
Article

Not peer-reviewed version

ENN: Hierarchical Image

Classification Ensemble Neural

Network for Large-Scale

Automated Detection of Potential

Design Infringement

Chan Jae Lee

†

 , Seong Ho Jeong

†

 , Young Yoon

*

Posted Date: 19 September 2023

doi: 10.20944/preprints202309.1174.v1

Keywords: Design Right Infringement; Deep Learning; Ensemble Learning; Image Classification; Object

Detection; Large-Scale Detection System

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/1263592
https://sciprofiles.com/profile/1270018

Article

ENN: Hierarchical Image Classification Ensemble
Neural Network for Large-Scale Automated Detection
of Potential Design Infringement

Chan Jae Lee 1 , Seong Ho Jeong 1, and Young Yoon 2,3,*

1 NetcoreTech Co., Ltd., 1308, Seoulsup IT Valley (Seongsu-dong 1-ga) 77, Seongsuil-ro, Seongdong-gu,

Seoul 04790, Korea (South); arisel117@gmail.com (C.J.L.); heaven324@netcoretech.com (S.H.J.)
2 Department of Computer Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 04068, Korea

(South)
3 Neouly Incorporated, 94 Wausan-ro, Mapo-gu, Seoul 04068, Korea (South)

* Correspondence: young.yoon@hongik.ac.kr

Abstract: This paper presents a two-stage hierarchical neural network using image classification

and object detection algorithms as key building blocks for a system that automatically detects a

potential design right infringement. This neural network is trained to return the Top-N original

design right records that highly resemble the input image of a counterfeit. Design rights specify the

unique aesthetic characteristics of a product. Due to the rapid change of trends, new design rights are

continuously generated. This work proposes an Ensemble Neural Network (ENN), an artificial neural

network model that aims to deal with a large amount of counterfeit data and design right records that

are frequently added and deleted. At first, we performed image classification and objection detection

learning per design right using the existing models with a proven track record of high accuracy.

The distributed models form the backbone of the ENN and yield intermediate results aggregated

at a master neural network. This master neural network is a deep residual network paired with a

fully connected network. This ensemble layer is trained to determine the sub-models that return

the best result for a given input image of a product. In the final stage, the ENN model multiples the

inferred similarity coefficients to the weighted input vectors produced by the individual sub-models

to assess the similarity between the test input image and the existing product design rights to see any

sign of violation. Given 84 design rights and the sample product images taken meticulously under

various conditions, our ENN model achieved average Top-1 and Top-3 accuracies of 98.409% and

99.460%, respectively. Upon introducing new design rights data, a partial update of the inference

model was done an order of magnitude faster than the single model. ENN maintained a high level of

accuracy as it scaled out to handle more design rights. Therefore, the ENN model is expected to offer

practical help to the inspectors in the field, such as the customs at the border that deal with a swarm

of products.

Keywords: design right infringement; Deep Learning; ensemble learning; image classification; object

detection; large-scale detection system;

1. Introduction

Industrial design involves creative activities to reasonably and organically construct various

product elements. Such designs can be protected by law by applying design right registration. This

paper is keen on the problem of the registered design rights being violated by delicately imitated

products. Non-experts may not easily distinguish between the original design of a genuine product and

a fake one. The illegal counterfeit products continue to increase, causing unfair damage to the product

design rights owners. According to an OECD report [1], the annual damages due to piracy amounted

to 500 billion US dollars. To prevent such damage, professionally trained human inspectors at customs

manually inspect for illegal forgery of goods coming from overseas. If a product is suspected to be an

unlawful copy during the screening process, it is seized for further investigation of its authenticity.

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1174.v1

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0001-8838-6128
https://orcid.org/0000-0003-0180-2817
https://orcid.org/0000-0002-5249-2823
https://doi.org/10.20944/preprints202309.1174.v1
http://creativecommons.org/licenses/by/4.0/

2 of 18

However, even for inspectors with years of experience, it is overwhelming to compare the large volume

of incoming products against the list of thousands of design rights. Therefore, an automated illegal

counterfeit probe system is in great need.

Artificial intelligence (AI) recently has advanced unprecedentedly with the introduction of some

foundation models that were proven to be effective in various problem domains [2–5]. Some AI

technologies have been employed for small-scale counterfeit examining systems [6–8]. However, the

proposed neural networks still have several limitations in building an automated system for examining

counterfeit copies at a large scale. The design rights are an aesthetic element that constantly and

rapidly change to stay current with the trend. Therefore, new design rights are frequently registered.

Enabling a more prompt machine learning system is imperative to cope with outpouring products

against thousands of continually changing product design rights.

Upon introducing new design rights and the associated training image data, most methodologies

perform transfer learning of the existing model. The re-learning cost increases proportionally to the

number of design rights, thus hampers realizing a scalable counterfeit examining system.

This paper is intrigued by the mechanism of the neocortex in human brains as explained in [9,10].

In [10], it was confirmed that the brain’s neocortex operating as a single mechanism comprises six

layers and a column of neurons with a vertical structure penetrating the layers. Also, in [9], it was

revealed that neuron columns collectively solve the problem through a consensus process to learn

the world model holistically. Based on the mechanism of the actual brain operation, we devised a

distributed sub-neural network model analogous to the vertically configured neuron column. Then, we

created a master neural network that aggregates the intermediate results produced by the distributed

sub-models and selects one that returned the best classification result for a given test image. This

ensemble layer’s work is analogous to the voting mechanism in the neocortex. We refer to such

stepwise hierarchical neural network structure as ENN (Ensemble Neural Network).

At first, the product images of design rights were segmented into non-intersecting groups. For

each group, we employed a sub-neural network model proven effective for image classification and

object detection. The master model at the succeeding stage collects the individually trained sub-models’

output and takes them as input to learn their weights. After completing the stepwise learning process,

the ENN model multiples the inferred weight values to the weighted input vectors produced by the

individual sub-models to assess the similarity between the test input image and the existing product

design rights to find any sign of violation.

Figure 1 illustrates the overall structure of an automated system for examining counterfeit

products based on image-examining technology using AI. This system transmits the input image taken

via client API to the ENN model. The ENN model returns the Top-N similar product design rights.

This system also yields a unique article number of similar design rights. A given product that exceeds

the similarity threshold is suspected of violating an existing design right, and the image capture of

the alleged product is sent to the design right holder via email. This paper discusses the ENN model,

which sits at the core of the counterfeit screening system.

The critical characteristic of ENN is the hierarchical neural network structure that combines

the results of segmented learning by the sub-models. When a sub-model for the newly introduced

design rights is added to ENN, there is no need to pull up the training data of other design rights all

over again to complete the classification learning procedure. Therefore, the learning cost of ENN is

significantly lower than that of a single model. The master model still conducts the transfer learning

upon completing the newly introduced sub-model. However, the master model does not directly

output similarities for the entire classes. Instead, the master model learns to output the relevancy of

the sub-models for a given sample product image.

Given 84 design rights and the sample product images taken meticulously under various

conditions, our ENN model achieved average Top-1 and Top-3 accuracies of 98.409%

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1174.v1

https://doi.org/10.20944/preprints202309.1174.v1

3 of 18

Figure 1. The overall structure of an automated system for examining counterfeit products.

This paper is structured as follows. Section 2 first reviews the related research works. Section 3

introduces ENN, the core hierarchical neural network model for the automated design right violation

detection system. Section 4 discusses the experimental results. Finally, we reach conclusions in Section 5.

2. Related Works

Illegal replicas are spreading rapidly due to technological advances in logistics. Accordingly,

various methods have been proposed for detecting such counterfeiting through various methods [6–8,

11]. Among them, a way to automatically calculate the probability that a product is a counterfeit based

on online customer reviews in the market has been proposed [11]. This study used natural language

processing (NLP) and subject analysis methods to process customer reviews. This work also defined

counterfeit scores. However, these approaches depend on the NLP analysis of buyers’ reviews that

become available only after a specific purchase. Therefore, such a method cannot be exercised at the

forefront of product screening before distribution. Diversified sales routes evading customer reviews

can result in more victims. Thus, a preventive measure should be applied well before the counterfeits

enter the market.

There is a limit to the supply of professional human resources to respond to the increasing number

of counterfeits. Moreover, it is difficult for customs to unpack and dissemble items arbitrarily for further

inspections. This issue calls for a non-destructive inspection method. The most basic non-destructive

testing method is to analyze the visible characteristics. It is possible to analyze specific patterns through

an AI-based computer vision algorithm. In particular, impressive performance is shown by image

classification and object detection algorithms as presented in [12–15].

AI-based computer vision technologies have emerged in the studies of the detection of counterfeit

bills [6,7] and logos [8]. These studies are limited to recognizing the similarity with a single genuine

item. Such special-purpose inspection methods are inappropriate for our case, where a given object

has to be compared against multiple categories, i.e., design rights. Counterfeit screening becomes

more challenging as new product design rights are constantly added and updated. Despite transfer

learning [16], the learning cost increases exponentially with the number of classes if a single model is

used for classification.

We devised distributed backbone neural network models ensembled to form a master model and

efficiently deal with frequently updated design rights at a large scale. The ensemble model has been

studied to improve the accuracy of a single model [17–19] in the image classification domain. Besides

more classical approaches such as voting [20], bagging [21] and boosting [22], stacking has recently

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1174.v1

https://doi.org/10.20944/preprints202309.1174.v1

4 of 18

shown some effectiveness for image classification [23]. Some stacking methods used a sequence of

different models [22,24]. Another stacking method applied the same data to different models at once

and aggregated the results [25]. More recently, the backbone structure has emerged [14,15]. However,

these ensemble approaches incur a cost that increases exponentially with the number of classes. All

backbone models have to be re-trained even to reflect incremental training data updates. Contrary to

these previous approaches, we aim to support incremental updates to achieve high scalability while

maintaining high classification accuracy.

3. Methodology

Previous studies had limitations on responding to the continuous addition of design rights. We

employed the core idea for addressing such limitation by designing a neural network similar to the

human brain structure studied by Jeff Hawkins and Mountcastle [9,10]. In particular, as mentioned

in [10], we tried to construct a sub-neural network that acts similarly to a cortical column of a

vertical structure following a common mechanism. We propose a distributed backbone neural network

structure functioning as a neural pillar and learns independently per design rights partition. Such an

approach differs from the existing learning methodology that applies a single neural network to the

entire dataset.

Given the inference result by vertical neuron pillars, we propose a two-level structure of ENN in

which the parent or master neural network derives the final consensus for learning the world model.

Such partitioned learning and stepwise conclusion at the master layer mimics the human neocortex

neuronal columns that vote to retain the world model as mentioned in [9]. Learning sub-networks

upon introducing new data classes is much faster than re-training the entire network. With our

ENN, re-learning is done only at the master layer that only takes the input from the newly trained

sub-networks. Therefore, ENN can scale to many output classes. In the following, we look more deeply

into the architecture of the ENN model.

3.1. Model architecture

Figure 2 compares our ENN model against the conventional single models. First, Figure 2.a

describes the existing approach method of injecting preprocessed input data through a network of a

single structure. The neural network performs an examination operation for a given product image

through a sufficiently learned single network and finally outputs the similarity for all classes. Figure

2.b has a similar structure to Figure 2.a, except that it uses distributed backbone models and an

ensemble layer that makes a final selection by combining the intermediate results from the backbone

models. Looking closer, the input data are partitioned into N groups. Each group passes through M

sub backbone neural network models. Subsequently, the output of the sub-models is concatenated

and passed through the ensemble layer following a Deep Neural Network (DNN) structure. We refer

to this ensemble layer as a master or a parent layer. In the last step, the similarity for all final design

rights is returned by an overlay function that takes the product of the ensemble model result and the

weighted tensor. The ENN model proceeds through the following five steps to learn the design rights

of a given product image.

1. First, the ENN receives an image and performs augmentation, including input size adjustment

and normalization.
2. The ENN outputs a distributed weighted output through a distributed backbone neural network.
3. The ENN concatenates the distributed weighted outputs of the individual sub-neural networks

and converts them into weighted inputs tensor to be passed to the master layer.
4. With weighted input tensor as input, the ENN computes the order similarity coefficient for each

backbone model
5. The ENN multiplies the weighted input tensor and the similarity coefficient tensor to output the

final closeness of an input image to every design right.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1174.v1

https://doi.org/10.20944/preprints202309.1174.v1

5 of 18

Figure 2. Comparison of the structure of the previous model and ENN model. N: Total number of

design rights. M : Number of sub models. C : Number of design rights on each model. K : Number of

additional design rights.

Figure 3 represents the re-learning operation that should run due to introducing new data.

Previous studies, such as the one shown in Figure 3.c require transfer learning of the entire model

when a set of design rights is added. For the ENN model we proposed, as shown in Figure 3.d, only

the backbone model designated for the new data set goes through the training phase. The DNN model

at the master layer picks up the result from the new backbone model and goes through the partial

transfer learning. Training time can be significantly reduced since the previous backbone models

remain unchanged.

Figure 3. Comparison of the structure of the previous model and ENN model when additional training

is needed.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1174.v1

https://doi.org/10.20944/preprints202309.1174.v1

6 of 18

3.1.1. The distributed backbone model

As mentioned in [10], the core of the ENN model is a distributed backbone model that acts

similarly to a cortical column of neurons that follow a near-identical structure. The main idea of a

distributed backbone model is to learn per partitioned data set. In this study, the initial dataset was

divided to have the same number of classes (design rights) as much as possible. There is no overlap

in design rights between different distributed backbone models. Distributed neural networks can be

trained independently and quickly in parallel.

Suppose there is a set of 50,000 image data and 100 design rights. Each design right is associated

with 500 image data. Suppose we segment the 100 design rights into five superclasses, each class

having 20 design rights. Then, the first model can learn with 10,000 images corresponding to 1st–20th

class, and the second model can learn with 10,000 images corresponding to 21st–40th class. Likewise,

the rest of the models perform the distributed training individually by dividing the data by 10,000

images each.

The main reason for learning per divided dataset is to overcome the inefficiency of the existing

methodologies that typically train on one huge neural network. The single network model incurs a

significant cost of transfer learning on the entire data. Existing methods train one huge neural network

to learn all classes, and additional training requires transfer learning over the whole data even when

new data are incrementally added. However, our ENN model can be trained on the entire class much

quicker by training only the distributed backbone model affected by the change to the dataset. We can

even benefit from parallelism by simultaneously training the required distributed backbone models on

separate devices.

Assume a hyper-scale neural network that needs to be trained to classify an input into more than

500,000 design rights. If there are 500 images per design right, then the single neural network model is

trained with about 25 million images per epoch, even when only one class was newly added, and the

rest of the data were trained in advance. Moreover, the depth of the neural network may also have to be

significantly re-scaled and re-calibrated to avoid any possible underfitting problem when the number

of classes becomes very high. Therefore, learning with a single neural network is inappropriate for our

problem of dealing with many product types.

In the case of ENN, each distributed backbone model receives a learnable workload for a more

feasible model fitting. Suppose one backbone model can comfortably learn up to 1,000 classes of data.

For 50,000 classes, we can have 500 backbone models trained independently on different devices. If

100 extra classes are introduced, we can designate one backbone model to learn from the new train

data and let it pass the weighted input to the ensemble DNN model. The other backbone models

pre-trained on the previous 50,000 classes do not have to be re-trained. The re-training at the ensemble

DNN layer (the master layer) is done quicker than the single neural network model as it only needs to

account for the weighted input of the newly trained distributed backbone models. Therefore, the ENN

model only incurs learning costs proportionally to the amount of the new data.

3.1.2. The Ensemble DNN model

We provide the microscopic view of the ensemble DNN model in Figure 4. The ensemble neural

network model derives a final consensus on the results of the distributed backbone model, just as

neurons reach agreement through voting to learn the world model in the neocortex composed of

neuron columns, as explained in [9]. The ensemble DNN model takes the initial input with the size of

N and returns an output with a size equal to the number of distributed models (M). M is smaller than

N as the distributed models are learned on partitioned datasets.

This model first takes a weighted input tensor and injects it into an FC (Fully Connected) Layer.

Then, the data is fed forward through a sequence of six FC Residual Blocks that follow the ResNet

architecture [12]. Each Residual Block comprises a Batch Normalization Layer, an FC Layer, a Dropout

Layer, and an Activation (ReLU) Layer. The output of the preceding block is added to the activation

layer of the next block. After the last Residual Block, the Sigmoid function, as defined in Equation (1),

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1174.v1

https://doi.org/10.20944/preprints202309.1174.v1

7 of 18

is applied. The dimension of the Sigmoid function output is identical to that of the weighted input

tensor. The result of the Sigmoid function is multiplied by the weighted input tensor through the

overlay function. At this time, the shape of the output is the same as the number of distributed models

(N) so that the final similarities of all design rights are obtained.

Sigmoid(xi) =
1

1 + e−xi
, i ∈ 1, 2, 3, ..., k (1)

Figure 4. Structure of the DNN ensemble model.

Figure 5 shows that the overlay function is given p weighted input tensors. The overlay function

multiplies the similarity coefficient learned by the ensemble DNN model for each input tensor. The

similarity coefficient is computed using the Sigmoid or the Softmax function (Equation (2), depending

on the model we use for the backbone layer. The design right similarities are in descending order in a

P x M matrix. Given the similarity table, we can instantly identify the Top-N design rights the input

image is suspected to be related to.

Figure 5. An example of overlay function operation

So f tmax(xi) =
xi

∑
k
j=1 exj

, i ∈ 1, 2, 3, ..., k (2)

The ensemble DNN model takes the input as a weighted input tensor containing the results of the

preceding variance model and infers which model is the most relevant to the input image according

to the similarity coefficient. The order of the preceding distributed models must remain unchanged

during training and inference to determine the most pertinent variance model. Since the size of the

output is very small compared to the size of the input, the ensemble model is designed to follow a

fairly simple structure. When a class is added or changed, the output layer of the ensemble DNN

model must be adjusted accordingly, and the re-training process has to be carried out.

Illegal counterfeits can violate multiple design rights. Thus, we should be able to detect various

relevant design rights at the same time. How such a requirement is met depends on whether we use

the image classification or the objection detection model as the backbone model.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1174.v1

https://doi.org/10.20944/preprints202309.1174.v1

8 of 18

If the backbone model implements image classification, the similarity of each image classification

backbone model is returned for every design right. For example, the model learned from one of the five

supersets diving 100 design rights yields the similarity of 20 classes. We chose the Sigmoid function

over the Softmax function shown in Equation (2) to enable k multiple class detection from a single

input image.

On the other hand, the object detection model already identifies multiple class objects in bounding

boxes simultaneously within one image. The object detection model uses the Softmax function to

predict individual objects’ class (design right) in bounding boxes. In addition, the max value of each

class is added to the calculation process as shown in Equation (3) with k as the number of design rights.

This process picks a design right with the highest similarity value for the detected object captured in a

bounding box.

Backbone models can be substituted flexibly to seek performance gain.

Xi = max(x(i, ∀bbox)
), i ∈ 1, 2, 3, ..., k (3)

Note that the individual distributed backbone models use a deeper architecture than the ensemble

DNN model. We could make the ensemble DNN model lighter as it only needs to learn to output

the similarity coefficients of the backbone models instead of learning to return the similarity of every

design right. With the output of the ensemble DNN model, we can identify a sub-model that is

relatively more likely to return the relevant class for a given input image. Most similar design rights

can be computed instantly by running the overlay function. We maintain the efficient training and

inference process by keeping the ensemble layer simple while minimizing the accuracy compromise.

4. Experiments

This section assesses the performance of the ENN model.

4.1. Experiment setup and implementation

We trained and tested our models on the Dell EMC DSS 8440 server with a 40-core CPU with 80

threads and six Tesla V100 GPUs, each with 32 GB of exclusive memory and 256 GB of RAM. DSS

8440 is operated with Ubuntu 18.04.6 LTS, and the machine learning jobs were executed on Docker

containers. We implemented the following machine learning algorithms as the distributed backbone

models.

• UP-DETR [15] with CUDA (v10.2) Python (v3.7.7), PyTorch (v1.6.0), and Torchvision (v0.7.0)
• ResNet [12] with CUDA (v10.2) Python (v3.7.7), PyTorch (v1.6.0), and Torchvision (v0.7.0)
• WideResNet [26] with CUDA (v10.2) Python (v3.7.7), PyTorch (v1.6.0), and Torchvision (v0.7.0)
• Yolo [13] with CUDA (v10.2) Python (v3.7.7), PyTorch (v1.6.0), and Torchvision (v0.7.0)
• EfficientNet [27] with CUDA (v10.2) Python (v3.7.7), PyTorch (v1.10.0), and Torchvision (v0.11.0)

4.2. Data collection and augmentation

We collected 115,916 images for 84 design rights listed in Table 1 and Table 2. More detailed

information on the design rights is available on KIPRIS (Korea Intellectual Property Information

Search) http://www.kipris.or.kr/khome/main.jsp. Approximately 1,380 images were evenly collected

for each of the 84 design rights. For each design right, the models used are also listed. The notation of

the model is a tuple followed by an ID indicating a group of design rights. The first and the second

elements of the tuple of a model indicate the number of backbone models used and the number of

design rights each backbone model learns. For instance, the first design right on Table 1 is a wireless

earphone with a unique registration number of 3008346600000. One of the models applied to the train

images of this design right was (1,11)A, meaning that one backbone model was used for learning

the images of 11 design rights. The letter ’A’ indicates the ID of the group to which this design right

belongs. We split the image dataset into train, validation, and test sets in an 8:1:1 ratio.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1174.v1

http://www.kipris.or.kr/khome/main.jsp
https://doi.org/10.20944/preprints202309.1174.v1

9 of 18

Table 1. Design rights used for the experiment

Registration
Number

Product Type
International
Classification

Models Applied

3008346600000 Wireless Earphones 14-03 (1,11)A, (1,21)I, (1,42)M, (1,84)O
3009240880000 Earphones 14-01 (1,11)A, (1,21)I, (1,42)M, (1,84)O
3011022290000 Earphones 14-03 (1,11)A, (1,21)I, (1,42)M, (1,84)O
3010963450000 Smartwatch 10-02 (1,11)A, (1,21)I, (1,42)M, (1,84)O
3009682050000 Auxiliary Battery for Charging Electronic Devices 13-02 (1,11)A, (1,21)I, (1,42)M, (1,84)O
3009953020000 Charger for Electronic Devices 13-02 (1,11)A, (1,21)I, (1,42)M, (1,84)O
3009911250000 Nail Clippers 28-03 (1,11)A, (1,21)I, (1,42)M, (1,84)O
3005785260000 Nail Polishing File 28-03 (1,11)A, (1,21)I, (1,42)M, (1,84)O
3009277950000 Hairdressing Scissors 28-03 (1,11)A, (1,21)I, (1,42)M, (1,84)O
3008580740000 Toner Cartridge 14-02 (1,11)A, (1,21)I, (1,42)M, (1,84)O
3010820300000 Hair Styler 28-03 (1,11)A, (1,21)I, (1,42)M, (1,84)O
3009462960000 Nail Cleaning Tool Case 03-01 (1,10)B, (1,21)I, (1,42)M, (1,84)O
3010448610000 Skin Care Machine 24-01 (1,10)B, (1,21)I, (1,42)M, (1,84)O
3009901080000 Eyeliner Container 28-02 (1,10)B, (1,21)I, (1,42)M, (1,84)O
3009727970000 Hair Dryer 28-03 (1,10)B, (1,21)I, (1,42)M, (1,84)O
3009201910000 Lipstick 28-02 (1,10)B, (1,21)I, (1,42)M, (1,84)O
3008635170000 Hair Dryer 28-03 (1,10)B, (1,21)I, (1,42)M, (1,84)O
3006924410000 Front Bumper Cover for Car 12-16 (1,10)B, (1,21)I, (1,42)M, (1,84)O
3005781700000 Cartridge for Printer Developer 14-02 (1,10)B, (1,21)I, (1,42)M, (1,84)O
3009950260000 Nail Clippers 28-03 (1,10)B, (1,21)I, (1,42)M, (1,84)O
3005904250000 Packaging Container 09-01 (1,10)B, (1,21)I, (1,42)M, (1,84)O
3007711150000 Humidifier 23-04 (1,11)C, (1,21)J, (1,42)M, (1,84)O
3008140280000 Spray Container for Cosmetic Packaging 09-01 (1,11)C, (1,21)J, (1,42)M, (1,84)O
3005222300000 Cosmetic Containers 09-01 (1,11)C, (1,21)J, (1,42)M, (1,84)O
3006924390000 Car Radiator Grill 12-16 (1,11)C, (1,21)J, (1,42)M, (1,84)O
3010336170000 Fan 23-04 (1,11)C, (1,21)J, (1,42)M, (1,84)O
3006037400000 Hair Dryer 28-03 (1,11)C, (1,21)J, (1,42)M, (1,84)O
3009746650000 Spray Container for Packaging 09-01 (1,11)C, (1,21)J, (1,42)M, (1,84)O
3010424520002 Portable Vacuum Cleaner 15-05 (1,11)C, (1,21)J, (1,42)M, (1,84)O
3009508860000 Skin Care Machine 28-03 (1,11)C, (1,21)J, (1,42)M, (1,84)O
3005872160000 Nail Clippers 28-03 (1,11)C, (1,21)J, (1,42)M, (1,84)O
3010277880000 Portable Air Purifier 23-04 (1,11)C, (1,21)J, (1,42)M, (1,84)O
3006394680000 Front Fog Lamp for Car 26-06 (1,10)D, (1,21)J, (1,42)M, (1,84)O
3010353420000 Stylus Pen 14-99 (1,10)D, (1,21)J, (1,42)M, (1,84)O
3008337320000 Car Head Lamp 26-06 (1,10)D, (1,21)J, (1,42)M, (1,84)O
3008337300000 Automotive Rear Combination Lamp 26-06 (1,10)D, (1,21)J, (1,42)M, (1,84)O
3008486220000 Front Bumper Cover for Car 12-16 (1,10)D, (1,21)J, (1,42)M, (1,84)O
3008486270000 Car Radiator Grill 12-16 (1,10)D, (1,21)J, (1,42)M, (1,84)O
3008433850000 Car Wheel 12-16 (1,10)D, (1,21)J, (1,42)M, (1,84)O
3009369070000 Cell Phone Protection Case 03-01 (1,10)D, (1,21)J, (1,42)M, (1,84)O
3009505900000 Infant Head Protector 02-99 (1,10)D, (1,21)J, (1,42)M, (1,84)O
3006471740000 Heat Therapy Device 24-01 (1,10)D, (1,21)J, (1,42)M, (1,84)O
3020200055040 Wireless Earphones 14-03 (1,11)E, (1,21)K, (1,42)N, (1,84)O
3008488090000 Infant Head Protector 02-99 (1,11)E, (1,21)K, (1,42)N, (1,84)O
3007512050000 Animal Toys 21-01 (1,11)E, (1,21)K, (1,42)N, (1,84)O
3007827830000 Vacuum Cleaner 15-05 (1,11)E, (1,21)K, (1,42)N, (1,84)O
3010328940000 Hairdressing Scissors 28-03 (1,11)E, (1,21)K, (1,42)N, (1,84)O
3006880340000 Car Head Lamp 26-06 (1,11)E, (1,21)K, (1,42)N, (1,84)O
3006314510000 Developer for Printer 14-02 (1,11)E, (1,21)K, (1,42)N, (1,84)O
3005792510000 Hair Dryer 28-03 (1,11)E, (1,21)K, (1,42)N, (1,84)O

National IT Industry Promotion Agency of Korea acquired the sample products of these design

rights. As shown in Figure 6, we used a machine that turns the table to photograph a sample product

every three degrees. Camera height was set to high, medium, and low. We set the lighting to bright,

standard, and dim. Through this photograph process, we collected 1,080 images per sample product.

Additionally, we took 300 pictures of each product under realistic conditions, such as showing the

wrapping with label attachments. The human experts in design right examiners annotated ground

truth images within bounding boxes.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1174.v1

https://doi.org/10.20944/preprints202309.1174.v1

10 of 18

Table 2. Design rights used for the experiment

Registration
Number

Product Type
International
Classification

Models Applied

3009137110000 Robotic Vacuum 15-05 (1,11)E, (1,21)K, (1,42)N, (1,84)O
3005633730000 Nail Clippers 28-03 (1,11)E, (1,21)K, (1,42)N, (1,84)O
3006880350000 Automotive Rear Combination Lamp 26-06 (1,11)E, (1,21)K, (1,42)N, (1,84)O
3007892610000 Hair Dryer 28-03 (1,10)F, (1,21)K, (1,42)N, (1,84)O
3004925580000 Hair Dryer 28-03 (1,10)F, (1,21)K, (1,42)N, (1,84)O
3009277940000 Hairdressing Scissors 28-03 (1,10)F, (1,21)K, (1,42)N, (1,84)O
3009664240000 Infant Head Protector 02-03 (1,10)F, (1,21)K, (1,42)N, (1,84)O
3010776320000 Cheering Equipment 21-03 (1,10)F, (1,21)K, (1,42)N, (1,84)O
3007488730000 Nail Clippers 28-03 (1,10)F, (1,21)K, (1,42)N, (1,84)O
3006812870000 Doll 21-01 (1,10)F, (1,21)K, (1,42)N, (1,84)O
3005777720000 Electric Hair Straightener 28-03 (1,10)F, (1,21)K, (1,42)N, (1,84)O
3008380770000 General Beauty Scissors 08-03 (1,10)F, (1,21)K, (1,42)N, (1,84)O
3006813180000 Hair Brush 04-02 (1,10)F, (1,21)K, (1,42)N, (1,84)O
3007298000000 Electric Hair Straightener 28-03 (1,11)G, (1,21)L, (1,42)N, (1,84)O
3009442540000 Nail Clippers with Magnifying Glass Attached 28-03 (1,11)G, (1,21)L, (1,42)N, (1,84)O
3010468310000 Head Guard 02-99 (1,11)G, (1,21)L, (1,42)N, (1,84)O
3007845090000 Stationery Scissors 08-03 (1,11)G, (1,21)L, (1,42)N, (1,84)O
3006955750000 Doll 21-01 (1,11)G, (1,21)L, (1,42)N, (1,84)O
3008976800000 Cheering Tool 21-03 (1,11)G, (1,21)L, (1,42)N, (1,84)O
3009317560000 Doll 21-01 (1,11)G, (1,21)L, (1,42)N, (1,84)O
3011212930000 Cheering Tool 21-03 (1,11)G, (1,21)L, (1,42)N, (1,84)O
3008380780000 Beauty Thinning Scissors 08-03 (1,11)G, (1,21)L, (1,42)N, (1,84)O
3009052330000 Hair Dryer 28-03 (1,11)G, (1,21)L, (1,42)N, (1,84)O
3011182010000 Infant Head Protection 02-03 (1,11)G, (1,21)L, (1,42)N, (1,84)O
3005633760000 Nail Clippers 28-03 (1,10)H, (1,21)L, (1,42)N, (1,84)O
3010696720000 Cheering Equipment 21-03 (1,10)H, (1,21)L, (1,42)N, (1,84)O
3007449670000 Hair Brush 04-02 (1,10)H, (1,21)L, (1,42)N, (1,84)O
3010123750000 Nail Clippers 28-03 (1,10)H, (1,21)L, (1,42)N, (1,84)O
3011236760000 Cheering Light Stick 21-03 (1,10)H, (1,21)L, (1,42)N, (1,84)O
3009505920000 Infant Head Protector 02-99 (1,10)H, (1,21)L, (1,42)N, (1,84)O
3005480740000 Hand Puppet 21-01 (1,10)H, (1,21)L, (1,42)N, (1,84)O
3011211790000 Cheering Tool 21-03 (1,10)H, (1,21)L, (1,42)N, (1,84)O
3008039980000 Hair Styler 28-03 (1,10)H, (1,21)L, (1,42)N, (1,84)O
3007797260000 Cheering Glow Stick 21-03 (1,10)H, (1,21)L, (1,42)N, (1,84)O

Figure 6. This is a photo of an image being taken on a turntable for image collection. (Blurred due to

copyright issues.)

To obtain more real-world cases, we applied various data augmentation techniques [28,29] such as

horizontal reversal, vertical reversal, brightness adjustment, contrast adjustment, saturation adjustment,

image size adjustment, normalization, and partial image hiding [30].

Horizontal and vertical inversion were applied with a 50% probability. The brightness, the contrast,

and the saturation were randomly selected from the ranges of 0.2–2.0, 0.8–1.2, and 0.5–1.5, respectively.

The image length was chosen from 480 pixels to 800 pixels with a unit length of 32 pixels when

UP-DETR was used as a distributed neural network. We stroked the best balance between accuracy,

training, and test speed when the image length was set to 512 pixels. After applying the commonly

used image normalization, a part of the image was covered with a 30%

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1174.v1

https://doi.org/10.20944/preprints202309.1174.v1

11 of 18

Through these various image augmentations, we increased the model’s accuracy even with the

initial small set of images.

4.3. Comparison of training speed

Table 3 shows the average training time per one epoch using the UP-DETR model as a backbone

model [15]. The best model was obtained using the validation loss to prevent overfitting. The training

was conducted up to 200 epochs, and we used the validation loss function to choose the best-fit model.

The batch size was set to 8, considering the VRAM limit of our GPUs. We used the Distributed Data

Parallel (DDP) framework to split the training workload among six GPUs.

When training a model with 84 design rights (classes), the existing method of learning all classes

at once requires learning with all data through transfer learning. It took approximately 29.5 minutes

per epoch for a single network model to train object classification with 84 classes. Using the same

machine learning hardware, we project the training time to take over 2,400 days for 50,000 classes.

Even with the horizontal scaling of the computing resources, the single network model has to be

trained on the entire dataset. Therefore, the computing resources are poorly utilized with the single

network model.

On the other hand, when a backbone model of ENN was trained independently for 10 to 11

classes, it took an order of magnitude less time per epoch than the single network model. The ensemble

DNN model is so lightweight that its training time portion was negligible. Using the same compute

resource, the ENN always takes a shorter constant time for the incrementally added unit-size train

dataset than the single network model. This performance measurement proves that ENN can be more

scalable than the single network model.

Table 3. Average UP-DETR training time per epoch with varying number of design rights.

Num of Design Rights 10 11 14 21 42 84

Average Train Time
per Epoch (min)

3.0 3.5 4.5 6.75 15.25 29.5

4.4. Comparison of distributed backbone models

Figure 7 shows the ENN model’s Top-1 and Top-3 accuracy measurements with varying numbers

of split backbone models and total design rights. The model (1,84) is the single network version

learning all 84 design rights. As mentioned above, we used five backbone models: UP-DETR [15],

EfficientNet [27], ResNet [12], Yolo [13], and WideResNet [26]. Specifically, we used the ResNet-101

model, wide_resnet101_2 model, and efficientnet_b7 model provided by Torchvision.

UP-DETR returned the highest Top-1 accuracy of 98% and above across model configurations.

UP-DETR based on Attention Network [2] is an improved version of DETR [14] that performed

impressively in the computer vision field through Swin Transformer [31]. Using UP-DETR, the Top-1

accuracy drop with the increase in design rights was negligible. UP-DETR also showed the highest

Top-3 accuracy across all model configurations. UP-DETR maintained a high Top-3 accuracy despite

the increase of design rights to identify.

Table 4 shows individual backbone models’ average Top-1 and Top-3 accuracy. Each model was

trained on a dataset with 10 to 11 classes. UP-DETR outperforms other backbone models with Top-1

and Top-3 accuracy of at least 99%. UP-DETR performed flawlessly in terms of Top-3 accuracy.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1174.v1

https://doi.org/10.20944/preprints202309.1174.v1

12 of 18

Figure 7. Top-1 and Top-3 accuracy of ENN model with varying number of distributed backbone

models and total number number classes. Yolo not shown here performed the worst. Accuracy of Yolo

is shown in Table 4

Table 4. Average Top-1 and Top-3 accuracy(%) of individual backbone models. Model is distinguished

in a tuple followed by a letter ID. The first and the second elements of the tuple are the number of

backbone models and the number of design rights learned, respectively. The letter ID indicates a group

of design rights.

Model
UP-DETR Yolo EfficientNet ResNet WideResNet

Top-1 Top-3 Top-1 Top-3 Top-1 Top-3 Top-1 Top-3 Top-1 Top-3

(1,11) A 99.868 100.000 96.443 97.958 99.868 100.000 99.671 100.000 98.090 99.868
(1,10) B 100.000 100.000 95.072 97.681 99.710 100.000 99.783 100.000 99.348 100.000
(1,11) C 99.934 100.000 93.478 97.826 99.802 100.000 99.407 100.000 99.275 100.000
(1,10) D 100.000 100.000 90.290 96.232 99.783 100.000 98.333 99.855 99.565 99.855
(1,11) E 100.000 100.000 94.137 97.167 99.473 100.000 99.605 100.000 98.353 99.934
(1,10) F 99.928 100.000 95.000 98.333 99.855 100.000 99.203 100.000 97.754 100.000
(1,11) G 99.868 100.000 96.509 99.012 100.000 100.000 99.868 100.000 99.539 100.000
(1,10) H 100.000 100.000 96.957 98.043 99.783 100.000 98.551 100.000 97.826 100.000
(1,21) I 99.896 100.000 96.653 97.964 99.862 100.000 99.517 99.965 99.517 99.931
(1,21) J 100.000 100.000 97.861 98.896 99.896 100.000 99.551 100.000 99.655 99.965
(1,21) K 99.965 100.000 96.308 98.689 99.931 100.000 99.068 100.000 99.482 99.965
(1,21) L 100.000 100.000 98.344 99.413 99.655 100.000 99.310 100.000 98.965 100.000
(1,42) M 99.879 100.000 97.981 98.689 99.948 100.000 99.586 100.000 99.620 100.000
(1,42) N 99.845 100.000 96.411 99.051 99.931 100.000 99.396 99.983 99.396 99.983

(1,84) O [Single] 99.784 99.957 90.709 96.299 99.905 100.000 99.569 99.983 99.681 99.983

4.5. Hyper-parameter tuning

In this subsection, we perform hyperparameter tuning for ensemble models. In order, the five

hyper-parameters are the layer size (number of perceptrons), the dropout rate, the learning rate, the

optimization function, and the FC residual block depth.

Table 5 shows the entire ENN model’s prediction accuracy with varying layer sizes of the

ensemble DNN model. The dropout and learning rates were fixed at 0.4 and 0.005, respectively.

AdamW was used as an optimization function, and the FC residual block depth was set to six. The

learning rate is low with large layers, but more information is learned. On the other hand, with small

layers, the learning rate is high, but less information is learned. The ENN model performed best with

the layer size set to 1,024 as Top-1 and Top-3 accuracies were 98.374% and 99.410%, respectively.

Table 6 shows the prediction accuracy of the ENN model according to the dropout rate of the FC

residual block. Dropout prevents overfitting in the learning process, and a high dropout rate causes

more forgetting in the propagation process. For this experiment, we chose AdamW for optimization.

The layer size was set to 1,024. The learning rate and the depth of the FC residual block were fixed at

0.005 and 6, respectively. The dropout rate varied between 0.1 and 0.5. We found that the ENN model

performed the best with the dropout set to 0.4. However, the difference between other dropout settings

was not significant.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1174.v1

https://doi.org/10.20944/preprints202309.1174.v1

13 of 18

Table 7 shows the Top-1 and Top-3 accuracy of the ENN model according to the learning rate

of the ensemble model. For this experiment, we used AdamW for optimization. The layer size, the

dropout rate, and the FC residual block depth were set to 1,024, 0.4, and 6, respectively. The learning

rate is used in the learning process to limit how much it learns at a time. With a high learning rate,

significant weight changes lead to quick learning. However, the learning result can be sub-optimal.

With the low learning rate, more weight values are examined, which can lead to more optimal results.

However, the low learning rate makes the whole learning process slower. Compared to the layer size

and dropout rate, the ENN model was sensitive to the learning rate regarding the prediction accuracy.

The best Top-1 and Top-3 accuracy was obtained with a learning rate of 0.005. Recently, Konar et

al. [32] suggested a method to adjust the learning degree in stages according to epochs to expedite

learning without falling into local minimum.

Table 5. Top-1 and Top-3 accuracy(%) of the ENN model with varying layer size. The letter IDs identify

the group of design rights. For example, (2,21)AB means that 42 design rights are divided into groups

’A’ and ’B’.

Model
2048 1024 512 256

Top-1 Top-3 Top-1 Top-3 Top-1 Top-3 Top-1 Top-3

(2,21) AB 98.861 99.827 98.930 99.966 98.689 99.827 98.930 99.827
(3,32) ABC 98.483 99.502 98.256 99.592 98.120 99.457 98.211 99.389

(4,42) ABCD 98.585 99.500 98.344 99.362 98.568 99.431 98.413 99.465
(5,53) ABCDE 97.963 99.330 98.154 99.289 98.031 99.180 97.744 99.180

(6,63) ABCDEF 98.068 99.160 98.321 99.149 98.033 99.103 98.137 99.275
(7,74) ABCDEFG 98.051 99.158 98.296 99.315 98.267 99.119 98.228 99.128

(8,84) ABCDEFGH 98.361 99.163 98.318 99.198 98.137 99.129 98.102 99.180
Average 98.339 99.377 98.374 99.410 98.264 99.321 98.252 99.349

Table 6. Accuracy(%) of the ENN model according to the dropout rate.

Model
0.1 0.2 0.3 0.4 0.5

Top-1 Top-3 Top-1 Top-3 Top-1 Top-3 Top-1 Top-3 Top-1 Top-3

(2,21) AB 98.965 99.896 98.930 99.966 98.723 99.827 98.999 99.896 98.965 99.793
(3,32) ABC 98.188 99.547 98.256 99.592 98.279 99.547 98.392 99.660 98.256 99.479

(4,42) ABCD 98.551 99.517 98.344 99.362 98.620 99.517 98.447 99.500 98.326 99.413
(5,53) ABCDE 97.935 99.221 98.154 99.289 97.935 99.262 98.113 99.439 98.195 99.330

(6,63) ABCDEF 98.068 99.034 98.321 99.149 97.930 99.045 98.263 99.218 98.091 99.114
(7,74) ABCDEFG 98.237 99.285 98.296 99.315 98.208 99.138 98.374 99.256 98.159 99.138

(8,84) ABCDEFGH 98.206 99.111 98.318 99.198 98.456 99.172 98.275 99.249 98.068 99.189
Average 98.307 99.373 98.374 99.410 98.307 99.358 98.409 99.460 98.294 99.351

Table 7. Accuracy(%) of the ENN model according to the learning rate.

Model
0.05 0.01 0.005 0.001

Top-1 Top-3 Top-1 Top-3 Top-1 Top-3 Top-1 Top-3

(2,21) AB 98.689 99.827 98.689 99.793 98.999 99.896 98.758 99.827
(3,32) ABC 97.917 99.774 97.962 99.592 98.392 99.660 98.053 99.457

(4,42) ABCD 97.912 99.465 98.378 99.569 98.447 99.500 98.223 99.362
(5,53) ABCDE 96.874 98.742 97.635 99.166 98.113 99.439 97.949 99.262

(6,63) ABCDEF 97.239 99.275 98.022 99.137 98.263 99.218 98.079 99.160
(7,74) ABCDEFG 97.131 99.158 98.149 99.266 98.374 99.256 98.306 99.275

(8,84) ABCDEFGH 97.041 99.120 98.223 99.224 98.275 99.249 98.352 99.180
Average 97.543 99.337 98.151 99.392 98.409 99.460 98.246 99.360

Table 8 shows the prediction accuracy of the ENN model according to the optimization function.

As mentioned above, we fixed the layer size, the dropout rate, and the learning rate at the values that

led the ENN model to perform the best. The depth of the FC residual block was fixed at 6.

The optimization function directs the learning process to find the global minimum of loss as

quickly as possible without falling into the local minimum. We experimented with RMSprop [33],

SGD [34], Adam [35], and AdamW [36]. Specifically, we set the momentum of both SGD and RMSprop

to 0.9. As a result, the ENN model performed the best with AdamW. RMSprop showed a sharp drop

in Top-1 accuracy as the number of classes and the backbone models increased.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1174.v1

https://doi.org/10.20944/preprints202309.1174.v1

14 of 18

Table 8. Accuracy(%) of the ENN model according to the optimizer.

Model
AdamW Adam SGD RMSprop

Top-1 Top-3 Top-1 Top-3 Top-1 Top-3 Top-1 Top-3

(2,21) AB 98.999 99.896 98.792 99.896 98.413 99.758 95.169 99.965
(3,32) ABC 98.392 99.660 98.324 99.615 97.962 99.706 92.278 99.841

(4,42) ABCD 98.447 99.500 98.671 99.465 98.447 99.655 85.059 99.638
(5,53) ABCDE 98.113 99.439 98.141 99.330 97.676 99.398 80.476 99.316

(6,63) ABCDEF 98.263 99.218 98.091 99.137 97.930 99.275 76.398 98.884
(7,74) ABCDEFG 98.374 99.256 98.365 99.138 98.188 99.226 72.111 98.570

(8,84) ABCDEFGH 98.275 99.249 98.378 99.146 98.240 99.180 69.117 97.559
Average 98.409 99.460 98.395 99.390 98.122 99.457 81.515 99.111

Table 9 shows the prediction accuracy of the ENN model with varying depth configuration for

the FC residual block. We fixed all other hyper-parameters at the best values we have observed. The

ENN model yielded the best accuracy with a depth of 6.

Overall, the best ENN model we obtained through hyper-parameter optimization achieved the

Top-1 and Top-3 accuracies of 98.409% and 99.460%, respectively.

Table 9. Accuracy(%) of the ENN model according to the depth of FC residual block depth.

Model
4 5 6 7 8

Top-1 Top-3 Top-1 Top-3 Top-1 Top-3 Top-1 Top-3 Top-1 Top-3

(2,21) AB 98.930 99.896 99.034 99.862 98.999 99.896 98.896 99.655 98.896 99.827
(3,32) ABC 98.370 99.502 98.370 99.592 98.392 99.660 98.211 99.298 98.211 99.434

(4,42) ABCD 98.447 99.551 98.568 99.500 98.447 99.500 98.464 99.603 98.413 99.482
(5,53) ABCDE 98.059 99.385 98.045 99.371 98.113 99.439 97.799 99.330 98.195 99.412

(6,63) ABCDEF 98.447 99.195 98.114 99.126 98.263 99.218 98.022 99.195 98.298 99.264
(7,74) ABCDEFG 97.993 99.128 98.159 99.266 98.374 99.256 98.208 99.187 98.296 99.226

(8,84) ABCDEFGH 98.240 99.258 98.223 99.198 98.275 99.249 98.275 99.224 98.413 99.224
Average 98.355 99.417 98.359 99.416 98.409 99.460 98.268 99.356 98.389 99.410

4.6. Comparison with a single network model

We compared the ENN model with a single neural network model as shown in Table 10. The

single model (1, 84) led to the best accuracy. However, as mentioned earlier, the single model takes

much longer training time than the ENN models. The error is propagated to all classess (design rights)

during the training for the single model. On the other hand, pre-trained backbone models are frozen,

and only the backbone models accepting incrementally added datasets are involved in the ENN

training. This modeling approach was a design choice to enhance scalability. UP-DETR helped the

ENN model produce the lowest accuracy margin with the single neural network among the backbone

models. Specifically, using eight UP-DETR backbone models, the ENN showed 1.51%p and 0.71%p

lower Top-1 and Top-3 accuracies, respectively. For cost-effectiveness and the need to address the

frequent design right updates, the ENN model’s quicker and incremental modeling approach seems

more practical while not compromising the accuracy significantly.

Table 11 shows the precision, recall and F1-score of one of the largest ENN model ((8,84)

ABCDEFGH) using various backbone models. UP-DETR was the best performer, while Yolo showed

the lowest accuracy. Figure 8 shows the confusion matrix of (8,84) ABCDEFGH model using UD-DETR.

The Top-1 accuracy of this model was 98.275%.

The accuracy saturation of the single neural network model is inevitable if there are thousands of

products to classify. The tipping point of the single neural network model, given much larger set of

design rights, is a subject for subsequent studies. But, note that it is highly costly and time-consuming

to obtain the photos of proprietary products following the design rights. Also, cooperation from the

design right owner is needed to take the images of their products in various settings. Addressing the

issues with data acquisition is another research topic to be studied in the future.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1174.v1

https://doi.org/10.20944/preprints202309.1174.v1

15 of 18

Table 10. Comparison of accuracy(%) according to the number of model separations.

Model
UP-DETR Yolo EfficientNet ResNet WideResNet

Top-1 Top-3 Top-1 Top-3 Top-1 Top-3 Top-1 Top-3 Top-1 Top-3

(2,21) AB 98.930 99.896 90.683 96.756 96.687 99.965 96.515 99.965 94.237 99.482
(3,32) ABC 98.370 99.502 87.228 95.267 96.445 99.728 95.245 99.343 93.524 98.777

(4,42) ABCD 98.447 99.551 84.972 93.099 96.377 99.551 94.910 98.982 93.841 98.602
(5,53) ABCDE 98.059 99.385 83.443 92.508 94.750 99.152 94.217 98.728 92.931 98.496

(6,63) ABCDEF 98.447 99.195 83.506 91.534 95.480 98.930 94.134 98.401 93.214 98.217
(7,74) ABCDEFG 97.993 99.128 83.500 91.324 95.554 98.796 94.036 98.110 93.400 97.983

(8,84) ABCDEFGH 98.275 99.249 83.791 91.442 95.980 98.896 94.229 98.137 93.599 97.800
(4,84) IJKL 98.878 99.672 88.708 96.368 95.385 99.603 95.057 99.094 93.703 98.913
(2,84) MN 98.404 99.189 93.444 98.490 96.946 99.965 96.912 99.784 96.006 99.862
(1,84) O 99.784 99.957 90.709 96.299 99.905 100.000 99.569 99.983 99.681 99.983

Table 11. Precision, Recall, and F1 Score of one of the largest model, (8,84) ABCDEFGH

Model Precision Recall F1 Score

UP-DETR 98.309 98.275 98.271
Yolo 84.267 83.791 83.718

EfficientNet 96.019 95.980 95.961
ResNet 94.284 94.229 94.212

WideResNet 93.690 93.599 93.593

Figure 8. Confusion matrix of (8,84) ABCDEFGH using UP-DETR

5. Conclusion

We presented a scalable two-stage hierarchical ensemble neural network (ENN) model tuned for

detecting the design rights a product is potentially infringing. We assumed a counterfeit is merely an

identical copy of the existing product with a registered design right. We identify the violated design

rights by classifying the image of a product shot under different settings such as lighting, packaging

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1174.v1

https://doi.org/10.20944/preprints202309.1174.v1

16 of 18

condition, focal length, and angles. This study is keen on the fact that thousands of design rights

are registered, and many products pour into the market at the border. Classifying a product into the

thousands of design rights with a single neural network is impractical due to heavy training costs and

inefficient compute resource utilization. The ENN model is designed to address the scalability issue by

having distributed backbone models trained on a unit-sized dataset independently and in parallel.

The result of the backbone models is concatenated and passed through the ensemble DNN model that

consists of fully connected residual blocks to output the model that returned the most similar class of a

given product image.

This novel structure could train the ENN model on incrementally added unit-sized datasets with

constant time. Therefore, the ENN model can scale to classify many design rights. The ENN model was

designed to enhance scalability. However, the fine-tuned ENN model using UP-DETR as a backbone

model showed Top-1 and Top-3 accuracies of 98.27% and 99.25%, respectively. Thus, we showed that

the ENN model can be on par with the single neural network model while having at least an order of

magnitude lower training cost when given an incremental dataset to learn.

The ENN model is the most appropriate neural network structure to adopt in the field, with

thousands of products to examine. Customizing the ENN model is easy as we can plugin any

neural network model in the backbone layer for further improvement in terms of accuracy. To build

a product-level design right classification system, we need to amass much larger images of real

products, let alone actual illegal replicas. However, obtaining pictures of these real products under

various settings is costly and time-consuming. An efficient data acquisition method for building the

production-level design right classification is a subject for future work.

Author Contributions: Conceptualization, Y.Y; methodology, C.J.L, S.H.J, and Y.Y.; software, C.J.L and S.H.J,;
validation, C.J.L, S.H.J, and Y.Y..; formal analysis, C.J.L, S.H.J, and Y.Y.; investigation, C.J.L, S.H.J, and Y.Y.;
resources, Y.Y.; data curation, C.J.L, S.H.J, and Y.Y.; writing—original draft preparation, C.J.L, S.H.J, and Y.Y.;
writing—review and editing, Y.Y.; visualization, C.J.L; supervision, Y.Y.; project administration, Y.Y.; funding
acquisition, Y.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Ministry of Trade, Industry & Energy (MOTIE) and the
Korea Institute for Advancement of Technology (KIAT), under Grants P0014268 Smart HVAC demonstration
support. This research was also supported by the MSIT (Ministry of Sciencd and ICT), Korea under the ITRC
(Information Technology Research Center) support program (RS-2023-00259099) supervised by the IITP (Institute
for Information & Communications Technology Planning & Evaluation, and supported by the National Research
Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. RS-2023-00240211).

Abbreviations

The following abbreviations are used in this manuscript:

ENN Ensemble Neural Network

DNN Deep Neural Network

References

1. de coopération et de développement économiques, O. Trade in counterfeit and pirated goods: Mapping the

economic impact; OECD Publishing, 2016.

2. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I.

Attention is all you need. Advances in neural information processing systems 2017, 30.

3. Kang, M.; Lee, W.; Hwang, K.; Yoon, Y. Vision transformer for detecting critical situations and extracting

functional scenario for automated vehicle safety assessment. Sustainability 2022, 14, 9680.

4. Hwang, H.; Oh, J.; Lee, K.H.; Cha, J.H.; Choi, E.; Yoon, Y.; Hwang, J.H. Synergistic approach to quantifying

information on a crack-based network in loess/water material composites using deep learning and network

science. Computational Materials Science 2019, 166, 240–250.

5. Hwang, H.; Choi, S.M.; Oh, J.; Bae, S.M.; Lee, J.H.; Ahn, J.P.; Lee, J.O.; An, K.S.; Yoon, Y.; Hwang, J.H.

Integrated application of semantic segmentation-assisted deep learning to quantitative multi-phased

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1174.v1

https://doi.org/10.20944/preprints202309.1174.v1

17 of 18

microstructural analysis in composite materials: Case study of cathode composite materials of solid oxide

fuel cells. Journal of Power Sources 2020, 471, 228458.

6. Kumar, S.N.; Singal, G.; Sirikonda, S.; Nethravathi, R. A novel approach for detection of counterfeit Indian

currency notes using deep convolutional neural network. IOP Conference Series: Materials Science and

Engineering. IOP Publishing, 2020, Vol. 981, p. 022018.

7. Lee, S.H.; Lee, H.Y. Counterfeit bill detection algorithm using deep learning. Int. J. Appl. Eng. Res 2018,

13, 304–310.

8. Daoud, E.; Vu, D.; Nguyen, H.; Gaedke, M. ENHANCING FAKE PRODUCT DETECTION USING DEEP

LEARNING OBJECT DETECTION MODELS. IADIS International Journal on Computer Science & Information

Systems 2020, 15.

9. Hawkins, J. A thousand brains: A new theory of intelligence; Hachette UK, 2021.

10. Mountcastle, V.B. Modality and topographic properties of single neurons of cat’s somatic sensory cortex.

Journal of neurophysiology 1957, 20, 408–434.

11. Wimmer, H.; Yoon, V.Y. Counterfeit product detection: Bridging the gap between design science and

behavioral science in information systems research. Decision Support Systems 2017, 104, 1–12.

12. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE

conference on computer vision and pattern recognition, 2016, pp. 770–778.

13. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv

preprint arXiv:2004.10934 2020.

14. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection

with transformers. European conference on computer vision. Springer, 2020, pp. 213–229.

15. Dai, Z.; Cai, B.; Lin, Y.; Chen, J. Up-detr: Unsupervised pre-training for object detection with transformers.

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp.

1601–1610.

16. Torrey, L.; Shavlik, J. Transfer learning. In Handbook of research on machine learning applications and trends:

algorithms, methods, and techniques; IGI global, 2010; pp. 242–264.

17. Yousefnezhad, M.; Hamidzadeh, J.; Aliannejadi, M. Ensemble classification for intrusion detection via

feature extraction based on deep Learning. Soft Computing 2021, 25, 12667–12683.

18. Ahn, H.; Son, S.; Kim, H.; Lee, S.; Chung, Y.; Park, D. EnsemblePigDet: Ensemble Deep Learning for

Accurate Pig Detection. Applied Sciences 2021, 11, 5577.

19. Usman, S.M.; Khalid, S.; Bashir, S. A deep learning based ensemble learning method for epileptic seizure

prediction. Computers in Biology and Medicine 2021, 136, 104710.

20. Parhami, B. Voting algorithms. IEEE transactions on reliability 1994, 43, 617–629.

21. Breiman, L. Bagging predictors. Machine learning 1996, 24, 123–140.

22. Freund, Y.; Schapire, R.E.; others. Experiments with a new boosting algorithm. icml. Citeseer, 1996, Vol. 96,

pp. 148–156.

23. Divina, F.; Gilson, A.; Goméz-Vela, F.; García Torres, M.; Torres, J.F. Stacking ensemble learning for

short-term electricity consumption forecasting. Energies 2018, 11, 949.

24. Sikora, R.; others. A modified stacking ensemble machine learning algorithm using genetic algorithms. In

Handbook of research on organizational transformations through big data analytics; IGi Global, 2015; pp. 43–53.

25. Dou, J.; Yunus, A.P.; Bui, D.T.; Merghadi, A.; Sahana, M.; Zhu, Z.; Chen, C.W.; Han, Z.; Pham, B.T. Improved

landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine

learning framework in a mountainous watershed, Japan. Landslides 2020, 17, 641–658.

26. Zagoruyko, S.; Komodakis, N. Wide residual networks. arXiv preprint arXiv:1605.07146 2016.

27. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. International

conference on machine learning. PMLR, 2019, pp. 6105–6114.

28. Van Dyk, D.A.; Meng, X.L. The art of data augmentation. Journal of Computational and Graphical Statistics

2001, 10, 1–50.

29. Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. Journal of big data

2019, 6, 1–48.

30. Zhong, Z.; Zheng, L.; Kang, G.; Li, S.; Yang, Y. Random erasing data augmentation. Proceedings of the

AAAI conference on artificial intelligence, 2020, Vol. 34, pp. 13001–13008.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1174.v1

https://doi.org/10.20944/preprints202309.1174.v1

18 of 18

31. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision

transformer using shifted windows. Proceedings of the IEEE/CVF International Conference on Computer

Vision, 2021, pp. 10012–10022.

32. Konar, J.; Khandelwal, P.; Tripathi, R. Comparison of various learning rate scheduling techniques on

convolutional neural network. 2020 IEEE International Students’ Conference on Electrical, Electronics and

Computer Science (SCEECS). IEEE, 2020, pp. 1–5.

33. Tieleman, T.; Hinton, G. Lecture 6.5-rmsprop, coursera: Neural networks for machine learning. University

of Toronto, Technical Report 2012, 6.

34. Cherry, J.M.; Adler, C.; Ball, C.; Chervitz, S.A.; Dwight, S.S.; Hester, E.T.; Jia, Y.; Juvik, G.; Roe, T.; Schroeder,

M.; others. SGD: Saccharomyces genome database. Nucleic acids research 1998, 26, 73–79.

35. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 2014.

36. Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 2017.

Short Biography of Authors

Chan Jae Lee received a bachelor’s degree in urban engineering from Hongik

University in 2019 and a master’s degree in Artificial Intelligence and Big Data

in the Industrial Convergence Interdepartmental Program in 2021. From 2021, he

has been an Artificial Intelligence Researcher in the Future Technology Strategy

Lab of NetcoreTech. His research interests include Machine Learning, Deep

Learning, Big Data, Computer Vision, Large Graph, and Smart City.

Seong Ho Jeong received a bachelor’s degree in Mathematics from Incheon

National University in 2021. From 2021, he has been an Artificial Intelligence

Researcher in the Future Technology Strategy Lab of NetcoreTech. His research

interests include Machine Learning, Deep Learning, Big Data, and Computer

Vision.

Young Yoon received a bachelor’s degree and master’s degree in Computer

Sciences from the University of Texas at Austin in 2003 and 2006, respectively. He

also earned his doctoral’s degree in Computer Engineering from University of

Toronto in 2013. From 2015, he has been an assistant professor in the Department

of Computer Science at Hongik University. His research interests include

distributed computing, middleware, and applied artificial intelligence.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2023 doi:10.20944/preprints202309.1174.v1

https://doi.org/10.20944/preprints202309.1174.v1

	Introduction
	Related Works
	Methodology
	Model architecture
	The distributed backbone model
	The Ensemble DNN model

	Experiments
	Experiment setup and implementation
	Data collection and augmentation
	Comparison of training speed
	Comparison of distributed backbone models
	Hyper-parameter tuning
	Comparison with a single network model

	Conclusion
	References

