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Abstract: Metabolic-dysfunction associated steatotic liver disease (MASLD) is a chronic liver disease that affects
more than a quarter of the global population, and is increasing worldwide, due to the pandemic of obesity.
Insulin resistance is closely associated with the development and progression of MASLD. Hepatic entry of
increased fatty acids (FA) released from adipose tissue, increase in FA synthesis and reduced FA oxidation in the
liver, and hepatic overproduction of triglyceride (TG)-rich lipoproteins may induce the development of MASLD.
Since insulin resistance also induces atherosclerosis, the leading cause for death in MASLD patients is
cardiovascular disease (CVD). Considering that the development of CVD determines the prognosis of MASLD
patients, the ideal therapeutic interventions for MASLD should reduce body weight, improve coronary risk
factors, in addition to an improvement in liver functiom. Lifestyle modification such as diet and exercise and
surgical interventions such as bariatric surgery and intragastric balloons have shown to improve MASLD by
reducing body weight. Sodium glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor
agonists (GLP-1RA) have been shown to improve coronary risk factors and to suppress the occurrence of CVD.
Both SGLT2i and GLP-1 have been reported to improve liver enzymes, hepatic steatosis and fibrosis. We recently
reported that the selective peroxisome proliferator-activated receptor-alpha (PPARx) modulator, pemafibrate,
improved liver function. PPARa agonists have multiple anti-atherogenic properties. Here, we consider the
pathophysiology of MASLD and the mechanisms of action of such drugs, and consider whether such drugs and
the combination therapy of such drugs could be the ideal treatments for MASLD.

Keywords: cardiovascular disease; fatty acids; insulin resistance; metabolic-dysfunction associated steatotic liver
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1. Introduction

Metabolic-dysfunction associated steatotic liver disease (MASLD) is a chronic liver disease that
affects more than a quarter of the global population, and is increasing worldwide [1-3]. The pandemic
of obesity and its cardio-metabolic consequences contribute to an increased prevalence of MASLD
[4]. Approximately 20-30 % of MASLD patients develop metabolic-dysfunction associated
steatohepatitis (MASH), leading to liver cirrhosis and associated complications, including
hepatocellular carcinoma [5]. The disease burden from liver fibrosis due to MASLD is expected to
increase around two to three-fold within decade worldwide. However, it is difficult to say that an
effective therapeutic strategy for MASLD has been established.

MASLD is defined as the presence of hepatic steatosis (histological, imaging or blood biomarker
evidence of hepatic steatosis) plus at least one of three metabolic criteria: overweight/obesity,
established type 2 diabetes or the presence of metabolic dysregulation [6]. The latter is characterized
by the presence of at least 2 metabolic abnormalities including an increase in waist circumference
(WC), reduced high-density lipoprotein-cholesterol (HDL-C), hypertriglyceridemia, elevated blood
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pressure, prediabetes, elevation of homeostasis model assessment of insulin resistance (HOMA-IR)
and high-sensitivity C-reactive protein (CRP) level [6]. The diagnostic criteria of MASLD is very
similar to that of the metabolic syndrome. Insulin resistance greatly contributes to the development
of MASLD and MASH.

It is very useful for the establishment of effective therapeutic strategies for MASLD to
understand insulin resistance-induced metabolic disorders and its effects on liver, the underlying
mechanisms that drugs improve insulin resistance and/or insulin resistance-induced metabolic
disorders such as type 2 diabetes and atherogenic dyslipidemia. In short, such consideration can
discover the promising therapeutic interventions for MASLD.

2. The effects of insulin resistance on the development of MASLD

The effects of insulin resistance on the development of MASLD were shown in Figure 1.
Accumulated visceral adipose tissue produces more inflammatory cytokines such as tumor necrosis
factor alpha (TNF-a), interleukin-6 (IL-6) and IL-1B, and less adiponectin, which induces systemic
insulin resistance. The metabolism of free fatty acids (FFA) is altered in insulin resistance. The
enzymes lipoprotein lipase (LPL) and hormone-sensitive lipase (HSL) are rate-limiting steps for FFA
metabolism, because LPL hydrolyzes extracellular TG in lipoproteins and HSL hydrolyzes
intracellular TG in adipocytes.

Insulin resistance enhances the expression and activity of HSL in adipose tissue. HSL catalyzes
the hydrolysis of TG into FFA [7]. Insulin resistance is crossly associated with an excess TG storage
within skeletal muscle [8]. Insulin resistance reduced FA oxidation, leading to diminished use of FA
and storage of TG within skeletal muscle. Serum FFA increase due to increased release from the
adipose tissue and decreased FA use in the skeletal muscle. Increased FFA enters the liver, leading to
overproduction of TG-rich lipoprotein such as very-low-density lipoprotein (VLDL). Insulin
resistance is associated with reduced apo B100 degradation [9], and is also associated with elevated
hepatic apo CIII production [10], which increase VLDL because both apo B100 and apo CIII constitute
VLDL. Insulin resistance increases expression of microsomal TG transfer protein (MTP), a key
enzyme involved in VLDL assembly [9]. In an insulin-resistant-state, an increased FFA entry to liver,
reduced degradation of apo B100 and enhanced expression of apo CIII and MTP may elevate hepatic
production of VLDL. Insulin resistance also causes an increased expression of sterol regulatory
element binding protein 1c (SREBP-1c), which increases FA synthesis [11]. Hepatic FA metabolism is
regulated by a combination of FA uptake, FA export by VLDL secretion, de novo FA synthesis by
SREBP-1c, and FA utilization by p-oxidation.

Two major physically distinct species of VLDL exist: larger TG-rich VLDL1 and smaller VLDL2
[12]. At normal TG concentrations, VLDL1 and VLDL2 circulate in approximately equal proportions.
Hepatic TG accumulation and insulin resistance increase VLDL1 secretion [13,14]. MASH patients
had more pronounced postprandial intestinal and hepatic VLDL1 accumulation, LDL lipid
peroxidation and reduced total antioxidant status (TAS) [15]. Postprandial intestinal VLDLI
independently predicted oxidized LDL and TAS responses in MASH. Postprandial intestinal VLDL1
accumulation is associated with a pro-oxidant imbalance in MASH, and both correlate with the
severity of liver disease. The Otsuka Long-Evans Tokushima Fatty (OLETF) rats showed
overproduction of VLDL compared with the control rats [16]. In livers of OLETF rats, mRNA levels
of TNF-a, IL-1B and IL-6 were increased, and mRNA, protein levels, and tyrosine phosphorylation
of insulin receptor substrate 2 were decreased. Overproduction of VLDL in liver is significantly
associated with hepatic oxidative stress, inflammation and insulin resistance. However, it remains
unclear whether VLDL itself has the property of enhancing such exacerbating factors of liver fibrosis,
or whether metabolic abnormalities which induce VLDL overproduction promote liver fibrosis.

Downstream of insulin signaling, the mechanistic target of rapamycin complex 1 (mTORC1), is
a key regulator of lipid metabolism. Hepatic mTORC1 activity is elevated in mouse models with
insulin-resistance and MASLD, but such activity is decreased in mouse models of MASH [17]. Genetic
activation of mMTORC1 in hepatocytes enhances lipid export from the liver by secreting VLDL while
suppressing lipid synthesis to protect against MASH. In short, this study means that an increase in
VLDL secretion is beneficial to prevent the development and progression of MASH. MTP is
predominantly expressed in hepatocytes and enterocytes and is required for the assembly and
secretion of VLDL. A rare causal variant in MTTP, encoding MTP, associated with progressive
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MASLD, unrelated to metabolic syndrome, was identified [18]. Hepatocyte-like cells derived from a
homozygote donor had significantly lower MTP activity and lower lipoprotein apo B secretion than
wild-type cells. Cytoplasmic TG accumulation in hepatocyte-like cells triggered endoplasmic
reticulum (ER) stress, secretion of pro-inflammatory mediators, and production of reactive oxygen
species (ROS). This MTTP variant was associated with progressive MASLD. Increased expression of
MTP can be beneficial for the protection against MASLD.

FA oxidation primarily occurs in the mitochondria; however, FA oxidation commences in the
peroxisomes and then is finally processed in the mitochondria [19]. In obesity, w-oxidation by
cytochrome P450 enzymes also contributes to FA oxidation. This pathway for FA oxidation generates
large amounts of ROS [20]. The entry of FA into mitochondria depends on carnitine palmitoyl-
transferase 1 (CPT-1). One of the major regulators of CPT-1 is the peroxisome proliferator-activated
receptor-a (PPAR«) [21,22,23,24]. Activation of PPARa induces transcription of genes related to FA
oxidation [21,25,26]. Visceral adiposity and insulin resistance are negatively correlated with liver
PPARa gene expression [26].

Overexpression of apo CIII, independent of a high-fat diet (HFD), produces MASLD-like
features, including increased liver lipid content; decreased antioxidant capacity; increased expression
of TNFa, IL-13; decreased expression of adiponectin receptor [27]. HFD induced hepatic insulin
resistance, marked increases in plasma TNF« (8-fold) and IL-6 (60%) in apo CIII overexpressing mice.
Cell death and apoptosis were augmented in apo CIII overexpressing mice regardless of diet.
Fenofibrate treatment reversed several of the effects associated with diet and apo CIII expression but
did not normalize inflammatory traits even when liver lipid content was fully corrected. An increase
in apo CIII plays a major role in liver inflammation and cell death in MASLD. There were no reports
on adverse effects of apo CIII deficiency on MASLD, and increased apo CIII is thought to adversely
affect MASLD.

An increase in FFA leads to hepatic insulin resistance by interacting with insulin signaling [28,
29]. The anti-lipolytic function of insulin is impaired in insulin resistance, which may facilitate hepatic
TG synthesis. Saturated FA (SFA) are stored as lipid droplets, transferred into mitochondria for (3-
oxidation, and secreted into blood as VLDL [30]. SFA generate lipotoxic intermediate products, such
as diacylglycerols [31]. Lipotoxic intermediate products cause ER stress and ROS formation, which is
a major factor in the pathogenesis of MASH [30, 32]. By binding to Toll-like receptor 4, SFA induce
augmentation of mitochondrial dysfunction and activation of pro-inflammatory nuclear factor-kappa
B (NF-xB) [30].
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Figure 1. The effects of insulin resistance on the development of MASLD. Black and white arrows pointing
upward and downward indicate increase and decrease in expression or activity, respectively. Solid black lines
indicate the flow of substances. Purple solid lines indicate unfavorable effects on liver and artery. FA, fatty
acids; FFA, free fatty acids; HDL, high-density lipoprotein; HSL, hormone sensitive lipase; IL-6, interleukin-6;
LPL, lipoprotein lipase; MTP, microsomal triglyceride transfer protein; NF-«kB, nuclear factor-kappa B; PPAR«,
peroxisome proliferator-activated receptor-a; Rem, remnant lipoproteins; Sd-LDL, small dense low-density
lipoprotein; SREBP-1c, sterol regulatory element binding protein 1c; TG, triglyceride; TNF-o,, tumor necrosis
factor alpha; VLDL, very LDL.

3. The association of MASLD with cardiovascular diseases (CVD)

A retrospective analysis of 619 patients diagnosed with MASLD that CV events (38.3%) followed
by non-liver malignancy (18.7%), and complications of liver cirrhosis (7.8%) were the three most
common causes of death in MASLD patients [33], suggesting that CV events was the most crucial
determinant of mortality of MASLD patients. The meta-analysis showed that MASLD was
significantly associated with an increase in the development of CVD (odds ratio [OR], 2.05; 95%
confidence interval [95%Cl], 1.81 to 2.31; p < 0.0001) [34]. However, MASH has a higher liver-related
(OR for MASH, 5.71; 95%CI, 2.31 to 14.13; OR for MASH with advanced fibrosis, 10.06; 95%CI, 4.35
to 23.25), but not cardiovascular mortality (OR, 0.91; 95%CI, 0.42 to 1.98). Therefore, MASLD can be
said to be a high-risk group for CVD as well as a high-risk group for developing MASH.

A multicenter large retrospective study showed body mass index (BMI) in subjects with MASLD
was significantly higher than that in those without MASLD (p < 0.01) [35]. The prevalence of MASLD
showed a linear increase with the increase of BMI (BMI < 23 kg/m?, 10.5%; BMI 2 23 kg/m?and < 25
kg/m2, 37.9%; BMI 2 25 kg/m? and < 28 kg/m?, 58.4%; BMI > 28 kg/m?2, 84.2%) [35]. In short, a 7.4-11.4%
increase of the prevalence of MASLD per 1 kg/m? of BMI was observed. The prevalence of MASLD
showed a linear increase with the increase of serum TG and LDL-C, and a linear decrease with the
increase of HDL-C. The prevalence of MASLD was 22.8% in subjects with normal TG levels (< 150
mg/dL) and 59.5% in subjects with hypertriglyceridemia (> 150 mg/dL). The prevalence of MASLD
was 27.3% in subjects with normal HDL-C levels (> 40 mg/dL) and 61.7% in subjects with hypo-HDL-
C (<40 mg/dL). The prevalence of MASLD was 26.4% in subjects with normal LDL-C (< 140 mg/dL)
and 38.5% in subjects with hyper-LDL-C (> 140 mg/dL).

An increased production of VLDL observed in MASLD is caused by insulin resistance as
described above, and insulin resistance reduces the degradation of VLDL in the blood (Figure 1).
Insulin resistance adversely affects enzymes such as LPL and hepatic TG lipase (HTGL), leading to
conditions that are highly atherogenic, such as a decrease in HDL and increases in small-dense LDL
(5d-LDL) and remnant lipoproteins [36, 37]. Insulin resistance reduces LPL activity. LPL is the rate-
limiting enzyme for the catabolism of TG-rich lipoproteins such as VLDL [38]. The formation of HDL
is related with the catabolism of TG-rich lipoproteins by LPL [39]. Therefore, reduced LPL activity
increases VLDL, and reduces HDL. The activity of HTGL, the enzyme that facilitates the catabolism
of HDL, is correlated with insulin resistance [40]. Low serum HDL-C may be partially due to an
increased rate of clearance by HTGL [40]. LDL size are inversely proportional to HTGL activity [41],
and patients with high HTGL have more Sd-LDL, as compared with subjects with low HTGL activity
[42]. Increased HTGL activity due to insulin resistance may increase atherogenic lipoprotein, Sd-LDL.
Remnant lipoproteins have undergone extensive intravascular remodeling. LPL, HTGL, and
cholesterol ester transfer protein (CETP) induce structural and atherogenic changes that distinguish
remnant lipoproteins from non-remnant lipoproteins [43]. Via the LPL-mediated removal of TG and
CETP-mediated exchange of TG for cholesterol from LDL and HDL, remnant lipoproteins contain
more cholesterol than nascent VLDL [44].

HDL plays a role in reverse cholesterol transport from atherosclerotic plaque which is an anti-
atherogenic effect. Therefore, reduced HDL induces an atherogenic status. Since Sd-LDL is not
recognized by LDL receptor, Sd-LDL stays in blood for a longer period. Sd-LDL is likely to be
adhesive to endothelium and migrate into subendothelial space and lacks anti-oxidative capacity. Sd-
LDL has multiple atherogenic properties. Remnant lipoproteins are up-taken by macrophages
without modification such as oxidation, which is highly atherogenic property.

Weight reduction and an improvement in atherogenic lipoproteins are important to improve the
prognosis of MASDL patients.
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4. The therapeutic approaches for MASLD-lifestyle modification and surgical interventions
4.1. lifestyle modification

4.1.1. Diet

Weight loss by lifestyle modification is the cornerstone therapy of MASLD. Low carbohydrate
diet has showed favorable effects for body weight as well as hepatic fat content in several reports. In
the meta-analysis, there was no significant difference between low carbohydrate diet group and low
fat diet group on the improvement of hepatic fat content and liver enzymes in MASLD [45]. In the
meta-analysis of 8 randomized clinical trials (RCTs), the Mediterranean and hypocaloric dietary
interventions favoring unsaturated FA result in improvements in intrahepatic lipid content and liver
enzymes in patients with MASLD [46]. Another meta-analysis showed that calorie-restricted
interventions had favourable effects on alanine aminotransferase (ALT) (p < 0.001), hepatic steatosis
(p <0.001) and liver stiffness (p = 0.009) [47]. The Mediterranean diet reduced ALT (p = 0.02), Fatty
Liver Index (p < 0.001) and liver stiffness (p = 0.05). There was a dose-response relationship between
degree of calorie restriction and beneficial effects on liver function and weight loss.

Intermittent fasting, which includes alternate-day fasting, and other forms of periodic caloric
restriction have already received attention from animal research scientists [48, 49]. It has been shown
that fasting may benefit weight management and improve cardiovascular and metabolic risks [50]. In
the meta-analysis, there were significant differences in body weight, BMI, ALT, and aspartate
aminotransferase (AST) between the control and intermittent fasting group [51]. In another meta-
analysis, body weight, BMI, and waist to hip ratio were significantly improved following the
intermittent fasting intervention (p < 0.05) [52]. Adults with MASLD showed an improvement in
serum ALT, AST, hepatic steatosis and hepatic stiffness measured by vibration-controlled transient
elastography after intermittent fasting intervention (p < 0.05).

4.1.2. Exercise

Physical activity, independently from diet change, was associated with a significant reduction
in intrahepatic lipid content and with reductions in ALT and AST [53]. Individuals with increasing
BMI to be increasingly more likely to benefit from the intervention. Compared to standard care,
exercise improved serum ALT, AST and intrahepatic fat [54]. Exercise was associated with a
significant reduction in visceral (p < 0.001), subcutaneous (p < 0.001) and intrahepatic fat (p < 0.001),
as well as gamma-glutamyl transferase (GGT) (p <0.001) in pediatric obesity [55]. Supervised-exercise
significantly reduced hepatic fat content compared to the control groups in youth [56]. Exercise
training for about 12 weeks induced an absolute reduction in intrahepatic TG of 3.31% (95%Cl, -4.41
to -2.2) [57]. Exercise reduces intrahepatic TG independent of significant weight change (-2.16%;
95%CI, -2.87 to -1.44), but benefits are substantially greater when weight loss occurs (-4.87%; 95%CI,
-6.64 to -3.11). Furthermore, meta-regression identified a positive association between percentage
weight loss and absolute reduction in intrahepatic TG (B, 0.99; 95%CI, 0.62 to 1.36; p < 0.001).
Furthermore, exercise training also improves hepatic insulin sensitivity.

4.1.3. Diet and exercise

In the meta-analysis including RCTs assessed the effect of lifestyle-induced weight loss in
MASLD, although a > 5% weight loss improved hepatic steatosis, a > 7% weight loss also improved
non-alcoholic fatty liver disease (NAFLD) activity score (NAS), which is the sum of steatosis,
hepatocellular ballooning and lobular inflammation, however, fibrosis was unchanged [58].
Interventions combining exercise and diet showed decrease in ALT (p < 0.01) and improvement in
NAS [54]. In a systematic review and meta-analysis which assessed the effect of lifestyle changes on
metabolic parameters in patients with MASLD, compared to conventional treatment, combined
exercise with diet seems to elicit greater reductions in ALT (mean difference [MD], -13.27; 95%CI, -
21.39 to -5.16), AST (MD, -7.02; 95%CI, -11.26 to -2.78) and HOMA-IR (MD, -2.07; 95%ClI, -2.61 to -
1.46) than diet (ALT MD, -4.48; 95%CI, -1.01 to -0.21; HOMA-IR MD, -0.61; 95%CI, -1.01 to -0.21) and
exercise (ALT and AST non-significant; HOMA-IR MD, -0.46; 95% CI, -0.8 to -0.12) alone [59].

4.2. Surgical interventions
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4.2.1. Bariatric surgery

Bariatric surgery has an important role in managing obesity. It can achieve significant weight
loss, normalisation of glucose tolerance [60], and reduce cardiovascular risk and long-term mortality
[61, 62]. Bariatric surgery is associated with a significant reduction in the weighted incidence of a
number of histological features of MASLD including steatosis, fibrosis, hepatocyte ballooning and
lobular inflammation [63].

4.2.2. Intragastric balloons

Intragastric balloons are safe and effective in inducing weight loss in obese patients. In the meta-
analysis, ALT decreased by -10.02 U/L (95 %CL, -13.2 to -6.8), GGT decreased by -9.82 U/L (95 %(ClI, -
12.9 to -6.8), and BMI decreased by -4.98 kg/m? (95%ClI, -5.6 to -4.4) with intragastric balloons therapy
[64]. Hepatic steatosis by evaluated by magnetic resonance imaging (MRI) was improved from
baseline after 6 months of balloon therapy. Histological NAS was lower after 6 months of intragastric
balloons versus control with sham endoscopy and diet (p = 0.03). In another meta-analysis, an
improvement in steatosis was seen in 79.2% of patients, and NAS and HOMA-IR were improved in
83.5% and 64.5% of MASLD patients, respectively [65]. A reduction in liver volume by computed
tomography (CT) scan was noticed in 93.9% of patients undergoing intragastric balloons placement.

5. Pharmacological interventions for MASLD

Considering that the development of CV events determines the prognosis of MASLD patients
[33], the ideal therapeutic agents for MASLD should reduce body weight, improve coronary risk
factors, and, if possible, reduce CV events, in addition to improving liver function. Sodium glucose
cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1RA) have
been shown to improve coronary risk factors including body wieght and suppress the occurrence of
CV events [66, 67]. Here, we consider the effects of such drugs on MASLD. We also consider the effect
of selective peroxisome proliferator-activated receptor-alpha (PPARa) modulator, pemafibrate,
which we recently reported to improve liver function, on MASLD [68].

51. SGLT2i

5.1.1. Effects of SGLT2i on liver enzymes, hepatic steatosis and fiborosis.

SGLT2 mediates approximately 90% of active renal glucose reabsorption in the proximal tubule
of the kidney [69]. SGLT2i decrease plasma glucose without an increase in insulin secretion by
reducing renal glucose reabsorption [70], which is favorable for body weight reduction and
improvement in coronary risk factors [66, 71].

We previsouly reported that SGLT2i significantly reduced serum levels of AST, ALT and GGT at
3 and 6 months after the start of SGLT2i in patients with type 2 diabetes [72, 73]. Hepatic fibrosis can
be evaluated by using noninvasive fibrosis-4 (FIB-4) index, which was reported as a useful index in
MASLD [74]. A FIB-4 = 2.67 had an 80% positive predictive value for identification of advanced
hepatic fibrosis [74]. We found that FIB-4 index was significantly decreased at 12 months after the
start of SGLT2i in high-risk (FIB-4 = 2.67) group for adavanced hepatic fibrosis [75]. The correlations

between the change of FIB-4 index during 12-month SGLT2i treatment was correlated inversely with
the baseline FIB-4 index. We also retrospectively studied 568 patients with MASLD and type 2
diabetes. At 96 weeks, the mean FIB-4 index had significantly decreased (from 1.79 + 1.10 to 1.56 +
0.75) in the SGLT2i group, but not in the pioglotazone group [76]. Another marker for hepatic fibrosis,
aspartate aminotransferase to platelet ratio index (APRI) significantly decreased in both groups. The
body weight of the SGLT2i group decreased by 3.2 kg, but that of the PIO group increased by 1.7 kg.

In the meta-analysis of 20 RCTs, SGLT2i induced a significant decrease in serum ALT (-7.43 U/L,
95%CI; -12.14 to -2.71; p < 0.01), AST (-2.83 U/L; 95%CI, -4.71 to -0.95; p < 0.01), GGT (-8.21 U/L; 95%CI,
-9.52 to -6.91, p < 0.01), comparing with placebo or other oral antidiabetic drugs. SGLT2i treatment
was associated with a decrease in liver steatosis (-3.39%; 95%CI, -6.01 to -0.77; p < 0.0.1) [77].
Improvements in such liver enzymes and liver fat content were also observed in other meta-analyses
[78-81].
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Type IV collagen is one of the extracellular matrices that are produced by hepatic fibroblasts.
The 7S domain in the N-terminus of type IV collagen is inserted in tissues and released into the blood
by turnover in connective tissues. Therefore, the serum 7S domain level increases in parallel with the
amount of fibrosis and in synthesis from stellate cells and myofibroblasts following increased liver
fibrosis [82]. In Japan, type IV collagen 7S is now widely used for assessing the extent of hepatic
fibrosis. Elevated serum ferritin has been the main manifestation of disturbed iron homeostasis in
chronic liver diseases, and was reported to be independently associated with advanced liver fibrosis
in patients with MASLD [83-85]. The meta-analysis showed that SGLT2i significantly reduced the
level of FIB-4 (MD, 0.25; 95%ClI, -0.39 to -0.11; p = 0.0007); serum type IV collagen 7s (MD, 0.32; 95%CI

-0.59 to -0.04; p = 0.02); and ferritin (MD, 26.7; 95%ClI, 50.64 to 2.76, p = 0.03) [86].

In recent years, the use of transient elastography (TE) with Fibroscan® equipment to obtain
controlled attenuation parameter (CAP) and liver stiffness measurement (LSM) has been seen as a
promising tool for noninvasive quantifying hepatic steatosis and fibrosis, respectively [87, 88], and
showed low failure (3.2%), high reliability (> 95%), and high reproducibility [89]. In the meta-analysis,
SGLT?2i significantly reduced LSM level when compared with control group (SMD [standard MD],
-0.50; 95 %CI, -0.99 to —0.01; p = 0.002), CAP (SMD, -0.74; 95%ClI, —-1.21 to -0.27; p = 0.005), serum
ferritin (SMD, -1.36; 95 % CI [-2.14, -0.57], p = 0.0008), serum type IV collagen 7S (SMD, —0.66; 95%Cl,
-1.2 to -0.12; p = 0.0004), and FIB-4 index (SMD, —0.37; 95%CI, —0. 74 to —0.01; p = 0.03) [90].

5.1.2. The underlying mechanisms for an improvement of MASLD by SGLT?2i.

The underlying mechanisms for an improvement of MASLD and vascular protection by SGLT2i
were shown in Figure 2. SGLT2i decrease plasma glucose without an increase in insulin secretion by
reducing renal glucose reabsorption [70], and result in increase of the ratio of glucagon to insulin,
which activates HSL in adipose tissue [91]. As a result, FA release from adipose tissue increases due
to elevation in hydrolysis of stored TG, which reduces fat mass with a diminished adipocyte size,
resulting in an improvement in insulin resistance. An increase in hyprolysis of TG increses serum FA,
however, such incresed FA may be propmtly oxidized by skeltal muscles and liver.

Inflammatory biomarkers may play vital roles in the pathophysiology of diabetes and diabetic
cardiorenal complications. The meta-analysis showed that SGLT2i reduce CRP (standard MD [SMD],
0.25; 95%CI, -0.47 to -0.03, p = 0.02) and improved adiponectin (SMD, 0.28; 95%CI, 0.15 to 0.41, p <
0.001) as compared with placebo [92]. An increase in adiponectin has beneficial effects on glucose and
lipid metabolism by activation of adenosine 5'-monophosphate (AMP)-activated protein kinase
(AMPK) [93]. AMPK signaling pathway plays an important role in ameliorating lipid metabolism
disorders [94]. Increasing AMPK activity can inhibit FA synthesis by down-regulating the expression
of acetyl-CoA carboxylase (ACC), and simultaneously, can enhance FA oxidation by increasing the
expression of FA oxidation-related genes such as CPT-1. Reduced ACC activity by AMPK activation
leads to the downregulation of downstream FA synthesis-related molecules and the upregulation of
downstream (3 oxidation-associated molecules [91, 95].

SGLT2i shifted energy metabolism towards FA utilization, elevated AMPK and ACC
phosphorylation in skeletal muscle in diet-induced obese mice [96]. Furthermore, SGLT2i induce a
negative energy balance by excreting glucose into the urine, which may induce alteration in glucose-
FA cycle [97]. The fundamental concept of glucose-FA cycle is reciprocal substrate competition
between glucose and FA in oxidative tissues such as skeletal muscles. SGLT2i-mediated alteration of
glucose-FA cycle may increase FA metabolism in skeletal muscle. SGLT2i reduce FA accumulation in
liver, which reduce inflammation and oxidative stress, resulting in an improvement of MASLD.

5.1.3. The vasculoprotective effects of SGLT?2i.

The meta-analysis showed that SGLT2i reduce hemoglobin Alc (HbAlc) (MD, -0.66%; 95% CI, -
0.73% to -0.58%), reduced body weight (MD, -1.80 kg; 95%CI, -3.50 to -0.11 kg) and systolic blood
pressure (MD, -4.45 mmHg; 95%CI, -5.73 to -3.18 mmHg) [98]. The meta-analyses showed a
significant increase in HDL-C and a significant decrease in TG [99, 100]. Very recently, we reported
that reduced levels of fasting apo B48, remanant lipoprotein-cholesterol, and non-HDL-C caused by
SGLT2i suggest a possible beneficial effect of SGLT2i on atherogenic postprandial hyperlipidemia
[101].
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SGLT2i have been shown to improve endothelial dysfunction, as assessed by flow-mediated
vasodilation, in individuals at high risk of CVD [102]. SGLT2i have been shown to improve oxidative
stress, inflammation, mitochondrial dysfunction, glucotoxicity, such as the advanced signaling of
glycation end products, and nitric oxide bioavailability. Very recently, the subanalysis of meta-
analysis showed that SGLT2i significantly reduced atherosclerotic major adverse cardiovascular
events (MACEs) in subjects having both chronic kidney disease and type 2 diabetes without
established ASCVD [103].
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Figure 2. The underlying mechanisms for an improvement of MASLD and vascular protection by SGLT2i.
Black and white arrows pointing upward and downward indicate increase and decrease in expression or
activity, respectively. Blue solid lines indicate the effects of each metabolic event. ACC, acetyl-CoA
carboxylase; AMPK, adenosine 5'-monophosphate (AMP)-activated protein kinase; FA, fatty acids; HSL,
hormone sensitive lipase; SGLT2i, sodium glucose cotransporter 2 inhibitors; TG, triglyceride.

52. GLP-1RA

5.2.1. Effects of GLP-1RA on liver enzymes, hepatic steatosis and fiborosis.

Recently, we reported that the 12-month dulaglutide therapy significantly improved serum GGT
and NAS in patients with type 2 diabetes [104]. The meta-analyses showed that GLP-1RA improved
liver enzymes [105], and liver histology scores for steatosis and fibrosis [106], and liver fat content on
MRI-based techniques [107].

5.2.2. The underlying mechanisms for an improvement of MASLD by GLP-1RA.

The underlying mechanisms for an improvement of MASLD and vascular protec tion by GLP-
1RA were shown in Figure 3. GLP-1RA increase pancreatic insulin secretion and decrease glucagon
in glucose-dependent manner, and delay gastric emptying which suppress postprandial
hyperglycemia and appetite, resulting in reduction of energy intake and body weight [108-110].
Intestinal GLP-1 is an endogenous satiation signal, whose eating effects are primarily mediated by
vagal afferents [111]. Increase in insulin secretion and decrease in glucagon secretion reduce HSL
activity, resulting in decrease in hydrolysis of TG and FA release in adipose tissue, which reduces FA
entry to the liver.


https://doi.org/10.20944/preprints202309.1062.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 September 2023 doi:10.20944/preprints202309.1062.v1

The meta-analysis showed that GLP-1RA showed significant reductions in CRP and TNF-a, and
a significant increase in adiponectin as compared with standard diabetes therapies or placebo [112].
GLP-1RA increase adiponectin, which activates AMPK and suppresses ACC, resluting in decrease in
hepatic FA synthesis and increase in hepatic FA oxidation.

5.2.3. The vasculoprotective effects of GLP-1RA.

GLP-1RA treatment achieved a greater systolic blood pressure reduction than comparator
therapy (weighed MD [WMD], 2.22 mmHg; 95%ClI, -2.97 to -1.47). In the pooled analysis, GLP-1RA
had beneficial effects on weight loss (WMD, -2.56kg; 95%Cl, -3.12 to -2.00), HbAlc reduction (WMD,
-0.41%; 95%CI, -0.78 to -0.04) [113]. Compared with the patients before the treatment, the patients
after the GLP-1RA treatment showed significantly reduced values of HbAlc, BMI, LDL-C and TG
[114]. Furthermore, GLP-1RA improve atherogenic postprandial hyperlipidemia [101]. In addition,
GLP-1RA have multiple vascular biological anti-atherogenic properties such as an improvement of
endothelial function [67].

The meta-analysis showed that GLP-1 RA therapy was associated with a significantly lower risk
of MACE, extended MACE, all-cause mortality, and CV mortality [115].
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Figure 3. The underlying mechanisms for an improvement of MASLD and vascular protection by GLP-1RA.
Black and white arrows pointing upward and downward indicate increase and decrease in expression or
activity, respectively. Blue solid lines indicate the effects of each metabolic event. ACC, acetyl-CoA
carboxylase; AMPK, adenosine 5'-monophosphate (AMP)-activated protein kinase; FA, fatty acids; HSL,
hormone sensitive lipase; GLP-1RA, glucagon-like peptide-1 receptor agonists; TG, triglyceride.

5.3. Pemafibrate

5.3.1. Effects of pemafibrate on liver enzymes, hepatic steatosis and fiborosis.

We previously reported that the selective PPARa modulator, pemafibrate, significantly reduced
serum levels of AST, ALT and GGT and significantly increased serum albumin levels at 3, 6 and 12
months after the start of pemafibrate in patients with hypertriglyceridemia, with an improvement of
atherogenic dyslipidemia [68].
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Recently, we reported that pemafibrate significantly reduced hepatic steatosis index (HIS) at 12
months after the start of pemafibrate. APRI as the marker for hepatic fibrosis was significantly
reduced by pemafibrate after 12 months. FIB-4 index significantly decreased in patients with baseline
FIB-4 index > 1.45 at 12 months after the start of pemafibrtate [116]. To our knowledge, this is the first
to report that pemafibrate improved both hepatic steatosis and fibrosis indexes. Pemafibrate was
reported to improve liver fibrosis assessed by MR elastography or FibroScan-aspartate
aminotransferase score [117, 118].

5.3.2. The underlying mechanisms for an improvement of MASLD by pemafibrate.

The underlying mechanisms for an improvement of MASLD by pemafibrate were shown in
Figure 4. Altered properties of white adipose tissue (WAT) by obesity are associated with insulin
resistance [119, 120]. Brown fat increases energy expenditure by increasing thermogenesis and can
utilize blood glucose and lipids, and results in improved glucose and lipid metabolism [121], which
leads to reduction of FFA release from the adipose tissue. PPAR« agonists can induce the browning
of WAT [122], leading to an improvement of systemic insulin resistance. PPARa agonists enhance
adiponectin production [123], which may be also beneficially associated with systemic insulin
resistance [93]. The PPARa activation markedly stimulated the muscle and liver expression of two
key enzymes involved in FA oxidation, CPT-1 and acyl-CoA oxidase (ACO) [124]. Moreover, the liver
and muscle TG content were significantly reduced by the PPARa treatment [124].

Elevated FA oxidation in the skeletal muscle and the reduced FA release from the adipose tissue
by PPARa agonists decrease FA entry to the liver and may result in the reduction of hepatic VLDL
production. PPARa agonists reduce hepatic TG synthesis by decreasing apo CIII production [125].
Further, the treatment with PPARa agonists simulated the expression of ACO and CPT-1, leading to
increase in FA oxidation and a decrease of hepatic TG storage [126].

PPARa agonists enhance adiponectin production [123], and adiponectin activates AMPK [93].
AMPK has long been regarded as a key regulator of energy metabolism, which is recognized as a
critical target for MASLD treatment. AMPK activation reduces the genes related to FA synthesis such
as ACC and FA synthase (FAS), by downregulating mRNA of SREBP-1c [127]. AMPK activation
increases genes related to FA oxidation such as ACO, CPT-1 and medium-chain acyl-CoA
dehydrogenase (MCAD) [127]. AMPK activation also inhibits the expression of SREBP-2 and its target
genes such as 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) which is the key enzyme in
cholesterol biosynthesis [128]. Such increased FA oxidation and reduced FA and cholesterol
production in liver decrease hepatic VLDL production. Reduced hepatic VLDL accumulation may
improve hepatic fibrosis by reducing inflammation and oxidative stress. Furthermore, AMPK
activation improves inflammation by inhibiting NF-«B [129], and also ameliorates oxidative stress by
increasing the expression of superoxide dismutase (SOD) [130], which contribute to reduction of
hepatic fibrosis.
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Figure 4. The underlying mechanisms for an improvement of MASLD by pemafibrate. Black and white arrows
pointing upward and downward indicate increase and decrease in expression or activity, respectively. Black
solid lines indicate the effects of each metabolic event. ACC, acetyl-CoA carboxylase; ACO, acyl-CoA oxidase;
AMPK, adenosine 5'-monophosphate (AMP)-activated protein kinase; C, cholesterol; CPT-1, carnitine
palmitoyl-transferase 1; FA, fatty acids; FAS, FA synthase; HMGCR, 3-hydroxy-3-methylglutaryl-CoA
reductase; HSL, hormone sensitive lipase; MCAD, medium-chain acyl-CoA dehydrogenase; NF-«kB, nuclear
factor-kappa B; PPARa, peroxisome proliferator-activated receptor-a; SOD, superoxide dismutase; SREBP,
sterol regulatory element binding protein; TG, triglyceride; VLDL, very-low-density lipoprotein.
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5.3.3. The vasculoprotective effects of pemafibrate.

PPARa agonists reduce hepatic TG synthesis by decreasing apo CIII production [125]. Further,
the treatment with PPARa agonists simulated the expression of enzymes involved in FA oxidation
leading to a concomitant decrease of hepatic VLDL production [126]. PPARa agonists stimulate the
activity of LPL, which further reduce VLDL [125]. As a result, there is an increase in HDL levels and
a decrease in Sd-LDL and remnant lipoproteins [131]. PPARa agonists elevate HDL-C levels via
transcriptional induction of apo Al and apo AIl formation [125]. Pemafibrate is also effective to
improve atherogenic postprandial hyperlipidemia [101].

In addition, PPARa agonists promotes HDL-mediated cholesterol efflux from macrophages, via
enhanced expression of ABCA1 [132]. PPARa agonists have multiple beficicial effects on vascular
integrity such as anti-inflammatory effect and inhibitory effects on vasoconstriction [133]. Further,
PPARa agonists inhibit smooth muscle cell proliferation, adhesion of monocytes to endothelial cells,
oxidized LDL formation. PPARa agonists have a beneficial effect on procoagulant state.

In the meta-analysis to investigate the influence of fibrates on vascular risk reduc-tion in subjects
with atherogenic dyslipidemia [134], compared to placebo, the greatest benefit with fibrate treatment
was seen in high TG subjects, fibrate therapy reduced risk of vascular events by 25%. Very redently,
the PROMINENT Trial was performed to study whether pemafibrate reduces CV risk patients with
type 2 diabetes, mild-to-moderate hypertriglyceridemia, and low HDL-C and LDL-C levels [135]. The
median follow-up was 3.4 years. Pemafibrate reduced serum TG by 26.2%, VLDL-C by 25.8%,
remnant cholestrol by 25.6%, and apo CIII by 27.6% as compared with placebo after 4 months.
However, the incidence of CV events was not lower among those who received pemafibrate than
among those who received placebo. Further studies should be performed to evaluate the effect of
pemafibrate on CVD in the future.
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5.4. Effects of the combination therapy of SGLT2i and GLP-1RA on MASLD.

To our knowleage, there is only our study which invastigated effects of the combination therapy
of SGLT2i and GLP-1RA. We found that the 12-month dulaglutide therapy significantly improved
serum GGT and NAS in patients with type 2 diabetes [104]. Although a significant improvement in
GGT was not observed in patients treated with GLP-1RA without SGLT2i (n = 69), a significant
improvement in GGT was obtained in patients treated with GLP-IRA and SGLT2i (n = 52).
Furthermore, FIB-4 index tended to decrease from 1.74 + 1.33 to 1.62 + 1.10 (p = 0.088) in patients
treated with GLP-1RA and SGLT2i, while patients without SGLT2i showed a non-significant increase
in FIB-4 index from 1.71 +1.02 to 1.75 £ 1.12 (p = 0.547). The combination therapy of SGLT2i and GLP-
1RA may be a promissing therapeutic option for MASLD.

5.5. Effects of the combination therapy of SGLT2i and pemafibrate on MASLD.

To our knowleage, there are only two studies which invastigated effects of the combination
therapy of SGLT2i and pemfibrate including our study. The other group's study was a pilot study
with only seven patients. In their study, MASLD patients complicated with type 2 diabetes treated
with pemafibrate for > 1 year were included, in whom prior treatment with SGLT2i > 1 year failed to
normalize serum ALT levels [136]. During the one year before starting pemafibrate therapy, the
therapy did not significantly change hepatic enzymes. All patients received pemafibrate 0.1 mg twice
daily. During one year of pemafibrate therapy, serum levels of TG, AST, ALT, GGT, Mac-2 binding
protein glycosylation isomer (M2BPGi) which is the marker for liver fibrosis, were significantly
improved (p < 0.05).

We reported that pemafibrate significantly reduced serum levels of AST, ALT and GGT and
significantly increased serum albumin levels at 3, 6 and 12 months after the start of pemafibrate in
patients with hypertriglyceridemia (n = 246), with an improvement of atherogenic dyslipidemia [68].
We investigated the effects of combination of pemafibrate and SGLT2i in such parameters, by
dividing patients into those treated with pemafibrate and SGLT2i (n = 63) and those treated with
pemafibrate without SGLT2i (n = 183). There were no significant differences in changes in ALT, GGT
and albumin bewteen two groups. Although a significant improvement in AST was not observed in
patients treated without SGLT2i at any time, a significant improvement in AST was observed in
patients treated with pemafibrate and SGLT2i at 3 and 12 months after the start of pemafibrate (Figure
5). The reversal of the AST/ALT ratio to > 1 had been consistently reported to predict the presence of
more advanced liver fibrosis [137]. The marker for liver fibrosis, APRI was calculated with the
formula: AST/ Upper limit of normal range of AST / platelet count x 100 [138]. Such favirable effect
of the combination of pemafibrate and SGLT2i on change in AST may present that this combination
therapy can be a promissing therapeutic option for MASLD.
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Figure 5. Changes in serum aspartate aminotransferase (AST) levels in patients treated with pemafibrate and
sodium glucose cotransporter 2 inhibitors (SGLT2i) (red line) and those treated with pemafibrate without
SGLT2i (blue line). This figure was made by the modificaiton of Table 3 in reference 68. Presented values

indicate mean + SE. *p < 0.05 vs. baseline.

6. Conclusion

Abnormal FA and TG metabolims induced by obesity/insulin resiatnce is closely associated with
the development of MASLD. MASLD is the pathologic condition which is likely to develop CVD.
Therefore, the ideal treatments for MASLD require anti-artherosclerotic effects in addition to
improving liver function. Lifestyle modification such as diet and exercise and surgical interventions
such as bariatric surgery and intragastric balloons have shown to improve MASLD by reducing body
weight, and such interventions are also effective to reduce CVD. SGLT2i and GLP-1RA have been
shown to reduce the development of CVD, and such drugs improve liver enzymes, and hepatic
steatosis and fibrosis, suggesitng that such drugs can be the ideal therapeutic option for MASLD.
Pemfibrate improved liver enzymes and the indexes of hepatic steatosis and fibrosis, and have
multiple anti-atherogenic properties, however, the effect of pemafibrate on CVD remains to be
elucidated in the clinical settings.
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