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Abstract: Vehicle re-identification research under surveillance cameras has yielded impressive results.
However, the challenge of Unmanned Aerial Vehicle (UAV)-based vehicle re-identification (RelD)
presents a high degree of flexibility, mainly due to complicated shooting angles, occlusions, low
discrimination of top-down features, and significant changes in vehicle scales. To address this, we
propose a novel Dual Mixing Attention Network (DMANet) to extract discriminative features robust
to variations in viewpoint. Specifically, we first present a plug-and-play Dual Mixing Attention
Module (DMAM) to capture pixel-level pairwise relationships and channel dependencies, where
DMAM is composed of Spatial Mixing Attention (SMA) and Channel Mixing Attention (CMA). First,
the original feature is divided according to the dimensions of spatial and channel to obtain multiple
subspaces. Then, a learnable weight is applied to capture the dependencies between local features in
the mixture space. Finally, the features extracted from all subspaces are aggregated to promote their
comprehensive feature interaction. In addition, DMAM can be easily plugged into any depth of the
backbone network to improve vehicle recognition. The experimental results show that the proposed
structure performs better than the representative method in the UAV-based vehicle ReID. Our code
and models will be published publicly.

Keywords: dual mixing attention; UAV re-identification; deep learning

1. Introduction

Vehicle re-identification (ReID) [1-9] holds great importance in the realm of Intelligent
Transportation Systems (ITS) in the context of smart cities. This technology facilitates the identification
of the exact vehicle across various surveillance cameras by analyzing vehicle images. Traditionally,
license plate images have been employed for vehicle identification. However, obtaining clear license
plate information can be challenging due to various external factors like obstructed license plates,
obstacles, and image blurriness.

Thanks to the success of deep learning, Vehicle identification algorithm in the field of surveillance
cameras again achieved impressive results [10-17] . Typically, these methods [11,17-20] employ a deep
metric learning model that relies on feature extraction networks. The objective is to train the model to
distinguish between vehicles with the same ID and those with different IDs to accomplish vehicle RelD.
However, as shown in Figure 1, there are discernible disparities between vehicle images captured by
Unmanned Aerial Vehicles (UAV) and those acquired through stationary cameras. The RelD challenge
regarding UAV imagery introduces unique complexities stemming from intricate shooting angles,
occlusions, limited discriminative power of top-down features, and substantial variations in vehicle
scales.

It is worth mentioning that traditional vehicle ReID methods, primarily designed for stationary
cameras, face challenges in delivering optimal performance when adapted to the domain of UAV-based
RelD. Firstly, the shooting angle of UAVs is complex. UAVs can shoot at different positions and angles,
and the camera’s viewpoint will change accordingly. This viewpoint change may cause the same object
or scene to have different appearances and characteristics in different images. Second, the UAV can
overlook or squint at a target or scene at different angles, resulting in viewpoint changes in the image.
This viewpoint change may cause deformation or occlusion of the target shape, thus causing difficulties
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for feature extraction. To solve the above problems, it is necessary to add a mechanism [3,21-23] that
can extract more detailed features when RelD extracts features to deal with the challenges brought by
the drone perspective. The change in UAV viewpoint makes the feature extraction algorithm need
a certain robustness, which can correctly identify and describe the target in the case of significant
changes in viewpoint. The difference in UAV’s view angle makes the feature extraction algorithm
need to have the ability to adapt to shape changes and occlusions to improve the feature reliability and
robustness in different views.

In recent years, the attention mechanism has gained significant popularity across multiple domains
of deep convolutional neural networks. Its fundamental concept revolves around identifying the
most crucial information for a given target task from a vast volume of available data. The attention
mechanism selectively focuses on the image’s different regions or feature channels to improve the
model’s attention and perception ability for crucial visual content. In the context of UAV-based vehicle
RelD, the attention mechanism enables the model to enhance its perception capabilities by selectively
highlighting the vehicle’s specific regions or feature channels.

However, most attention mechanisms [23-26] focus on extracting features only from channels
or spaces. The channel attention mechanism can effectively enhance essential channels, but it cannot
deal with the problem of slight inter-class similarity. Spatial attention mechanisms can selectively
amplify or suppress features in specific regions spatially, but they ignore the relationship between
channels. To overcome the shortcomings of a single attention mechanism, recent studies have begun
to combine channel and spatial attention [27-29] . Such a hybrid attention mechanism can consider the
relationship between channel and space at the same time to better capture the critical information in the
input feature tensor. By introducing multiple branches of the attention mechanism or fusing different
attention weights, the interaction between features can be modeled more comprehensively. Shuffle
Attention (SA) [27] divides molecular channels to extract key channel features and local spatial fusion
features, with each subchannel acquiring channel and spatial fusion attention. The Bottleneck Attention
Module (BAM) [28] is a technique that generates an attention map through two distinct pathways:
channel and spatial. On the other hand, the Dual Attention Network (DANet) [29] incorporates two
different types of attention modules on dilated Fully Convolutional Networks (FCN). These attention
modules effectively capture semantic dependencies in both spatial and channel dimensions.

Most methods make the input feature map directly pass through the fused attention. At the
same time, SA [27] can provide richer feature representation by dividing the subchannels, which
better capture the structure and associations in images or other data. However, the SA [27] method of
dividing the channel into subchannels mainly focuses on weighting the input features in the channel
dimension, ignoring the possible details in the spatial dimension.

For that, our proposed Dual Mixing Attention Module (DMAM), which combines Spatial Mixing
Attention (SMA) with Channel Mixing Attention (CMA), in which the Original feature is divided
according to the dimensions of spatial and channel to obtain multiple subspaces. Each sub-feature map
is processed independently, and the features of different channels and local regions can be extracted so
that the network can better associate local features with the whole feature. Then, a learnable weight is
applied to capture the dependencies between local features in the mixture space. In conclusion, the
features extracted from multiple subspaces are merged to enhance their comprehensive interaction.
This approach enables the extraction of more resilient features and leads to improved recognition
accuracy. The key contributions of this method are outlined as follows:

e We introduce a novel Dual Mixing Attention Network (DMANet) designed to handle the
challenges of Unmanned Aerial Vehicle (UAV)-based vehicle re-identification (RelD). DMANet
effectively addresses issues related to shooting angles, occlusions, top-down features, and scale
variations, resulting in enhanced viewpoint-robust feature extraction.

e Our proposed Dual Mixing Attention Module (DMAM) employs Spatial Mixing Attention
(SMA) and Channel Mixing Attention (CMA) to capture pixel-level pairwise relationships and
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channel dependencies. This modular design fosters comprehensive feature interactions, improving
discriminative feature extraction under varying viewpoints.

o The versatility of DMAM allows its seamless integration into existing backbone networks
at varying depths, significantly enhancing vehicle discrimination performance. Our approach
demonstrates superior performance through extensive experiments compared to representative
methods in the UAV-based vehicle re-identification task, affirming its efficacy in challenging aerial
scenarios.

The structure of the paper will be as follows: In Section 2, a comprehensive review and discussion
of related studies will be presented. The proposed approach will be elaborated in Section 3, providing
a detailed description. Following this, Section 4 will present the experimental results along with
comparisons. Finally, conclusions will be provided in Section 5.

(a) Surveillance cameras (b) UAV cameras
Figure 1. Comparison of two types of vehicle images. There is a significant difference between the
vehicle from the UAV perspective and the vehicle from the fixed camera. The vehicle under the
fixed camera shooting angle is relatively fixed. In the view of UAVs, the shooting angles of cars are
changeable, and there are many top-down shooting angles.

2. Related Work

2.1. Vehicle Re-Identification

Re-ID problem [3,30] is first explored and applied to humans. Compared with pedestrian RelD,
vehicle RelD is more challenging. Firstly, vehicles tend to have high similarity in appearance, especially
in the case of the same brand, model, or color. A higher similarity makes vehicle re-identification
more challenging because relatively few features may distinguish different vehicles, and there is
little difference between features. Second, vehicle re-identification may face more significant pose
variation than human re-identification. Vehicles may appear at different angles, positions, and rotations,
resulting in changes in the geometry and appearance characteristics of the vehicle, which increases
the difficulty of matching and alignment. Traditionally, vehicle Re-ID problems have been solved by
combining sensor data with other clues [31-36] , such as vehicle travel time [31] and wireless magnetic
sensors [32] . Although the sensor technology can get better detection results, it can not meet the
needs of practical applications because of its high detection cost. Therefore, we should pay more
attention to more cost-effective ways that can be viewed as basic. In theory, based on the vehicle license
plate number, feature recognition technology is the most reliable and most accurate again [33,34] .
However, the camera’s multi-angle, illumination, and resolution significantly influence license plate
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identification accuracy. Besides, criminals block, decorate, forge, or remove license plates, making
re-identifying vehicles only by license plate information less reliable. Accordingly, researchers have
considered vehicle attributes and appearance characteristics such as shape, color, and texture [35,36] .

With the development of neural networks, deep learning-based approaches have outshone
others [10,12] . Significant changes in camera angles can lead to substantial differences in local critical
areas for vehicle re-identification, which leads to low precision. Hybrid Pyramidal Graph Network
(HPGN) citeshen2021exploring proposes a novel pyramid graph network targeting features, closely
connected behind the backbone network to explore multi-scale spatial structural features. Zheng et
al. [10] propose the Deep Feature representations jointly guided by the meaningful attributes, including
Camera Views, vehicle Types and Colors (DF-CVTC), a unified depth convolution framework for
joint learning of depth feature representations guided by meaningful attributes, including camera
view, vehicle type, and color of vehicle re-identification. Huang et al. [12] raised a multi-granularity
Deep Feature Fusion with Multiple Granularity (DFFMG) methods or vehicle re-identification, which
uses global and local feature fusion to segment vehicle images along two directions (i.e., vertical
and horizontal), and integrates discriminant information of different granularity. Graph interactive
Transformer (GiT) [37] proposes a structure where charts and transformers constantly interact, enabling
close collaboration between global and local features for vehicle re-identification. The efficient
multiresolution network (EMRN) [38] proposes a multiresolution features dimension uniform module
to fix dimensional features from images of varying resolutions.

Although the current vehicle ReID method plays a specific role in the fixed camera perspective.
However, the vehicle space photographed from the UAV perspective changes significantly, and
extracting features from the top-down vertical Angle is difficult. Moreover, the shooting Angle of
UAVs is complex. UAVs can overlook or squint at a target or scene at different angles, resulting in
viewpoint changes in the image. The current method needs to be revised to solve the above problems
well, and further research is required.

2.2. Attention Mechanism

The attention mechanism uses deep neural networks to imitate human cognitive processes. The
method has been widely applied in computer vision, with the characteristic of learning more skills to
express [15-17] Zhou et al. [15] constructed a motion attention transfer (MATNet) attention framework
based on human visual attention behavior for semantic segmentation tasks, solving the problem of
insufficient data sets of basic facts. In addition, a new weakly supervised semantic segmentation group
learning framework [16] is proposed. The attention mechanism can also solve the problem of detection
and identification of human interaction in images (HOI) [17] .

According to [39,40] , for vehicle RelD, the attention mechanism concentrates on regions that
correlate to delicate and distinct image areas, including windshield stickers and custom paints. The
attention mechanism automatically extracts the characteristics of the distinct regions, increasing the
vehicle re-identification task’s accuracy. Khorramshahi et al. [39] found that most re-identification
methods focus on the critical point locations. However, these point locations weigh differently in
distinguishing cars. As a result, they created a dual-path adaptive attention model for the two-path
vehicle RelD. The oriented conditional component appearance path learns to capture local discriminant
traits by concentrating on the most instructive critical spots, whereas the global appearance path catches
macroscopic vehicle features. Teng et al. [40] presented a spatial and channel attention network based
on Diffusion-Convolution Neural Network (DCNN). This attention model includes a spatial attention
branch and a channel attention branch, which adjusts the output weights of different locations and
channels separately to highlight the outputs in the distinguished regions and channels. The attention
model refines the feature map and can automatically extract more discriminant features.

Although these attention mechanisms fuse attention to important areas or channels by combining
different attention branches, mixed attention tends to learn along a single dimension, ignoring the
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features of the remaining dimensions. With significant space, perspective, and scene changes, the UAV
perspective has excellent challenges for the attention mechanism.

3. Proposed Method

3.1. Dual Mixing Attention Module

We use a standard ResNet-50 as our backbone to extract features. Our proposed DMAM shown in
Figure 2 . Because the vehicle space photographed from the UAV perspective changes significantly, and
the shooting angle of UAVs is complex. UAVs can overlook or squint at a target or scene at different
angles, resulting in viewpoint changes in the image. Currently, some attention mechanisms use channel
or spatial attention mechanisms. However, spatial attention is more focused on the space region but
ignores the different characteristics of the channel. Channel attention filters important feature channels
while missing spatial features. Although partial attention mechanisms use channel and spatial fusion
attention, mixed attention tends to learn along a single dimension, ignoring the remaining dimensions’
features. To address this, we propose a novel DMAM to capture pixel-level pairwise relationships and
channel dependencies, where DMAM comprises SMA and CMA. To enhance vehicle RelD, the DMAM
can also be easily added to backbone networks at any level. We denote an input original feature as
X € REXHXW which goes through DMAM and output enhanced feature as Z € R *H*W._ C denotes
the number of channels, H and W denote the height and width, respectively.

1 [0 = . . 1
! wrfonfi,  Dual Mixing Attention |
X | — !
.. c ; Enhanced Feature
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(T - 1
| Xeur = ;
| C sl o |E [T,
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Figure 2. An overview of the proposed Dual Mixing Attention Module (DMAM) framework. The
proposed method mainly contains four components: (1) The Original feature is divided into two
branches. (2) Feature map X, divides n sub-channels xi along the channel (C). Feature map X
divides m subspaces x. along space (HW). (3) Feature maps x. and x| were aggregated after entering
Channel Mixing Attention (CMA) and Spatial Mixing Attention (SMA), respectively. (4) After passing
convolution (Cov), Batch Normalization (Bn), and Rectified Linear Unit (Relu), the enhanced feature is
finally output through the residual module.

Firstly, the original feature graph is split according to the dimensions of space and channel, and
multiple subspaces are obtained, namely: Xc= {x}, x..., x?} and Xg= {x, x?..., x™}. Each sub-feature
map is processed independently, and the features of different channels and local regions can be
extracted so that the network can better associate local features with the whole feature. Secondly,
channel subfeature and spatial subfeature, x. and xi, respectively, are sent into CMA and SMA to learn
channels and spatial mixed features. The output is xiCout and x;mt. The dimensions of feature maps xt,
Xeou ar€ €/1 X h X w, and the dimensions of feature maps xg , x5, are hw/m X c. The hybrid features
increase the ability to input data model diverse, which better extracts complex feature representations
from the uav perspective. Third, the features extracted from their respective spaces are aggregated.
After reshaping, the feature maps are transformed into X,,, and Xs,,,. After concat, the output of the
two feature maps is Xout. The aggregation of features of multiple subspaces enhances the correlation
between features. Integrating features promotes the interaction and information transfer between
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different features. Moreover, the generalization ability is also improved. Fourth, the feature map Xout
passes through a set of 1 x1 convolution (Cov), Batch Normalization (Bn), and Rectified Linear Unit

/
out*

from 2C x H x W to C x H x W. Bn is normalized, changing the data distribution and preventing
gradient explosion. As an activation function, Relu has low computational complexity, which improves
the speed of the neural network gradient descent algorithm to better cope with significant changes
in vehicle size. Cov, Bn, and Relu effectively enhance the performance of the model and better learn
complex or occluding features. Finally, the feature map X/out uses the residual structure to learn the
original feature map through gap connections, which can accelerate the model’s convergence rate,

(Relu), with an output of feature map X,,;- The 1x1 Cov changes the dimension of the feature graph

better use the information of previous levels, and better identify the features of the top-down vertical
view shot by the UAV.

After several steps, we proposed a Dual Mixing Attention Module, including subspace
segmentation, learning channels and spatial hybrid features, feature aggregation, convolutional
normalization activation, and residual structure. DMAM can be connected behind the backbone
network to make the features more profound and expressive, effectively coping with complicated
shooting angles, occlusions, low discrimination of top-down features, and significant changes in
vehicle scales. DMAM improves the robustness and discrimination of features, making the features
more profound and expressive, thus improving the model’s performance in RelD tasks.

3.2. Channel Mixing Attention

Channel Mixing Attention splits the feature map along the channel. Then, progressively merge
the channel and spatial attention to obtain the CMA. The model can understand and represent the
input data more comprehensively through this synthesis, improving features’ distinguishing ability
and generalization performance.

CMA is broken down into three phases, as depicted in Figure 3 : Firstly, the dimension of channel
subfeature x. is C/N x H x W, splitting along the channel into feature maps xiCO and x} ,» as the input
feature maps of space and channel attention. Secondly, the spatial input feature map x is multiplied
by group norm (G,) and shuffing (S¢) to extract the features of x. space. More discriminative features
are extracted by focusing on the critical space areas of vehicles through spatial attention. Gy, is divided
into g groups along the channel. The mean and variance of each group are summed. The formula for
Gy, is as follows:

1
Gu(X) = 5 (X—p), )
the parameter y represents the mean, and the parameter ¢ illustrates the variance. The formula for y is
as follows:
1 i N
W) = == aw X. €
(C/G)HW /= =
The formula for ¢ is as follows:
2

6(x) = \/m il Yoot (X = u(x))" +¢ ®)

the the parameter ¢ is a tiny constant. Shuffing uses variable parameters to extract the feature weights of
the subspace so that the model can better filter and focus on essential feature channels. The calculation
formula is as follows:

S¢(x) = weight x x + bias. 4)

In the above equation, parameters weight and bias are variable parameters. By calculating the weight
of each channel in the feature graph, it is possible to assign different importance to the features of
different channels. The model’s performance can be improved by focusing more intensively on the
feature channels that are more helpful to the task.
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Figure 3. An overview of Spatial Mixing Attention (SMA) and Channel Mixing Attention (CMA).
The process for CMA and SMA is similar. The CMA and SMA mainly contains three components:
(1) The input feature map is divided into two sub-feature maps. (2) One branch is multiplied by
GroupNorm and Shuffing to extract the features of the space. After Adaptive Average Pooling and
shuffing, the other was multiplied by subfeature maps to extract channel features. (3) Finally, concat
gets the fusion feature.

In another branch, feature map xi , is sequentially subjected to adaptive average pool (A,) and
shuffing. The output is multiplied by feature map x; to extract the spatial features of x} feature maps.
Spatial attention learns the importance of different locations and weights features according to this
importance. A, changes the dimensions of feature map xi, from C/2N x H x W to C/2N x 1 x 1,
which is used to extract the spatial features of the feature map.

Finally, the output dimension after concatis C/N x H x W. The output feature map xicout contains
attention to feature graph channels and Spaces. By mixing channel and spatial attention, the model
can focus more precisely on different channels, locations, and correlations. The model can better adapt
to different scales, shapes, and positions of vehicles photographed by UAVs.

3.3. Spatial Mixing Attention

SMA is similar to CMA. The difference between the two is that CMA groups feature maps in
channel latitude, mainly focusing on the attention of each set of channels. In contrast, SMA groups
feature maps in spatial dimensions. The input matrix Xg € RFW/N*C_In SMA, attention is used to
weight and select features in the spatial dimension. However, in CMA, the attention mechanism is
used to weight and choose features in the channel dimension.

The SMA was also divided into two branches, one of which went through G,,shuffing, and
multiplied with xi to extract channel features. The other one went through the adaptive average
pool,shuffing and multiplying by feature map x. to extract spatial features. Finally, the output
dimension after concatis HW /M x C.

By dividing the molecular space, the model can divide the feature map into different subregions
and calculate the attention weight of each subregion. This approach focuses more accurately on the
importance of different spatial locations, allowing the model to capture local information about the
vehicle better. This approach considers the relationship between different locations and channels while
retaining the importance of spatial location. It helps the model understand the interaction of different
channels at various locations, thus improving the consistency and accuracy of feature representation.
It has great potential when dealing with complex UAV perspectives.
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4. Analysis And Experiments

4.1. Datasets

UAV-VelD [41] dataset contains 41,917 images covering 4,601 vehicles. The UAV-VelD dataset
comprises videos taken by drones at locations such as highway interchanges, intersections, parking
lots, etc., under different backgrounds and lighting conditions. The flight height of the captured drone
is about 15 to 60 meters, and the camera’s vertical Angle is between 40 and 80 degrees. This method of
shooting causes the size and Angle of view of the target vehicle to change.

VeRi-UAV [42] uses aerial photography to take pictures in multiple parking lots and on some
roads. There is a training set and a test set for the VeRi-UAV. The test set has 4,905 photographs of 111
automobiles, whereas the training set has 12,610 images of 343 vehicles. On this basis, about 15% of
pictures are randomly selected from each vehicle ID to form a query set, and the remaining pictures
form a gallery set.

Evaluation Metrics. We used the frequently used Top1, Top5, Top10, and mAP to assess how well
various RelD techniques performed on datasets. They demonstrate how accurately the query sample
matches the ID in the gallery. A high Top-k value indicates that query sample-based ID identification
accuracy is high. Average accuracy (mAP), utilized in vehicle reidentification, is used to gauge how
well RelD’s approach performs overall. It displays the searchability of all test photos with the same ID.
The search accuracy of the k position can be represented by the product of P(k)G(K) and P(k)G(K).
In the search sequence, G(k) denotes if the matched picture is present at position k, P(k) denotes
the likelihood that the first k search image contains the matched image, and sum; = 1nP(k)G(K)
can denote the retrieval accuracy for query g as a whole. The AP of query g is the absolute retrieval
precision divided by N,. Formula 5 illustrates by defining m AP as the average of APs over all queries,
and it may be used to evaluate the overall performance of a ReID model,

Zl'\il AP (qi)

AP = ==———-. 5

m i ©)
The evaluation metric CMC@k is designed to describe the retrieval accuracy of matching locations,

as shown in equation 6,

Zf\il F (qir k) (6)
i .

If query gi’s matched photos are in the top k images of the retrieved sequence, the evaluation index

F(g;, k) indicates it. The evaluation metric CMC@k measures the average search precision of all queries

at position k in the search sequence. The most frequent CMC@k values, Rank-1 and Rank-5, show the

likelihood that an image will match in the top 1 and 5 positions of the retrieval sequence. This study

CMC@k =

uses mAP and Rank — N as evaluation markers, similar to most of ReID’s work.

4.2. Implementation Details

In this paper, we use the weight parameters of ResNet50 pre-trained on ImageNet as the initial
weights of the network model. We follow [22,49] as follows: (1) All experiments were performed on
PyTorch. Random identity sampling is taken for each training image and resized to 256 x 256. (2)
AMANet was trained for 150 epochs. (3) For the VeRi-UAV dataset, a Stochastic Gradient Descent
(SGD) optimizer was utilized with an initial learning rate 3e-2, and the training batch size was set to 32.
The model received 60 epochs of training during this phase. The training batch size for the UAV-VelD
dataset is 32, and the SGD optimizer’s starting learning rate is 3e-2. (4) In addition, all test batch sizes
are 64. (5) For the testing phase, our main assessment metrics are Rank-n and mean average precision
(mAP).
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4.3. Comparison With State-of-the-Art

The performance comparisons of UAV-VelD and VeRi-UAV datasets between the previously
related methods and our proposed DMANet are illustrated in Table 1 and Table 2. As a whole,
DMANet Learning performs well compared with the others.

4.3.1. Experiments On VeRi-UAV

On VeRi-UAV dataset, the methods of comparison include [2,3,11,30,37,38,42,42,50-53] . Table 2
compares our proposed DMANet to other methods in the VeRi-UAV dataset. View Decision Based
Compound Match Learning (VDCML) [42] is a method to vehicle RelD by learning the similarity
between different views. Compared with DMANet which in Rank-1 and mAP are 29.7% and 32.4%
higher than VDCML (ResNet50). Although VDCML can extract effective features for vehicle ReID
to a certain extent, it is more dependent on pre-defined rules or weight allocation, lacking automatic
learning and adaptability. In contrast, the attention mechanism introduced by DMANet is more
adaptive and expressive. DMANet achieves better results than VDCML in vehicle RelD tasks. To assess
the importance of a feature based on all its components, Contrastive attention Net (CANet) [3] practice
cooperation among the part features is obtained by reweighting the part feature. Compared with
DMANet, which in mAP is 9.1% higher than CAM. The reason is that DMANet can pay attention to
the feature information of different scales to express the appearance characteristics of the vehicle more
comprehensively and can capture a richer feature representation. In contrast, CAM is more dependent
on the attention of limited-scale features and cannot fully use multi-scale feature information. Besides,
Table 2 shows the comparison results with the methods mentioned above in detail. DMANet has
achieved excellent results. Compared with the baseline, DMANet shows an improvement of 7.45%,
1.17%, 1.52%, and 0.53% for different metrics of mAP, Rank-1, Rank-5, and Rank-10. In the end, we can
come to a conclusion, DMANet comprehensively utilizes features of different levels and granularity to
capture richer feature representations, achieving higher accuracy.

Table 1. Comparison of different methods on UAV-VelD (%).

Methods Rank-1 Rank-5 Rank-10
Siamese-Visual [43] 25.98 41.98 50.61
VGG CNN M [44] 28.34 39.27 43.48

SCAN [40] 40.49 53.74 60.55
GoogleLeNet [45] 45.23 64.88 70.38
RAM [46] 45.26 59.35 64.07
CN-Nets [47] 55.91 76.54 82.46
TCRL [30] 56.44 77.21 82.98
EMRN [38] 63.47 79.84 84.66
CANet [3] 63.68 80.73 85.40
HPGN [2] 64.18 82.19 85.88
HSGNet [11] 64.22 85.31 86.36
AM+WTL [48] 69.11 87.23 91.64
GiT [37] 72.48 85.83 89.61
Baseline 70.94 84.56 88.22

Ours 76.63 88.54 91.75
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Table 2. Comparison of different methods on VeRi-UAV (%).

Methods Rank-1 Rank-5 Rank-10 mAP
BOW-SIFT [50] 36.2 52.6 61.0 9.0
LOMO [51] 69.3 77.8 82.3 34.1
VGGNet [52] 56.0 724 78.6 444
ResNet50 [53] 58.7 74.0 79.5 47.3
VD-CML (VGGNet) [42] 62.5 76.2 81.3 49.7
VD-CML (ResNet50) [42] 67.3 78.8 83.0 54.6
TCRL [30] 77.1 79.2 84.9 58.5
EMRN [38] 87.6 88.9 924 65.9
CANet [3] 94.4 95.0 95.8 779
HPGN [2] 94.7 95.6 97.4 78.4
HSGNet [11] 94.8 95.7 97.6 78.5
GiT [37] 95.3 95.9 97.9 80.3
Baseline 95.1 95.6 97.5 79.6
Ours 97.0 98.7 98.8 87.0

4.3.2. Experiments On UAV-VelD

On UAV-VelD dataset, the methods of comparison include [2,3,30,37,38,40,43—-48] . Table 1
compares our proposed DMANet to other methods in the UAV-VelD dataset. For vehicle RelD, an
efficient multiresolution network (EMRN) [38] , which can implicitly learn collaborative multiresolution
features via a unitary deep network, is proposed. Compared with DMANet, which in Rank-1 and
Rank-5 are 13.16% and 8.7% higher than EMRN. DMANet can make better view decisions by mixing
and integrating the feature information of different views. In contrast, EMN lacks fine processing
and dynamic selection mechanisms in view decision-making. DMANet achieves better results than
EMRN in vehicle RelD tasks. In order to build a model for vehicle re-identification, Graph interactive
transformer (GiT) blocks are layered. In this model, graphs extract reliable global features, and
transformers extract distinctive local features inside patches. Compared with DM ANet, which in
Rank-1 is 4.15% higher than GiT. DMANet, which can better model and handle changes in the vehicle’s
perspective, integrated channel and spatial feature information from different perspectives. However,
it relies more on the transfer mode of graph structure and cannot fully capture and utilize the critical
features brought by the change of perspective. Besides, Table 1 shows that, compared with the baseline,
DMANet contributes 5.69%, 3.98%, and 3.53% of the Rank-1, Rank-5, and Rank-10 improvement to
the four subsets of UAV-VelD. In the end, by fusing attention mechanisms, DMANet can provide
more flexibility so that the model can adaptively select and adjust different attention mechanisms
according to the needs of specific tasks. This flexibility can help model category and scale, better adapt
to different perspectives such as diversity, and improve the generalization ability and adaptability of
the model.

4.4. Ablation Experiment And Analysis

In this section, we designed some ablation experiments to evaluate the effectiveness of our
proposed DMANet, including (1) The role of the DMAM. (2) The effectiveness of which stage to plug
the DMAM. (3) The effect of normalized strategy in DMAM. (4) The universality of different backbones.
(5) Comparison of different attention modules. (6) Visualization of model retrieval results.

4.4.1. The role of Dual Mixing Attention Module

We evaluated the performance of different components of our proposed DMAM on the
VeRi-UAV-based dataset in Table 3. The different results of using only CMA, SMA, and DMAM
are listed separately. We made the following three observations:

1) First of all, the results showed that adding CMA to the baseline resulted in a 1.20%,1.62%,0.55%,
and 4.04% improvement in the assessment over the baseline on Rank-1, Rank-5, Rank-10, and mAP,
respectively. CMA introduces the attention mechanism, which can pay more attention to features with
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high distinction and importance to improve the feature judgment ability. Finally, the results show
that CMA can indeed improve the model performance. 2) First, adding SMA to the baseline alone
which improved by 5.37% over the baseline on mAP. The addition of SMA improves the mAP by
1.33% compared with the addition of CMA. The difference is that SMA divides different subspaces
along the space, and each subspace fuses after the attention mechanism. In vehicle RelD, there is a
strong correlation between different vehicle parts. Each spatial position of the feature map can be
weighted adaptively by the subspace through the attention mechanism so that the regional correlation
between features can be better modeled and utilized. 3) First of all, adding DMAM, which combines
CMA and SMA on top of the baseline, we can find another 1.9%, 3.02%, 1.35%, Adding DMAM,
which combines CMA and SMA on top of the baseline, we can find another 1.9%, 3.02%, 1.35%, and
7.40% improvement on Rank-1, Rank-5, Rank-10, and mAP respectively. And 7.40% improvement
on rank-1, rank-5, rank-10, and map respectively. The addition of DMAM improves mAP by 2.03%
compared with the addition of SMA. Both CMA and SMA have some limitations, and the fusion can
complement each other’s shortcomings and improve the robustness and generalization ability of the
model. Ultimately, DMAM performs better than CMA and SMA.

Table 3. The role of Dual Mixing Attention Module (DMAM).

Methods Rank-1 Rank-5 Rank-10 mAP
Baseline 95.14 95.63 97.48 79.59
+CMA 96.34 97.25 98.03 83.63
+SMA 96.56 97.42 98.27 84.96
Ours 97.04 98.65 98.83 86.99

4.4.2. The Effectiveness on Which Stage to Plug the Dual Mixing Attention Module

We designed a set of experiments and demonstrated its effectiveness by adding our proposed
DMAM at different stages of the backbone network. Symbol v'indicates that the DMAM is added after
one of the residual blocks of the backbone network.

The experimental results of introducing DMAM after various backbone residual blocks are shown
in Table 4. The findings demonstrate how the various residual blocks introduced to the backbone
network impact the network’s robustness. As shown in Figure 4 , specifically, adding the DMAM
behind the 4th (No.2), 5th (No.3) residual blocks of the backbone improves the accuracy over the
baseline (No0.0). 5th (No.3) improves the accuracy over the baseline (No.0), achieving 7.22% mAP,
1.17% Rank-1, 1.08% Rank-5, and 0.35% Rank-10 gains. It indicates that the 5th (No.3) residual blocks
of the module can effectively extract fine-grained vehicle features at these locations.

Table 4. The effectiveness on which stage to plug the Dual Mixing Attention Module (DMAM).

No. Conv3_x Conv4d x Conv5_x Rank-1 Rank-5 Rank-10 mAP
95.14 95.63 97.48 79.59

0

1 v 95.74 96.88 97.74 82.95
2 v 96.52 98.01 98.24 85.18
3 v 97.04 98.65 98.83 86.99
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Figure 4. Ablation experiments with different backbone networks. Adding Dual Mixing Attention
Module (DMAM) at different residual blocks of the backbone network on VeRi-UAV (%).

4.4.3. The Effect of Normalized Strategy in Dual Mixing Attention Module

To study the effect of normalized strategy in our proposed DMAM, we replace the Adaptive
average pool (AAP) in DMAM with Adaptive Max Pooling (AMP) or Group Norm (Gn) with Instances
Norm (IN). Table 5 shows the ablation experiment done on the VeRi-UAV dataset and draws three
conclusions.

1) First, the AMP normalization strategy is 4.84 % higher than the baseline on the mAP. Secondly,
AMP can enhance the representation ability of input features by selecting the most significant features
for pooling. By highlighting the most discriminative and essential features, AMP helps extract critical
information from vehicle images and strengthens the discrimination of vehicle appearance. Third,
using AAP in DMAM improves mAP by 1.34% compared to AMP. Finally, AMP selects the most
salient features in the input feature map for pooling, which means that other minor but still significant
features are ignored. It may result in some key details and distinct loss features, reducing the vehicle
image discriminant ability model.

2) First, the IN normalization strategy is 5.58 % higher than the baseline on the mAP. Secondly,
IN is mainly used to normalize a single sample. The features of each sample distribution are more
stable. In vehicle RelD, IN can be used to normalize the feature representation of each vehicle image to
improve the network’s performance. Third, using Gn in DMAM improves mAP by 0.6% compared
to IN. Finally, the Gn characteristics of each group in normalization reduced the mutual influence
between the characteristics of the channel. It makes the Group Norm changes for the batch size more
robust in training and testing the model to maintain a stable performance. However, the batch size of
IN is small, which may lead to a larger variance, introducing some instability.

3) First, the DMANet is 6.18% higher than the mAP baseline. Secondly, the normalization strategy
used in DMAM is shown in Figure 3 . Gn is used to extract the spatial features of the feature map, and
AAP is used to extract the channel features of the feature map. In the image of a vehicle, regions at
different locations have different textures, shapes, or detailed information, and GN makes the network
more robust in responding to different spatial locations. Besides, AAP can preserve key vehicle features
and ignore unimportant details.
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Table 5. The effect of normalized strategy in Dual Mixing Attention Module (DMAM).

Methods Rank-1 Rank-5 Rank-10 mAP
Baseline 70.94 84.56 88.22 60.04
AAP — AMP 74.88 87.21 90.49 64.88
GN — IN 75.98 88.03 91.25 65.62
Ours 76.63 88.54 91.75 66.22

4.44. The Universality for Different Backbones

From the results of our proposed DMAM ablation in Figure 5, we observe the universality for
different backbones. Firstly, the network performance will significantly improve when DMAM is
added to different backbones. It can be seen that DMAM has strong adaptability. Second, the most
significant improvement among them is Res2Net, the proposed DMANet can achieve 6.77% mAP and
5.87% Rank-1 gains on UAV-VelD. Finally, Res2Net enhances the network’s receptive field and feature
expression ability by introducing multi-scale feature representation. Res2Net can capture richer spatial
information than the traditional single receptive field. In vehicle RelD tasks, the vehicle’s appearance
in different scales has rich details and shape characteristics, and the multi-scale features are helpful
for heavy vehicle recognition tasks. It is suitable for complex tasks with vertical viewing angles and
significant spatial changes such as UAV viewing angle vehicle RelD.
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(a) Rank1 results of different backbones. (b) mAP results of different backbones.
Figure 5. Comparison of Dual Mixing Attention Module (DMAM) in different backbones. The blue
bar represents the performance of the original backbone, and the orange represents the performance
after adding DMAM.

44.5. Comparison of Different Attention Modules

This subsection compares the performance with the already proposed attention modules [54,
54,55,55,56,56] . Table 6 compares our proposed DMANet to diffrent attentions on the VeRi-UAV
dataset. Using a Contrastive Attention (CA) [3] module, determine the significance of a feature based
on the sum of all the parts. By reweighting the part feature, practical cooperation among the part
features is derived. Compared with DMANet, which in Rank-1 and mAP are 2.6% and 9.12% higher
than CA. DMANet allows for more equitable attention to the characteristics of different channels.
It is essential for vehicle RelD tasks because the feature channels in different vehicle images may
have different importance and expressiveness. Contrastive Attention, by contrast, focuses only on
the differences between positive and negative samples on each channel and may not be able to
utilize the information from all channels fully. Polarized filtering and Enhancement are two essential
concepts for high-quality pixel-wise regression, and they are combined in the Polarized Self-Attention
(PSA) [56] block. Compared with DMANet, which in mAP is 6.29% higher than PSA. DMANet
introduces more feature diversity by dividing multiple sub-feature maps into channel dimensions and
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spaces. Diversity can help improve the network’s ability to capture the features in different vehicle
images and improve the vehicle re-identification performance. However, PSA folds in both channel
and spatial dimensions, which results in a certain level of information loss. It has a particular impact
on the ability of fine-grained feature discrimination in vehicle re-identification tasks. Besides, Table
6 shows that, compared with the baseline, DMANet contributes 6.29% of the mAP improvement of
VeRi-UAV. In the end, by fusing attention mechanisms, DMANet can provide more flexibility so that
the model can adaptively select and adjust different attention mechanisms according to the needs of
specific tasks.

Table 6. Comparison of different attention modules.

Methods Rank-1 Rank-5 Rank-10 mAP
CA [3] 94.44 95.02 95.83 77.87
SA [2] 94.72 95.57 97.43 78.42

SA&CA [11] 94.78 95.67 97.64 78.53
ACmix [54] 95.07 97.31 97.76 78.52

Cot [55] 95.87 97.31 97.76 80.30
Psa [56] 96.59 97.85 98.12 80.70
Ours 97.04 98.65 98.83 86.99

4.4.6. Visualization of Model Retrieval Results

To illustrate the superiority of our model more vividly, Figure 6 shows the visualization of the top
10 ranked retrieval results for the baseline and model on the VeRi-UAV dataset. Four query images
corresponding to the retrieval results are randomly shown, the first row for the baseline method and
the second for our method. The images with green borders represent the correct samples retrieved,
while those with red edges are the incorrect ones retrieved.

As can be observed from Figure 6 , the baseline usually focuses on the vehicle’s appearance, such
as color, shape, etc. Therefore some negative matches appear due to pose and illumination similarity.
Our proposed DMANet grouping features increases the variation and diversity of features, making
distinguishing between vehicles with a similar appearance easier. In addition, DMANet fuses channels
and spatial attention to enhance focus on critical areas and colors, shapes, and textures, making
models distinguish similar-looking vehicles better. In summary, DMANet improves the model’s
ability to capture vehicle details, enhances vehicle differentiation, and thus improves the accuracy and
robustness of vehicle reidentification.

Figure 6. Visualization of the ranking lists of model and baseline on VeRi-UAV. The top and bottom
rows for each query show the ranking results for the baseline and joining the Dual Mixing Attention
Module (DMAM), respectively. The green (red) boxes denote the correct (wrong) results.
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5. Conclusions

In this paper, we proposed a novel DMANet to extract discriminative features robust to variations
in viewpoint. Specifically, we first present a plug-and-play DMAM, where DMAM was composed
of SMA and CMA: First, the original feature was divided according to the dimensions of spatial
and channel to obtain multiple subspaces. Then, a learnable weight was applied to capture the
dependencies. Finally, the components extracted from all subspaces were aggregated to promote their
comprehensive feature interaction. The experiments showed that the proposed structure performs
better than the representative methods in the UAV-based vehicle RelD task.

Futher Work. There are few datasets for vehicle RelD based on the UAV perspective, and the
research space is ample. Consider extending the dataset regarding different scenes, lighting, and
resolution. Furthermore, consider setting up data sets of changes in vehicle details, such as changes
in the position of the vehicle decoration or changes in the passenger. The model needs to determine
whether the changed vehicle belongs to the same ID through the changes in details. This change aligns
with reality and will present a significant challenge for vehicle RelD.
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WJ20211A030131]; The PAP independently selected projects [grant no. ZZKY20223105]; PAP Engineering
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