eGeMAPS 56.76 

DNN Fayek, Lech and Cavedon [30] Spectrogram 59.7 

HMM Chenchah and Lachiri [31] LFCCs/MFCCs 45/61.25 

Proposed method MFCCs 74 

Table 4 presents the performance of the proposed method in comparison with other state-of-the-

art proposals, for the RAVDESS database. Rajak and Mall [32] present a Convolutional Neural 

Network (CNN) model, which consists of four one-dimensional (1D) local convolutional filters and 

receives as input 12 MFCCs, which are extracted from the audio files with a 10ms step of a 50ms 

window. Also, after the 2nd hidden layer, a max pooling layer is applied. Jalal et al. [7] developed a 

robust emotion classification method using bidirectional long short-term memory network (BLSTM), 

CNN and Capsule networks, using a feature vector, which consists of the fundamental frequency 

(F0), 23-dimensional MFCC and log-energy augmented by delta and delta-delta. The overall network 

is comprised of two BLSTM layers, 1D conv-capsule layer consisting of capsules and a capsule 

routing layer. Input layer consists of 70 nodes (length of the feature vector), and each BLSTM hidden 

layer contains 256 units. The BLSTM deals with the temporal dynamics of the speech signal by 

effectively representing forward/backward contextual information, while the CNN along with the 

dynamic routing of the Capsule net learn temporal clusters. Venkataramanan and Rajamohan et al. 

[33] present a 2Dimensional-CNN with Global Average Pooling, which consists of four layers of 

convolution with a filter size of 12x12 for the first layer, 7x7 for the second and 3x3 for the other two 

layers and receives as input Log-Mel Spectrograms. Mohanty et al. [34] developed a Convolutional 

Neural Network (CNN), which consists of 18 convolution layers and receives as input MFCCs. 

Huang and Bao et al. [35] utilizes a 2Dimensional-CNN, which consists of 4 convolution layers and 

after the 2nd and 4th hidden layer, a max pooling layer is applied. This model uses also 13 MFCCs as 

input. Mustaqeem and Soonil Kwon et al. [8] described a Deep Stride CNN (DSCNN) for SER using 

Raw Spectrograms for training, which consists of 7 layers of convolution, using the 2x2 stride to sub-

sample the size of feature maps, instead of using pooling layers. Issa, Demirci και Yazici [16], in their 

work, present a model that includes six one-dimensional convolutional layers combined with 

dropout, batch-normalization, and activation layers. The first layer of their CNN receives 193 × 1 

number arrays as input data. The initial layer is composed of 256 filters with the kernel size of 5 × 5 

and stride 1, followed by batch normalization and ReLU layer. The next convolutional layer, 

consisting of 128 filters with the same kernel size and stride, is also using ReLU, and dropout with 

the rate of 0.1. Next, batch normalization is implemented, feeding its output to the max-pooling layer 

with a window size of 8. Next, 3 convolution layers with 128 filters of size 5 × 5 are located, two of 

which are followed by ReLU activation layers and finally by batch normalization, ReLU activation 

and dropout layer with the rate of 0.2. The final convolutional layer with the same parameters is 

followed by the flattening layer and dropout with the rate of 0.2. The output of the flattening layer is 

received by a fully connected layer with 8, 7, or 2 units, depending on the number of predicted classes. 

After that, batch normalization and softmax activation are applied. 

Table 4. Comparison with the previous works using RAVDESS Database. 

Models Input Features 
RAVDESS - Test accuracy 

(%) 

CNN Rajak and Mall [32] MFCCs 47.92 
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BLSTM-CNN-Capsule Network Jalal [7] 

F0, MFCCs, Log 
Spectrogram 

augmented by 
delta and delta-

delta 

56.2 

2D CNN with Global Avg Pool Venkataramanan  

and Rajamohan [33] 

Log Mel 
Spectrogram 69.79 

CNN Mohanty [34] MFCCs 67 

CNN Huang and Bao [35] MFCCs 69.79 

DSCNN Mustaqeem and Soonil Kwon [8] 

Raw 
Spectrograms / 

Clean 
Spectrograms 

68 / 80 

1D CNN Issa, Demicri and Yazici [22] 
MFCCs, 

chromagram and 
Mel-Spectrogram 

71.61 

Proposed method MFCCs 77 

5. Conclusions 

The broader literature on Speech Emotion Recognition (SER) systems addresses many 

challenges in improving emotion recognition accuracy, but also seeks to reduce the computational 

complexity of models. In recent years, the attention mechanism has begun to be used to improve 

neural machine translation (NMT) by selectively focusing on parts of the source sentence during 

translation. However, not many studies have been presented to implement this technique. For this 

reason, in our study, we propose a model of Convolutional Neural Network with the addition of an 

attention mechanism, which significantly outperforms other attempts of ours and the state-of-the-art 

methods, as shown in Tables 3 and 4, giving the best prediction results: 74% for the SAVEE, and 77% 

for the RAVDESS databases. This is due to the following reasons. First, for our model we decided to 

export Mel Frequency Cepstral Coefficients (MFCCs) from the audio data we used for input, as they 

provide rich feature content from the data in a consistent manner. Another reason is that these 

coefficients use the Mel scale, which is based on how humans perceive different signal frequencies. 

Finally, the addition of the attention mechanism to the simple CNN enabled our model to focus on 

the parts of the audio input which contain more emotional information, than parts where the speaker 

does not say something or words that are not emotionally intense, helping to further improve the 

ability to predict emotion. 

Our future work concerns, testing our model on other databases, and try different modern deep 

learning architectures like Transformers [36]. 
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