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Abstract: Vehicle re-identification research under surveillance cameras has yielded impressive results.

However, the challenge of Unmanned Aerial Vehicle (UAV)-based vehicle re-identification (ReID)

presents a high degree of flexibility, mainly due to complicated shooting angles, occlusions, low

discrimination of top-down features, and significant changes in vehicle scales. To address this, we

propose a novel Dual Mixing Attention Network (DMANet) to extract discriminative features robust

to variations in viewpoint. Specifically, we first present a plug-and-play Dual Mixing Attention

Module (DMAM) to capture pixel-level pairwise relationships and channel dependencies, where

DMAM is composed of Spatial Mixing Attention (SMA) and Channel Mixing Attention (CMA). First,

the original feature is divided according to the dimensions of spatial and channel to obtain multiple

subspaces. Then, a learnable weight is applied to capture the dependencies between local features in

the mixture space. Finally, the features extracted from all subspaces are aggregated to promote their

comprehensive feature interaction. In addition, DMAM can be easily plugged into any depth of the

backbone network to improve vehicle recognition. The experimental results show that the proposed

structure performs better than the representative method in the UAV-based vehicle ReID. Our code

and models will be published publicly.

Keywords: dual mixing attention; UAV re-identification; deep learning

1. Introduction

Vehicle re-identification (ReID) [1–9] holds great importance in the realm of Intelligent

Transportation Systems (ITS) in the context of smart cities. This technology facilitates the identification

of the exact vehicle across various surveillance cameras by analyzing vehicle images. Traditionally,

license plate images have been employed for vehicle identification. However, obtaining clear license

plate information can be challenging due to various external factors like obstructed license plates,

obstacles, and image blurriness.

Thanks to the success of deep learning, Vehicle identification algorithm in the field of surveillance

cameras again achieved impressive results [10–17] . Typically, these methods [11,17–20] employ a deep

metric learning model that relies on feature extraction networks. The objective is to train the model to

distinguish between vehicles with the same ID and those with different IDs to accomplish vehicle ReID.

However, as shown in Figure 1 , there are discernible disparities between vehicle images captured by

Unmanned Aerial Vehicles (UAV) and those acquired through stationary cameras. The ReID challenge

regarding UAV imagery introduces unique complexities stemming from intricate shooting angles,

occlusions, limited discriminative power of top-down features, and substantial variations in vehicle

scales.

It is worth mentioning that traditional vehicle ReID methods, primarily designed for stationary

cameras, face challenges in delivering optimal performance when adapted to the domain of UAV-based

ReID. Firstly, the shooting angle of UAVs is complex. UAVs can shoot at different positions and angles,

and the camera’s viewpoint will change accordingly. This viewpoint change may cause the same object

or scene to have different appearances and characteristics in different images. Second, the UAV can

overlook or squint at a target or scene at different angles, resulting in viewpoint changes in the image.

This viewpoint change may cause deformation or occlusion of the target shape, thus causing difficulties
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for feature extraction. To solve the above problems, it is necessary to add a mechanism [3,21–23] that

can extract more detailed features when ReID extracts features to deal with the challenges brought by

the drone perspective. The change in UAV viewpoint makes the feature extraction algorithm need

a certain robustness, which can correctly identify and describe the target in the case of significant

changes in viewpoint. The difference in UAV’s view angle makes the feature extraction algorithm

need to have the ability to adapt to shape changes and occlusions to improve the feature reliability and

robustness in different views.

In recent years, the attention mechanism has gained significant popularity across multiple domains

of deep convolutional neural networks. Its fundamental concept revolves around identifying the

most crucial information for a given target task from a vast volume of available data. The attention

mechanism selectively focuses on the image’s different regions or feature channels to improve the

model’s attention and perception ability for crucial visual content. In the context of UAV-based vehicle

ReID, the attention mechanism enables the model to enhance its perception capabilities by selectively

highlighting the vehicle’s specific regions or feature channels.

However, most attention mechanisms [23–26] focus on extracting features only from channels

or spaces. The channel attention mechanism can effectively enhance essential channels, but it cannot

deal with the problem of slight inter-class similarity. Spatial attention mechanisms can selectively

amplify or suppress features in specific regions spatially, but they ignore the relationship between

channels. To overcome the shortcomings of a single attention mechanism, recent studies have begun

to combine channel and spatial attention [27–29] . Such a hybrid attention mechanism can consider the

relationship between channel and space at the same time to better capture the critical information in the

input feature tensor. By introducing multiple branches of the attention mechanism or fusing different

attention weights, the interaction between features can be modeled more comprehensively. Shuffle

Attention (SA) [27] divides molecular channels to extract key channel features and local spatial fusion

features, with each subchannel acquiring channel and spatial fusion attention. The Bottleneck Attention

Module (BAM) [28] is a technique that generates an attention map through two distinct pathways:

channel and spatial. On the other hand, the Dual Attention Network (DANet) [29] incorporates two

different types of attention modules on dilated Fully Convolutional Networks (FCN). These attention

modules effectively capture semantic dependencies in both spatial and channel dimensions.

Most methods make the input feature map directly pass through the fused attention. At the

same time, SA [27] can provide richer feature representation by dividing the subchannels, which

better capture the structure and associations in images or other data. However, the SA [27] method of

dividing the channel into subchannels mainly focuses on weighting the input features in the channel

dimension, ignoring the possible details in the spatial dimension.

For that, our proposed Dual Mixing Attention Module (DMAM), which combines Spatial Mixing

Attention (SMA) with Channel Mixing Attention (CMA), in which the Original feature is divided

according to the dimensions of spatial and channel to obtain multiple subspaces. Each sub-feature map

is processed independently, and the features of different channels and local regions can be extracted so

that the network can better associate local features with the whole feature. Then, a learnable weight is

applied to capture the dependencies between local features in the mixture space. In conclusion, the

features extracted from multiple subspaces are merged to enhance their comprehensive interaction.

This approach enables the extraction of more resilient features and leads to improved recognition

accuracy. The key contributions of this method are outlined as follows:

• We introduce a novel Dual Mixing Attention Network (DMANet) designed to handle the

challenges of Unmanned Aerial Vehicle (UAV)-based vehicle re-identification (ReID). DMANet

effectively addresses issues related to shooting angles, occlusions, top-down features, and scale

variations, resulting in enhanced viewpoint-robust feature extraction.

• Our proposed Dual Mixing Attention Module (DMAM) employs Spatial Mixing Attention

(SMA) and Channel Mixing Attention (CMA) to capture pixel-level pairwise relationships and
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channel dependencies. This modular design fosters comprehensive feature interactions, improving

discriminative feature extraction under varying viewpoints.

• The versatility of DMAM allows its seamless integration into existing backbone networks

at varying depths, significantly enhancing vehicle discrimination performance. Our approach

demonstrates superior performance through extensive experiments compared to representative

methods in the UAV-based vehicle re-identification task, affirming its efficacy in challenging aerial

scenarios.

The structure of the paper will be as follows: In Section 2, a comprehensive review and discussion

of related studies will be presented. The proposed approach will be elaborated in Section 3, providing

a detailed description. Following this, Section 4 will present the experimental results along with

comparisons. Finally, conclusions will be provided in Section 5.

(a) Surveillance cameras (b) UAV cameras

Figure 1. Comparison of two types of vehicle images. There is a significant difference between the

vehicle from the UAV perspective and the vehicle from the fixed camera. The vehicle under the

fixed camera shooting angle is relatively fixed. In the view of UAVs, the shooting angles of cars are

changeable, and there are many top-down shooting angles.

2. Related Work

2.1. Vehicle Re-Identification

Re-ID problem [3,30] is first explored and applied to humans. Compared with pedestrian ReID,

vehicle ReID is more challenging. Firstly, vehicles tend to have high similarity in appearance, especially

in the case of the same brand, model, or color. A higher similarity makes vehicle re-identification

more challenging because relatively few features may distinguish different vehicles, and there is

little difference between features. Second, vehicle re-identification may face more significant pose

variation than human re-identification. Vehicles may appear at different angles, positions, and rotations,

resulting in changes in the geometry and appearance characteristics of the vehicle, which increases

the difficulty of matching and alignment. Traditionally, vehicle Re-ID problems have been solved by

combining sensor data with other clues [31–36] , such as vehicle travel time [31] and wireless magnetic

sensors [32] . Although the sensor technology can get better detection results, it can not meet the

needs of practical applications because of its high detection cost. Therefore, we should pay more

attention to more cost-effective ways that can be viewed as basic. In theory, based on the vehicle license

plate number, feature recognition technology is the most reliable and most accurate again [33,34] .

However, the camera’s multi-angle, illumination, and resolution significantly influence license plate

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 September 2023                   doi:10.20944/preprints202309.1081.v1

https://doi.org/10.20944/preprints202309.1081.v1


4 of 18

identification accuracy. Besides, criminals block, decorate, forge, or remove license plates, making

re-identifying vehicles only by license plate information less reliable. Accordingly, researchers have

considered vehicle attributes and appearance characteristics such as shape, color, and texture [35,36] .

With the development of neural networks, deep learning-based approaches have outshone

others [10,12] . Significant changes in camera angles can lead to substantial differences in local critical

areas for vehicle re-identification, which leads to low precision. Hybrid Pyramidal Graph Network

(HPGN) citeshen2021exploring proposes a novel pyramid graph network targeting features, closely

connected behind the backbone network to explore multi-scale spatial structural features. Zheng et

al. [10] propose the Deep Feature representations jointly guided by the meaningful attributes, including

Camera Views, vehicle Types and Colors (DF-CVTC), a unified depth convolution framework for

joint learning of depth feature representations guided by meaningful attributes, including camera

view, vehicle type, and color of vehicle re-identification. Huang et al. [12] raised a multi-granularity

Deep Feature Fusion with Multiple Granularity (DFFMG) methods or vehicle re-identification, which

uses global and local feature fusion to segment vehicle images along two directions (i.e., vertical

and horizontal), and integrates discriminant information of different granularity. Graph interactive

Transformer (GiT) [37] proposes a structure where charts and transformers constantly interact, enabling

close collaboration between global and local features for vehicle re-identification. The efficient

multiresolution network (EMRN) [38] proposes a multiresolution features dimension uniform module

to fix dimensional features from images of varying resolutions.

Although the current vehicle ReID method plays a specific role in the fixed camera perspective.

However, the vehicle space photographed from the UAV perspective changes significantly, and

extracting features from the top-down vertical Angle is difficult. Moreover, the shooting Angle of

UAVs is complex. UAVs can overlook or squint at a target or scene at different angles, resulting in

viewpoint changes in the image. The current method needs to be revised to solve the above problems

well, and further research is required.

2.2. Attention Mechanism

The attention mechanism uses deep neural networks to imitate human cognitive processes. The

method has been widely applied in computer vision, with the characteristic of learning more skills to

express [15–17] Zhou et al. [15] constructed a motion attention transfer (MATNet) attention framework

based on human visual attention behavior for semantic segmentation tasks, solving the problem of

insufficient data sets of basic facts. In addition, a new weakly supervised semantic segmentation group

learning framework [16] is proposed. The attention mechanism can also solve the problem of detection

and identification of human interaction in images (HOI) [17] .

According to [39,40] , for vehicle ReID, the attention mechanism concentrates on regions that

correlate to delicate and distinct image areas, including windshield stickers and custom paints. The

attention mechanism automatically extracts the characteristics of the distinct regions, increasing the

vehicle re-identification task’s accuracy. Khorramshahi et al. [39] found that most re-identification

methods focus on the critical point locations. However, these point locations weigh differently in

distinguishing cars. As a result, they created a dual-path adaptive attention model for the two-path

vehicle ReID. The oriented conditional component appearance path learns to capture local discriminant

traits by concentrating on the most instructive critical spots, whereas the global appearance path catches

macroscopic vehicle features. Teng et al. [40] presented a spatial and channel attention network based

on Diffusion-Convolution Neural Network (DCNN). This attention model includes a spatial attention

branch and a channel attention branch, which adjusts the output weights of different locations and

channels separately to highlight the outputs in the distinguished regions and channels. The attention

model refines the feature map and can automatically extract more discriminant features.

Although these attention mechanisms fuse attention to important areas or channels by combining

different attention branches, mixed attention tends to learn along a single dimension, ignoring the
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features of the remaining dimensions. With significant space, perspective, and scene changes, the UAV

perspective has excellent challenges for the attention mechanism.

3. Proposed Method

3.1. Dual Mixing Attention Module

We use a standard ResNet-50 as our backbone to extract features. Our proposed DMAM shown in

Figure 2 . Because the vehicle space photographed from the UAV perspective changes significantly, and

the shooting angle of UAVs is complex. UAVs can overlook or squint at a target or scene at different

angles, resulting in viewpoint changes in the image. Currently, some attention mechanisms use channel

or spatial attention mechanisms. However, spatial attention is more focused on the space region but

ignores the different characteristics of the channel. Channel attention filters important feature channels

while missing spatial features. Although partial attention mechanisms use channel and spatial fusion

attention, mixed attention tends to learn along a single dimension, ignoring the remaining dimensions’

features. To address this, we propose a novel DMAM to capture pixel-level pairwise relationships and

channel dependencies, where DMAM comprises SMA and CMA. To enhance vehicle ReID, the DMAM

can also be easily added to backbone networks at any level. We denote an input original feature as

X ∈ RC×H×W, which goes through DMAM and output enhanced feature as Z ∈ RC×H×W. C denotes

the number of channels, H and W denote the height and width, respectively.

Figure 2. An overview of the proposed Dual Mixing Attention Module (DMAM) framework. The

proposed method mainly contains four components: (1) The Original feature is divided into two

branches. (2) Feature map Xc divides n sub-channels xi
c along the channel (C). Feature map Xs

divides m subspaces xi
s along space (HW). (3) Feature maps xi

c and xi
s were aggregated after entering

Channel Mixing Attention (CMA) and Spatial Mixing Attention (SMA), respectively. (4) After passing

convolution (Cov), Batch Normalization (Bn), and Rectified Linear Unit (Relu), the enhanced feature is

finally output through the residual module.

Firstly, the original feature graph is split according to the dimensions of space and channel, and

multiple subspaces are obtained, namely: Xc= {x1
c , x2

c ..., xn
c } and XS= {x1

s , x2
s ..., xm

s }. Each sub-feature

map is processed independently, and the features of different channels and local regions can be

extracted so that the network can better associate local features with the whole feature. Secondly,

channel subfeature and spatial subfeature, xi
c and xi

s, respectively, are sent into CMA and SMA to learn

channels and spatial mixed features. The output is xi
cout

and xi
sout

. The dimensions of feature maps xi
c,

xi
cout

are c/n × h × w, and the dimensions of feature maps xi
s , xi

sout
are hw/m × c. The hybrid features

increase the ability to input data model diverse, which better extracts complex feature representations

from the uav perspective. Third, the features extracted from their respective spaces are aggregated.

After reshaping, the feature maps are transformed into Xcout and Xsout . After concat, the output of the

two feature maps is Xout. The aggregation of features of multiple subspaces enhances the correlation

between features. Integrating features promotes the interaction and information transfer between

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 September 2023                   doi:10.20944/preprints202309.1081.v1

https://doi.org/10.20944/preprints202309.1081.v1


6 of 18

different features. Moreover, the generalization ability is also improved. Fourth, the feature map Xout

passes through a set of 1×1 convolution (Cov), Batch Normalization (Bn), and Rectified Linear Unit

(Relu), with an output of feature map X
′

out. The 1×1 Cov changes the dimension of the feature graph

from 2C × H × W to C × H × W. Bn is normalized, changing the data distribution and preventing

gradient explosion. As an activation function, Relu has low computational complexity, which improves

the speed of the neural network gradient descent algorithm to better cope with significant changes

in vehicle size. Cov, Bn, and Relu effectively enhance the performance of the model and better learn

complex or occluding features. Finally, the feature map X
′

out uses the residual structure to learn the

original feature map through gap connections, which can accelerate the model’s convergence rate,

better use the information of previous levels, and better identify the features of the top-down vertical

view shot by the UAV.

After several steps, we proposed a Dual Mixing Attention Module, including subspace

segmentation, learning channels and spatial hybrid features, feature aggregation, convolutional

normalization activation, and residual structure. DMAM can be connected behind the backbone

network to make the features more profound and expressive, effectively coping with complicated

shooting angles, occlusions, low discrimination of top-down features, and significant changes in

vehicle scales. DMAM improves the robustness and discrimination of features, making the features

more profound and expressive, thus improving the model’s performance in ReID tasks.

3.2. Channel Mixing Attention

Channel Mixing Attention splits the feature map along the channel. Then, progressively merge

the channel and spatial attention to obtain the CMA. The model can understand and represent the

input data more comprehensively through this synthesis, improving features’ distinguishing ability

and generalization performance.

CMA is broken down into three phases, as depicted in Figure 3 : Firstly, the dimension of channel

subfeature xi
c is C/N × H × W, splitting along the channel into feature maps xi

c0
and xi

c1
, as the input

feature maps of space and channel attention. Secondly, the spatial input feature map xi
c is multiplied

by group norm (Gn) and shuffing (S f ) to extract the features of xi
c space. More discriminative features

are extracted by focusing on the critical space areas of vehicles through spatial attention. Gn is divided

into g groups along the channel. The mean and variance of each group are summed. The formula for

Gn is as follows:

Gn(X) =
1

δ
(X − µ) , (1)

the parameter µ represents the mean, and the parameter δ illustrates the variance. The formula for µ is

as follows:

µ(x) =
1

(C/G)HW

H

∑
h=1

W

∑
w=1

X. (2)

The formula for δ is as follows:

δ(x) =
√

1
(C/G)HW ∑

H
h=1 ∑

W
w=1 (X − µ(x))2 + ε, (3)

the the parameter ε is a tiny constant. Shuffing uses variable parameters to extract the feature weights of

the subspace so that the model can better filter and focus on essential feature channels. The calculation

formula is as follows:

S f (x) = weight × x + bias. (4)

In the above equation, parameters weight and bias are variable parameters. By calculating the weight

of each channel in the feature graph, it is possible to assign different importance to the features of

different channels. The model’s performance can be improved by focusing more intensively on the

feature channels that are more helpful to the task.
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Figure 3. An overview of Spatial Mixing Attention (SMA) and Channel Mixing Attention (CMA).

The process for CMA and SMA is similar. The CMA and SMA mainly contains three components:

(1) The input feature map is divided into two sub-feature maps. (2) One branch is multiplied by

GroupNorm and Shuffing to extract the features of the space. After Adaptive Average Pooling and

shuffing, the other was multiplied by subfeature maps to extract channel features. (3) Finally, concat

gets the fusion feature.

In another branch, feature map xi
c1

is sequentially subjected to adaptive average pool (Ap) and

shuffing. The output is multiplied by feature map xi
c to extract the spatial features of xi

c feature maps.

Spatial attention learns the importance of different locations and weights features according to this

importance. Ap changes the dimensions of feature map xi
c1

from C/2N × H × W to C/2N × 1 × 1,

which is used to extract the spatial features of the feature map.

Finally, the output dimension after concat is C/N × H ×W. The output feature map xi
cout

contains

attention to feature graph channels and Spaces. By mixing channel and spatial attention, the model

can focus more precisely on different channels, locations, and correlations. The model can better adapt

to different scales, shapes, and positions of vehicles photographed by UAVs.

3.3. Spatial Mixing Attention

SMA is similar to CMA. The difference between the two is that CMA groups feature maps in

channel latitude, mainly focusing on the attention of each set of channels. In contrast, SMA groups

feature maps in spatial dimensions. The input matrix XS ∈ RHW/N×C. In SMA, attention is used to

weight and select features in the spatial dimension. However, in CMA, the attention mechanism is

used to weight and choose features in the channel dimension.

The SMA was also divided into two branches, one of which went through Gn,shuffing, and

multiplied with xi
s to extract channel features. The other one went through the adaptive average

pool,shuffing and multiplying by feature map xi
s to extract spatial features. Finally, the output

dimension after concat is HW/M × C.

By dividing the molecular space, the model can divide the feature map into different subregions

and calculate the attention weight of each subregion. This approach focuses more accurately on the

importance of different spatial locations, allowing the model to capture local information about the

vehicle better. This approach considers the relationship between different locations and channels while

retaining the importance of spatial location. It helps the model understand the interaction of different

channels at various locations, thus improving the consistency and accuracy of feature representation.

It has great potential when dealing with complex UAV perspectives.
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4. Analysis And Experiments

4.1. Datasets

UAV-VeID [41] dataset contains 41,917 images covering 4,601 vehicles. The UAV-VeID dataset

comprises videos taken by drones at locations such as highway interchanges, intersections, parking

lots, etc., under different backgrounds and lighting conditions. The flight height of the captured drone

is about 15 to 60 meters, and the camera’s vertical Angle is between 40 and 80 degrees. This method of

shooting causes the size and Angle of view of the target vehicle to change.

VeRi-UAV [42] uses aerial photography to take pictures in multiple parking lots and on some

roads. There is a training set and a test set for the VeRi-UAV. The test set has 4,905 photographs of 111

automobiles, whereas the training set has 12,610 images of 343 vehicles. On this basis, about 15% of

pictures are randomly selected from each vehicle ID to form a query set, and the remaining pictures

form a gallery set.

Evaluation Metrics. We used the frequently used Top1, Top5, Top10, and mAP to assess how well

various ReID techniques performed on datasets. They demonstrate how accurately the query sample

matches the ID in the gallery. A high Top-k value indicates that query sample-based ID identification

accuracy is high. Average accuracy (mAP), utilized in vehicle reidentification, is used to gauge how

well ReID’s approach performs overall. It displays the searchability of all test photos with the same ID.

The search accuracy of the k position can be represented by the product of P(k)G(K) and P(k)G(K).

In the search sequence, G(k) denotes if the matched picture is present at position k, P(k) denotes

the likelihood that the first k search image contains the matched image, and sumk = 1nP(k)G(K)

can denote the retrieval accuracy for query q as a whole. The AP of query q is the absolute retrieval

precision divided by Nq. Formula 5 illustrates by defining mAP as the average of APs over all queries,

and it may be used to evaluate the overall performance of a ReID model,

mAP =
∑

M
i=1 AP (qi)

M
. (5)

The evaluation metric CMC@k is designed to describe the retrieval accuracy of matching locations,

as shown in equation 6,

CMC@k =
∑

M
i=1 F (qi, k)

M
. (6)

If query qi’s matched photos are in the top k images of the retrieved sequence, the evaluation index

F(qi, k) indicates it. The evaluation metric CMC@k measures the average search precision of all queries

at position k in the search sequence. The most frequent CMC@k values, Rank-1 and Rank-5, show the

likelihood that an image will match in the top 1 and 5 positions of the retrieval sequence. This study

uses mAP and Rank − N as evaluation markers, similar to most of ReID’s work.

4.2. Implementation Details

In this paper, we use the weight parameters of ResNet50 pre-trained on ImageNet as the initial

weights of the network model. We follow [22,49] as follows: (1) All experiments were performed on

PyTorch. Random identity sampling is taken for each training image and resized to 256 × 256. (2)

AMANet was trained for 150 epochs. (3) For the VeRi-UAV dataset, a Stochastic Gradient Descent

(SGD) optimizer was utilized with an initial learning rate 3e-2, and the training batch size was set to 32.

The model received 60 epochs of training during this phase. The training batch size for the UAV-VeID

dataset is 32, and the SGD optimizer’s starting learning rate is 3e-2. (4) In addition, all test batch sizes

are 64. (5) For the testing phase, our main assessment metrics are Rank-n and mean average precision

(mAP).

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 September 2023                   doi:10.20944/preprints202309.1081.v1

https://doi.org/10.20944/preprints202309.1081.v1


9 of 18

4.3. Comparison With State-of-the-Art

The performance comparisons of UAV-VeID and VeRi-UAV datasets between the previously

related methods and our proposed DMANet are illustrated in Table 1 and Table 2. As a whole,

DMANet Learning performs well compared with the others.

4.3.1. Experiments On VeRi-UAV

On VeRi-UAV dataset, the methods of comparison include [2,3,11,30,37,38,42,42,50–53] . Table 2

compares our proposed DMANet to other methods in the VeRi-UAV dataset. View Decision Based

Compound Match Learning (VDCML) [42] is a method to vehicle ReID by learning the similarity

between different views. Compared with DMANet which in Rank-1 and mAP are 29.7% and 32.4%

higher than VDCML (ResNet50). Although VDCML can extract effective features for vehicle ReID

to a certain extent, it is more dependent on pre-defined rules or weight allocation, lacking automatic

learning and adaptability. In contrast, the attention mechanism introduced by DMANet is more

adaptive and expressive. DMANet achieves better results than VDCML in vehicle ReID tasks. To assess

the importance of a feature based on all its components, Contrastive attention Net (CANet) [3] practice

cooperation among the part features is obtained by reweighting the part feature. Compared with

DMANet, which in mAP is 9.1% higher than CAM. The reason is that DMANet can pay attention to

the feature information of different scales to express the appearance characteristics of the vehicle more

comprehensively and can capture a richer feature representation. In contrast, CAM is more dependent

on the attention of limited-scale features and cannot fully use multi-scale feature information. Besides,

Table 2 shows the comparison results with the methods mentioned above in detail. DMANet has

achieved excellent results. Compared with the baseline, DMANet shows an improvement of 7.45%,

1.17%, 1.52%, and 0.53% for different metrics of mAP, Rank-1, Rank-5, and Rank-10. In the end, we can

come to a conclusion, DMANet comprehensively utilizes features of different levels and granularity to

capture richer feature representations, achieving higher accuracy.

Table 1. Comparison of different methods on UAV-VeID (%).

Methods Rank-1 Rank-5 Rank-10

Siamese-Visual [43] 25.98 41.98 50.61
VGG CNN M [44] 28.34 39.27 43.48

SCAN [40] 40.49 53.74 60.55
GoogleLeNet [45] 45.23 64.88 70.38

RAM [46] 45.26 59.35 64.07
CN-Nets [47] 55.91 76.54 82.46

TCRL [30] 56.44 77.21 82.98
EMRN [38] 63.47 79.84 84.66
CANet [3] 63.68 80.73 85.40
HPGN [2] 64.18 82.19 85.88

HSGNet [11] 64.22 85.31 86.36
AM+WTL [48] 69.11 87.23 91.64

GiT [37] 72.48 85.83 89.61

Baseline 70.94 84.56 88.22
Ours 76.63 88.54 91.75
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Table 2. Comparison of different methods on VeRi-UAV (%).

Methods Rank-1 Rank-5 Rank-10 mAP

BOW-SIFT [50] 36.2 52.6 61.0 9.0
LOMO [51] 69.3 77.8 82.3 34.1

VGGNet [52] 56.0 72.4 78.6 44.4
ResNet50 [53] 58.7 74.0 79.5 47.3

VD-CML (VGGNet) [42] 62.5 76.2 81.3 49.7
VD-CML (ResNet50) [42] 67.3 78.8 83.0 54.6

TCRL [30] 77.1 79.2 84.9 58.5
EMRN [38] 87.6 88.9 92.4 65.9
CANet [3] 94.4 95.0 95.8 77.9
HPGN [2] 94.7 95.6 97.4 78.4

HSGNet [11] 94.8 95.7 97.6 78.5
GiT [37] 95.3 95.9 97.9 80.3

Baseline 95.1 95.6 97.5 79.6
Ours 97.0 98.7 98.8 87.0

4.3.2. Experiments On UAV-VeID

On UAV-VeID dataset, the methods of comparison include [2,3,30,37,38,40,43–48] . Table 1

compares our proposed DMANet to other methods in the UAV-VeID dataset. For vehicle ReID, an

efficient multiresolution network (EMRN) [38] , which can implicitly learn collaborative multiresolution

features via a unitary deep network, is proposed. Compared with DMANet, which in Rank-1 and

Rank-5 are 13.16% and 8.7% higher than EMRN. DMANet can make better view decisions by mixing

and integrating the feature information of different views. In contrast, EMN lacks fine processing

and dynamic selection mechanisms in view decision-making. DMANet achieves better results than

EMRN in vehicle ReID tasks. In order to build a model for vehicle re-identification, Graph interactive

transformer (GiT) blocks are layered. In this model, graphs extract reliable global features, and

transformers extract distinctive local features inside patches. Compared with DMANet, which in

Rank-1 is 4.15% higher than GiT. DMANet, which can better model and handle changes in the vehicle’s

perspective, integrated channel and spatial feature information from different perspectives. However,

it relies more on the transfer mode of graph structure and cannot fully capture and utilize the critical

features brought by the change of perspective. Besides, Table 1 shows that, compared with the baseline,

DMANet contributes 5.69%, 3.98%, and 3.53% of the Rank-1, Rank-5, and Rank-10 improvement to

the four subsets of UAV-VeID. In the end, by fusing attention mechanisms, DMANet can provide

more flexibility so that the model can adaptively select and adjust different attention mechanisms

according to the needs of specific tasks. This flexibility can help model category and scale, better adapt

to different perspectives such as diversity, and improve the generalization ability and adaptability of

the model.

4.4. Ablation Experiment And Analysis

In this section, we designed some ablation experiments to evaluate the effectiveness of our

proposed DMANet, including (1) The role of the DMAM. (2) The effectiveness of which stage to plug

the DMAM. (3) The effect of normalized strategy in DMAM. (4) The universality of different backbones.

(5) Comparison of different attention modules. (6) Visualization of model retrieval results.

4.4.1. The role of Dual Mixing Attention Module

We evaluated the performance of different components of our proposed DMAM on the

VeRi-UAV-based dataset in Table 3. The different results of using only CMA, SMA, and DMAM

are listed separately. We made the following three observations:

1) First of all, the results showed that adding CMA to the baseline resulted in a 1.20%,1.62%,0.55%,

and 4.04% improvement in the assessment over the baseline on Rank-1, Rank-5, Rank-10, and mAP,

respectively. CMA introduces the attention mechanism, which can pay more attention to features with
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high distinction and importance to improve the feature judgment ability. Finally, the results show

that CMA can indeed improve the model performance. 2) First, adding SMA to the baseline alone

which improved by 5.37% over the baseline on mAP. The addition of SMA improves the mAP by

1.33% compared with the addition of CMA. The difference is that SMA divides different subspaces

along the space, and each subspace fuses after the attention mechanism. In vehicle ReID, there is a

strong correlation between different vehicle parts. Each spatial position of the feature map can be

weighted adaptively by the subspace through the attention mechanism so that the regional correlation

between features can be better modeled and utilized. 3) First of all, adding DMAM, which combines

CMA and SMA on top of the baseline, we can find another 1.9%, 3.02%, 1.35%, Adding DMAM,

which combines CMA and SMA on top of the baseline, we can find another 1.9%, 3.02%, 1.35%, and

7.40% improvement on Rank-1, Rank-5, Rank-10, and mAP respectively. And 7.40% improvement

on rank-1, rank-5, rank-10, and map respectively. The addition of DMAM improves mAP by 2.03%

compared with the addition of SMA. Both CMA and SMA have some limitations, and the fusion can

complement each other’s shortcomings and improve the robustness and generalization ability of the

model. Ultimately, DMAM performs better than CMA and SMA.

Table 3. The role of Dual Mixing Attention Module (DMAM).

Methods Rank-1 Rank-5 Rank-10 mAP

Baseline 95.14 95.63 97.48 79.59
+CMA 96.34 97.25 98.03 83.63
+SMA 96.56 97.42 98.27 84.96

Ours 97.04 98.65 98.83 86.99

4.4.2. The Effectiveness on Which Stage to Plug the Dual Mixing Attention Module

We designed a set of experiments and demonstrated its effectiveness by adding our proposed

DMAM at different stages of the backbone network. Symbol Xindicates that the DMAM is added after

one of the residual blocks of the backbone network.

The experimental results of introducing DMAM after various backbone residual blocks are shown

in Table 4. The findings demonstrate how the various residual blocks introduced to the backbone

network impact the network’s robustness. As shown in Figure 4 , specifically, adding the DMAM

behind the 4th (No.2), 5th (No.3) residual blocks of the backbone improves the accuracy over the

baseline (No.0). 5th (No.3) improves the accuracy over the baseline (No.0), achieving 7.22% mAP,

1.17% Rank-1, 1.08% Rank-5, and 0.35% Rank-10 gains. It indicates that the 5th (No.3) residual blocks

of the module can effectively extract fine-grained vehicle features at these locations.

Table 4. The effectiveness on which stage to plug the Dual Mixing Attention Module (DMAM).

No. Conv3_x Conv4_x Conv5_x Rank-1 Rank-5 Rank-10 mAP

0 95.14 95.63 97.48 79.59
1 X 95.74 96.88 97.74 82.95
2 X 96.52 98.01 98.24 85.18
3 X 97.04 98.65 98.83 86.99
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Figure 4. Ablation experiments with different backbone networks. Adding Dual Mixing Attention

Module (DMAM) at different residual blocks of the backbone network on VeRi-UAV (%).

4.4.3. The Effect of Normalized Strategy in Dual Mixing Attention Module

To study the effect of normalized strategy in our proposed DMAM, we replace the Adaptive

average pool (AAP) in DMAM with Adaptive Max Pooling (AMP) or Group Norm (Gn) with Instances

Norm (IN). Table 5 shows the ablation experiment done on the VeRi-UAV dataset and draws three

conclusions.

1) First, the AMP normalization strategy is 4.84 % higher than the baseline on the mAP. Secondly,

AMP can enhance the representation ability of input features by selecting the most significant features

for pooling. By highlighting the most discriminative and essential features, AMP helps extract critical

information from vehicle images and strengthens the discrimination of vehicle appearance. Third,

using AAP in DMAM improves mAP by 1.34% compared to AMP. Finally, AMP selects the most

salient features in the input feature map for pooling, which means that other minor but still significant

features are ignored. It may result in some key details and distinct loss features, reducing the vehicle

image discriminant ability model.

2) First, the IN normalization strategy is 5.58 % higher than the baseline on the mAP. Secondly,

IN is mainly used to normalize a single sample. The features of each sample distribution are more

stable. In vehicle ReID, IN can be used to normalize the feature representation of each vehicle image to

improve the network’s performance. Third, using Gn in DMAM improves mAP by 0.6% compared

to IN. Finally, the Gn characteristics of each group in normalization reduced the mutual influence

between the characteristics of the channel. It makes the Group Norm changes for the batch size more

robust in training and testing the model to maintain a stable performance. However, the batch size of

IN is small, which may lead to a larger variance, introducing some instability.

3) First, the DMANet is 6.18% higher than the mAP baseline. Secondly, the normalization strategy

used in DMAM is shown in Figure 3 . Gn is used to extract the spatial features of the feature map, and

AAP is used to extract the channel features of the feature map. In the image of a vehicle, regions at

different locations have different textures, shapes, or detailed information, and GN makes the network

more robust in responding to different spatial locations. Besides, AAP can preserve key vehicle features

and ignore unimportant details.
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Table 5. The effect of normalized strategy in Dual Mixing Attention Module (DMAM).

Methods Rank-1 Rank-5 Rank-10 mAP

Baseline 70.94 84.56 88.22 60.04
AAP → AMP 74.88 87.21 90.49 64.88

GN → IN 75.98 88.03 91.25 65.62
Ours 76.63 88.54 91.75 66.22

4.4.4. The Universality for Different Backbones

From the results of our proposed DMAM ablation in Figure 5 , we observe the universality for

different backbones. Firstly, the network performance will significantly improve when DMAM is

added to different backbones. It can be seen that DMAM has strong adaptability. Second, the most

significant improvement among them is Res2Net, the proposed DMANet can achieve 6.77% mAP and

5.87% Rank-1 gains on UAV-VeID. Finally, Res2Net enhances the network’s receptive field and feature

expression ability by introducing multi-scale feature representation. Res2Net can capture richer spatial

information than the traditional single receptive field. In vehicle ReID tasks, the vehicle’s appearance

in different scales has rich details and shape characteristics, and the multi-scale features are helpful

for heavy vehicle recognition tasks. It is suitable for complex tasks with vertical viewing angles and

significant spatial changes such as UAV viewing angle vehicle ReID.

(a) Rank1 results of different backbones. (b) mAP results of different backbones.

Figure 5. Comparison of Dual Mixing Attention Module (DMAM) in different backbones. The blue

bar represents the performance of the original backbone, and the orange represents the performance

after adding DMAM.

4.4.5. Comparison of Different Attention Modules

This subsection compares the performance with the already proposed attention modules [54,

54,55,55,56,56] . Table 6 compares our proposed DMANet to diffrent attentions on the VeRi-UAV

dataset. Using a Contrastive Attention (CA) [3] module, determine the significance of a feature based

on the sum of all the parts. By reweighting the part feature, practical cooperation among the part

features is derived. Compared with DMANet, which in Rank-1 and mAP are 2.6% and 9.12% higher

than CA. DMANet allows for more equitable attention to the characteristics of different channels.

It is essential for vehicle ReID tasks because the feature channels in different vehicle images may

have different importance and expressiveness. Contrastive Attention, by contrast, focuses only on

the differences between positive and negative samples on each channel and may not be able to

utilize the information from all channels fully. Polarized filtering and Enhancement are two essential

concepts for high-quality pixel-wise regression, and they are combined in the Polarized Self-Attention

(PSA) [56] block. Compared with DMANet, which in mAP is 6.29% higher than PSA. DMANet

introduces more feature diversity by dividing multiple sub-feature maps into channel dimensions and
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spaces. Diversity can help improve the network’s ability to capture the features in different vehicle

images and improve the vehicle re-identification performance. However, PSA folds in both channel

and spatial dimensions, which results in a certain level of information loss. It has a particular impact

on the ability of fine-grained feature discrimination in vehicle re-identification tasks. Besides, Table

6 shows that, compared with the baseline, DMANet contributes 6.29% of the mAP improvement of

VeRi-UAV. In the end, by fusing attention mechanisms, DMANet can provide more flexibility so that

the model can adaptively select and adjust different attention mechanisms according to the needs of

specific tasks.

Table 6. Comparison of different attention modules.

Methods Rank-1 Rank-5 Rank-10 mAP

CA [3] 94.44 95.02 95.83 77.87
SA [2] 94.72 95.57 97.43 78.42

SA&CA [11] 94.78 95.67 97.64 78.53
ACmix [54] 95.07 97.31 97.76 78.52

Cot [55] 95.87 97.31 97.76 80.30
Psa [56] 96.59 97.85 98.12 80.70

Ours 97.04 98.65 98.83 86.99

4.4.6. Visualization of Model Retrieval Results

To illustrate the superiority of our model more vividly, Figure 6 shows the visualization of the top

10 ranked retrieval results for the baseline and model on the VeRi-UAV dataset. Four query images

corresponding to the retrieval results are randomly shown, the first row for the baseline method and

the second for our method. The images with green borders represent the correct samples retrieved,

while those with red edges are the incorrect ones retrieved.

As can be observed from Figure 6 , the baseline usually focuses on the vehicle’s appearance, such

as color, shape, etc. Therefore some negative matches appear due to pose and illumination similarity.

Our proposed DMANet grouping features increases the variation and diversity of features, making

distinguishing between vehicles with a similar appearance easier. In addition, DMANet fuses channels

and spatial attention to enhance focus on critical areas and colors, shapes, and textures, making

models distinguish similar-looking vehicles better. In summary, DMANet improves the model’s

ability to capture vehicle details, enhances vehicle differentiation, and thus improves the accuracy and

robustness of vehicle reidentification.

Figure 6. Visualization of the ranking lists of model and baseline on VeRi-UAV. The top and bottom

rows for each query show the ranking results for the baseline and joining the Dual Mixing Attention

Module (DMAM), respectively. The green (red) boxes denote the correct (wrong) results.
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5. Conclusions

In this paper, we proposed a novel DMANet to extract discriminative features robust to variations

in viewpoint. Specifically, we first present a plug-and-play DMAM, where DMAM was composed

of SMA and CMA: First, the original feature was divided according to the dimensions of spatial

and channel to obtain multiple subspaces. Then, a learnable weight was applied to capture the

dependencies. Finally, the components extracted from all subspaces were aggregated to promote their

comprehensive feature interaction. The experiments showed that the proposed structure performs

better than the representative methods in the UAV-based vehicle ReID task.

Futher Work. There are few datasets for vehicle ReID based on the UAV perspective, and the

research space is ample. Consider extending the dataset regarding different scenes, lighting, and

resolution. Furthermore, consider setting up data sets of changes in vehicle details, such as changes

in the position of the vehicle decoration or changes in the passenger. The model needs to determine

whether the changed vehicle belongs to the same ID through the changes in details. This change aligns

with reality and will present a significant challenge for vehicle ReID.
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