Pre prints.org

Article Not peer-reviewed version

Speech Emotion Recognition
Using Convolutional Neural
Networks with Attention
Mechanism

Konstantinos Mountzouris , Isidoros Perikos , loannis Hatzilygeroudis :

Posted Date: 19 September 2023
doi: 10.20944/preprints202309.1202.v1

Keywords: speech emotion recognition; deep learning; Deep Belief Network; deep neural network;
Convolutional Neural Network; LSTM; attention mechanism

E E Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
? available and citable. Preprints posted at Preprints.org appear in Web of
Eﬂ‘-‘* Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

https://sciprofiles.com/profile/378045
https://sciprofiles.com/profile/1867592

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Speech Emotion Recognition Using Convolutional
Neural Networks with Attention Mechanism

Konstantinos Mountzouris ?, Isidoros Perikos 2 and Ioannis Hatzilygeroudis **

! Department of Computer Engineering and Informatics, University of Patras, 26504 Patras, Greece;
mountzour@ceid.upatras.gr (K.M.); perikos@ceid.upatras.gr (L.P.); ihatz@ceid.upatras.gr (I.H.)

2 Computer Technology Institute and Press “Diophantus”, 26504 Patras, Greece; perikos@cti.gr

* Correspondence: ihatz@ceid.upatras.gr

Abstract: Speech Emotion Recognition (SER) is an interesting and difficult problem to handle. In this paper,
we deal with it through the implementation of deep learning networks. We have designed and implemented
six different deep learning networks, a Deep Belief Network (DBN), a simple deep neural network (SDNN), a
LSTM network (LSTM), a LSTM network with the addition of an attention mechanism (LSTM-ATN), a
Convolutional neural network (CNN), and a Convolutional neural network with the addition of an attention
mechanism (CNN-ATN), having in mind, apart from solving the SER problem, to test the impact of attention
mechanism to the results. Dropout and Batch Normalization techniques are also used to improve the
generalization ability (prevention of overfitting) of the models as well as to speed up the training process. The
Surrey Audio-Visual Expressed Emotion database (SAVEE), and the Ryerson Audio-Visual Database
(RAVDESS) database were used for training and evaluation of our models. The results showed that networks
with the addition of the attention mechanism did better than the others. Furthermore, they showed that CNN-
ATN was the best among tested networks, achieving an accuracy of 74% for the SAVEE and 77% for the
RAVDESS dataset, and exceeded existing state-of-the-art systems for the same datasets.

Keywords: speech emotion recognition; deep learning; Deep Belief Network; deep neural network;
Convolutional Neural Network; LSTM; attention mechanism

1. Introduction

Speech is the most natural way of human communication. Affective computing systems based
on speech play an important role in promoting human-computer interaction, and emotion
recognition is the first step. Due to the lack of a precise definition of emotion and the inclusive and
complex influence of emotion generation and expression, accurately recognizing speech emotions is
still difficult. Speech emotion recognition (SER) is an important problem, which is receiving
increasing interest from researchers due to its numerous applications, such as e-learning [1], clinical
trials [2], audio monitoring/surveillance, lie detection [3], entertainment, video games [4], and call
centers [5]. Machine learning (ML) is a revolutionary method, in which we feed a machine an
adequate amount of data and the machine will use the experience gained from the data to improve
its own algorithm and process data better in the future [6]. One of the most significant approaches in
machine learning is Neural Networks (NNs). NNs are networks of interconnected nodes, called
neurons. NNs are loosely modeled towards the way human brain processes information. NNs store
data, learn from it, and improve their abilities to sort new data. For example, a neural network having
the task of identifying dogs can be fed a set of characteristic values extracted from various images of
dogs tagged with the type of dog. Over time, it will learn what kind of image corresponds to what
kind of dog. The machine therefore learns from experience and improves itself. Deep Learning (DL)
is a recent ML approach, where NNs are arranged into sprawling networks with many layers that
are trained using massive amounts of data. In DL, the sprawling artificial neural network is fed
representations of raw data (e.g., raw image representations) and not given any other instructions.
This means that in contrast to other ML approaches, it determines the important characteristics and
purpose of the data itself, while storing it as experience. In other words, according to studies, Deep

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202309.1202.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

neural networks (DNNs) can solve the data representation problem through learning a series of task-
specific transformations [7]. The network layers extract abstract representations and filter out the
irrelevant information, which leads to a more accurate classification and better generalization.
Temporal models were also proposed for modelling sequential data with mid to long-term
dependencies. DL models are currently used to solve problems such as face recognition, voice
recognition, image recognition, computational vision, and speech emotion recognition. One of the
main advantages of DL techniques over other ML techniques is the automatic selection of features,
which could, for example, be applied to important features inherent in audio files that have a special
emotion in the task of recognizing speech emotions.

When it comes to recognizing emotion through speech, deep learning models such as
Convolutional Neural Networks (CNN), Deep Neural Networks (DNNs), Deep Belief Networks
(DBNSs) etc, approach the detection of high-level features for better accuracy compared to hand-made
low-level features. Furthermore, the use of deep neural networks enhances the computational
complexity of the entire model. However, according to Mustageem and Kwon [8] there are still many
challenges in recognizing emotion from speech, such as the fact that the current CNN architectures
have not shown significant improvement in speech accuracy and complexity in speech signal
processing, or the fact that the use of Recurrent Neural Networks (RNNs) and Long Short-Term
Memory neurons (LSTMs) are useful for training sequential data, but they are difficult to train
effectively and are computationally more complex. Due to the above issues and challenges, we
propose a CNN architecture with the addition of an attention mechanism. The voice characteristics
of the speakers are extracted in the form of Mel Frequency Cepstral Coefficients (MFCCs), with the
help of the Librosa library.

The structure of the paper is as follows. Section 2 presents related work. In Section 3, six deep
neural network configurations are presented. A detailed presentation of the experiments and a
discussion of the proposed method compared to other research methods are provided in Sections.
Finally, Section 5 concludes the paper.

2. Related Work

In the literature, there is a huge research interest, and several works attempt to perform emotion
detection from speech [9][10]. DL techniques have achieved breakthrough performance in recent
years, and as a result, have been thoroughly examined by the research community [11],[12]. Existing
studies have focused on improving and extending DL techniques.

In the work presented in [13], authors present a new Random Deep Belief Network (RDBN)
method for speech emotion recognition, which consists of random subspace, DBN and SVM in the
context of ensemble learning. It first extracts the low-level characteristics of the input speech signal
and then applies them to the construction of many random sub-intervals. Second, it creates many
different sub-intervals. In addition, DBN continues to use the stochastic gradient descent method to
optimize the parameters. To solve the problem, a random space is applied for the training of the basic
classifiers for the whole, where the same classification method is used. The best accuracies achieved
are, 82.32% on the Emo-DB database, 48.5% on the CASIA database, 48.5% on the FAU database, and
53.60% on the SAVEE database.

In the work presented in [14], authors introduce a method for identifying speech emotions using
spectrogram and a Convolutional Neural Network (CNN). The proposed model consists of three
convolution layers and three fully connected layers, which extract distinctive features from
spectrograph images and predictions for the seven emotions of the Emo-DB Database. Layer C1 has
120 cores (11 x 11) applied at a rate of 4 pixels. ReLU acts as an activation function instead of the
standard sigmoid functions that improve the efficiency of the educational process. Layer C2 has 256
cores of size 5 x 5 and are applied to the input with one step 1. Similarly, C3 has 384 cores of size 3 x
3. Each of these convolution layers is followed by ReLUs. Layer C3 is followed by three FC layers that
have 2048, 2048 and 7 neurons, respectively. More than 3000 spectrograms were generated from all
the audio files in the dataset. Overall, the proposed method achieved 84.3% accuracy.

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

In [15], authors present two Convolutional Neural Networks with a Long-Short Memory
Network (CNN-LSTM), one one-dimensional (1D) and one two-dimensional (2D), stacking four
designed local features learning blocks (LFBL). The 1D CNN-LSTM network is intended to recognize
the feeling of speaking from raw audio clips, while the 2D CNN-LSTM network focuses on learning
high-level capabilities from log-mel spectrograms. The experimental study was conducted on Berlin
Emo-DB and IEMOCAP databases. The 1D CNN LSTM network achieved 92.34% and 86.73%
recognition accuracy on the speaker-dependent and speaker-independent EmoDB database
respectively, and also delivered 67.92% and 79.72% recognition accuracy on the IEMOCAP
dependent and independent speaker database respectively. The 2D CNN LSTM network achieved
95.33% and 95.89% recognition accuracy, on the speaker-dependent and independent speaker Emo-
DB database respectively, and delivered 89.16% and 85.58% recognition accuracy on the IEMOCAP
experiment database depending on the speaker and independently of the speaker respectively.

In the work presented in [16], authors proposed a new approach to the multimodal recognition
of emotions from simple speech and text data. The attention network implemented consists of three
separate Convolutional Neural Networks (CNNs), two for extracting features from speech
spectrograms and word integration sequence, and one for the emotion classifier. The CNN outputs
from word integration and spectrograms are used to calculate an attention matrix to represent the
correlation between word integration and spectrogram in relation to emotion signaling. To evaluate
the model, they used audio and text data from CMU-Multimodal Opinion Sentiment and Emotion
Intensity (CMU-MOSEI) dataset. The dataset is organized by video IDs and corresponding segments
with six emotion and sentiment labels. Video IDs are then further split into segments. The training
set consisted of 3303 video ID and 23453 segments, while the validation set consisted of non-
overlapping 300 video IDs and 1834 segments. The total accuracy of the proposed method was
83.11%.

In [17], authors present three methods based on CNNs in combination with extensive features,
CNN + RNN and ResNet, respectively. Authors investigate different types of features as end-to-end
frame input, including primary wave data, the Q-transform constant spectrogram (CQT), and the
Fourier transform short-term spectrogram (STFT). In this way, authors create multiple data samples
with slightly modified speed ratio, which helps them achieve significant improvements and handle
the overfitting issue in the framework from end to end. For their experiments, they used the EmotAsS
dataset. The CNN + RNN model achieved the best performance (45.12%) with data balancing, the
CNN model in combination with features showed a performance of 34.33% with data balancing,
while ResNet model achieved a 37.78% performance.

In the work presented in [18], authors propose a new architecture, called attention-based 3-
Dimensional Convolutional Recurrent Neural Networks (3-D ACRNN) for recognizing emotion from
speech, combining CRNN with an attention mechanism, because they hypothesized that calculating
delta and delta-deltas for individual functions not only retains effective emotional information, but
also reduces the effect of emotionally unrelated factors, leading to a reduction in misclassification.
First, CNN 3-D is applied to the entire logarithmic-Mel spectrogram, which has been compiled into
a patch that contains only multiple frames. The attention layer then takes a sequence of high-level
attributes as input to generate expression-level attributes. Authors evaluated the model using the
Berlin Emotional Speech Database (Emo-DB) and IEMOCAP databases. From the 10 speakers, for
each evaluation they selected 8 as training data, 1 as validation and the rest as test data. The method
achieved an accuracy of 64.74% on IEMOCAP and 82.82% on Emo-DB.

In the work presented in [19], authors propose an attention-pooling representation learning
method for recognizing emotions from speech (SER). Emotional representation is learned from end
to end by applying a Deep Convolutional Neural Network (CNN) directly to speech spectrograms
extracted from speech. Compared to existing aggregation methods, such as max-pooling and
average-pooling, the proposed attention pooling can effectively integrate bottom-up class-agnostic
attention maps and top-down class-specific attention maps. Given an expression, they segment it into
2s sections for training and use an overlay of 1s to allow them to receive more training data. Each
section corresponds to the same tag with the corresponding expression. They used a 1 x 1

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

convolutional layer after Conv5 to create a top-down attention map and used another 1 x 1
convolutional layer to create bottom-up attention maps. The IEMOCAP improvised dataset was
used, and the accuracy achieved by the proposed method was 71.75% for WA and 68.06% for UA.

In [20], authors explore how to take full advantage of low-level and high-level audio features
taken from different aspects and how to take full advantage of DNN'’s ability to merge multiple
information to achieve better classification performance. For this reason, they proposed a hybrid
platform consisting of three units, namely, a features extraction unit, a heterogeneous unification unit
and a fusion network unit. Besides low-level acoustic features, such as 1510, MFCCs and eGemaps
that are extracted, high-level acoustic feature presentations named SoundNet bottleneck feature and
VGGish bottleneck feature, are considered for speech emotion recognition task. The heterogeneous
integration unit is a Denoising AutoEncoder (DAE), which is a multi-layer feed-forward neural
network and is introduced in order to convert the heterogeneous space of various features into a
unified representation space by deploying this unsupervised feature learning technique. The fusion
network module is utilized to capture the associations between those unified joint features for
emotion recognition task and is constructed as a four-layer neural network, containing one input
layer and three hidden layers. They evaluated the model using the IEMOCAP database and the
proposed method improved the recognition performance reaching an accuracy of 64%.

In the work presented in [21], authors propose a platform that at the training layer has 3 main
stages, such as verbal/non-verbal audio segmentation, the integration of feature extraction and the
construction of an emotion model. Verbal sections were used to train the CNN-based emotion model
to derive emotion features, while non-verbal sections were used to train the CNN audio model to
extract audio features. CNN’s combined features are used as the input to the LSTM-based sequence-
to-sequence emotion recognition model. Here, the sequence-to-sequence model based on the LSTM
with an attention mechanism was selected for emotion recognition. The LSTM and the attention
mechanism for developing a sequence emotion recognition model contained a bidirectional LSTM
(Bi-LSTM) as the coder for the attention mechanism and a unidirectional LSTM as the decoder for
emotional sequence output. They evaluated the model using the NTHU-NTUA Chinese interactive
multimodal emotion corpus (NNIME); the proposed method achieved a 52.0% accuracy.

The work presented in [22] introduces a model that includes one-dimensional convolutional
layers combined with dropout, batch-normalization, and activation layers. The first layer of their
CNN receives 193 x 1 number arrays as input data. The initial layer is composed of 256 filters with
the kernel size of 5 x 5 and stride 1. After that, batch normalization is applied, and its output is
activated by Rectifier Linear Units layer (ReLU). The next convolutional layer consisting of 128 filters
with the same kernel size and stride receives the output of a previous input layer. The final
convolutional layer with the same parameters is followed by the flattening layer and dropout with
the rate of 0.2. Their model was tested in the Berlin (EMO-DB), IEMOCAP and RAVDESS databases
and obtains 71.61% for RAVDESS with 8 classes, 86.1% for EMO-DB with 535 samples in 7 classes,
95.71% for EMO-DB with 520 samples in 7 classes, and 64.3% for IEMOCAP with 4 classes on speaker-
independent audio classification tasks.

In the work presented in [23], authors present, attention-oriented parallel convolutional neural
network encoders that capture essential features required for emotion classification. Authors
extracted and encoded features such as paralinguistic information, and speech spectrogram data, and
distinct CNN architectures were designed for each type of feature, and those encoded features were
subsequently passed through attention mechanisms to enhance their representations before
undergoing classification. Empirical evaluations were carried out on the EMO-DB and IEMOCAP
open datasets and the proposed model achieved a weighted accuracy (WA) of 71.8% and an
unweighted accuracy (UA) of 70.9%. Furthermore, with the IEMOCAP dataset, the model yielded
WA and UA recognition rates of 72.4% and 71.1% respectively.

3. Methodology

In this section, we present six deep neural networks for recognizing emotions from speech data.
To train and test our models, we use the RAVDESS and SAVEE databases. These databases contain

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 d0i:10.20944/preprints202309.1202.v1

“.wav’ audio files, which we process to export Mel Frequencies Cepstral Coefficients (MFCCs) [24].
These factors use the Mel scale, which is based on how humans perceive different signal frequencies
(spectral content of the voice signal, as recognized by human hearing). The basic reason that we chose
to use MFCCs is that they can provide rich feature content from the data.

The Librosa library helped us to export the sequence of the first 40 MFCCs, shown in Figures 1
and 2, to a RAVDESS database audio file.

0.04 -
0.02 -
0.00 4
—0.02 -
—0.04 -
- - : ‘ - - -
0 0.5 1 15 2 2.5 3 35

Time

Figure 1. Audio file from the RAVDESS dataset.

MFCC
200

—200

Figure 2. MFCCs of the RAVDESS dataset audio file in Figure 1.

3.1. Deep Belief Network (DBN)

The model of our Deep Belief network (DBN) is shown in Figure 3. The code of the deep-belief-
network-1.0.3 package from the Github repository (https://github.com/albertbup/deep-belief-
network/) was used as the basis for the implementation of this model.

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

Hidden Layer 3

Hidden Layer 2

Hidden Layer 1

Visible layer (Observed)

Figure 3. Deep Belief Network Model

We created a DBN with three hidden layers (Figure 3) with a size of 128 nodes each, which
receives as input the time average of the 40 MFCCs. Each hidden layer can be considered a Restricted
Bolzman Machine (RBM), with the hidden layer being the first layer of the next RBM. The values of
the hyperparameters of the model we adopted are: 0.005 for the learning rate of the RBM hidden
layers, 0.05 for the learning rate of the neural network output, 50 for the number of epochs of the
RBM hidden layers. Also, we adopted the value 1000 for the number of iterations for the
backpropagation algorithm, used by the neural network’s stochastic gradient descent algorithm, and
32 for the batch size. Finally, we used the Dropout normalization technique, which is a thoughtful (or
random) zeroing of a percentage of connections (which in our case is 20%), between neurons (i.e.,
setting the output of the neuron next to 0) of two fully connected layers, as well as the ReLU activation
function.

3.2. Simple Deep Neural Network (SDNN)

The model of our simple deep neural network is depicted in Figure 4.

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

input: | [(%, 40, 1)]
output: | [(?, 40, 1)]

dense_input: InputLayer

input: (7,40, 1)
output: | (7, 40, 128)

dense: Dense

Y

input: | (2, 40, 128)
output: | (?, 40, 128)

activation: Activation

¥
input: | (7,40, 128)

output: | (?, 40, 128)

dropout: Dropout

input: | (2, 40, 128)
output: | (?, 40, 64)

dense_1: Dense

A J

input: | (2, 40, 64)
output: | (?, 40, 64)

activation_l: Activation

input: | (2, 40, 64)
output: | (?, 40, 64)

dropout_1: Dropout

input: | (7, 40, 64)
output: | (2, 2560)

flatten: Flatten

input: | (7, 2560)
output: (2, 8)

dense_2: Dense

A 4

input: | (2, 8)

activation_2: Activation

output: | (7, 8)

Figure 1. Simple Deep Neural Network model.

The diagram in Figure 4 shows a deep neural network model that receives the average time of
the 40 MFCCs as input. Because we want to implement a DNN model in its simplest form, we use
Dense layers, for which it is true that each input neuron is connected to the output neuron and that
the parameter units simply define the dimension of the output neuron. For the first (hidden) layer of
the network we use a dense layer that receives as input a tensor of dimensions (40, 1), due to the 40
MEFCCs, and produces an output tensor of dimensions (40,128), due to the number of 128 parameters
we defined. We use the ReLU activation function, for this layer. Also, we employ the dropout
normalization technique, with 10% dropout rate. The reason for it is that in each iteration it trains a
modified model that ignores the existence of some of the neurons of previous or even next layers,
and this results in different groups of network parameters being trained without being affected from
other parameters that have been reset, each time the code is run. Thus, our network avoids the
problem of “overfitting”.

For the second (hidden) layer of the network, we use a dense layer that receives as input the
output of the previous layer, a tensor (40, 128), and an output neuron of dimension (40, 64), due to
the number of 64 parameters we defined for this layer. The ReLU activation function and the dropout
of 10% are also used. Successively, we use the flatten function, which reshapes the tensor to have a
shape equal to the number of elements contained in the tensor. In our case the number of elements
included in the tensor is 2560.

The third network layer is also a dense layer that receives as input the flattened tensor (of 2560
elements), and produces a tensor of size 8 or 7, depending on the database on which we train the
model. Essentially, it categorizes the 2560 elements into those 8 or 7 emotion classes. We use the

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

“Softmax” activation function here that returns a probability distribution over the targeted classes in
the multi-class classification problem.

3.3. LSTM based network (LSTM)

As a third model, we configure a DNN, which uses LSTM (Long Short-Term Memory layer)
layers that have been found to achieve very good results in problems with sequential data. The
architecture is depicted in Figure 5.

Here, instead of entering the average of the MFCCs over the file in the model, we enter the
sequence of the different MFCCs over the length of the file. As the first layer of the network, we use
an LSTM layer that receives as input a tensor of dimensions (228, 40) for the RAVDESS, and (308, 40)
for the SAVEE database, due to the sequence size of the 40 MFCCs (228 and 308 respectively) for each
database. It produces an output tensor (228, 100) and (308, 100) respectively, due to the number of
parameters (100) that we defined.

As the second layer of the network, we use an LSTM layer that receives as input the output of
the previous layer, and produces its output tensor of dimension 50, due to the number of 50
parameters (cells) that we defined. We use here the dropout normalization technique to reset 50% of
the connections, and then the flatten function, which reshapes the tensor to have a shape equal to the
number of elements contained in the tensor (50).

The third network layer is a dense layer that receives as input the flattened tensor, of 50 elements,
and produces a tensor of 8 or 7 components, depending on the database we use to train the model,
categorizing the 50 elements in those 8 or 7 classes of emotions. Finally, we use the “Softmax”
activation function that returns a probability distribution over the targeted classes in the multi-class
classification problem.

input: | [(?, 308, 40)]
output: | [(?, 308, 40)]

Istm_input: InputLayer

input: (7, 308, 40)
Istm: LSTM
output: | (7, 308, 100)
input: 2, 308, 100
Istm_1: LSTM P ()
output: (7, 50)
input: | (2, 50)
dropout: Dropout
output: | (2, 50)

Y

input: | (2, 50)
output: | (2, 50)

flatten: Flatten

input: | (?, 50)
output: | (2, 7)

dense: Dense

input: | (2, 7)
output: | (7. 7)

activation: Activation

Figure 2. LSTM Based Neural Network model.

3.4. LSTM based Network with Attention Mechanism (LSTM-ATN)

In the previous LSTM model, we add an attention mechanism, and the new created architecture
is presented in Figure 6. As in the previous LSTM based model, we enter the sequence of the different

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

MFCCs in the file duration. As the first layer of the network, we use a same LSTM layer as the one in
the previous model (see Figure 5).

As the second layer of the network, we use a same LSTM layer as in the previous model, but
without using dropout normalization and the flatten function.

Next, we introduce the attention layer, which applies the dot-product attention mechanism, as
it is referred to in Luong [25]. The dot-product attention mechanism calculates scores through the dot
product between the current/last target state h, and all previous source states hy. At each time step
t, in the decoding phase, this approach first takes as input the hidden state h, at the top layer of a
stacking LSTM. The goal is then to draw a context vector ¢, that retains relevant source information
to help in predicting the current target-word y,. The scoring function is calculated by score(hy, hs) =
hY hg. In this attention model, an alignment vector of variable length a,, whose size is equal to the
number of time steps in the source side, is obtained by comparing the current hidden target state
h, with any hidden source state h,:

exp(score[ht, ﬁs])

Z exp (SCOT&‘(ht, ﬁsr))
o

Given the alignment vector as weights, the context vector ¢, is calculated as the dot product of

a:(s) = align(hg, hs) =

the weighted average over the previous hidden state R. Given the current target state h; and the
context vector ¢;, we use a simple concatenation to combine information from both vectors to create

an attentional hidden state as follows: h, = tanh(w,[c,; h;]). Next, we use the dropout normalization
technique to reset the order of 50% of the connections and then the flatten function, which receives
the tensor with the attentional vector h,, which reshapes it to have a shape equal to the number of
elements contained in the tensor. In our case, the number of elements in the tensor is 128.

The third layer of the network is the same as in the previous model (see Figure 5).

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

10

input: | [(?, 228, 40)]
output: | [(?, 228, 40)]

Istm_input: InputLayer

input: (2, 228, 40)
Istm: LSTM
output: | (7, 228, 100)
Y
input: ?, 228, 100
Istm_1: LSTM i ()
output: | (?, 228, 50)
input: | (?, 228, 50) input: | (?, 228, 50)
last_hidden_state: Lambda attention_score_vec: Dense
output: (2, 50) output: | (7, 228, 50)

T~/

input: | [(?, 228, 50), (7, 50)]
output: (7, 228)

attention_score: Dot

input: | (?, 228)
output: | (7, 228)

attention_weight: Activation

input: | [(2, 228, 50), (7, 228)]

contexi_vector: Dot

output: (7, 50)

input: | [(?, 50), (2, 50)]
output: (2, 100)

attention_output: Concatenate

input: | (?, 100)
output: | (7, 128)

altention_vector: Dense

input: | (?, 128)
output: | (?, 128)

dropout: Dropout

input: | (?, 128)
output: | (7, 128)

flatten: Flatten

input: | (?, 128)
output: (2, 8)

dense: Dense

input: | (2, 8)

activation: Activation

output: | (?, 8)

Figure 3. Deep LSTM Based Neural Network with attention mechanism model.

3.5. Convolutional Neural Network (CNN)

Our next model is a convolutional network that also considers the dimension of time. The
architecture of the convolutional network is depicted in Figure 7.

Here, we enter the sequence of the different MFCCs in the file duration too. As the first layer of
the network, we use a one-dimension convolutional layer (Conv1D), which receives as input a tensor
of the dimensions (228, 40) for the RAVDESS, and (308, 40) for the SAVEE database, as previously.
For the analysis of the model, we use the case of training it with the RAVDESS database, as shown in
Figure 7. The first convolutional layer, in this case, will produce an output tensor of dimensions (220,
64), due to the number of 64 filters we have defined. Additionally, we set the kernel size, which refers
to the size of the convolution window, to 9, as we work with a convolutional layer of one dimension.

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

11

Next, we use the batch-normalization layer that speeds up training, as it allows the use of higher
learning rates, given that activations are now less “sensitive” to changes in parameters. Finally, we
use the ReLU activation function and the dropout normalization technique at a rate of 50%.

As the second layer of the network, we use a convolutional layer of one dimension (ConvlD),
which receives as input a tensor of dimensions (220, 64) and produces an output tensor of dimensions
(214, 64), due to the number of 64 filters that we defined. Additionally, we set the kernel size to 9, as
explained above. Next, we use the batch-normalization layer, which speeds up training, using the
ReLU activation function and a dropout of 50%.

The third layer of the network is implemented as a convolutional layer of one dimension
(ConvlD), which receives as input a tensor of dimensions (214, 64) and produces an output tensor of
dimensions (210, 32), due to the number of 32 filters that we defined. Additionally, we set the kernel
size 7, and use the batch-normalization layer, to speed up training, using the ReLU activation
function, and a dropout normalization at the rate of 50%.

The fourth layer of the network is the same as the third one.

The fifth layer of the network is implemented as a convolutional layer of one dimension
(ConvlD), which receives as input a tensor of dimensions (206, 32), and produces an output tensor
of dimensions (204, 16), due to the number of 16 filters that we defined. Additionally, we set the
kernel size to 5, and use the batch-normalization layer, to speed up training, using the ReLU
activation function.

In the sequel, we use the flatten function (in this case, the tensor contains 3264 elements). Next,
a dense layer that receives as input the flattened tensor (hence it has 3264 elements), produces a tensor
of size 8 or 7, depending on the database we train the model, categorizing the 3264 elements into their
8 or 7 emotion classes. Finally, we use the “Softmax” activation function.

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

12
input: | [(7. 228, 40] v
conv1d_input: InputLayer nput: | (7, 210, 32
output: | [(7, 228, 401] activation_2: Activation o)
output: | (7, 210, 32)
Y
i oy | P | D el 40 Y
conv ld: Conv i 2 ?, 210, 32
output: | (2, 220, 64) dropout _2: Dropout el !
output: | (7, 210, 32)
)
o input: | (7, 220, 64) A J
batch_normalization: BatchNormalization input: (7, 210, 32)
output: | (7, 220, 64) conv ld_3% ConvID
output: | (7, 206, 32)
| J
o =) input: | (7, 220, 64) Y
activation: Activalion - input: | (7, 206, 32)
output: | (7, 220, 64) batch_normalization_3: BatchNormalization i
output: | (7, 206, 32)
Y
’ b input: | (7, 220, 64) Y
ropout: Dropout input: | (2, 206, 32)
output; | (7, 220, 64) activation_3: Activation L
output: | (7, 206, 32)
Y
: input: | (7, 220, 64) Y
convld_1: ConvID input: ?, 206, 32
output: | (7, 214, 64) convld_4: ConvID - : :
output: | (7, 204, 16)
Y
input: | (7, 214, 64) Y
batch_normalization_|: BatchNormalization input: | (7, 204, 16)
output: | (7, 214, 64) batch_normalizaiion_4: BatchNormalization
output: | (7, 204, 16)
Y
- input: | (2. 214, 64) L
activation_1: Activaiion = input: | (7, 204, 16)
output: | (7, 214, 64) activation_d: Activation
output: | (7, 204, 16)
h
srorout 1D input: | (7, 214, 64) L
pout_1: Dropout input: | (7, 204, 16
output: | (7, 214, 64) fatten: Flatien B)
aulpul: {7, 3264)
Y
4 2. oy U] €214, 64) y
conv : Conv i : 7, 32
- ‘ output: | (7, 210, 32) dense: Dense mput: | (7, 3264)
output: (2, 8)
| J
inpui: | (2,210, 32) Y
batch_normalization_2: BatchNormalization input: | (7, 8)
output: | (7, 210, 32) activation_3: Activation
T output: | (7, 8)

Figure 4. Deep CNN model.

3.6. Convolutional Neural Network with Attention mechanism (CNN-ATN)

Our last model is a deep convolution network with the addition of an attention mechanism, as

presented in Figure 8.

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

13
input: | [(7, 228, 40y 4
convld_imput: InpuLayer 1z 208 32
ourput: | [17, 228, 40y s x inpat: | (7, 206, 32)
l oulput: | (7, 206, 32)
= 7 input: | (7, 228, 40) l
comv 1d: Conv 1D z
¢ - | a2 mput: | (7, 206, 32)
e il W L activation_3: Activation Rl -
oulpui: | {7, 206, 32)

l

" i BaichN lizati input: | (7, 220, 64) l
batch_normalization: BachMormaluaion z =
17 22 input: | (7, 206, 32)
outpet: | (7, 220, 64) gonvld 4 ConvlD —
oulput: | (7, 204, 16)
input: | (7, 220, 64) l
activation: Activation I
2. 23 | mpat: | (7, 204, 16)
oupt | (220, 61) | baich_nermalization_4: BaichNormalization =
ouiput: | (7, 204, 16)
y 5 mput: | (2220, 84) l
dropout: Dropowt a2
3 .| o2 mput: | (7, 204, 16)
outpat: | (7, 220, 64) activation_d: Activation |
l outpul: H, 16)]
—e——————— e il ot
ld 1 Comeip LMI4E:_| (2,220, 61) | o
cony : Conv - = :
Z 2 [0 fput: | (7,204, 16) Fpa: | (7, 204, 16)
uput: | 2,214, 64 | last_hidden_siste: Lambda [— aMention_seore_ver: Denser |— |
l APl {7 16) outpul: | (7, 204, 16) | ’

bateh_noemalization|: BachNormalization |
e | 7 2 | mpat: (7, 204, 161, (7, 16))
output: | (7, 214, 64) attention_score: Dt L l |

l output: (7, 204} }
imput: v \ ¥

activation_1: Activation |
outpu: input: | (7, 204)

artention_weight: Activation

l ouwput: | (1, 2

inpu: | (7. 214, 64) v
input: (2, 204, L6), (7, 204))

[dmpum_l Dropout |
oulput:. | 1 24, &) womtex!_vector: Do

l ottt (%, 16)

pus: | (7, 214, 84)

=
convld 2 ConviD inpue: | [(7, 16), (7, 16)] |

oulpul; (7 32)

ouiput: [(7, 210, 32)

!

batch normalization 2. BuchNormalization

!

l netivation_2: Activation J

input; | (7, 210, 32) # l

dropout2: Dropout ¢

output: | (2, 210, 32) | dense: Dense
l ! oulput: | (7, 8)
mpat: | (7, 200, 32)] l

output: | (7, 206, 32) |

attention caiput: Concalenaie

mpat: | (7,210, 32) |

oulput: | (7, 210, 32) ' inpat: (% 32)]

atfention_vector: Dense

l

input: | (7, 128)
flatten: Flatten p———

output: | (7, 128)

autpat: | (7, 128) I

nput:

outpul:

input: | (7, 128)

[convld ¥ ConviD

inpast: ™8

wetivation 5; Activadion

L outpul: | (7, 8)

Figure 5. Deep CNN Neural Network with attention mechanism model.

Here, we again enter the sequence of the different MFCCs in the file duration. The first, the
second, and the third layers of the network are the same as those of the plain CNN model.

The fourth layer of the network is implemented as a convolutional layer of one dimension
(ConvlD), which receives as input a tensor of dimensions (210, 32) and produces an output tensor of
dimensions (206, 32). The first dimension (210) is the result of reducing the input one, due to the
elimination of zero values, whereas the second dimension is the number of 32 filters we have defined.
Additionally, we set the kernel size to 7. Next, we use the batch-normalization layer, which speeds
up training, using the ReLU activation function.

The fifth layer of the network is the same as the fifth layer of the simple CNN.

After that, we enter the attention layer, which applies the dot-product attention mechanism, in
the same way as in section 3.4. An alignment vector of variable length a, is calculated by the same
formula. Next, we use the flatten function, which receives the tensor with the attentional vector h,,
which reshapes it to have a shape equal to the number of elements contained in the tensor (128 in our
case).

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

14

Then, a dense layer is used, which receives as input the flattened tensor that has 128 elements
and produces an 8 or 7 components tensor, as in previous models, where the “Softmax” activation is
used.

3.7. Implementation Tools

For all the above implementations, except the DBN model, for which we utilized the CPU, we
utilized Tensorflow and Keras. TensorFlow uses dataflow graphs to represent the calculation, the
shared state, and the functions that transform that state. It maps the nodes of a data flow graph to
multiple machines in a cluster, and within a machine on multiple computing devices, including
multiple CPU cores, general purpose GPUs, and specially designed ASICs (Application-Specific
Integrated Circuits), known as Tensor Processing Units (TPUs). Keras is an open-source library that
provides a Python interface for artificial neural networks. Built on top of TensorFlow, Keras is an
industry-strength framework that can scale to large clusters of GPUs or an entire TPU pod. As a
Python distribution platform, we used Anaconda. For training purposes, we used the Adam optimizer,
and “sparse categorical crossentropy” as our loss function. The BDN model utilized a learning rate of
0.05, the simple DNN model utilized a learning rate of 1le-4 (0.0001), where the rest of the models
(LSTM with and without attention, CNN with and without attention) utilized a learning rate of 1le-3,
which becomes 1e-4 in 100 epochs. Also, the batch size we used for neural network training for all
the models, except DBN, is 32. The specifications of our running system are the following: GPU:
NVIDIA GTX 1070, CPU: Intel(R) Core (TM) i7-9750H, RAM: 16 GB.

4. Experimental Study and Results

In this section, we first present the datasets that we have used as well as the results of the six
implemented models, presented in Section 3, and then compare the best of them (called ‘our method”)
with state-of-the-art models. The models were trained, splitting both databases into a training set and
a validation (test) set at a rate of 80% - 20%, respectively.

4.1. Datasets

For our experiments, we used two datasets, the SAVEE (Surrey Audio-Visual Expressed
Emotion) database! [26], and the RAVDESS (Ryerson Audio-Visual Database of Emotional Speech
and Song) database? [27].

SAVEE is an audio-visual dataset that comprises 480 English utterances from four male actors,
aged from 27 to 31 years, in seven different emotions, which are anger, disgust, fear, happiness,
sadness, surprise, and neutral. Utterances are categorically labeled. Recordings consisted of 15 TIMIT
database® sentences per emotion (with additional 30 sentences for neutral state). Emotion assessment
of recordings was performed by subjective evaluation under audio, visual and audio-visual
scenarios. Speech data was labeled at phone-level in a semi-automated way. The audio data sampling
rate used is 44.1 kHz.

RAVDESS contains a total of 1440 speech utterances and 1012 song utterances. Each audio file
was rated on a scale of 10 on intensity, emotional validity, and genuineness. The emotion in the
speech includes surprise, happy, calm, fearful, sad, disgust and angry. The song section contains
happy, calm, sad, angry, and fearful emotions. Every file has two levels of emotional intensity: normal
and strong. The RAVDESS dataset is very rich in nature given that it does not suffer from gender
bias, consists of wide range of emotions and at different level of emotional intensity.

4.2. Experimental Results-Accuracy and Loss Curves

1 http://kahlan.eps.surrey.ac.uk/savee/Download.html
2 https://zenodo.org/record/1188976
3 https://catalog.ldc.upenn.edu/LDC93s1

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

15

In the sequel, we present the results in the form of graphs for the accuracy and loss of our six
models, through figures 9 to 24. Where there is need, we add some comments. It is important to note
here that compared to the other models, the Deep Belief Network (DBN) algorithm package provides
only loss information, so we have only one graph for each dataset.

model training loss

17

16

1

loss

n

200 400 600 800 1000
epoch

o4

model training loss

16.5

16.0

155

15.0

loss

145

14.0

135

13.0

200 400 600 800 1000
epoch

o

Figure 6. DBN loss training charts for RAVDESS (left) and SAVEE (right) databases.

model accuracy

0.6 4

0.5

0.2 §

0.1

T T T T T T T T T
o 25 50 75 100 125 150 175 200
epoch

model loss

— train
74— val

T T T T T T T T T
0 25 50 75 100 125 150 175 200
epoch

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

16

Figure 3. DNN training charts for RAVDESS database.

model accuracy

0.9

0.8 1

0.7 1

0.6 4

acc

0.5 1

0.4 4

0.3

0.2 1

0.1+

0 50 100 150 200 250 300
epoch

model loss

— train
- val

12 4

10 4

loss
N
|

~
N

T T T T T T
o 50 100 150 200 250 300
epoch

Figure 8. DNN training charts for SAVEE database.

model accuracy

1.0

0.8 4

0.4 4

0.2 q
T T T v T T T T T
0 25 50 75 100 125 150 175 200
epoch
model loss
— train
2.04 jl/’/de
— val
1.5 M\JW\}\[//A/
&
S 1.0+
0.5 q
0.0

0 25 50 75 100 125 150 175 200
epoch

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

17

Figure 9. LSTM network training charts for RAVDESS database.

model accuracy

104 — ftrain
— val

0.9 1
0.8 q
0.7

0.5 1

acc

0.4

0.3 1

0.2 1

T T T T T T
5 100 125 150 175 200
epoch

o
~
&
3

model loss

— train
— val
2.04

151

loss

1.01

0.5 1

0.04

50 5 100 125 150 175 200
epoch

=]
N~
w

Figure 10. LSTM network training charts for SAVEE database.

model accuracy

104 — train
—— val *AJ\/A'

ki 4.'—'- M A A e e
Vet

[} 25 50 75 100 125 150 175 200
epoch

model loss

e e

2.0

15

loss

10

0.0

0 25 50 75 100 125 150 175 200
epoch

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

18

Figure 11. LSTM network with attention mechanism training charts for RAVDESS database.

model accuracy

1.0

09

0.8

0.7

acc

0.6

0.5

0.4

0.3

75 100 125 150 175 200

epoch
model loss
2.0 e
15
2
210
05
0.0

0 7 50 75 100 125 150 175 200
epoch

Figure 12. LSTM network with attention mechanism training charts for SAVEE database.

model accuracy

1.0 1 — train
— val

0.8 4

acc

0.4 4

0.2+

T T T T T T T T T
o 25 50 75 100 125 150 175 200
epoch

model loss

— val

w
s

loss

w
L

bk

] 25 50 75 100 125 150 175 200
epoch

™
.

-
.

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

19

Figure 13. CNN network training charts for RAVDESS database.

model accuracy

1.0 —— train mpary

0.8

0.4+

0.2

epoch

model loss

| |=— train
— val

loss

~
n
—

0 100 200 300 400 500
epoch

Figure 14. CNN network training charts for SAVEE database.

The model of Error! Reference source not found. and Error! Reference source not found. uses the
batch-normalization and dropout techniques with a reset of 50%, to prevent large overfitting of the
model, but still no good generalization is achieved. For this reason, two more variations of our model
were tested.

Initially, zero padding was tested on the input vectors at the hidden levels. This was to keep the
dimensions of the vector containing the input sequence the same as the model proceeds to the next
hidden levels (for RAVDESS 228, and for SAVEE 308). This test was performed on the RAVDESS
database, and the accuracy and loss curves are presented in Figure 18.

As we can see from the graphics of the test with zero padding compared to our model in Figure
16, it is obvious that the accuracy remains the same (70.5%), as well as the overfit (30%). However,
comparing the graph of the loss between the two implementations, we observe that the error from
epoch 50 onwards, in the zero-padding test, gradually increases and does not stabilize after epoch
100 on 2, as is done with the model in Figure 16. On the contrary, it continues to grow and exceeds 2.

Then, after the first test for the RAVDESS database had not yielded the desired results, a second
test was performed using zero padding in combination with the replacement of the ReLU activation
function by the LeakyReLU. The ReLU activation function sets, all negative values to zero. This makes
our network adaptable to ensure that the most important neurons have positive values (> 0).
However, this can also be a problem, as the gradient of 0 is 0 and therefore neurons that reach large
negative values cannot recover and stick to 0. This causes the neurons to die and for this reason this
phenomenon is called “The dying ReLU problem”.

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

20

model accuracy

10

0.8 1

04

0.2 {

0 5 50 75 100 125 150 175 200
epoch

model loss

— frain
val

T T T T T T T T T
0] 50 75 100 125 150 175 200
epoch

Figure 15. CNN network training charts for RAVDESS database with zero padding.

To avoid this phenomenon, LeakyReLU was proposed, according to which negative values
instead of zero are multiplied by a factor of 0.01:

=z

Comparing it with ReLU, we can see that LeakyReLU has a slight negative slope, avoiding the
entrapment of neurons with negative values at 0. There have generally been reports of success
adopting this activation function, but the results are not always consistent. The reason we want to
apply it to the CNN model is that through its operation we reduce the phenomenon of overfitting a
little more, and stabilize more the instabilities of our system, which appear as abrupt changes (spikes)
in the graphics.

This test was performed on RAVDESS and SAVEE databases and the accuracy and loss curves
are depicted in Figure 19 and Figure 20 respectively.

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

21

model accuracy

10 { — vainWW
0.8
N «J M ,"1 \ "
u 06 ~‘l 'ﬁrl uﬂw A ‘W w Y l“* L
B
04
021 |
T T T T T T T T T
0 25 50 s 100 125 150 175 200
epoch
model loss
= frain
10 val
8
w 6
v
=]
4 . i |
| | . A
2 N " L I"‘,uﬁ‘ “L !
0

0 X S 75 100 125 150 175 200
epoch

Figure 16. CNN network training charts for RAVDESS database with zero padding and LeakyReLU.

model accuracy

10 { = train vy
09 val

08
07
06

acc

A
A » Ml s A'Ad . oA
05 | le M 'A|L ML 1 il 7V

“ | I

04
03

0.2

0 3 S0 75 100 125 150 175 200
epoch

model loss
14

|

loss
o [=-]

T T T T T T T T T
0 25 50 B 100 125 150 175 200
epoch

Figure 17. CNN network training charts for SAVEE database with zero padding and LeakyReLU.

As we can see from the graphs of the test with zero padding and LeakyReLU in the RAVDESS
base, compared to our model in Figure 16, it is obvious that the accuracy decreases slightly (67%) and
the overfitting increases slightly (33%). Comparing the graphs of loss between the two

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

22

implementations, we notice that the instability (spikes) of the system has been improved. However,
the error from epoch 50 onwards, in the test with zero padding and LeakyReLU, increases gradually
and does not stabilize after epoch 100 on 2, as it is done with the model in Figure 16. On the contrary,
it continues to increase, approaching values such as 3 and 4.

Comparing now the graph of test accuracy with zero padding and LeakyReLU on the SAVEE
base with that of Figure 17, we notice that the accuracy increases dimly (55.7%) compared to the
model in Figure 17 (55.2%), so there is a very minimal reduction in overfitting, of 0.5%. Then
comparing the loss graphs between the two implementations, we notice that the instability (spikes)
of the system has been slightly improved. The error from epoch 50 onwards, in the test with zero
padding and LeakyReLU, increases gradually and does not stabilize, approaching 3.5. This is a small
improvement of the system as the loss in Figure 17 approaches 4.5 in epoch 200, but from epoch 200
onwards stabilizes.

The above comparison of the two tests with the implementation of Figure 16 in the RAVDESS
database concludes that our model with the use of ReLU and without zero padding gives overall
better results in terms of accuracy and loss. Regarding the comparison of the test with zero padding
and LeakyReLU with the implementation of Figure 17 for the SAVEE base, we observe that the test
with zero padding and LeakyReLU achieves faintly improved overall results, in terms of both
accuracy and loss. This may be due to the fact that this database has a smaller number of samples
than RAVDESS. Therefore, we conclude that the model implemented with ReLU and without zero
padding performs in general better and that the techniques tested do not give the desired results, i.e.
reduce the overfitting effect and the loss to a significant degree.

model accuracy

1.0 |

0.8

0.6

acc

0.4 +

0.2 4

T T v v T T T T T
[} 25 50 75 100 125 150 175 200
epoch

model loss

304 — val
2.5 '

2.0+

loss

15+

1.0+

0.5

0.0 4

T T T T T T T T T
0 25 50 75 100 125 150 175 200
epoch

Figure 18. CNN network with attention training charts for RAVDESS database.

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

23

model accuracy

109 — ftrain i t -~ Saniia .l

— val

0.8 4

0.4 1

0.2 {

epoch
model loss
—— ftrain
254
— val
2.04
159 m ol
" / \
%
k=
1.0+
0.5
0.0
T T T T T T
0 100 200 300 400 500

epoch

Figure 19. CNN network with attention training charts for SAVEE database.

Because we see that the models show a degree of overfitting that cannot be further reduced, we
performed a test, where we removed the dropout normalization technique from the model, so that
only the batch-normalization technique remained, to see the effects. The results of this model
(without the dropout) for the RAVDESS and SAVEE databases are depicted in Figure 23 and Figure
24, respectively.

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

24

model accuracy

10 W
08
M A h WA A LAV
MVIVTIY Y YV S '\

v 06 ' jrom \ |
B |

04

02

0 5 50 i) 100 125 150 175 200
epoch
model loss
16 { = frain
val

14 |

21 |

0] |
g8

6

4

\ I\ LJ 1
2 k A N |
0

T T T T T T
0 25 50 s 100 125 150 175 200
epoch

Figure 20. CNN network with attention training charts for RAVDESS database without Dropout.

model accuracy

10 { — train
val
08
L 06
£
04
v
021 |
!
0 2 50 75 100 125 150 175 200
epoch
model loss
- frain
4 val
|
3 |\
a ‘l
g1
1
0

0 2 s 75 100 125 150 175 200
epoch

Figure 21. CNN network with attention training charts for SAVEE database without Dropout.

It is obvious that with the removal of the dropout function, the model shows a significant
increase in the overfitting effect, given that for both the RAVDESS and SAVEE datasets we observe a
significant reduction in the accuracy of the model and some increase in loss. More specifically, for the
RAVDESS dataset, the model without the dropout function achieves 65% accuracy, in contrast to the

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

25

model of Figure 21, which achieves 77% accuracy. This means that the model without the dropout
technique overfits to a percentage of 45% on this dataset. Also, the loss of the model without the
dropout technique fluctuates (spikes) around 2.5, while the model of Figure 21 fluctuates (spikes)
around 1.5, and from epoch 100 onwards revolves around 1, with a minimal upward trend to 1.2.

For the SAVEE dataset, the model without the dropout technique achieves an accuracy of 47%,
in contrast to the model of Figure 22, which achieves an accuracy of 74%. This means that the model
without the dropout technique overfits to a percentage of 63% on this dataset. Also, the loss of the
model without the dropout technique from epoch 25 onwards has a steady upward trend from 1.3 to
1.6, while the model in Figure 22 fluctuates (spikes) around 1.5. From the above it is obvious that
proposed CNN-Attention model applying the dropout technique against overfitting is the best
possible option.

4.4. Experimental Results-Confusion Matrices

For the six implemented models, the confusion matrices for each of the RAVDESS and SAVEE
datasets are presented in this subsection, via the figures 25 to 30. The confusion matrices, as it is well
known, contain information about the success rate of the models’ predictions for each emotion of the
selected datasets separately. Table 1 shows the correspondence between the labels in confusion
matrices and the two datasets.

From the confusion matrix of DBN for the RAVDESS dataset (Figure 25), we can conclude that
the ‘neutral’ and the ‘angry” emotions of the dataset yields the lowest success rate (0%), as the ‘neutral’
emotion is most often confused with the emotion of ‘calm’ {in 9 out of 20 samples} and the emotion
of “anger’ is most often confused with the emotion of ‘surprise’ {in 27 out of 36 samples}. In contrast,
the emotion of ‘surprise’ receives the best success rate (80.5%) compared to the rest, as it identifies 33
out of 41 samples.

Table 1. Correspondence between the emotion labels and the emotions in the two datasets.

Label of Emotion Emotion in SAVEE Emotion in RAVDESS

[0] anger neutral

[1] disgust calm

[2] fear happy

[3] happiness sad

[4] neutral angry

[5] sadness fearful

[6] surprise disgust

[7] - surprise

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

26

g 5 5

140 1 BER 0 o a0 i
e

240 T 3 06| o0 (@5l o |5

TslofEll 3 8|0 s 3 Mg A

[1=]

E4- o 1 o 3 0o 5 o [15
Rl 1 2 I O E 0 B 10
610 s 4 I 0o ol%

5
i i T O S R MR
T T T T T T T l}
D 1 2 3 4 5 & 7
Predicted label
pfEE O 0 n g B 14
14 o | 1 o0 Bl o 12
e Ol (ol 3 0 0 = 10

T

g B

2371 o o E5M o o0 S

= 6
44 o SN 0 0 e 0

4
541 @ 2| o = e o

2
54 0 0 BEN L 1 0 ﬂ

0

T T T
0 1 2 3 4 5 B
Predicted |abel

Figure 22. DBN confusion matrices for RAVDESS (left) and SAVEE (right).

From the confusion matrix of DBN for the SAVEE dataset (Figure 25), we can conclude that the
‘anger” emotion of the dataset yields the lowest success rate (25%) by identifying only 3 of the 12
samples, as it confuses most times with the emotion of “sadness’ {in 8 out of 12 samples}. In contrast,
the emotion of “surprise’ receives the best success rate (66.7%) compared to the rest, as it identifies 8
out of 12 samples.

In the confusion matrix of DNN for the RAVDESS dataset (Figure 26), we can see that the
‘neutral’ emotion yields the lowest success rate (14.3%), as it is most often confused with the ‘sad’
emotion {in 5 out of 21 samples} and the emotion of “disgust’ {in 5 out of 21 samples}. In contrast, the
emotion of ‘surprise’ receives the best success rate (61%) compared to the rest, as it identifies 25 out
of 41 samples.

Similarly, in the confusion matrix of DNN for the SAVEE dataset (Figure 26), we can see that the
emotion of ‘surprise’ yields the lowest success rate (33.3%) identifying only 4 out of the 12 samples,
as it is confused most often with the feeling of ‘fear’ {in 5 out of the 12 samples}. In contrast, the
‘neutral’ emotion receives the best success rate (91.3%) compared to the rest, as it identifies 21 out of
23 samples.

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

27
5
o B 0 el 1 1 s
14 3 REN 1 4 0 h' S O a0
54 0 DENES > RGN 0 NE
T 305]5
=
il
g4-ll 1
540 2
611 & 5
ool
=L]
0 1
ol o0 1 1 0 W0 1 0.0
==
17.5

15.0
29 0 o . 1 L 0 4
125

10.0

44 0 1 [Dnl] 75

TFue label

541 1T o o 2z EWl 0 5.0
15

54 0 0 S8 3 o o0 |4
T T T T T T I].ﬂ

T
0 1 2 3 4 5 B
Predicted label

Figure 23. DNN confusion matrices for RAVDESS (left) and SAVEE (right).

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

28

R 30
] =
2-

” 0

23

=

g 4 =
5 4 10
61 5
T-

0

R MR T I | T S0
i{ o SN 2 o 2 @ D 175
24 00 1 [N 1 0 o [BE e

z 125

3058 p I FEN O 0 03

E 10.0
440 T ‘o ‘o H Y | i
540 B3 0 0o 3 B o 5.0

= 25

{1 4 1 1 o o B8

0.0

T T T T T
o 1 2 3 4 5 B
Predicted label

Figure 24. LSTM network confusion matrices for RAVDESS (left) and SAVEE (right).

From the confusion matrix of LSTM for the RAVDESS dataset (Figure 27) we can conclude that
the ‘happy’ emotion and the ‘neutral” emotion of the dataset yield the lowest success rates achieving
44.8% and 66.7%, respectively. This is because the ‘happy’ emotion is most often confused with the
emotion of ‘fearful’ {in 7 out of 29 samples} and the ‘neutral” emotion is sometimes confused with the
‘sad” emotion {in 3 out of 21 samples}. In contrast, the emotions of ‘calm’ and ‘surprise’ receive the
best success rates (80% and 78%), as they identify 32 out of 40 and 32 out of 41 samples, respectively.

From the confusion matrix of LSTM for the SAVEE dataset (Figure 27) we can conclude that the
emotion of ‘happiness’ yields the lowest success rate (36.4%) identifying only 4 out of 11 samples, as
it is confused several times with both the emotion of ‘anger” and the emotion of ‘surprise’ {in 3 out of
12 samples for each}. In contrast, the ‘neutral’ emotion receives the optimal success rate (95.6%)
compared to the rest, as it identifies 22 of the 23 samples.

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

29
ol 3 1 3 0 1 0 1 %
14 2 _ 2 & 0 0 0 0 "
{3 1 [o 2 z 4 o 0
2 7 i
e
2313 2 4 A L -
Sal{0 0 2 1 d NN
= 15
Rl 2 EaE E z 3
10
pical B 3 & RS 3
5
e o 2 1 EEE S
T T T T T I}
0 1 2 3 4 5 & 7
Predicted label
D‘I%E & 0 b6 01w i S
14 2 QNEM o 1 Bl o o 7.5
34 a o M 2 o0 2 3 S
5 125
B3 1 1 Uz 38 o 1 N .
g)
44 & 2 o i H 00 4
544 1 o o 3 KM o 5.0
gl & o B3 6 4 0 23

T T T T T T T 0a
0 1 2 3 4 5 B

Predicted label

Figure 25. LSTM network with attention mechanism confusion matrices for RAVDESS (left) and
SAVEE (right).

From the confusion matrix of LSTM-ATN for the RAVDESS dataset (Figure 28), we can conclude
that the ‘sad” emotion achieves the lowest success rate (50%) by identifying only 22 out of 44 samples,
as it is sometimes confused with the emotion of ‘disgust’ {in 6 out of 44 samples}. In contrast, the
‘calm” emotion receives the optimal success rate (95%) compared to the rest, as it identifies 38 out of
40 samples.

From the confusion matrix of LSTM-ATN for the SAVEE dataset (Figure 28), we can conclude
that the emotion of “happiness’ yields the lowest success rate (27.3%) identifying only 3 of the 11
samples, as it is most often confused with the emotion of “surprise’ {in 3 out of 11 samples}. In contrast,
the neutral emotion receives the optimal success rate (95.6%) compared to the rest, as it identifies 22
out of 23 samples.

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

30
pGiEl 3 O 0 0 2
0
B o)
=
14 o
L£3{4 e
=
ﬁx;—u 15
54 0 i
54 0
5
74 0
. 0
0
ool = o | % o 0 I 175
T4 s e o R G 15.0
7 O <1 AR g iz S 125
B
E3fdl o o @SN 0 0 1 10.0
&
a1 0 o o o BEM 3 © 3
5.0
54 0 E =l o Nz o
25
1 1 0 [z laN 0 o) B
T r T 1 1T 7T I}.ﬂ

0 1 2 3 4 5 B
Predicted label

Figure 26. CNN network confusion matrices for RAVDESS (left) and SAVEE (right).

From the confusion matrix of CNN for the RAVDESS dataset (Figure 29), we can conclude that
the ‘neutral” emotion achieves the lowest success rate (28.6%) by identifying only 6 of the 21 samples,
as it is most often confused with the emotion of ‘calm’ {in 8 out of 21 samples}. In contrast, the emotion
of “calm’ receives the optimal success rate (85%) compared to the rest, as it identifies 34 out of 40
samples.

From the confusion matrix of CNN for the SAVEE dataset (Figure 29), we can conclude that the
emotion of “disgust’ yields the lowest success rate (10%) by identifying only 1 out of 10 samples, as is
confused several times with both the emotion of ‘sadness’ {in 4 out of 10 samples} and the ‘neutral’
emotion {in 3 out of 10 samples}. In contrast, the ‘neutral” emotion receives the optimal success rate
(82.6%) compared to the rest, as it identifies 19 out of 23 samples.

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

31

01 ES]
17 30
& 2
T i
@3 20
w
4 -
= 15
5_
10
6.
5
7.
0

Predicted label

16
0 0 1 0 0 0 0
14

12
_2010013 i

[

B
EBIGD 8
a{ o BEN 1 6
s{ o0 BN o 4
2

6{ 0o o 2

L 0

0 1 2
Predicted label

Figure 27. CNN network with attention mechanism confusion matrices for RAVDESS (left) and
SAVEE (right).

From the confusion matrix of CNN-ATN for the RAVDESS dataset (Figure 30), we can conclude
that ‘neutral’ emotion yields the lowest success rate (57%) as it is often confused with the emotion of
‘calm’ {in 9 out of 21 samples}. In contrast, the ‘calm” emotion receives the optimal success rate (97%)
compared to the rest, as it identifies 39 out of 40 samples.

From the confusion matrix of CNN-ATN for the SAVEE dataset (Figure 30), we can conclude
that the emotion of ‘disgust’ yields the lowest success rate (60%) by identifying 6 out of 10 samples,
as it is confused a few times with the ‘neutral’ emotion {in 2 out of 10 samples}. In contrast, both the
emotion of ‘anger’ and the emotion of ‘sadness’ receive the best success rate (91.6%) compared to the
rest, as it identifies 11 out of 12 samples.

In conclusion, from all the above we observe that for the RAVDESS base our models can on
average perceive more successfully the emotions of ‘calm” and “surprise’, while they find it difficult
to determine the ‘neutral” emotion. This may be due to the fact that in this database there are two
basic emotions that approach the ‘neutral’ emotion, one from a negative point of view and the other
from a positive point of view, making it difficult to determine the right emotion. Regarding the
SAVEE database, we observe that our models can perceive the ‘neutral’ emotion more successfully,
as in this database it is unique, while they find it difficult to identify the emotions of “happiness” and
‘disgust’.

4. Discussion

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

32

In Table 1, we present the results of the accuracy of prediction of the models we implemented
for the RAVDESS and SAVEE databases. Deep Neural Networks (DNNs) are Feedforward Neural
Networks and in these networks, information moves in only one direction - forward - from the input
nodes, through the hidden nodes and to the output nodes. Deep Belief Networks (DBNs), however,
have non-directed connections between some layers, making the topologies of these two models
different by definition. Comparing DBN with DNNs, we notice that DBN achieves significantly lower
accuracy results for both databases. Concerning DNNs, comparing SDNN with the two LSTM based
networks, we observe that the specialization of LSTM in the classification, processing and making
predictions on time series data, resulted in a significant improvement of accuracy in the large
database (RAVDESS), in contrast to the result in the small database (SAVEE), where there was no
improvement (deterioration in the case of simple LSTM). Then, comparing the LSTM networks with
the Convolutional Neural Network (CNN), we notice that CNN achieved better results in the (large)
RAVDESS database, while in the (small) SAVEE database the results are significantly reduced. This
is because the CNN model is designed with a large number of hidden layers (5), which burdens
performance, if the amount of data is small, while it improves performance for large amounts of data.
The addition of the attention mechanism to the Convolutional Neural Network (as to the LSTM)
contributes significantly to the improvement of results for both databases, as the addition of this
mechanism equips the neural network with the ability to focus on a subset of inputs/attributes using
weights on previous hidden state h”s, thus retaining relevant information from the input side to
assist in prediction. So, by combining the information from the input side with those in the current
target state h_t as explained in sections 3.4 and 3.6, better prediction rates are achieved.

Table 2. Prediction results of the models in Ravdess and Savee Databases (weighted accuracy).

Models Input Features SAVEE RAVDESS
Average of 40

DBN MECCs 47.92 32.64
Average of 40

DNN MECCs 69.79 45.18

LSTM 40 MFCCs 67 70

LSTM-ATN 40 MFCCs 69.79 66

CNN 40 MFCCs 55.2 70.5

CNN-ATN 40 MFCCs 74 77

In the following, we present the comparative study of our proposed method, which is the CNN-
ATN, with existing models in the literature that provide state-of-the-art results. The model we
propose consists of five convolution layers, each using the batch-normalization technique and the
ReLU activation function. The 1st, 2nd and 3rd convolution layers also use the dropout normalization
technique to reset 50% of the connections. The result of the last convolutional layer is fed to the
attention mechanism, which emphasizes the use of weights in a subset of inputs holding more input
information to optimize the performance of the model prediction.

Table 3 presents the performance of the proposed method in comparison with other state-of-the-
art proposals, for the SAVEE database. Sivanagaraja et al. [28] proposes a Multi-scale Convolution
Network (MCNN) for SER using rawWav to train a DNN, which consists of 3 stages: i) the signal
transformation stage, ii) the local convolution stage and iii) the global convolution stage. Latif et al.
[29] introduce a Deep Belief Network (DBN) with three RBM layers using the eGeMAPS features set.
Fayek et al. [30] developed a Deep Neural Network (DNN) that recognizes emotions from a one
second frame of raw speech spectrograms. Chenchah and Lachiri et al [31] utilize the Hidden Markov
Model (HMM), categorizing the characteristics exported using Linear Frequency Cepstral
Coefficients (LFCCs) and Mel-Frequency Cepstral Coefficients (MFCCs). It is obvious that our
method significantly outperforms the other efforts.

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

33

Table 3. Comparison with the previous works using SAVEE Database.
Models Input Features SAVEE - Test accuracy (%)
MCNN Sivanagaraja [28] rawWav 50.28
DBN Latif [29] eGeMAPS 56.76
DNN Fayek, Lech and Cavedon [30] Spectrogram 59.7
HMM Chenchah and Lachiri [31] LECCs/MFCCs 45/61.25
Proposed method MECCs 74

Table 4 presents the performance of the proposed method in comparison with other state-of-the-
art proposals, for the RAVDESS database. Rajak and Mall [32] present a Convolutional Neural
Network (CNN) model, which consists of four one-dimensional (1D) local convolutional filters and
receives as input 12 MFCCs, which are extracted from the audio files with a 10ms step of a 50ms
window. Also, after the 27 hidden layer, a max pooling layer is applied. Jalal et al. [7] developed a
robust emotion classification method using bidirectional long short-term memory network (BLSTM),
CNN and Capsule networks, using a feature vector, which consists of the fundamental frequency
(F0), 23-dimensional MFCC and log-energy augmented by delta and delta-delta. The overall network
is comprised of two BLSTM layers, 1D conv-capsule layer consisting of capsules and a capsule
routing layer. Input layer consists of 70 nodes (length of the feature vector), and each BLSTM hidden
layer contains 256 units. The BLSTM deals with the temporal dynamics of the speech signal by
effectively representing forward/backward contextual information, while the CNN along with the
dynamic routing of the Capsule net learn temporal clusters. Venkataramanan and Rajamohan et al.
[33] present a 2Dimensional-CNN with Global Average Pooling, which consists of four layers of
convolution with a filter size of 12x12 for the first layer, 7x7 for the second and 3x3 for the other two
layers and receives as input Log-Mel Spectrograms. Mohanty et al. [34] developed a Convolutional
Neural Network (CNN), which consists of 18 convolution layers and receives as input MFCCs.
Huang and Bao et al. [35] utilizes a 2Dimensional-CNN, which consists of 4 convolution layers and
after the 2nd and 4" hidden layer, a max pooling layer is applied. This model uses also 13 MFCCs as
input. Mustageem and Soonil Kwon et al. [8] described a Deep Stride CNN (DSCNN) for SER using
Raw Spectrograms for training, which consists of 7 layers of convolution, using the 2x2 stride to sub-
sample the size of feature maps, instead of using pooling layers. Issa, Demirci kat Yazici [16], in their
work, present a model that includes six one-dimensional convolutional layers combined with
dropout, batch-normalization, and activation layers. The first layer of their CNN receives 193 x 1
number arrays as input data. The initial layer is composed of 256 filters with the kernel size of 5 x 5
and stride 1, followed by batch normalization and ReLU layer. The next convolutional layer,
consisting of 128 filters with the same kernel size and stride, is also using ReLU, and dropout with
the rate of 0.1. Next, batch normalization is implemented, feeding its output to the max-pooling layer
with a window size of 8. Next, 3 convolution layers with 128 filters of size 5 x 5 are located, two of
which are followed by ReLU activation layers and finally by batch normalization, ReLU activation
and dropout layer with the rate of 0.2. The final convolutional layer with the same parameters is
followed by the flattening layer and dropout with the rate of 0.2. The output of the flattening layer is
received by a fully connected layer with 8, 7, or 2 units, depending on the number of predicted classes.
After that, batch normalization and softmax activation are applied.

Table 4. Comparison with the previous works using RAVDESS Database.

Models Input Features RAVDESS ;l;(l:)est accuracy

CNN Rajak and Mall [32] MEFCCs 47.92

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

34
F0, MFCCs, Log
Spectrogram
BLSTM-CNN-Capsule Network Jalal [7] augmented by 56.2
delta and delta-
delta
2D CNN with Global Avg Pool Venkataramanan Log Mel 69,79
and Rajamohan [33] Spectrogram '
CNN Mohanty [34] MEFCCs 67
CNN Huang and Bao [35] MEFCCs 69.79
Raw
DSCNN Mustageem and Soonil Kwon [8] Spectrograms / 68 / 80
Clean
Spectrograms
MEFCCs,
1D CNN Issa, Demicri and Yazici [22] chromagram and 71.61
Mel-Spectrogram
Proposed method MEFCCs 77

5. Conclusions

The broader literature on Speech Emotion Recognition (SER) systems addresses many
challenges in improving emotion recognition accuracy, but also seeks to reduce the computational
complexity of models. In recent years, the attention mechanism has begun to be used to improve
neural machine translation (NMT) by selectively focusing on parts of the source sentence during
translation. However, not many studies have been presented to implement this technique. For this
reason, in our study, we propose a model of Convolutional Neural Network with the addition of an
attention mechanism, which significantly outperforms other attempts of ours and the state-of-the-art
methods, as shown in Tables 3 and 4, giving the best prediction results: 74% for the SAVEE, and 77%
for the RAVDESS databases. This is due to the following reasons. First, for our model we decided to
export Mel Frequency Cepstral Coefficients (MFCCs) from the audio data we used for input, as they
provide rich feature content from the data in a consistent manner. Another reason is that these
coefficients use the Mel scale, which is based on how humans perceive different signal frequencies.
Finally, the addition of the attention mechanism to the simple CNN enabled our model to focus on
the parts of the audio input which contain more emotional information, than parts where the speaker
does not say something or words that are not emotionally intense, helping to further improve the
ability to predict emotion.

Our future work concerns, testing our model on other databases, and try different modern deep
learning architectures like Transformers [36].

Author Contributions: Conceptualization, I.P. and K.M.; methodology, L.P.; software, K.M. and I.P.; validation,
K.M.; investigation, L.P..; data curation, K.M.; writing—original draft preparation, LP. and K.M..; writing—
review and editing, I.H. supervision, LH.; All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. X.Wang, Y. Zhang, S. Yu, X. Liu, Y. Yuan and F. Wang, “E-learning recommendation framework based on
deep learning,” 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB,
2017, pp. 455-460, doi: 10.1109/SMC.2017.8122647.

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

35

2. Jelena Gligorijevic, Djordje Gligorijevic, Martin Pavlovski, Elizabeth Milkovits, Lucas Glass, Kevin Grier,
Praveen Vankireddy, Zoran Obradovic, Optimizing clinical trials recruitment via deep learning, Journal of
the American Medical Informatics Association, Volume 26, Issue 11, November 2019, Pages 1195-1202,
https://doi.org/10.1093/jamia/ocz064

3. Davatzikos, C., Ruparel, K., Fan, Y., Shen, D., Acharyya, M., Loughead, J., Gur, R., & Langleben, D. D.
(2005). Classifying spatial patterns of brain activity with machine learning methods: application to lie
detection. Neurolmage, Volume 28, Issue 3, pp. 663-668, https://doi.org/10.1016/j.neuroimage.2005.08.009.

4. N. Justesen, P. Bontrager, J. Togelius and S. Risi, “Deep Learning for Video Game Playing,” in IEEE
Transactions on Games, vol. 12, no. 1, pp. 1-20, March 2020, doi: 10.1109/TG.2019.2896986.

5. Lavrentyeva, G., Novoselov, S., Malykh, E., Kozlov, A., Kudashev, O., Shchemelinin, V. (2017) Audio
Replay Attack Detection with Deep Learning Frameworks. Proc. Interspeech 2017, 82-86, DOI:
10.21437/Interspeech.2017-360.

6. Uchechukwu Ajuzieogu,”The Role of AI In Modern Computing and Education”, Computer Education
Seminar 2019, UNN, A seminar approach to understanding the underlying principles of Al and its
relevance to Education, in the 21st Century, 2019.

7. Jalal, M.A., Loweimi, E., Moore, R.K,, Hain, T. (2019) Learning Temporal Clusters Using Capsule Routing
for Speech Emotion Recognition. Proc. Interspeech 2019, 1701-1705, DOI: 10.21437/Interspeech.2019-3068.

8. Mustageem; Kwon, S. A CNN-Assisted Enhanced Audio Signal Processing for Speech Emotion
Recognition. Sensors 2020, 20, 183.

9. Singh, Y. B., & Goel, S. (2022). A systematic literature review of speech emotion recognition approaches.
Neurocomputing, 492, 245-263.

10. Wani, T. M., Gunawan, T. S, Qadri, S. A. A., Kartiwi, M., & Ambikairajah, E. (2021). A comprehensive
review of speech emotion recognition systems. IEEE access, 9, 47795-47814.

11. Khalil, R. A, Jones, E., Babar, M. I, Jan, T., Zafar, M. H., & Alhussain, T. (2019). Speech emotion recognition
using deep learning techniques: A review. IEEE Access, 7, 117327-117345.

12. Abbaschian, B. J., Sierra-Sosa, D., & Elmaghraby, A. (2021). Deep learning techniques for speech emotion
recognition, from databases to models. Sensors, 21(4), 1249.

13. Guihua Wen, Huihui Li, Jubing Huang, Danyang Li, Eryang Xun, “Random Deep Belief Networks for
Recognizing Emotions from Speech Signals”, Computational Intelligence and Neuroscience, vol. 2017,
Article ID 1945630, 9 pages, 2017. https://doi.org/10.1155/2017/1945630

14. A.M. Badshah, J]. Ahmad, N. Rahim and S. W. Baik, “Speech Emotion Recognition from Spectrograms with
Deep Convolutional Neural Network,” 2017 International Conference on Platform Technology and Service
(PlatCon), Busan, 2017, pp. 1-5, doi: 10.1109/PlatCon.2017.7883728.

15. Zhao, J.; Mao, X. and Chen, L. “Speech emotion recognition using deep 1D & 2D CNN LSTM networks.”
Biomed. Signal Process. Control. 47 (2019): 312-323.

16. Lee, C.; Song, K.Y.; Jeong, J.; Choi, W.Y. Convolutional Attention Networks for Multimodal Emotion
Recognition from Speech and Text Data. arXiv 2019, arXiv:1805.06606.

17. Tang, D.; Zeng, J.; Li, M. (2018) An End-to-End Deep Learning Framework for Speech Emotion Recognition
of Atypical Individuals. Proc. Interspeech 2018, 162-166, DOI: 10.21437/Interspeech.2018-2581.

18. M. Chen, X. He, J. Yang and H. Zhang, “3-D Convolutional Recurrent Neural Networks With Attention
Model for Speech Emotion Recognition,” in IEEE Signal Processing Letters, vol. 25, no. 10, pp. 1440-1444,
Oct. 2018, doi: 10.1109/1.SP.2018.2860246.

19. Li, P.; Song, Y.; Mcloughlin, I.; Guo, W. and Dai, L. “An Attention Pooling Based Representation Learning
Method for Speech Emotion Recognition.” INTERSPEECH (2018).

20. Jiang, W.; Wang, Z.; Jin,].S; Han, X.; Li, C. Speech Emotion Recognition with Heterogeneous Feature
Unification of Deep Neural Network. Sensors 2019, 19, 2730.

21. K. Huang, C. Wu, Q. Hong, M. Su and Y. Chen, “Speech Emotion Recognition Using Deep Neural Network
Considering Verbal and Nonverbal Speech Sounds,” ICASSP 2019 - 2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Brighton, United Kingdom, 2019, pp. 5866-5870, doi:
10.1109/ICASSP.2019.8682283.

22. Issa, D, Demirci, M & Yazici, A 2020, ‘Speech emotion recognition with deep convolutional neural
networks’, Biomedical Signal Processing and Control, vol. 59, no. 101894,
https://doi.org/10.1016/j.bspc.2020.101894.

23. Makhmudov, F., Kutlimuratov, A., Akhmedov, F., Abdallah, M. S., & Cho, Y. I. (2022). Modeling Speech
Emotion Recognition via Attention-Oriented Parallel CNN Encoders. Electronics, 11(23), 4047.

24. Abdul, Z. K., & Al-Talabani, A. K. (2022). Mel Frequency Cepstral Coefficient and its applications: A
Review. IEEE Access.

25. Luong, M. T.; Pham, H.; Manning, C. D. Effective Approaches to Attention-based Neural Machine
Translation. arXiv 2015, arXiv:1508.04025.

26. Jackson, Philip & ul haq, Sana. (2011). Surrey Audio-Visual Expressed Emotion (SAVEE) database.
Available at: http://kahlan.eps.surrey.ac.uk/savee/Database.html

https://doi.org/10.20944/preprints202309.1202.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1202.v1

36

27. Livingstone SR, Russo FA (2018) The Ryerson Audio-Visual Database of Emotional Speech and Song
(RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English. PLoS
ONE 13(5): e0196391. https://doi.org/10.1371/journal.pone.0196391

28. T. Sivanagaraja, M. K. Ho, A. W. H. Khong and Y. Wang, “End-to-end speech emotion recognition using
multi-scale convolution networks,” 2017 Asia-Pacific Signal and Information Processing Association
Annual Summit and Conference (APSIPA ASC), Kuala Lumpur, 2017, pp. 189-192, doi:
10.1109/APSIPA.2017.8282026.

29. Latif, S; Rana, R.; Younis, S.; Qadir, J.; Epps, J. Transfer Learning for Improving Speech Emotion
Classification Accuracy. arXiv 2018, arXiv:1801.06353.

30. H.M. Fayek, M. Lech and L. Cavedon, “Towards real-time Speech Emotion Recognition using deep neural
networks,” 2015 9th International Conference on Signal Processing and Communication Systems (ICSPCS),
Cairns, QLD, 2015, pp. 1-5, doi: 10.1109/ICSPCS.2015.7391796.

31. Farah Chenchah and Zied Lachiri, “Acoustic Emotion Recognition Using Linear and Nonlinear Cepstral
Coefficients” International Journal of Advanced Computer Science and Applications (IJACSA), 6(11), 2015.
http://dx.doi.org/10.14569/IJACSA.2015.061119

32. R. Rajak and R. Mall, “Emotion recognition from audio, dimensional and discrete categorization using
CNNs,” TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), Kochi, India, 2019, pp. 301-305, doi:
10.1109/TENCON.2019.8929459.

33. Venkataramanan, K.; Rajamohan, H. R. Emotion Recognition from Speech. arXiv 2019, arXiv:1912.10458.

34. Mohanty, H.; Budhvant, S.; Gawde, P.; Shelke, M. Implementation of Mood Detection through Voice
Analysis using Librosa and CNN. International Research Journal of Engineering and Technology (IRJET),
Thane, Maharashtra, India, 06 June 2020; pp. 5876 — 5879.

35. Huang, A.; Bao, P. Human Vocal Sentiment Analysis. arXiv 2019, arXiv:1905.08632.

36.]. Wagner et al., “Dawn of the Transformer Era in Speech Emotion Recognition: Closing the Valence Gap,”
in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 9, pp. 10745-10759, 1 Sept.
2023, doi: 10.1109/TPAMI.2023.3263585.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

https://doi.org/10.20944/preprints202309.1202.v1

