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Abstract: Snow parameters have traditionally been retrieved using discontinuous, multi-band

sensors; however, continuous hyperspectral sensor are now being developed as an alternative. In this

paper we investigate the performance of various sensor configurations using machine learning neural

networks trained on a simulated dataset. Our results show improvements in accuracy of retrievals of

snow grain size and impurity concentration for continuous hyperspectral channel configurations.

Retrieval accuracy of snow albedo was found to be similar for all channel configurations.

Keywords: snow; neural networks; remote sensing; hyperspectral; machine learning

1. Introduction

Long-term global mapping of snow albedo and snow property parameters plays an important

role in monitoring of the Earth climate system. Satellite remote sensing has offered a very valuable

and powerful way to record the evolution of global snow extent and properties with high temporal

and spatial resolution [1–3]. The visible and near infrared bands can be used to obtain snow coverage,

broadband albedo, and snow physical parameters [4–7].

The Surface Biology and Geology (SBG) Designated Targeted Observable (DO) [8] is a proposed

sensor based on the need for capabilities to acquire global, high spatial resolution, visible to shortwave

infrared (VSWIR; 380 – 2500 nm; 30 m pixel resolution, 10 nm spectral resolution) hyperspectral

(imaging spectroscopy) and multispectral midwave and thermal infrared (MWIR: 3–5 µm; TIR: 8–12

µm; ∼ 60 m pixel resolution) measurements with sub-monthly temporal revisits. These specifications

were proposed to meet the goals laid out by the 2017-2027 Decadal Survey, Thriving on our Changing

Planet [9], which places a high-priority emphasis on global-scale inquiries into hydrology, ecosystems,

weather, climate, and solid earth. An SBG Algorithms Working Group of multidisciplinary researchers

was formed to review and evaluate the algorithms applicable to the SBG DO across a wide range of

Earth science disciplines, including terrestrial and aquatic ecology, atmospheric science, geology, and

hydrology.

Traditionally, data from the MODIS and SGLI sensors have been used to provide global maps

of snow cover [10–12]. However, both MODIS and SGLI are discontinuous multi-band radiometers

with isolated 50–100 nm wide spectral bands, whereas the SBG VSWIR instrument is envisioned

to provide continuous spectral coverage from 380 to 2500 nm with 10 nm spectral resolution. The

combination of improved spectral resolution and continuous spectral coverage has been shown to

increase information content and spectral dimensionality leading to improvements in atmospheric

correction when compared to multi-band approaches [13]. It has been proposed that hyperspectral

data can leverage the entire spectrum to more accurately determine snow albedo, grain size, cloud

cover over snow, and unmixed pixels containing both vegetation and snow [14].
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Key features of our methodology for snow parameter retrieval (SPR) include (i) use of a coupled

atmosphere-surface radiative transfer (RT) model to create a large simulated dataset of top of the

atmosphere (TOA) reflectances as a function of snow and aerosol physical parameters; (ii) use of this

simulated dataset to train a multi layer neural network (MLNN) for the retrieval, which has led to

significant improvements in both retrieval accuracy and speed; (iii) use of an aaNN filtered (instead

of a random) distribution of snow and aerosol parameters to generate the synthetic dataset used for

MLNN training, which mimics a more realistic snow situation, and leads to significantly improved

retrievals.

Our goal is to explore the possible improvements to SPR algorithms from leveraging the SBG

VSWIR instruments continuous spectral coverage from 380 to 2500 nm. Section 2 describes the

motivation and formation of our snow dataset. Section 3 details our scientific machine learning (SciML)

neural network algorithm methodology and training. Section 4 presents our findings and a discussion

of results. Concluding remarks are provided in Section 5.

2. Models and Data

2.1. Motivation

Snow interacts strongly with the global climate system, serving as an energy bank [15,16],

radiation shield [17], insulator [18], reservoir [19], and transport medium [20–22]. For these reasons it

is vitally important to understand and accurately measure the physical properties of snow.

An important parameter in climate research is the ratio of reflected light to the incoming global

shortwave radiation, also know as albedo. For a given spectral distribution of the incoming solar

radiation, the albedo of a homogeneous sufficiently thick snow layer depends mainly on snow quality,

which can be described by the type of snow (snow density and grain size) [23] and its impurity

concentration (concentration of light absorbing particles in the snow, such as black carbon or dust)

[24]. Since snow grain size and impurity content change over time, the albedo of a snow packed region

often decreases with time until it is refreshed by new snowfall [25]. This cycle can be used to determine

melting processes of a snow packed region as well as monitoring of snow accumulation from remote

sensing data collected by sensors deployed on satellites.

Light from the sun will be absorbed and scattered in predictable ways depending on the snow’s

physical and optical properties. Remote sensing instruments deployed on satellites can collect reflected

radiances at the top of the atmosphere. These TOA radiances depend on snow properties as well as

the sun-satellite geometry, i.e. the solar zenith angle, the sensor polar viewing angle and the relative

azimuth angle. A radiative transfer tool can be used to model these TOA radiances as a function of

wavelength.

2.2. Radiative Transfer Model – AccuRT

AccuRT is an accurate, efficient, and easy-to-use radiative transfer simulation tool that can

be used to generate radiance and irradiance data at user defined vertical locations in a coupled

atmosphere-water system [26]. Note here that “water" refers to both the liquid and solid phase (snow

and ice). The physical properties of each of the two slabs that constitute the coupled system, the

radiative energy input at the top of the upper slab (TOA), and the boundary conditions at the bottom

of the lower slab (water bottom), must be specified. To facilitate these specifications, AccuRT uses a set

of radiatively significant constituents called “materials" that account for the wavelength dependence of

inherent optical properties (IOPs). For our simulated dataset, we include the earth_atmospheric_gases,

aerosols, and snow materials in our main configuration file. The wavelength range was specified

to be 380-2500 nm to meet the needs of the NASA’s Ames Global Hyperspectral Synthetic Data.

Once the input parameters have been specified the AccuRT code will solve the radiative transfer

equation and provide irradiances at desired vertical locations as well as radiances at desired vertical

locations and in desired directions in the coupled atmosphere-snow system. In our case the desired
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location for irradiances is the top of the snow layer, where the ratio of the upward and downward

spectral irradiance is used to compute the spectral snow albedo. For radiances we want the upward

radiance at the top-of-the-atmosphere (TOA) in specified directions that would correspond to a desired

sun-satellite geometry (solar zenith angle, observation polar angle, and relative azimuth angle) and

snow grain size and impurity concentration. A pixel in a satellite image obtained over a snow surface

is defined by these five parameters.

2.2.1. Atmospheric gases

The earth_atmospheric_gases material allows the user to choose from six model atmospheres.

For our purposes we have chosen the US 1976 standard model. All of the models are based

on the best information available when they were published [27] and contain altitude profiles of

temperature, pressure, and concentrations of the bulk atmospheric molecules (N2 and O2) as well as

many radiatively-significant trace gases including H2O, CO2, O3, CH4, and NO2. From this material

we get specifications of absorption coefficients for the radiatively-significant atmospheric gases based

on the LowTran/ModTran band model. Molecular (Rayleigh) scattering coefficients are also provided

by the earth_atmospheric_gases material.

2.2.2. Atmospheric aerosols

The aerosols material provides a convenient way to specify the aerosol properties as a function of

wavelength based on a bi-modal particle size distribution including a fine and a coarse mode. The

user specifies the vertical profile of the aerosols in the atmosphere, as well as the refractive index (real

and imaginary parts), the effective radii, and the variances of the two modes. Then a Mie scattering

code is used to compute the IOPs of aerosol particles and a numerical integration is employed to

integrate over the log-normal size distributions to obtain the absorption and scattering coefficients

and the scattering phase function. For our configuration, fine mode aerosols have optical depth of

0.212 and single-scattering albedo of 0.948, while coarse mode aerosols have optical depth of 0.026 and

single-scattering albedo of 1 at a reference wavelength λ = 500 nm. These values are consistent with

values typically measured in the atmosphere [28].

2.2.3. Snow properties

We assume a spherical particle shape for snow grains which allows us to obtain their IOPs from a

parameterized Mie scattering model. We use the ISIOP tool [29] to generate ice/snow IOPs for any

desired wavelength from ice/snow physical parameters: real and imaginary parts of the ice/snow

refractive index, asymmetry factors for scattering by snow grains, and the snow layer thickness.

The parameterized Mie scattering model relies on the assumptions that the snow particles (i) can be

characterized by an effective radius, (ii) are weakly absorbing, and (iii) are large compared to the

wavelength of light. These assumptions imply that the calculations of the absorption and scattering

coefficients and the scattering asymmetry factor can be greatly simplified. Also, the scattering phase

function is approximated by the Henyey-Greestein function, which depends only on the scattering

asymmetry factor, and snow impurities are included to account for absorbing material deposited in

the snowpack. This approach leads to computed snow albedo values in agreement with available

observations [30].
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2.3. Synthetic Snow Dataset

2.3.1. Random Data

Fifty-thousand values for relative azimuth angle, viewing zenith angle, solar zenith angle, snow

grain size, and impurity concentration were used to generate a synthetic training dataset. The angular

data were formed with a uniform random distribution in solar zenith angle, viewing polar angle,

and relative azimuth angle, while the grain size and the impurity concentration were formed with a

log-normal random distribution. The log-normal distributions were chosen to cluster random data

around values that are more likely to be found in nature. A summary of the dataset is shown in Table 1.

This dataset was used to simulate radiances and irradiances employing the AccuRT computational

tool.

Table 1. Summary of parameters used to generate the synthetic training dataset.

Parameter Data Range Distribution Mean

Relative azimuth angle 0 to 180 (degrees) Uniform 89.87◦

Viewing zenith angle 0 to 45 (degrees) Uniform 22.55◦

Solar zenith angle 20 to 75 (degrees) Uniform 47.62◦

Snow grain size 50 to 2500 (µm) Log-normal 835 µm
Snow impurity Concentration 10−9 to 10−5 (ratio) Log-normal 9.27 ∗ 10−8

2.3.2. Illustrative examples

To get a sense of how the various parameters affect radiances and albedo, several computations

were carried out at designated increments of the parameter values. To this end, radiance versus

wavelength plots for upward radiances at the TOA are provided in Figure 1. Also, albedo versus

wavelength plots for varying solar zenith angle, snow grain size, and impurity concentration are

provided in Figure 2. Figure 1 shows that variability in radiance is largely affected by solar zenith

angle and snow grain size, with impurity concentration also having a significant impact in the visible

part of the spectrum. Changes to the relative azimuth and viewing zenith angle have relatively little

observable effect on the TOA radiance; however, the forward reflection (BRDF) is generally stronger

especially along the principal in NIR which can lead to significant differences depending on the

viewing/azimuth angles. Figure 2 shows that these findings are also true for the snow surface albedo.

It is worth noting that only snow grain size seems to have a significant impact on radiance past 1500

nm, and only when the grain size is quite small, in the 50-300 µm range. Impurity concentration has the

biggest impact on albedo for wavelengths in the visible part of the spectrum while a decrease in snow

grain size caused albedo to increase. This albedo enhancement is most dramatic in the near-infrared

nm range. Changes in solar zenith angle cause noticeable changes in the albedo across all wavelengths.
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Figure 1. Radiance vs wavelength plots at TOA, the black lines in all plots have constant relative

azimuthal angle of 90◦, viewing zenith angle of 22.5◦, solar zenith angle of 45◦, grain size of 300 µm,

and impurity concentration of 10−8. In all plots, four of the parameters are held to the constant values

listed above while the fifth is varied. A) Varied relative azimuthal angles from 0 to 180◦. B) Varied

viewing zenith angles from 0◦ to 45◦. C) Varied solar zenith angles from 20◦ to 75◦. D) Varied snow

grain size from 50 to 2500 µm. E) Varied impurity concentration from 10−9 to 10−5.

Figure 2. Albedo vs wavelength plots for a variety of conditions. The black lines in all plots have

constant relative azimuthal angle of 90◦, viewing zenith angle of 22.5◦, solar zenith angle of 45◦, grain

size of 300 µm, and impurity concentration of 10−8. In all plots, four of the parameters are held to the

constant values listed above while the fifth is varied. A) Varied solar zenith angles from 20 to 75◦. B)

Varied snow grain size from 50 to 2500 µm. C) Varied impurity concentration from 10−9 to 10−5.

3. Methods

3.1. Multi-layer Neural Networks

We want to use the synthetic dataset to retrieve snow parameters based on the TOA radiances.

For this purpose we created a neural network that takes as input the sun-satellite geometry angles

as well as the TOA radiances. The output will be the corresponding snow grain size, snow impurity

concentration, visible albedo (VIS, 380-700 nm), near-infrared (NIR, 700-2500 nm) albedo, and visible

shortwave infrared (VSWIR, 380-2500 nm) albedo. A multi-layer neural network (MLNN) is a

feedforward artificial neural network used for pattern classification, recognition, prediction, and
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function approximation. It has been demonstrated that MLNNs with one or more hidden layers and a

non-linear activation function can approximate nonlinear functions [31,32]. Therefore, it is suitable for

solving our inverse problem which is to derive the snow parameters and VIS, NIR, and VSWIR albedo

from TOA radiances measured at a given set of wavelength bands for a specific sun-satellite geometry

configuration, i.e. the solar zenith angle, the sensor observation angle, and the relative azimuth angle

between the sun and the satellite sensor. When constructing a MLNN, one important issue is to find the

optimum number of hidden layers and neurons. This determination depends on many variables, such

as the number of neurons of the input and output layer, the number of training samples, the complexity

of the function to be approximated, the type of activation function, and the training algorithm. This

circumstance makes it difficult to find the best solution in many cases. Drawing on previous experience

[33], we were able to find a suitable MLNN configuration as described below.

3.1.1. Neural Network Setup

We used a network with five layers: one input layer, one output layer, and three hidden layers

with 50, 30, and 20 neurons, respectively. The input layer uses three geometry angles, and TOA

radiances as inputs. The output layer contains a total of five outputs: snow grain size, snow impurity

concentration, VIS albedo, NIR albedo, and VSWIR albedo. Four different MLNNs were trained,

one using a continuous hyperspectral band approach and three others based on a discontinuous

multi-band approach. The hyperspectral SBG MLNN used all 213 TOA radiance bands from 380 nm

to 2500 nm in 10 nm increments. To enable comparisons with existing multispectral sensors, such as

MODIS and SGLI, a MODIS MLNN, was constructed with seven TOA radiance bands (470 nm, 560

nm, 650 nm, 860 nm, 1240 nm, 1640 nm, and 2130 nm). Similarly, a SGLI MLNN was constructed with

thirteen TOA radiance bands (380 nm, 410 nm, 440 nm, 490 nm, 530 nm, 570 nm, 670 nm, 760 nm, 870

nm, 1050 nm, 1380 nm, 1630 nm, and 2210 nm). A fourth Max-Min MLNN was formed using local

maxima and minima of the radiance vs wavelength and the albedo vs wavelength (Figures 1 and 2).

This approach led to an MLNN with forty-nine unique TOA radiance bands with the majority of bands

located between 600 nm and 1200 nm. Because we are using supervised learning, predictor inputs and

desired output values were used to train a MLNN. Hence, we expect that selection of predictor inputs

for wavelengths producing the largest contrast in desired outputs (the local maxima and minima)

should lead to a MLNN that easily learns the training data [34,35]. All MLNNs produced the same

five parameters as outputs.

A hyperbolic tangent function was used as the neuron transfer (activation) function. A stochastic

gradient descent method was used to minimize the cost function to obtain optimized weights and

biases [36]. An adaptive learning rate, initially set to 0.001, was used for weight updates. A tolerance

for optimization was set to 10−8. When the loss function did not improve by at least this tolerance

amount after ten consecutive iterations, convergence was considered to be reached and the training

was terminated.

3.1.2. Training Results

From the 50,000 values in the synthetic snow dataset, 45,000 were used for MLNN training while

the other 5,000 were used for performance evaluation. Snow parameter retrieval MLNN training

completed with an average R2 score across all parameters of 0.997 and a minimum band R2 score of

0.992. The snow impurity parameter had the largest average percent error (APE) and bias of all the

retrieval parameters. Training for albedo parameters and snow grain size performed well with all four

MLNNs producing high R2 scores (0.996 on average) and low APEs and bias. A different configuration

of neurons in the hidden layers might have yielded better results, but the average R2 scores already

indicated that we had obtained an acceptable fit. MLNN training performance versus model synthetic

data is shown in Figures 3–6 for the SBG, MODIS, SGLI, and Max-Min MLNNs.
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Figure 3. Results of SBG MLNN snow parameter training performance versus model synthetic data (N

= 45,000).

Figure 4. Results of MODIS MLNN snow parameter training performance versus model synthetic data

(N = 45,000).
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Figure 5. Results of SGLI MLNN snow parameter training performance versus model synthetic data

(N = 45,000).

Figure 6. Results of Max-Min MLNN snow parameter training performance versus model synthetic

data (N = 45,000).

3.1.3. Inversion model

Weights and biases obtained from the training were saved and used to create approximation

algorithms. The transfer (activation) function of the neurons was taken to be the hyperbolic tangent

function:

f (x) =
2

1 + exp[−2x]
− 1 =

ex
− e−x

ex + e−x
= tanh(x). (1)

In the output layer a linear transfer function was used to link the hidden layers to the output. The

exact expression of this MLNN approximation algorithm can be written as:

ym = b4,m +
N3

∑
l=1

w4,ml · f

{

b3,l +
N2

∑
k=1

w3,lk · f

[

b2,k +
N1

∑
j=1

w2,kj · f
(

b1,j +
N0

∑
i=1

w1,ji · xi

)

]

}

(2)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 September 2023                   doi:10.20944/preprints202309.1140.v1

https://doi.org/10.20944/preprints202309.1140.v1


9 of 15

where xi, i = 1, . . . , N0 is an element in the input layer.

In Eq. (2) w1,ji are the weights of the input layer, w2,kj, w3,lk, and w4,ml are the weights of the three

hidden layers, b1,j is the bias of the input layer, b2,k, b3,l , and b4,m are the biases of the three hidden

layers. f is the hyperbolic tangent function in Eq. (1). ym is the mth element in the output layer, which

in our case contains the snow grain size, snow impurity concentration, VIS albedo, NIR, albedo, and

VSWIR albedo.

4. Results and Discussion

4.1. Results

The main criterion used to evaluate the performance of each algorithm is accuracy, which we

define based on how close each predicted (retrieved) value is to its corresponding synthetic model

value. To determine accuracy we use the average percent difference (APD), the difference between

our predicted value and the model value in comparison to the model value (relative error), and the

mean absolute error (MAE), based on the difference between the predicted value and the synthetic

model value. A summary of the performance of the four snow parameter retrieval algorithms is shown

in Table 2. Overall all the algorithms performed well for retrievals of albedo and snow grain size.

The SBG algorithm offers improvements over the other algorithms for retrieval of snow impurity

concentration having the best R2 score and the lowest average percent difference (5.6% for SBG, versus

14%, 9.4%, and 7.8% for MODIS, SGLI, and Max-Min) and mean absolute error. The SGLI, MODIS and

Max-Min algorithms struggled to reliably estimate snow impurities in the 10−9 to 10−8 ranges, leading

to a worse performance than the SBG algorithm in this range. Evaluation of the performance of SBG,

MODIS, SGLI, and Max-Min prediction algorithms against synthetic data is shown in Figures 7–10.

Figure 7. Performance of SBG snow parameter retrieval algorithm predictions versus model synthetic

data (N = 5,000).
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Table 2. A summary of the performance of the three snow parameter retrieval algorithms based on R2

score, APD, and MAE.

SBG algorithm R2 Score APD MAE

Albedo VIS 0.999 0.660 % 0.004
Albedo NIR 0.999 0.673 % 0.001
Albedo VSWIR 0.999 0.670 % 0.002
Snow Grain Size 0.999 1.135 % 10.33 µm
Snow Impurity 0.998 5.586 % 4.754*10−8

MODIS algorithm R2 Score APD MAE

Albedo VIS 0.999 1.025 % 0.006
Albedo NIR 0.999 0.914 % 0.001
Albedo VSWIR 0.999 0.943 % 0.002
Snow Grain Size 0.998 1.602 % 14.78 µm
Snow Impurity 0.997 13.99 % 8.907*10−8

SGLI algorithm R2 Score APD MAE

Albedo VIS 0.999 0.699 % 0.004
Albedo NIR 0.999 0.809 % 0.001
Albedo VSWIR 0.999 0.744 % 0.002
Snow Grain Size 0.998 1.610 % 14.52 µm
Snow Impurity 0.997 9.34 % 6.148*10−8

Max-Min algorithm R2 Score APD MAE

Albedo VIS 0.999 0.618 % 0.004
Albedo NIR 0.999 0.688 % 0.001
Albedo VSWIR 0.999 0.641 % 0.002
Snow Grain Size 0.998 1.545 % 14.02 µm
Snow Impurity 0.998 7.829 % 5.336*10−8

Figure 8. Performance of MODIS snow parameter retrieval algorithm predictions versus model

synthetic data (N = 5,000).
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Figure 9. Performance of SGLI snow parameter retrieval algorithm predictions versus model synthetic

data (N = 5,000).

Figure 10. Performance of Max-Min snow parameter retrieval algorithm predictions versus model

synthetic data (N = 5,000).

4.2. Discussion

Our findings indicate that using continuous (hyperspectral) channels when developing a SPR

algorithm does offer some improvements over selecting specific (multispectral) wavelengths like

those available for sensors such as MODIS and SGLI. It is likely that the SBG algorithm outperformed

the other three algorithms when it comes to snow impurity because of its channel configuration.

Figure 1E) shows that for impurity values in the 10−9 to 10−8 range, radiances in the 380-600 nm

range are significantly affected by the impurity, while the impact is insignificant at longer wavelengths.

The SBG algorithm has twenty-three channels in this spectral range while the Min-Max and SGLI

algorithms have six channels and the MODIS algorithm only two. Both the MODIS, Figure 8, and
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SGLI, Figure 9, algorithms tended to overestimate very low impurity values and underestimate values

near and around 10−8, leading to an S like curve in the plots. This tendency is most noticeable for the

MODIS algorithm where the underestimation continues past 10−8 up to 10−7. To a lesser extent this S

like curving is also present in the Max-Min plots shown in Figure 10. The SBG algorithm, Figure 7,

performed better in these ranges with an APD of 14.1% compared to 30.3%, 23.3%, and 18.5% for

MODIS, SGLI, and Max-Min respectively. However the SBG algorithm does still overestimate very

low impurities near 10−9.

The use of channels based on a continuous spectrum configuration also shows small

improvements in predicting snow grain size. When comparing the SBG algorithm to the other

algorithms we observe a tighter grouping of data in the SBG plots (Figure 7). This tighter clustering

becomes more noticeable as snow grain size increases, with the SBG algorithm having a MAE of 31.9

µm for snow grains ranging from 1500 to 2500 µm compared to 48.7 µm, 45.8 µm, and 43.9 µm for

the MODIS, SGLI, and Max-Min algorithms. Figure 1D) shows that the variation in radiance across

all wavelengths becomes less pronounced as the grain size increases. We observe a much larger shift

when grain sizes increase from 50 to 300 µm than it increases from 900 to 2500 µm. This behavior likely

made it harder for the MLNNs to precisely evaluate changes in radiance caused by large snow grains,

leading to a larger deviation of prediction values from the model data for large grain sizes for the three

multi-band algorithms.

All four algorithms were able to accurately predict the albedo in the visible, near infrared, and

shortwave infrared spectral ranges. The reason is likely that the variation of albedo vs wavelengths is

much smoother than the variation of radiance vs wavelength, making albedo easy to predict from only

a few wavelength channels. However, since albedo mainly depends on the physical properties of snow,

to get an understanding of the global climate system it is not enough to solely predict this value. It is

possible that a snow sample with small grain size and high impurity could produce the same albedo

as a different snow sample with large grain size and low impurity. An illustration of this circumstance

is shown in Figure 11. Despite the large differences in grain sizes and impurity concentrations, the two

very different snow configurations are shown to yield the same VSWIR (380-2500 nm) albedo.

Figure 11. Radiance vs wavelength A) and Albedo vs wavelength B) for two simulated samples, both

with the same relative azimuthal angle of 90◦, viewing zenith angle of 22.5◦, solar zenith angle of 45◦.

The blue line has grain size of 2500 µm, and impurity concentration of 10−8, while the red line has grain

size of 640 µm, and impurity concentration of 10−6. Both samples have the same VSWIR (380-2500 nm)

albedo of 0.231 shown by the dashed black line.

The Max-Min algorithm contains channels at all of the peaks and valleys observed in our

illustration plots, Figures 1 & 2. These channels should contain the most contrasting values and

make it easy for a neural network to identify differences in retrieval parameters. If a continuous

spectrum then contained redundant channels we would expect the SBG algorithm and Max-Min

algorithm to perform similarly. However, there appears to be a marked improvement in accuracy

when using continuous spectral coverage. While the Max-Min algorithm did perform better than the
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other two multi-band approaches, it shares their discrepancies between predicted values and model

data for large snow grain sizes and the same tendency to overestimate small impurity concentrations.

Since changes in grain size, impurity, and geometry angles all affect the TOA radiance in unique

ways, it is perhaps not surprising that more spectral channels leads to increased accuracy. Our results

point to better neural network training and prediction algorithm performance when continuous

spectral coverage is utilized. However, equidistant spectral sampling, such as proposed/envisioned

for SBG, does not necessarily guarantee optimum performance. It seems reasonable to expect that

placing more sampling points in spectral regions with steep gradients than in regions where the

spectrum is relatively flat could be beneficial.

5. Conclusion

We have explored the impact of physical snow properties on TOA spectral radiance and how

machine learning neural networks could be used to form a snow parameter retrieval algorithm utilizing

multi-band and continuous (hyperspectral) coverage. We have determined that employing continuous

spectral coverage, such as that offered by the planned SBG VSWIR instrument, seems to offer some

improvements to the quality of snow parameter retrievals when compared with multi-band sensors

such as MODIS and SGLI by lowering the APD and MAE for snow grain size and snow impurity

concentration. While our study focused on snow parameter retrieval in a single homogeneous snow

layer, continuous (hyper) spectral coverage will likely show even more improvements for a vertically

inhomogeneous snow-pack consisting of multiple dissimilar layers. An area of future research could

be exploring how improvements offered by continuous spectral coverage affects parameter retrieval in

more diverse systems; such as systems with vertically inhomogeneous snow grain size and impurity

profiles, as well as snow systems containing “contaminants” such as algae and mineral particles.

Another avenue of research could be exploring benefits offered to cloud screening of optical imagery

involving snow. Continuous spectral coverage offers increased degrees of freedom for machine

learning algorithms to understand and quantify complex systems, this makes sensors with continuous

spectral coverage a good choice for future remote sensing endeavors.
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