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Abstract: Snow parameters have traditionally been retrieved using discontinuous, multi-band
sensors; however, continuous hyperspectral sensor are now being developed as an alternative. In this
paper we investigate the performance of various sensor configurations using machine learning neural
networks trained on a simulated dataset. Our results show improvements in accuracy of retrievals of
snow grain size and impurity concentration for continuous hyperspectral channel configurations.
Retrieval accuracy of snow albedo was found to be similar for all channel configurations.
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1. Introduction

Long-term global mapping of snow albedo and snow property parameters plays an important
role in monitoring of the Earth climate system. Satellite remote sensing has offered a very valuable
and powerful way to record the evolution of global snow extent and properties with high temporal
and spatial resolution [1-3]. The visible and near infrared bands can be used to obtain snow coverage,
broadband albedo, and snow physical parameters [4-7].

The Surface Biology and Geology (SBG) Designated Targeted Observable (DO) [8] is a proposed
sensor based on the need for capabilities to acquire global, high spatial resolution, visible to shortwave
infrared (VSWIR; 380 — 2500 nm; 30 m pixel resolution, 10 nm spectral resolution) hyperspectral
(imaging spectroscopy) and multispectral midwave and thermal infrared (MWIR: 3-5 ym; TIR: 8-12
pum; ~ 60 m pixel resolution) measurements with sub-monthly temporal revisits. These specifications
were proposed to meet the goals laid out by the 2017-2027 Decadal Survey, Thriving on our Changing
Planet [9], which places a high-priority emphasis on global-scale inquiries into hydrology, ecosystems,
weather, climate, and solid earth. An SBG Algorithms Working Group of multidisciplinary researchers
was formed to review and evaluate the algorithms applicable to the SBG DO across a wide range of
Earth science disciplines, including terrestrial and aquatic ecology, atmospheric science, geology, and
hydrology.

Traditionally, data from the MODIS and SGLI sensors have been used to provide global maps
of snow cover [10-12]. However, both MODIS and SGLI are discontinuous multi-band radiometers
with isolated 50-100 nm wide spectral bands, whereas the SBG VSWIR instrument is envisioned
to provide continuous spectral coverage from 380 to 2500 nm with 10 nm spectral resolution. The
combination of improved spectral resolution and continuous spectral coverage has been shown to
increase information content and spectral dimensionality leading to improvements in atmospheric
correction when compared to multi-band approaches [13]. It has been proposed that hyperspectral
data can leverage the entire spectrum to more accurately determine snow albedo, grain size, cloud
cover over snow, and unmixed pixels containing both vegetation and snow [14].
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Key features of our methodology for snow parameter retrieval (SPR) include (i) use of a coupled
atmosphere-surface radiative transfer (RT) model to create a large simulated dataset of top of the
atmosphere (TOA) reflectances as a function of snow and aerosol physical parameters; (ii) use of this
simulated dataset to train a multi layer neural network (MLNN) for the retrieval, which has led to
significant improvements in both retrieval accuracy and speed; (iii) use of an aaNN filtered (instead
of a random) distribution of snow and aerosol parameters to generate the synthetic dataset used for
MLNN training, which mimics a more realistic snow situation, and leads to significantly improved
retrievals.

Our goal is to explore the possible improvements to SPR algorithms from leveraging the SBG
VSWIR instruments continuous spectral coverage from 380 to 2500 nm. Section 2 describes the
motivation and formation of our snow dataset. Section 3 details our scientific machine learning (SciML)
neural network algorithm methodology and training. Section 4 presents our findings and a discussion
of results. Concluding remarks are provided in Section 5.

2. Models and Data

2.1. Motivation

Snow interacts strongly with the global climate system, serving as an energy bank [15,16],
radiation shield [17], insulator [18], reservoir [19], and transport medium [20-22]. For these reasons it
is vitally important to understand and accurately measure the physical properties of snow.

An important parameter in climate research is the ratio of reflected light to the incoming global
shortwave radiation, also know as albedo. For a given spectral distribution of the incoming solar
radiation, the albedo of a homogeneous sufficiently thick snow layer depends mainly on snow quality,
which can be described by the type of snow (snow density and grain size) [23] and its impurity
concentration (concentration of light absorbing particles in the snow, such as black carbon or dust)
[24]. Since snow grain size and impurity content change over time, the albedo of a snow packed region
often decreases with time until it is refreshed by new snowfall [25]. This cycle can be used to determine
melting processes of a snow packed region as well as monitoring of snow accumulation from remote
sensing data collected by sensors deployed on satellites.

Light from the sun will be absorbed and scattered in predictable ways depending on the snow’s
physical and optical properties. Remote sensing instruments deployed on satellites can collect reflected
radiances at the top of the atmosphere. These TOA radiances depend on snow properties as well as
the sun-satellite geometry, i.e. the solar zenith angle, the sensor polar viewing angle and the relative
azimuth angle. A radiative transfer tool can be used to model these TOA radiances as a function of
wavelength.

2.2. Radiative Transfer Model — AccuRT

AccuRT is an accurate, efficient, and easy-to-use radiative transfer simulation tool that can
be used to generate radiance and irradiance data at user defined vertical locations in a coupled
atmosphere-water system [26]. Note here that “water" refers to both the liquid and solid phase (snow
and ice). The physical properties of each of the two slabs that constitute the coupled system, the
radiative energy input at the top of the upper slab (TOA), and the boundary conditions at the bottom
of the lower slab (water bottom), must be specified. To facilitate these specifications, AccuRT uses a set
of radiatively significant constituents called “materials" that account for the wavelength dependence of
inherent optical properties (IOPs). For our simulated dataset, we include the earth_atmospheric_gases,
aerosols, and snow materials in our main configuration file. The wavelength range was specified
to be 380-2500 nm to meet the needs of the NASA’s Ames Global Hyperspectral Synthetic Data.
Once the input parameters have been specified the AccuRT code will solve the radiative transfer
equation and provide irradiances at desired vertical locations as well as radiances at desired vertical
locations and in desired directions in the coupled atmosphere-snow system. In our case the desired
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location for irradiances is the top of the snow layer, where the ratio of the upward and downward
spectral irradiance is used to compute the spectral snow albedo. For radiances we want the upward
radiance at the top-of-the-atmosphere (TOA) in specified directions that would correspond to a desired
sun-satellite geometry (solar zenith angle, observation polar angle, and relative azimuth angle) and
snow grain size and impurity concentration. A pixel in a satellite image obtained over a snow surface
is defined by these five parameters.

2.2.1. Atmospheric gases

The earth_atmospheric_gases material allows the user to choose from six model atmospheres.
For our purposes we have chosen the US 1976 standard model. All of the models are based
on the best information available when they were published [27] and contain altitude profiles of
temperature, pressure, and concentrations of the bulk atmospheric molecules (N, and O) as well as
many radiatively-significant trace gases including H,O, CO,, O3, CH,4, and NO,. From this material
we get specifications of absorption coefficients for the radiatively-significant atmospheric gases based
on the LowTran/ModTran band model. Molecular (Rayleigh) scattering coefficients are also provided
by the earth_atmospheric_gases material.

2.2.2. Atmospheric aerosols

The aerosols material provides a convenient way to specify the aerosol properties as a function of
wavelength based on a bi-modal particle size distribution including a fine and a coarse mode. The
user specifies the vertical profile of the aerosols in the atmosphere, as well as the refractive index (real
and imaginary parts), the effective radii, and the variances of the two modes. Then a Mie scattering
code is used to compute the IOPs of aerosol particles and a numerical integration is employed to
integrate over the log-normal size distributions to obtain the absorption and scattering coefficients
and the scattering phase function. For our configuration, fine mode aerosols have optical depth of
0.212 and single-scattering albedo of 0.948, while coarse mode aerosols have optical depth of 0.026 and
single-scattering albedo of 1 at a reference wavelength A = 500 nm. These values are consistent with
values typically measured in the atmosphere [28].

2.2.3. Snow properties

We assume a spherical particle shape for snow grains which allows us to obtain their IOPs from a
parameterized Mie scattering model. We use the ISIOP tool [29] to generate ice/snow IOPs for any
desired wavelength from ice/snow physical parameters: real and imaginary parts of the ice/snow
refractive index, asymmetry factors for scattering by snow grains, and the snow layer thickness.
The parameterized Mie scattering model relies on the assumptions that the snow particles (i) can be
characterized by an effective radius, (ii) are weakly absorbing, and (iii) are large compared to the
wavelength of light. These assumptions imply that the calculations of the absorption and scattering
coefficients and the scattering asymmetry factor can be greatly simplified. Also, the scattering phase
function is approximated by the Henyey-Greestein function, which depends only on the scattering
asymmetry factor, and snow impurities are included to account for absorbing material deposited in
the snowpack. This approach leads to computed snow albedo values in agreement with available
observations [30].
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2.3. Synthetic Snow Dataset

2.3.1. Random Data

Fifty-thousand values for relative azimuth angle, viewing zenith angle, solar zenith angle, snow
grain size, and impurity concentration were used to generate a synthetic training dataset. The angular
data were formed with a uniform random distribution in solar zenith angle, viewing polar angle,
and relative azimuth angle, while the grain size and the impurity concentration were formed with a
log-normal random distribution. The log-normal distributions were chosen to cluster random data
around values that are more likely to be found in nature. A summary of the dataset is shown in Table 1.
This dataset was used to simulate radiances and irradiances employing the AccuRT computational
tool.

Table 1. Summary of parameters used to generate the synthetic training dataset.

Parameter Data Range Distribution Mean
Relative azimuth angle 0 to 180 (degrees) Uniform 89.87°
Viewing zenith angle 0 to 45 (degrees) Uniform 22.55°
Solar zenith angle 20 to 75 (degrees) Uniform 47.62°
Snow grain size 50 to 2500 (ym) Log-normal 835 ym

Snow impurity Concentration 1077 to 1072 (ratio) Log-normal  9.27 x 108

2.3.2. Illustrative examples

To get a sense of how the various parameters affect radiances and albedo, several computations
were carried out at designated increments of the parameter values. To this end, radiance versus
wavelength plots for upward radiances at the TOA are provided in Figure 1. Also, albedo versus
wavelength plots for varying solar zenith angle, snow grain size, and impurity concentration are
provided in Figure 2. Figure 1 shows that variability in radiance is largely affected by solar zenith
angle and snow grain size, with impurity concentration also having a significant impact in the visible
part of the spectrum. Changes to the relative azimuth and viewing zenith angle have relatively little
observable effect on the TOA radiance; however, the forward reflection (BRDF) is generally stronger
especially along the principal in NIR which can lead to significant differences depending on the
viewing/azimuth angles. Figure 2 shows that these findings are also true for the snow surface albedo.
It is worth noting that only snow grain size seems to have a significant impact on radiance past 1500
nm, and only when the grain size is quite small, in the 50-300 m range. Impurity concentration has the
biggest impact on albedo for wavelengths in the visible part of the spectrum while a decrease in snow
grain size caused albedo to increase. This albedo enhancement is most dramatic in the near-infrared
nm range. Changes in solar zenith angle cause noticeable changes in the albedo across all wavelengths.
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Figure 1. Radiance vs wavelength plots at TOA, the black lines in all plots have constant relative
azimuthal angle of 90°, viewing zenith angle of 22.5°, solar zenith angle of 45°, grain size of 300 ym,
and impurity concentration of 108, In all plots, four of the parameters are held to the constant values
listed above while the fifth is varied. A) Varied relative azimuthal angles from 0 to 180°. B) Varied
viewing zenith angles from 0° to 45°. C) Varied solar zenith angles from 20° to 75°. D) Varied snow
grain size from 50 to 2500 ym. E) Varied impurity concentration from 10~ to 107°.
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Figure 2. Albedo vs wavelength plots for a variety of conditions. The black lines in all plots have
constant relative azimuthal angle of 90°, viewing zenith angle of 22.5°, solar zenith angle of 45°, grain
size of 300 ym, and impurity concentration of 10~8. In all plots, four of the parameters are held to the
constant values listed above while the fifth is varied. A) Varied solar zenith angles from 20 to 75°. B)
Varied snow grain size from 50 to 2500 ym. C) Varied impurity concentration from 10~ to 10~°.

3. Methods

3.1. Multi-layer Neural Networks

We want to use the synthetic dataset to retrieve snow parameters based on the TOA radiances.
For this purpose we created a neural network that takes as input the sun-satellite geometry angles
as well as the TOA radiances. The output will be the corresponding snow grain size, snow impurity
concentration, visible albedo (VIS, 380-700 nm), near-infrared (NIR, 700-2500 nm) albedo, and visible
shortwave infrared (VSWIR, 380-2500 nm) albedo. A multi-layer neural network (MLNN) is a
feedforward artificial neural network used for pattern classification, recognition, prediction, and
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function approximation. It has been demonstrated that MLNNs with one or more hidden layers and a
non-linear activation function can approximate nonlinear functions [31,32]. Therefore, it is suitable for
solving our inverse problem which is to derive the snow parameters and VIS, NIR, and VSWIR albedo
from TOA radiances measured at a given set of wavelength bands for a specific sun-satellite geometry
configuration, i.e. the solar zenith angle, the sensor observation angle, and the relative azimuth angle
between the sun and the satellite sensor. When constructing a MLNN, one important issue is to find the
optimum number of hidden layers and neurons. This determination depends on many variables, such
as the number of neurons of the input and output layer, the number of training samples, the complexity
of the function to be approximated, the type of activation function, and the training algorithm. This
circumstance makes it difficult to find the best solution in many cases. Drawing on previous experience
[33], we were able to find a suitable MLNN configuration as described below.

3.1.1. Neural Network Setup

We used a network with five layers: one input layer, one output layer, and three hidden layers
with 50, 30, and 20 neurons, respectively. The input layer uses three geometry angles, and TOA
radiances as inputs. The output layer contains a total of five outputs: snow grain size, snow impurity
concentration, VIS albedo, NIR albedo, and VSWIR albedo. Four different MLNNs were trained,
one using a continuous hyperspectral band approach and three others based on a discontinuous
multi-band approach. The hyperspectral SBG MLNN used all 213 TOA radiance bands from 380 nm
to 2500 nm in 10 nm increments. To enable comparisons with existing multispectral sensors, such as
MODIS and SGLI, a MODIS MLNN, was constructed with seven TOA radiance bands (470 nm, 560
nm, 650 nm, 860 nm, 1240 nm, 1640 nm, and 2130 nm). Similarly, a SGLI MLNN was constructed with
thirteen TOA radiance bands (380 nm, 410 nm, 440 nm, 490 nm, 530 nm, 570 nm, 670 nm, 760 nm, 870
nm, 1050 nm, 1380 nm, 1630 nm, and 2210 nm). A fourth Max-Min MLNN was formed using local
maxima and minima of the radiance vs wavelength and the albedo vs wavelength (Figures 1 and 2).
This approach led to an MLNN with forty-nine unique TOA radiance bands with the majority of bands
located between 600 nm and 1200 nm. Because we are using supervised learning, predictor inputs and
desired output values were used to train a MLNN. Hence, we expect that selection of predictor inputs
for wavelengths producing the largest contrast in desired outputs (the local maxima and minima)
should lead to a MLNN that easily learns the training data [34,35]. All MLNNs produced the same
five parameters as outputs.

A hyperbolic tangent function was used as the neuron transfer (activation) function. A stochastic
gradient descent method was used to minimize the cost function to obtain optimized weights and
biases [36]. An adaptive learning rate, initially set to 0.001, was used for weight updates. A tolerance
for optimization was set to 1078, When the loss function did not improve by at least this tolerance
amount after ten consecutive iterations, convergence was considered to be reached and the training
was terminated.

3.1.2. Training Results

From the 50,000 values in the synthetic snow dataset, 45,000 were used for MLNN training while
the other 5,000 were used for performance evaluation. Snow parameter retrieval MLNN training
completed with an average R? score across all parameters of 0.997 and a minimum band R? score of
0.992. The snow impurity parameter had the largest average percent error (APE) and bias of all the
retrieval parameters. Training for albedo parameters and snow grain size performed well with all four
MLNNSs producing high R? scores (0.996 on average) and low APEs and bias. A different configuration
of neurons in the hidden layers might have yielded better results, but the average R? scores already
indicated that we had obtained an acceptable fit. MLNN training performance versus model synthetic
data is shown in Figures 36 for the SBG, MODIS, SGLI, and Max-Min MLNNSs.
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3.1.3. Inversion model

Weights and biases obtained from the training were saved and used to create approximation
algorithms. The transfer (activation) function of the neurons was taken to be the hyperbolic tangent

function:
2 ex —X

e

= - — 1 = — = h . 1
f(x) 1+ exp[—2x] eX e X tanh(x) M
In the output layer a linear transfer function was used to link the hidden layers to the output. The

exact expression of this MLNN approximation algorithm can be written as:

N, N, Np No
Ym = bagm + Y W - fS b3+ Y wagk- f|box+ Y wWo ‘f<b1'7 + Y Wi xi>] @
1=1 k=1 j=1 i=1
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where x;,i =1,..., Ny is an element in the input layer.

In Eq. (2) wy j; are the weights of the input layer, wy x;, w3 x, and wy ,,; are the weights of the three
hidden layers, bl,j is the bias of the input layer, by, b3, and by ,, are the biases of the three hidden
layers. f is the hyperbolic tangent function in Eq. (1). yy, is the m!* element in the output layer, which
in our case contains the snow grain size, snow impurity concentration, VIS albedo, NIR, albedo, and
VSWIR albedo.

4. Results and Discussion

4.1. Results

The main criterion used to evaluate the performance of each algorithm is accuracy, which we
define based on how close each predicted (retrieved) value is to its corresponding synthetic model
value. To determine accuracy we use the average percent difference (APD), the difference between
our predicted value and the model value in comparison to the model value (relative error), and the
mean absolute error (MAE), based on the difference between the predicted value and the synthetic
model value. A summary of the performance of the four snow parameter retrieval algorithms is shown
in Table 2. Overall all the algorithms performed well for retrievals of albedo and snow grain size.
The SBG algorithm offers improvements over the other algorithms for retrieval of snow impurity
concentration having the best R? score and the lowest average percent difference (5.6% for SBG, versus
14%, 9.4%, and 7.8% for MODIS, SGLI, and Max-Min) and mean absolute error. The SGLI, MODIS and
Max-Min algorithms struggled to reliably estimate snow impurities in the 10~ to 108 ranges, leading
to a worse performance than the SBG algorithm in this range. Evaluation of the performance of SBG,
MODIS, SGLI, and Max-Min prediction algorithms against synthetic data is shown in Figures 7-10.
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Figure 7. Performance of SBG snow parameter retrieval algorithm predictions versus model synthetic
data (N = 5,000).
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Table 2. A summary of the performance of the three snow parameter retrieval algorithms based on R?

score, APD, and MAE.
SBG algorithm R%2 Score APD MAE
Albedo VIS 0.999 0.660 %  0.004
Albedo NIR 0.999 0.673 %  0.001
Albedo VSWIR 0.999 0.670 %  0.002
Snow Grain Size 0.999 1.135% 10.33 ym
Snow Impurity 0.998 5.586 % 4.754*1078
MODIS algorithm R?Score APD MAE
Albedo VIS 0.999 1.025 %  0.006
Albedo NIR 0.999 0914 % 0.001
Albedo VSWIR 0.999 0.943 %  0.002
Snow Grain Size 0.998 1.602 % 14.78 ym
Snow Impurity 0.997 13.99 % 8.907*10~8
SGLI algorithm R?Score APD MAE
Albedo VIS 0.999 0.699 %  0.004
Albedo NIR 0.999 0.809 %  0.001
Albedo VSWIR 0.999 0.744 %  0.002
Snow Grain Size 0.998 1.610 %  14.52 ym
Snow Impurity 0.997 9.34%  6.148*1078
Max-Min algorithm  R? Score APD MAE
Albedo VIS 0.999 0.618 % 0.004
Albedo NIR 0.999 0.688 %  0.001
Albedo VSWIR 0.999 0.641 %  0.002
Snow Grain Size 0.998 1.545%  14.02 ym
Snow Impurity 0.998 7.829% 5.336*1078
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Figure 8. Performance of MODIS snow parameter retrieval algorithm predictions versus model
synthetic data (N = 5,000).
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Figure 9. Performance of SGLI snow parameter retrieval algorithm predictions versus model synthetic
data (N = 5,000).
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Figure 10. Performance of Max-Min snow parameter retrieval algorithm predictions versus model

synthetic data (N = 5,000).

4.2. Discussion

Our findings indicate that using continuous (hyperspectral) channels when developing a SPR
algorithm does offer some improvements over selecting specific (multispectral) wavelengths like
those available for sensors such as MODIS and SGLI. It is likely that the SBG algorithm outperformed
the other three algorithms when it comes to snow impurity because of its channel configuration.
Figure 1E) shows that for impurity values in the 10~ to 1078 range, radiances in the 380-600 nm
range are significantly affected by the impurity, while the impact is insignificant at longer wavelengths.
The SBG algorithm has twenty-three channels in this spectral range while the Min-Max and SGLI
algorithms have six channels and the MODIS algorithm only two. Both the MODIS, Figure 8, and
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SGLI, Figure 9, algorithms tended to overestimate very low impurity values and underestimate values
near and around 1078, leading to an S like curve in the plots. This tendency is most noticeable for the
MODIS algorithm where the underestimation continues past 10~ up to 10~7. To a lesser extent this S
like curving is also present in the Max-Min plots shown in Figure 10. The SBG algorithm, Figure 7,
performed better in these ranges with an APD of 14.1% compared to 30.3%, 23.3%, and 18.5% for
MODIS, SGLI, and Max-Min respectively. However the SBG algorithm does still overestimate very
low impurities near 10~°.

The use of channels based on a continuous spectrum configuration also shows small
improvements in predicting snow grain size. When comparing the SBG algorithm to the other
algorithms we observe a tighter grouping of data in the SBG plots (Figure 7). This tighter clustering
becomes more noticeable as snow grain size increases, with the SBG algorithm having a MAE of 31.9
pm for snow grains ranging from 1500 to 2500 um compared to 48.7 ym, 45.8 ym, and 43.9 um for
the MODIS, SGLI, and Max-Min algorithms. Figure 1D) shows that the variation in radiance across
all wavelengths becomes less pronounced as the grain size increases. We observe a much larger shift
when grain sizes increase from 50 to 300 #m than it increases from 900 to 2500 ym. This behavior likely
made it harder for the MLNNSs to precisely evaluate changes in radiance caused by large snow grains,
leading to a larger deviation of prediction values from the model data for large grain sizes for the three
multi-band algorithms.

All four algorithms were able to accurately predict the albedo in the visible, near infrared, and
shortwave infrared spectral ranges. The reason is likely that the variation of albedo vs wavelengths is
much smoother than the variation of radiance vs wavelength, making albedo easy to predict from only
a few wavelength channels. However, since albedo mainly depends on the physical properties of snow,
to get an understanding of the global climate system it is not enough to solely predict this value. It is
possible that a snow sample with small grain size and high impurity could produce the same albedo
as a different snow sample with large grain size and low impurity. An illustration of this circumstance
is shown in Figure 11. Despite the large differences in grain sizes and impurity concentrations, the two
very different snow configurations are shown to yield the same VSWIR (380-2500 nm) albedo.

A) Radiance vs Wavelength B) Albedo vs Wavelength

— Grain size = 2500 im, Impurity = 1078 — Grain size = 2500 m, Impurity = 108
——Grain size = 640 um , Impurity = 108
- - -VSWIR Albedo

—— Grain size = 640 um, Impurity = 108

)

S .

W m? nm

Albedo

T Y avengh oy ST T adengn o
Figure 11. Radiance vs wavelength A) and Albedo vs wavelength B) for two simulated samples, both
with the same relative azimuthal angle of 90°, viewing zenith angle of 22.5°, solar zenith angle of 45°.
The blue line has grain size of 2500 m, and impurity concentration of 10~8, while the red line has grain
size of 640 ym, and impurity concentration of 10-°. Both samples have the same VSWIR (380-2500 nm)
albedo of 0.231 shown by the dashed black line.

The Max-Min algorithm contains channels at all of the peaks and valleys observed in our
illustration plots, Figures 1 & 2. These channels should contain the most contrasting values and
make it easy for a neural network to identify differences in retrieval parameters. If a continuous
spectrum then contained redundant channels we would expect the SBG algorithm and Max-Min
algorithm to perform similarly. However, there appears to be a marked improvement in accuracy
when using continuous spectral coverage. While the Max-Min algorithm did perform better than the


https://doi.org/10.20944/preprints202309.1140.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 September 2023 doi:10.20944/preprints202309.1140.v1

13 0f 15

other two multi-band approaches, it shares their discrepancies between predicted values and model
data for large snow grain sizes and the same tendency to overestimate small impurity concentrations.

Since changes in grain size, impurity, and geometry angles all affect the TOA radiance in unique
ways, it is perhaps not surprising that more spectral channels leads to increased accuracy. Our results
point to better neural network training and prediction algorithm performance when continuous
spectral coverage is utilized. However, equidistant spectral sampling, such as proposed/envisioned
for SBG, does not necessarily guarantee optimum performance. It seems reasonable to expect that
placing more sampling points in spectral regions with steep gradients than in regions where the
spectrum is relatively flat could be beneficial.

5. Conclusion

We have explored the impact of physical snow properties on TOA spectral radiance and how
machine learning neural networks could be used to form a snow parameter retrieval algorithm utilizing
multi-band and continuous (hyperspectral) coverage. We have determined that employing continuous
spectral coverage, such as that offered by the planned SBG VSWIR instrument, seems to offer some
improvements to the quality of snow parameter retrievals when compared with multi-band sensors
such as MODIS and SGLI by lowering the APD and MAE for snow grain size and snow impurity
concentration. While our study focused on snow parameter retrieval in a single homogeneous snow
layer, continuous (hyper) spectral coverage will likely show even more improvements for a vertically
inhomogeneous snow-pack consisting of multiple dissimilar layers. An area of future research could
be exploring how improvements offered by continuous spectral coverage affects parameter retrieval in
more diverse systems; such as systems with vertically inhomogeneous snow grain size and impurity
profiles, as well as snow systems containing “contaminants” such as algae and mineral particles.
Another avenue of research could be exploring benefits offered to cloud screening of optical imagery
involving snow. Continuous spectral coverage offers increased degrees of freedom for machine
learning algorithms to understand and quantify complex systems, this makes sensors with continuous
spectral coverage a good choice for future remote sensing endeavors.
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