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Abstract: Weak contact metric structures on a smooth manifold, introduced by V. Rovenski and
R. Wolak in 2022, have provided new insight into the theory of classical structures. In this paper,
we define new structures of this kind (called weak nearly Sasakian and weak nearly cosymplectic
and nearly Kahlerian structures) and study their geometry. We introduce weak nearly Kahlerian
manifolds (generalizing nearly Kdhlerian manifolds) and characterize weak nearly Sasakian and
weak nearly cosymplectic hypersurfaces in such Riemannian manifolds.
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1. Introduction

Nearly Kahler manifolds (M, ], ) are defined by condition that only the symmetric part of V]
vanishes, in contrast to the Kidhler case where V] = 0. Nearly Sasakian and nearly cosymplectic
manifolds M(¢, &, 7, g) are defined (see [1,2]) using a similar condition — by a constraint only on the
symmetric part of ¢ — starting from Sasakian and cosymplectic manifolds, respectively:

29(X,X)¢—n(Y)X,  nearly Sasakian.

(Vx )X = { . M

nearly cosymplectic.

These two classes of odd-dimensional counterparts of nearly Kdhler manifolds play a key role in the
classification of almost contact metric manifolds, see [3]. They also appeared in the study of harmonic
almost contact structures: a nearly cosymplectic structure, identified with a section of a twistor bundle,
defines a harmonic map, see [4]. In dimensions greater than 5: condition (1) is sufficient for a nearly
Sasakian manifold to be Sasakian, see [5], and a nearly cosymplectic manifold M?"*! splits into R x F2"
or B® x F#*~4 where Fis a nearly Kahler manifold and B is a nearly cosymplectic manifold, see [6].
Moreover, in dimension 5, any nearly cosymplectic manifold is Einstein with positive scalar curvature,
see [6]. In [6,7] it was proved that there are integrable distributions with totally geodesic leaves in a
nearly Sasakian manifold, which are either Sasakian or 5-dimensional nearly Sasakian manifolds.

In [8-10], we introduced and studied metric structures on a smooth manifold that generalize the
almost contact, Sasakian, cosymplectic, etc. metric structures. Such so-called “weak" structures (the
complex structure on the contact distribution is replaced by a nonsingular skew-symmetric tensor)
made it possible to take a new look at the theory of classical structures and find new applications.

In this paper we define new structures of this kind, called weak nearly Sasakian and weak nearly
cosymplectic structures, and study their geometry. In Section 2, following the introductory Section 1,
we recall some results regarding weak almost contact manifolds. In Section 3, we introduce weak nearly
Sasakian and weak nearly cosymplectic structures and study their geometry. In Section 4, we introduce
weak nearly Kahlerian manifolds (generalizing nearly Kéhlerian manifolds) and characterize weak
nearly Sasakian and weak nearly cosymplectic hypersurfaces in such Riemannian spaces. The proofs
use the properties of new tensors, as well as classical constructions.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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2. Preliminaries

A weak almost contact structure on a smooth manifold M?>"*! is a set (¢, Q,¢,7), where ¢ is a
(1,1)-tensor, ¢ is a vector field (called Reeb vector field) and 7 is a dual 1-form, satisfying

(/)2:7Q+77®§/ 77(‘:):1/ )

see [8,9], where Q is a nonsingular (1, 1)-tensor field such that
Q=2
By (2), 7 defines a 2n-dimensional distribution D = ker#. Assume that D is g-invariant, i.e.,
pX €D, VXeD, ®3)

as in the classical theory [11], where Q = id 1. By (3) and (2a), D is invariant for Q: Q(D) = D. A
“small" (1,1)-tensor Q = Q — id s is a measure of the difference between a weakly contact structure
and a contact one. Note that

Q9] =0, 50oQ=0, QZ=0.

A weak almost contact structure (¢, Q,,#) on a manifold M will be called normal if the following
tensor N (1) is identically zero:

NY(X,Y) = [ ¢](X,Y) +2d7(X,Y)E X, Y € X
Here, d(X,Y) = 1 {X(5(Y)) — Y(1(X)) — 7([X, Y])}, and the Nijenhuis torsion [¢, ¢] of ¢ is given by
[0, 91(X,Y) = @*[X, Y] + [9X, 9Y] — 9[9X, Y] — 9[X, Y], X,Y € Xp. )
If there is a Riemannian metric g on M such that

(X, 0Y) =g(X,QY) —n(X)n(Y), X, Y€ Xpm, ()

then (¢, Q, ¢, 1, g) is called a weak almost contact metric structure on M.

A weak almost contact manifold M(¢, Q, &, 1) endowed with a compatible Riemannian metric is
said to be a weak almost contact metric manifold and is denoted by M (¢, Q, &, 7,g). Setting Y = ¢ in (5),
we obtain as in the classical theory, 7(X) = g(X, ¢). By (5), we get g(X, Q X) = g(¢X, ¢X) > 0 for any
nonzero vector X € D; thus, Q is positive definite.

Using the Levi-Civita connection V of g, (4) can be written as

(@, 9](X,Y) = (¢Vye — Vyy @)X — (9Vxp — Voxo)Y. (6)
Definition 1. A weak contact metric structure is defined as a weak almost contact metric structure
satisfying
dn=®
where

®(X,Y) = g(X,9Y) (XY € X))

is called the fundamental 2-form. A normal weak contact metric manifold is called a weak Sasakian
manifold. A weak almost contact metric structure is said to be weak almost cosymplectic, if it is normal
and both @ and # are closed. If a weak almost cosymplectic structure is normal, then it is called weak
cosymplectic.
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A weak almost contact manifold is weak Sasakian if and only if it is Sasakian, see [8, Theorem 4.1].
For any weak almost cosymplectic manifold, the ¢-curves are geodesics, see [8, Corollary 1], and if
V ¢ = 0, then the manifold is weak cosymplectic, see [8, Theorem 5.2].

Remark 1. If an almost contact metric structure is normal and contact metric, then it is called Sasakian,
equivalently

(Vx @)Y = —g(X,Y)S+n(Y)X. @)
Three tensors N 2, N ®) and N 4 are well known in the classical theory, see [11]:

N@(X,Y) = (Egx 1) (Y) = (£gy 1)(X),
NON(X) = (£ 9)X = [£, X] — 9[2, X],
N®(X) = (£ 1) (X) = 24n(&, X).

Note that for a weak contact metric structure (¢, Q, ¢, 7, g), the tensors N 2 and N@ vanish; moreover,
N @) vanishes if and only if ¢ is a Killing vector field, see [8, Theorem 2.2]. Moreover, on a weak
Sasakian manifold, ¢ is a Killing vector field, see [8, Proposition 4.1].

3. Main results

Definition 2. An weak almost contact metric structure is called weak nearly Sasakian if
(Vx @)Y +(Vy )X = 28(X, V)¢ = (V)X =3 (X)Y. ®)
A weak almost contact metric structure is called weak nearly cosymplectic if ¢ is Killing,
(Vx @)Y+ (Vy @)X =0, ©)
or, equivalently, (1) is satisfied.

Example 1. Let a Riemannian manifold (M?**1, ¢) admit two nearly Sasakian structures (or, nearly
cosymplectic structures) with common Reeb vector field ¢ and and one-form 1 = g(¢, -). Suppose
that ¢ # ¢, are such that ¢ := @1 @2 + ¢2 ¢1 # 0. Then ¢ := (cost) ¢1 + (sint) ¢, for small t > 0
satisfies (8) (respectively, (9)) and ¢?> = —id + (sintcost) + 71 ® & Thus, (¢, Q,& 7,¢) is a weak
nearly Sasakian (respectively, weak nearly symplectic) structure on M with Q = id — (sint cost) ¢.

We will generalize the result in [2, Proposition 3.1].
Proposition 1. Both on weak nearly Sasakian and weak nearly cosymplectic manifolds with the condition
VQ=0, (10)
the vector field § is Killing.

Proof. Putting X =Y = & in (8) or (9), we find (V¢ ¢)¢ = 0, or ¢V ¢ = 0. Applying ¢ to this and
using (2) and 17(V¢ ¢) = 0, we obtain

0=¢*Vel=—QVeZ+n(Ved)E=—QVel.
Since the (1,1)-tensor Q is nonsingular, we get

Ve =0.
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Then we calculate
(Ven)X =¢8(g(8, X)) — (¢, Ve X) = ¢(Ve g, X) =0.

Thus
Vé{ n= 0.

Applying the derivative in the ¢-direction to (5) and using V: Q = 0 and V71 = 0, we find

§((Ve @)X, 9Y) +g(9X, (Ve 9)Y) = Ve g(9X, 9Y)
=8(X, (Ve Q)Y) + (Vem)(X)n(Y) +1(X)(Ven)(Y) = 0.

On a weak nearly Sasakian manifold, using (8) and 7 o Q = 0, yields

(Ve @)X, 9Y) +8(9X, (Ve 9)Y)
= —g((Vx 9)Z, 9Y) — g(¢X,(Vy 9){)
+8(27(X)E—X =&, 9Y) +8(21n(Y)E-Y = ¢, ¢X)
= —g(Vx & ¢*Y) — g(¢*X, Vy ) — (X, 9Y) — g(Y, 9X)
=g8(Vx & QY) +8(QX, Vy¢)
= 8(Vx & Y)+8(X,Vy &) +8(Vx§ QY) +g(QX, Vv §)
= (£8)(X,Y) — g(£, (VxQ)Y) — s((VyQ)X, &)

Similarly, on a weak nearly cosymplectic manifold, using (9) yields

(£28)(X,Y) = g(&, (VxQ)Y) — g((VyQ)X, &) = 0.
From the above, using VQ = 0, for both cases we get £ ¢ = 0, that is ¢ is Killing. [
We will generalize [1, Theorem 5.2].

Proposition 2. There are no weak nearly cosymplectic structures which are weak contact metric structures.

Proof. Suppose that our weak nearly cosymplectic manifold is weak contact metric. Since also ¢ is
Killing, then M is weak K-contact. By [10, Theorem 2], the following holds:

Vi =—o.

Also, by [10, Corollary 2], the ¢-sectional curvature is positive, i.e., K(¢, X) > 0 (X L &). Thus, if X # 0
is a vector orthogonal to ¢, then
0 <K(¢, X) =g(VeVxG — Vx Vel — Vg x8, X)
= g(=(Vep)(X) + ¢*X, X) = g((Vx9)E, X) — 8(¢X, ¢X)
= —8(p(Vx$), X) +8(9?X, X) = 2g(¢°X, X).
This contradicts to the following: g(¢*X, X) = —g(¢X, ¢X) <0. O

We will generalize [2, Theorem 5.2] that a normal nearly Sasakian structure is Sasakian.
Theorem 1. For a weak nearly Sasakian structure with the condition (10), normality (N ) = 0) is equivalent

to weak contact metric (dy = ®@). In particular, a normal weak nearly Sasakian structure with condition (10) is
Sasakian.
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Proof. First, we will show that a weak nearly Sasakian structure with conditions (10) and 70 N (1) =0
is a weak contact metric structure. Applying V¢ to (2) and using V: Q =0, Vg7 = 0and V¢ ¢ =0,
we find

(Ve ) 9X + ¢(Ve 9)X = (Ve ¢*)X = —(V: Q)X + Ve(1(X) &) = 0.

We compute, using (6),

1(le, @](X,Y)) =1((Vex @)Y — (Vv ¢)X)
=1((Vx )Y —(Vy @) ¢X) —4g(X, 9Y)
=1(e(VyeX) —9(Vx@)Y) —48(X,9Y) = —4g(X,9Y).
Thus, if (N (D(X,Y)) =0, thend (X, Y) =2g(X, ¢ Y).

Conversely, if a weak nearly Sasakian structure with condition (10) is also a weak contact metric
structure, then ® = d#, hence d ® = 0, where

dD(X,Y,7) = % (XD(Y,Z) + YO(Z,X) + ZD(X,Y)
—@(X,Y),2) — ®([2,X],Y) — @(Y, 7], X)}.

It is easy to calculate

3d9(X,Y,Z) = —g((Vx9)Y,Z) + g((Vy )X, Z) —g((VZz )X, Y)
=—8((Vx9)Y,Z) + g(—=(Vx @)Y =28(X,Y) ¢ +n(X)Y + 1 (Y)X, Z)
—8(=(Vx9)Z-28(X,Z)+n(X)Z+1n(2)X,Y)
=-38((Vx9)Y,Z) =3g(X,Y)n(Z) +38(X, Z) n(Y).

Hence (7) is true. Using (7) in (6), we find that our structure is normal:

(@, 9](X,Y) = —2d3(X,Y) ¢,

By the above, a weak nearly Sasakian structure with conditions (10) and N 1) = 0 is weak Sasakian
(see Definition 1). Using [8, Theorem 4.1] completes the proof of the second assertion. [

4. Hypersurfaces of weak nearly Kédhlerian manifolds

Here, we define weak nearly Kadhlerian manifolds (generalizing nearly Kéhlerian manifolds) and
study weak nearly Sasakian and weak nearly cosymplectic hypersurfaces in such Riemannian spaces.

Definition 3. A Riemannian manifold (M, §) equipped with a skew-symmetric (1,1)-tensor ¢ such
that the tensor ¢? is negative definite will be called weak Hermitian manifold. Such (M, ¢, ) will be
called weak nearly Kiihlerian manifold, if (Vx )X = 0 (X € TM), where V is the Levi-Civita connection
of g, or equivalently,

(Vx @)Y+ (Vy@)X =0 (X, Y e TM). (11)

Remark 2. Several authors studied the problem of finding skew-symmetric parallel 2-tensors (different
from almost complex structures) on a Riemannian space and classified such tensors (e.g., [12]) or
proved that some spaces do not admit them (e.g., [13]).


https://doi.org/10.20944/preprints202309.1094.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 September 2023 doi:10.20944/preprints202309.1094.v1

6 0f 8

The scalar second fundamental form / of a hypersurface M C M with a unit normal N is related
with V and the Levi-Civita connection V of induced metric ¢ by the Gauss equation

VxY=VxY+h(X,Y)N (X, Y €TM). (12)
The Weingarten operator Ay : X — —VxN is related with 1 by the following equality:
S((X,Y),N) = g(An(X),Y) (X,Y € TM).

Lemma 1. A hypersurface M with a unit normal N and induced metric g in a weak Hermitian manifold
(M, ¢, §) inherits a weak almost contact structure (¢, Q,¢,1,8) given by

C=¢N, 1=3(N,-), ¢=9¢+3@N, )N, Q=-¢"+2(@°N, ) N.
Proof. Using the skew-symmetry of ¢ (e.g., $(¢§N, N) = 0), we verify (2) for X € TM:

92X = (X — (X, N) N)

= ¢(¢pX — (X, N)N) — g(¢(¢X — g(¢X,N)N),N) N

= ¢°X —g(¢>N,X) + (¢ N,X) N +g(¢X,N) g(§ N,N) N
= -QX+1(X)¢.

Since @2 is negative definite,
8(QX, X) = g(=¢*X +2(¢*N, X) N, X) = =3($*X, X) > 0
for X € TM, i.e., the tensor Q is positive definite. [J
A hypersurface is called quasi-umbilical if its 2nd fundamental form has the view
h(X,Y) = Ag(X,Y) + Bu(X) u(Y),

where A, B are smooth functions on M and y is a non-vanishing one-form.

The following theorem generalizes the fact (see [1,2]) that a hypersurface of a nearly Kahler
manifold is nearly Sasakian or nearly cosymplectic if and only if it is quasi-umbilical with respect to
the (almost) contact form.

Theorem 2. Let M?"+1 be a hypersurface of a weak nearly Kihlerian manifold (M?"+2, ¢, ). Then the induced
structure (¢, Q,&,1,g) on M is

(i) weak nearly Sasakian, (i) weak nearly cosymplectic,
if and only if the hypersurface M is quasi-umbilical with the following second fundamental form:

() h(X,Y) = g(X,Y) + (1(¢, &) = 1) n(X) n(Y), (ii) (X, Y) = h(&, &) n(X) n(Y). (13)
Moreover, if (Vx@*)T = 0 (X € TM) then condition VxQ = 0 (X € TM) holds.
Proof. Substituting Y = ¢Y — §(¢ N,Y) Nin (Vxp)Y, and using (12) and Lemma 1, we get

(Vx)Y = Vx(9Y) — ¢(VxY)
= (Vx@)Y + n(V)AN(X) = h(X,Y) 4+ [X(7(Y)) = n(VxY) + h(X, 9Y)| N

Thus, the TM-component of the weak nearly Kéhlerian condition (11) takes the form

(Vx@)Y + (Vye)X =21(X,Y) +n(X)An(Y) +7(Y) AN (X) = 0. (14)
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Then we calculate (VxQ)Y for X,Y € TM, using Lemma 1, (12) and @N = —N,
(VxQ)Y = Vx(QY) — Q(VxY)
= (Vx(=@*Y + g(¢#*N,Y)N) — h(X, QY)N + ¢*(VxY — h(X,Y)N)
—8(*N,VxY —h(X,Y)N)N) "
= (=(Vx(@*Y)) + @*(VxY)) T = =((Vx¢*)Y) ",
where T is the TM-component of a vector.
(i) If the structure is weak nearly Sasakian, see (8), then from (14) we get
28(X,Y)E = n(Y)X = n(X)Y =2h(X,Y) { +n(X)An(Y) +7(Y)AN(X) =0,
from which, taking the scalar product with ¢, we obtain
28(X,Y) =23(Y)n(X) = 21(X,Y) +n(X) (Y, &) +1(Y) h(X, &) = 0. (15)
Setting Y = ¢ and taking the scalar product with ¢, we obtain
h(X,¢) = h(g, &) n(X). (16)

Using this in (15), we obtain (13)(i).
Conversely, if (13)(i) is valid, then substituting Y = ¢ yields (16). Using (13)(i), we express the
Weingarten operator as

AN(X) = X+ (h(E,8) = 1) n(X) &

Substituting the above expressions of h(X,Y),h(X, ) and Ay in (14) gives (8), thus the structure is
weak nearly Sasakian.

(i) If the structure is weak nearly cosymplectic, see (9), then from (14) we get
21(X,Y) & = n(X)AN(Y) +7(Y)An(X),
from which, taking the scalar product with ¢, we obtain
2h(X,Y) = n(X) h(Y, ) + 1 (Y) (X, E). (17)

Setting Y = ¢ and taking the scalar product with ¢, we obtain (16). Using this in (17), we obtain (13)(ii).
Conversely, if (13)(ii) is valid, then substituting Y = ¢ yields (16). Using (13)(ii), we express the
Weingarten operator as

AN(X) = h(¢, ) n(X) .

Substituting the above expressions of h(X,Y),h(X, ) and Ay in (14) gives (9), thus the structure is
weak nearly cosymplectic.

5. Conclusions

We have shown that weak nearly Sasakian and weak nearly cosymplectic structures are useful
tools for studying almost contact metric structures and Killing vector fields. Some classical results
have been extended in this paper to weak nearly Sasakian and weak nearly cosymplectic structures.
Based on the numerous applications of nearly Sasakian and nearly cosymplectic structures, we expect
that certain weak structures will also be useful for geometry and physics, e.g., in QFT.

The idea of considering the entire bundle of almost-complex structures compatible with a given
metric led to the twistor construction and then to twistor string theory. Thus, it may be interesting to
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consider the entire bundle of weak Hermitian or weak nearly Kahlerian structures (see Definition 3)
that are compatible with a given metric.

In conclusion, we ask the following questions for dimensions greater than five: find conditions
under which

(i) a weak nearly Sasakian manifold is Sasakian,
(if) a weak nearly Sasakian manifold has totally geodesic foliations,
(iii) a weak nearly cosymplectic manifold is a Riemannian product.

We also ask the question (inspired by [6, Corollary 6.4]): when a hypersurface in a weak nearly Kahler
6-dimensional manifold has Sasaki-Einstein structure.

These questions can be answered by generalizing some deep results on nearly Sasakian and nearly
cosymplectic manifolds (e.g., [3,5,6,14]) to their weak analogues.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Blair, D.E. and Showers, D.K. Almost contact manifolds with Killing structure tensors, II. J. Diff. Geometry, 9
(1974), 577-582

2. Blair, D.E., Showers, D.K. and Komatu, Y. Nearly Sasakian manifolds. Kodai Math. Sem. Rep. 27 (1976),
175-180

3. Chinea, D. and Gonzalez, C. A classification of almost contact metric manifolds. Ann. Mat. Pura Appl. (IV)
156, 15-36 (1990)

4. Loubeau, E. and Vergara-Diaz, E. The harmonicity of nearly cosymplectic structures. Trans. Am.Math. Soc.
367, 5301-5327 (2015)

5. Nicola, A.D., Dileo, G. and Yudin, I. On nearly Sasakian and nearly cosymplectic manifolds, Annali di
Matematica, 197 (2018), 127-138, https://doi.org/10.1007 /s10231-017-0671-2

6. Cappelletti-Montano, B. and Dileo, G. Nearly Sasakian geometry and SU(2)-structures. Ann. Mat. Pura Appl.
(IV) 195, 897-922 (2016)

7. Massamba, F. and Nzunogera, A. A Note on Nearly Sasakian Manifolds. Mathematics 2023, 11, 2634

8. Patra D.S. and Rovenski V. On the rigidity of the Sasakian structure and characterization of cosymplectic
manifolds. Differential Geometry and its Applications, 90 (2023) 102043

9. Rovenski V. and Wolak R. New metric structures on g-foliations, Indagationes Mathematicae, 33 (2022),
518-532

10. Rovenski, V. Generalized Ricci solitons and Einstein metrics on weak K-contact manifolds. Communications
in Analysis and Mechanics, 2023, Volume 15, Issue 2: 177-188

11. Blair, D.E. Riemannian geometry of contact and symplectic manifolds, Second edition, Springer-Verlag, New York,
2010.

12. Herrera A.C. Parallel skew-symmetric tensors on 4-dimensional metric Lie algebras. Preprint, 2022,
ArXiv[Math.DG]:2012.09356

13. Kiran Kumar D.L. and Nagaraja H.G. Second order parallel tensor and Ricci solitons on generalized
(k; u)-space forms, Mathematical Advances in Pure and Applied Sciences, 2019, Vol. 2, No. 1, 1-7

14. Olszak, Z. Nearly Sasakian manifolds. Tensor (N.S.) 33(3), 277-286 (1979)

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202309.1094.v1

	Introduction
	Preliminaries
	Main results
	Hypersurfaces of weak nearly Kählerian manifolds
	Conclusions
	References

