

Review

Not peer-reviewed version

Use of Artificial Intelligence to Hasten Progress in Plant Genetics

[Abhinandan Patil](#) *

Posted Date: 18 September 2023

doi: 10.20944/preprints202309.1067.v1

Keywords: Artificial Intelligence, Genetics, Agriculture, Nutritional

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

Use of Artificial Intelligence to Hasten Progress in Plant Genetics

Abhinandan Patil

D. Y. Patil Education Society, Deemed to be University, Kolhapur; abhisirdyp@gmail.com

Abstract: There has been a revolution in crop breeding, the age-old technique of improving plant features for agricultural and nutritional purposes. The merging of Artificial Intelligence (AI) and genetics is the driving force behind these changes. The combination of AI-driven models, genomic data, and cutting-edge tools like CRISPR-Cas9 to speed up genetic improvements in crops is described in this abstract. From increased disease resistance and production potential to better nutritional content, AI plays a crucial role in the identification and improvement of crop features. The time it takes to review, select, and cross several generations of crops is reduced by AI's data-driven selection, precision editing, and predictive modeling. This innovative tool has the potential to transform farming by helping to combat issues like hunger, climate change, and malnutrition on a worldwide scale. Equal access, protecting genetic variety, and assessing risks are only some of the ethical and regulatory issues raised by AI-enhanced agricultural breeding. Responsible and equitable implementation of AI in agricultural breeding relies on successfully navigating these challenges. Finally, the use of artificial intelligence to improve crop breeding marks a revolutionary change in agriculture, speeding up genetic improvements to meet the needs of a growing global population while also addressing urgent environmental and nutritional concerns. This abstract provides a taste of the promise, difficulty, and ethical questions that characterize this innovative subject, where artificial intelligence and genetics join forces to grow a better future for agricultural production around the world.

Keywords: artificial intelligence; genetics; agriculture; nutritional

Introduction

Traditional crop breeding has involved selecting and crossing plants with desirable characteristics such as larger size, higher yields, and disease resistance. There has been a lot of success with this approach over the years, but it is laborious and doesn't always provide the goods. An innovative new strategy that leverages genetics and data analytics to speed up and improve crop breeding is here, and it's all thanks to genomic selection and trait prediction powered by artificial intelligence (AI) ¹⁻³.

1. Selection Genómica:

The study of an organism's complete collection of genes, or genome, has important applications in agriculture. Genomic analysis in farming creates a blueprint of the genes responsible for a crop's characteristics.

Artificial Intelligence and Genomic Data: AI algorithms are used to evaluate large genomic databases containing details about genes, their variants, and the relationships between them. These computations sift through the data in search of genetic markers connected to desirable characteristics.

The AI builds predictive models to determine a plant's potential for various features based on its genetic makeup using machine learning and statistical analysis. Genomic selection describes this process.

2. Inferring Personality Traits:

Crop breeders have always looked for plants with certain characteristics, such as increased production, resistance to disease, tolerance of environmental stress, and enhanced nutritional value. Enhancing agricultural output and resolving issues of global food security necessitates these characteristics.

Predictions based on intricate data structures are where AI really shines. Artificial intelligence systems can analyze a plant's genetic markers to determine whether or not it will exhibit these features, which can then be used in crop breeding.

Not only does AI take genomic data into account, but it also factors in information about the environment and past performance. By considering all relevant factors, this method improves the ability to anticipate how a plant would do in a given environment.

3. Genomic selection and trait prediction have a number of benefits:

Genomic selection allows breeders to choose plants with desirable features at an early stage, rather than waiting for the complete growth cycle, which speeds up the breeding process.

Accuracy: Predictions made by AI are so accurate that they help breeders zero in on the plants most likely to exhibit a desirable quality.

Genomic selection improves the efficiency of crop breeding by lowering the number of plants that must be cultivated and evaluated.

4. Effects on Farming

Crop breeders all around the world can now rely heavily on genomic selection and trait prediction. They contribute to the evolution of improved crop types to feed the world's expanding population.

Crop Resilience: Artificial intelligence (AI)-enhanced crop breeding aids in developing crops that are better able to endure shifting environmental circumstances and adapt to new threats, such as pests and diseases.

These innovations are raising crop yields and bettering crop quality, both of which contribute to global food security.

5. Opportunities and Threats: Data Quality: The quality and quantity of accessible genetic data directly affect the accuracy of forecasts. The collecting and dissemination of data is the subject of continuing efforts.

Concerns about the concentration of genetic resources and the patenting of genetic information raise ethical questions.

Regulatory Frameworks: It is a continuous struggle to establish norms and standards for AI-assisted crop breeding.

As a result, crop breeding is being transformed by genomic selection and trait prediction enabled by AI. Improved crop varieties may now be developed much more quickly thanks to this technology, which allows breeders to make educated judgments about which plants to crossbreed. The impact on global agriculture is predicted to be significant as AI continues to advance in capability, ultimately leading to more sustainable and productive food systems to address future problems.

Accelerated Breeding Cycles: The Impact of AI on the Future of Crop Improvement

Developing new plant kinds with the necessary features has traditionally been a lengthy and laborious process, requiring years or even decades. However, the use of AI is reshaping this industry by speeding up the breeding cycles, drastically cutting down on the time needed for numerous generations of crops to be analyzed, selected, and crossed. This development has the potential to improve the efficiency and effectiveness with which we approach global food security issues ⁴⁻⁶.

1. Selection Based on Data:

- **Genomic Data Analysis:** Artificial intelligence systems sift through massive genomic datasets in search of markers linked to desired qualities. This data-driven method is more efficient than traditional observational techniques in helping breeders identify plants with desirable features.

- **Predictive Modeling:** Using a crop's genetic makeup, AI builds predictive models to forecast the crop's performance. By predicting which plants are more likely to have desirable traits, these algorithms shorten the time required for costly field experiments.

2. Trait Scanning that Works Well:

Artificial intelligence (AI)-enhanced phenotyping technologies, such as drones and remote sensing, allow for quick, large-scale assessment of plants' phenotypic traits. This facilitates the selection process by allowing breeders to compare numerous qualities at once.

The collecting of trait data is automated by AI-driven algorithms, with no room for human bias or error. This ensures that trait ratings across generations are constant and trustworthy.

3. Creating a Simulated Breeding Facility:

AI makes it possible for breeders to create virtual breeding settings in which they may model a wide range of growing conditions and trait interactions. This expedites the testing of thousands of potential breeding configurations.

Because less real estate and materials are required in virtual worlds, they are more economically and ecologically sound.

4. Rapid Hybridization:

Genomic Prediction - Using machine learning, scientists may speculate on how various matings would affect a population's genetic makeup. This aids breeders in determining which plant species to cross in the hopes of producing offspring with desirable characteristics.

Artificial intelligence (AI) led selection and prediction can drastically reduce the time needed to generate new generations of plants, giving breeders more time to evaluate and pick promising candidates.

5. Influence on the Progress of Crops

Quicker development of crop varieties with enhanced features including disease resistance, greater yields, and tolerance to environmental stress is made possible by shorter breeding cycles.

Because of the shorter time it takes to complete a breeding cycle, crops can be developed and adapted to changing climatic conditions and evolving pest and disease challenges.

6. Future Prospects and Obstacles:

Maintaining the integrity and uniformity of genetic data is still a significant concern. There are continuous efforts to facilitate better data gathering and exchange amongst academic organizations.

Constant thought must be given to the ethical implications of using AI in breeding, which include concerns over intellectual property and the loss of genetic variety.

To ensure ethical application and widespread availability of AI-assisted breeding technologies, it is crucial that regulatory frameworks be established to control their implementation.

As a result of AI's ability to shorten breeding cycles, decrease resource requirements, and speed up the production of superior crop varieties, it is clear that AI is having a revolutionary impact on crop breeding. This innovation has the potential to help farmers respond to climate change and other global food security issues. The possibility for even more fast development in crop enhancement is becoming increasingly clear as AI continues to advance, which is good news for both farmers and consumers.

Future Agriculture Will Be Transformed by AI-Optimized Crop Traits

To enhance production to feed a growing global population, while also addressing environmental and sustainability concerns, is a dual challenge for agriculture around the world. To address this difficulty, Artificial Intelligence (AI) has become a powerful resource for improving the disease resistance, production potential, and nutrient content of crops to match changing dietary requirements. In this article, we look at how AI-driven models are altering the way we improve crop qualities and the practices of farming in the future ⁷⁻¹¹.

1. Immunity to Illness:

Genomic analysis is a branch of artificial intelligence that examines the DNA of plants for disease resistance indicators. Plants with innate resistance to particular diseases are selected and crossbred using this genomic information.

The use of AI-guided selection in Precision Breeding reduces the need for chemical treatments and crop loss by selecting those plants with the highest likelihood of acquiring disease resistance characteristics.

2. Potential Returns

Trait Optimization: Artificial intelligence methods estimate the impact of individual genes and hybrids on harvest success. This data is used by breeders to choose plants that are likely to have offspring with desirable characteristics.

Environmental Adaptation: Artificial intelligence considers environmental characteristics like temperature and soil quality to suggest crop kinds that will thrive in those conditions and produce the highest yields.

3. Food and Nutrition Board's

To learn how various genes affect a crop's nutritional profile, AI evaluates its metabolic pathways. Plant breeders can use this data to select crops with certain nutrient profiles.

To combat malnutrition in at-risk populations, AI-driven breeding initiatives are working to increase the vitamin and protein content of crops using biofortification strategies like fortifying grains with these nutrients.

4. Bugs & Bug-Blocking Technology:

AI can pinpoint genetic markers that are linked to resistance to particular pests, a phenomenon known as "genetic resistance." This data is used by breeders to create pest-resistant crop types, hence decreasing the demand for chemical pesticides.

Continuously assessing crop health, AI-powered monitoring systems can spot pest infestations early and guide precise actions.

5. Sustainability in the Environment:

Reduced usage of water, fertilizer, and pesticides are just some of the benefits that can come from adopting agricultural methods that have been AI-optimized.

Reduced environmental impact: AI-optimized crops help lessen the negative effects of agriculture on ecosystems by increasing their resistance to disease and decreasing their dependence on chemical treatments.

6. Taking Ethics into Account:

Concerns about intellectual property rights and equitable distribution of AI-optimized seeds arise when using AI to crop development.

Genetic Diversity: It is an ongoing concern that AI-optimized features will not lead to a loss of genetic diversity in agricultural crops.

7. Institutionalized Regulations:

Safety and Regulation: It is crucial to establish regulatory frameworks to guarantee the security of AI-optimized crops and their products.

Issues of Transparency and Accountability in AI-driven Breeding Processes and Accountability for Unintended Consequences must be addressed in Regulations.

In conclusion, AI-optimized agricultural features offer a potential approach to agriculture's complicated problems. Agriculture may become more robust and able to feed the world's rising population by employing AI to improve disease resistance, yield potential, and nutritional content while encouraging environmental sustainability. However, these developments need to be accompanied by ethical concerns and legal frameworks to guarantee the fair and responsible application of AI in crop breeding.

Precision Engineering of Crop Traits Using Artificial Intelligence

The capacity to manipulate plant DNA with unrivaled precision has been opened through genome editing, in particular by adopting groundbreaking tools like CRISPR-Cas9. Producing crops with higher yield, disease resistance, and nutritious content is a possibility made possible by this technology. In order to guide and optimize these complex genomic editing procedures, artificial intelligence (AI) is proving to be a vital tool in the creation of the next generation of crops ¹²⁻¹⁶.

1. Identifying a Target:

- **Genome Analysis:** Artificial intelligence systems examine the complete plant genome to pinpoint the genes responsible for the desired characteristics. Disease-resistant, drought-resistant, and improved nutritional content genes fall within this category.

- Precision Editing: AI aids in locating specific regions of the genome for gene editing, allowing for more efficient and less intrusive alterations to be made.

2. Designing Guide RNA:

- Artificial Intelligence (AI)-Assisted develop: AI can develop guide RNAs, molecules that direct the CRISPR-Cas9 system to their target genes. By using AI, we can select guide RNAs with the highest possible specificity and the lowest possible off-target effects.

AI-driven guide RNA design reduces the likelihood of inadvertent mutations and other genetic abnormalities, increasing the reliability of the resulting alterations to the target traits.

3. Prediction Misses the Mark

By scanning the genome for sequences comparable to the target gene, AI algorithms can foresee any unintended consequences of CRISPR-Cas9 editing. This aids scientists in evaluating and preventing unwanted genetic changes.

4. Optimizing Characteristics:

AI analyzes the intricate genetic networks associated with desirable features, enabling targeted manipulation to achieve the best possible results.

- Predictive Modeling: AI can model the results of different genetic tweaks, allowing scientists to zero in on the ones that will have the most impact on improving the target traits.

5. Large-Scale Screening:

High-throughput screening of modified plants can produce massive data sets, which can be analyzed by artificial intelligence. It allows for more precise and rapid identification of plants displaying the desired characteristics.

AI speeds up the screening process, requiring fewer people and fewer resources to find effective modified plant lines.

6. Taking Ethics into Account:

- Responsible Use: Artificial Intelligence in genomic editing must follow ethical criteria to guarantee that the technology is used for the greater good of society and the natural world.

To properly monitor and control the use of AI-assisted genome editing in farming, it is crucial that appropriate regulatory frameworks be established.

7. Consequences for the Future:

- Personalized Crops: Genomic editing powered by artificial intelligence will allow for specialized agricultural and nutritional products.

Improved crops developed with the help of artificial intelligence-guided genome editing can lead to more environmentally friendly and effective farming methods.

In conclusion, AI is radically altering the field of genomic editing by allowing for unparalleled accuracy in modifying plant genomes. Increased food security and more environmentally responsible farming are only two of the many critical agricultural issues that could be ameliorated by this technology. Artificial intelligence (AI) has the potential to significantly impact the future of crop development and agriculture as a whole as it continues to develop.

Implications and Challenges of AI in Crop Improvement Worldwide:

There are many worldwide problems that could be solved by combining crop breeding with AI, which is now altering the agricultural industry. It does, however, raise questions of ethics and regulation. Let's look at the worldwide effects and difficulties of AI-enhanced agricultural breeding 18-30:

1. Concerning Food Safety:

The world's population is forecast to reach over 9 billion by 2050, a figure that represents global population growth. Creating high-yielding, drought-resistant crop varieties is essential to keeping up with the rising demand for food, and AI-enhanced agricultural breeding can assist.

Artificial intelligence (AI) facilitates the production of drought-, heat-, and pest-resistant varieties of crops, which are becoming increasingly common as a result of climate change.

2. Reduce the Impact of Global Warming

Reduced use of water, fertilizer, and pesticide on AI-optimized crops contributes to sustainable agriculture. Artificial intelligence (AI) improved breeding helps reduce agriculture's environmental impact by encouraging the use of less resources.

Some AI-driven breeding efforts aim to maximize crop carbon sequestration in order to lessen the environmental impact of agriculture.

3. Boosting the Food's Nutritional Value:

By using AI to create crops with enhanced nutritional profiles, we can help those at risk of malnutrition and dietary deficiencies.

In the case of Golden Rice, which includes vitamin A and can combat vitamin A deficiency in underdeveloped nations, it is possible that AI-enhanced agricultural breeding will lead to the development of nutrient-fortified crops.

4. Moral Issues and human disease:

Food health and medicine: Probiotics, and nutraceuticals are used to heal the diseases. The use of proper IoT and AI in agriculture will help to design the nutraceuticals to heal the disease and act as an ideal model with prophylactic activities for human diseases.

Technology Gap: Small-scale farmers and underdeveloped areas may be left out of the benefits of AI-enhanced agricultural breeding due to inequitable adoption.

Access to these seeds, especially for farmers in developing countries, is called into question by the patenting of AI-optimized crop types.

Widespread use of AI-driven crops has the potential to limit genetic diversity among some agricultural species, leaving them more susceptible to disease and pests.

5. Problems with Regulations

The regulatory agencies' task of assessing the safety of AI-modified crops and ensuring they adhere to strict environmental and health requirements is a significant challenge.

Globally harmonizing legislation for AI-enhanced crops is a complicated undertaking that requires extensive international cooperation.

Gaining public trust and regulatory permission for AI-enhanced breeding requires maintaining full transparency throughout the process, from data gathering to trait optimization.

Conclusion:

Through addressing food insecurity, mitigating climate change, and enhancing nutritional value, AI-enhanced crop breeding has the potential to completely transform agriculture. This powerful technology comes with ethical and legal problems that must be controlled with care to ensure universal access, biodiversity conservation, and appropriate application. Harnessing the full potential of AI in crop breeding for the benefit of people and the earth requires striking a balance between innovation and ethical issues.

Conclusion

Where the ageless pursuit of superior crop qualities meets the urgent challenges of a fast changing world, AI-enhanced crop breeding shines as a source of innovation and optimism for the agricultural sector. As we delve deeper into the function of AI in boosting genetic progress, it becomes clear that we are on the verge of a revolutionary shift in the way we design the future of our crops and food systems. With the advent of AI, scientists no longer have to worry about running out of time or money to identify and optimize crop features. The accuracy and predictive capacity of AI-driven models have made previously unattainable goals within reach, such as disease-resistant cultivars, high-yielding crops, and nutrient-enriched foods. Accelerating breeding cycles, guided by AI, has the potential to solve issues of global food security. The need for robust and resource-efficient crops is growing as our population expands and the climate changes. AI-optimized crops are a lifeline because they reduce the negative effects of farming on the environment while protecting crops from drought, disease, and pests. At the same time, ethical and regulatory concerns must be addressed as we approach the beginning of this agricultural revolution. Protecting against unexpected consequences, conserving genetic variety, and expanding access to AI-driven technologies are all of the utmost importance. Responsible use of AI in agricultural breeding requires open communication,

global cooperation, and a commitment to ethics. In conclusion, artificial intelligence (AI)-enhanced crop breeding is a game-changer that has the potential to reshape agriculture. It combines creativity, longevity, and toughness to meet the complex challenges of our day. The future of agriculture is more hopeful than ever before as both AI and genetics continue to advance. We set out on a journey towards a world where crops are more than simply food; they are also the foundation of well-nourished, resilient communities by leveraging the revolutionary power of AI.

References

1. V. Pawar, A. Patil, F. Tamboli, D. Gaikwad, D. Mali, A. Shinde, "Harnessing the Power of AI in Pharmacokinetics and Pharmacodynamics: A Comprehensive Review," *International Journal of Pharmaceutical Quality Assurance*, vol. 14, no. 2, pp. 426-439.
2. V.I. Adamchuk, J.W. Hummel, M.T. Morgan, et al., "On-the-go soil sensors for precision agriculture," *Comput. Electron. Agric.*, vol. 44, no. 1, pp. 71-91, 2004.
3. Y.G. Ampatzidis, S.G. Vougioukas, "Field experiments for evaluating the incorporation of RFID and barcode registration and digital weighing technologies in manual fruit harvesting," *Comput. Electron. Agric.*, vol. 66, no. 2, pp. 166-172, 2009.
4. K.D. Bowman, "Longevity of radiofrequency identification device microchips in citrus trees," *Hortscience*, vol. 45, no. 3, pp. 451-452, 2010.
5. T.R. Bu, L.X. Lv, W. Wang, "Design of agriculture environment monitoring system based on tinyOS wireless sensor network," *Agric. Netw. Inform.*, 2009(02), pp. 23-26.
6. P.F. Chang, J.F. Zhang, W. Zhang, "Point localization technology for forestry wireless sensor network," *J. N. For. Univ.*, vol. 46, no. 08, pp. 102-105, 2018.
7. X.D. Chen, "Study on Growth Condition Monitoring and Management Techniques of Millet Field Based on Internet of Things," Shanxi Agricultural University, 2015.
8. Y.X. Chen, "Analysis and Design of Vegetable Quality and Security Management System Based on RFID Technology," Jiangxi University of Finance and Economics, 2018.
9. Q. Chen, B. Han, W. Qin, et al., "Design and implementation of the IOT gateway based on Zigbee/GPRS protocol," *J. Comput. Res. Dev.*, vol. 48, Suppl, pp. 367-372, 2011.
10. X.Y. Chen, G.W. Yao, K. Zhang, et al., "The application of wireless sensor node localization based on genetic algorithm in agriculture," *Software*, vol. 36, no. 04, pp. 1-5, 2015.
11. Farooq, M.S., S. Riaz, A. Abid, et al., "A survey on the role of IoT in agriculture for the implementation of smart farming," *IEEE Access*, vol. 7, pp. 156237-156271, 2019. [Online]. Available: <https://doi.org/10.1109/ACCESS.2019.2949703>.
12. J. Gao, G.Y. Feng, C.M. Hang, et al., "Water-saving irrigation control system based on wireless sensor network," *Modern Electron. Tech.*, vol. 33, no. 1, pp. 204-206, 2010. [Online]. Available: <https://doi.org/10.3969/j.issn.1004-373X.2010.01.063>.
13. K.Q. Gao, P.L. Xu, Y.J. Niu, "Application of RS technology in urban land intensive use," *Geomat. Spatial Inform. Technol.*, vol. 43, no. 4, pp. 143-147.
14. D. Glaroudis, A. Iossifides, P. Chatzimisios, "Survey, comparison and research challenges of IoT application protocols for smart farming," *Comput. Netw.*, vol. 168, 107037. [Online]. Available: <https://doi.org/10.1016/j.comnet.2019.107037>.
15. L.A. González, G.J. Bishop-Hurley, R.N. Handcock, et al., "Behavioral classification of data from collars containing motion sensors in grazing cattle," *Comput. Electron. Agric.*, vol. 110, pp. 91-102. [Online]. Available: <https://doi.org/10.1016/j.compag.2014.10.018>.
16. Y. Gu, X.M. Qi, "Construction of agricultural big data visualization platform based on GIS in Nanjing City," *J. Shandong Agric. Univ. (Nat. Sci. Ed.)*, vol. 51, no. 04, pp. 702-704. [Online]. Available: <https://doi.org/10.3969/j.issn.1000-2324.2020.04.024>.
17. H.W. Gu, X.Y. Zhang, X. Qin, et al., "Construction of pork traceability system," *Heilongjiang Agric. Sci.*, 2018(05), pp. 46-49. [Online]. Available: <https://doi.org/10.11942/j.issn1002-2767.2018.05.0046>.
18. T.K. Hamrita, E.C. Hoffacker, "Development of a smart wireless soil monitoring sensor prototype using RFID technology," *Appl. Eng. Agric.*, vol. 21, no. 1, pp. 139-143. [Online]. Available: <https://doi.org/10.13031/2013.17904>.
19. Malla, M. A., Dubey, A., Kumar, A., Patil, A., Ahmad, S., Kothari, R., & Yadav, S. (2021). Optimization and elucidation of organophosphorus and pyrethroid degradation pathways by a novel bacterial consortium

C3 using RSM and GC-MS-based metabolomics. *Journal of the Taiwan Institute of Chemical Engineers, 144*, 104744.

- 20. Munot, N., Kandekar, U., Rikame, C., Patil, A., Sengupta, P., Urooj, S., & Bilal, A. (2022). Improved Mucoadhesion, Permeation and In Vitro Anticancer Potential of Synthesized Thiolated Acacia and Karaya Gum Combination: A Systematic Study. *Molecules, 27*(20), 6829.
- 21. Munot, N., Kandekar, U., Giram, P. S., Khot, K., Patil, A., & Cavalu, S. (2022). A Comparative Study of Quercetin-Loaded Nanocochleates and Liposomes: Formulation, Characterization, Assessment of Degradation and In Vitro Anticancer Potential. *Pharmaceutics, 14*(8), 1601.
- 22. Manikyam, H. K., Tripathi, P., Patil, S. B., Lamichhane, J., Chaitanya, M., & et al. (2020). Extraction, purification, and quantification of hesperidin from the immature *Citrus grandis/maxima* fruit Nepal cultivar. *Asian Journal of Natural Product Biochemistry, 20*(1).
- 23. Patil, A., Munot, N., Patwekar, M., Patwekar, F., Ahmad, I., Alraey, Y., & Alghamdi, S., & et al. (2022). Encapsulation of lactic acid bacteria by lyophilisation with its effects on viability and adhesion properties. *Evidence-based Complementary and Alternative Medicine, 2022*.
- 24. Nalawade, A. S., Gurav, R. V., Patil, A. R., Patwekar, M., & Patwekar, F. (2022). A comprehensive review on morphological, genetic and phytochemical diversity, breeding and bioprospecting studies of genus *Chlorophytum* Ker Gawl. from India. *Trends in Phytochemical Research, 6*(1), 19-45.
- 25. Patil, K. G., Balkundhi, S., Joshi, H., & Ghewade, G. (2011). MEHSANA BUFFALO MILK AS PREBIOTICS FOR GROWTH OF LACTOBACILLUS. *International Journal of Pharmacy and Pharmaceutical Research, 1*(1), 114-117.
- 26. Das, N., Ray, N., Patil, A. R., Saini, S. S., Waghmode, B., Ghosh, C., & Patil, S. B., & et al. (2022). Inhibitory effect of selected Indian honey on colon cancer cell growth by inducing apoptosis and targeting the β -catenin/Wnt pathway. *Food & Function, 13*(15), 8283-8303.
- 27. Patil, M. J., & Mali, V. (2021). The Diverse Cytotoxicity Evaluation of Lactobacillus Discovered from Sheep Milk. *Acta Scientific Pharmaceutical Sciences, 5*(12), 69-70.
- 28. Abhinandan, P. S. P., & John, D. (2020). Probiotic potential of *Lactobacillus plantarum* with the cell adhesion properties. *Journal of Global Pharma Technology, 10*(12), 1-6.
- 29. Patil, A., Pawar, S., & Disouza, J. (2018). Granules of unistain *lactobacillus* as nutraceutical antioxidant agent. *INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES AND RESEARCH, 9*(4), 1594-1599.
- 30. Patil, A., Mali, V., & Patil, R. (2019). Banana fibers camouflaging as a gut worm in a 6-month-old infant. *Iberoamerican Journal of Medicine, 2*(3), 245-247.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.