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Abstract: In this research, a computation algorithm is established for a fractional order 2D fuzzy
heat equation. In this study, Elzaki transform and HPM fusion is produced. Computing the desired
outcome in series yields a fast convergence on an appropriate response. Examples are provided to
support the conclusions, which are then compared with a particular approach to show the
effectiveness and potential of the suggested approach. Two crisp equations—one for the lower
bound solution and one for the upper bound solution are constructed from the input fuzzy
fractional heat equation. The contour and surface representations of the approximate and exact
results are offered for the lower and upper-bound solutions. The [,-error norm is used in this study
to validate the numerical convergence aspect. Together with the absolute inaccuracy, the
approximate and exact solutions are matched. It has been demonstrated that the proposed regime
will make it feasible to work with fuzzy fractional partial differential equations in a wide range of
dimensions.

Keywords: Elzaki transform; homotopy perturbation method; 2D fuzzy fractional heat equation

1. Introduction

In the course of the last few decades, academics and scientists have demonstrated a great deal
of interest in the field of fractional calculus (FC), which is concerned with derivatives and integrals
of non-integer order. As we know, classical calculus has been developed as a vast subject, and many
researchers have been working on it till now. Due to the ideas of German mathematiciansLebiez and
L-Hospital, the theory of fractional calculus came into existence about 300 years ago. FC can be
assumed to be a well-developed and established subject. Both memory effects and hereditary
properties influence the problem under consideration. We all know that classical differential
equations have numerous applications that model many natural phenomena and physical
phenomena compared to classical differential equations. In the last few decades, an abundance of
research papers, monographs, and books have been published, covering an extensive range of
subjects such as existence theory and analytical results.For instance, mathematical models involving
fractional as well as integer order derivatives have been investigated for different real-world
problems in literature (we refer the readers to References [12-19] and the references therein). There
are numerous local and nonlocal fractional notions in the literature, notably those of Riemann-
Liouville, Grunwald, Caputo, Riesz, conformable and Caputo-Fabrizio. Since most physical
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implementations rely on historical and nonlocal properties, nonlocal derivatives are more intriguing
than local derivatives. On the basis of singular kernels, some of these operations, notably Riemann-
Liouville and Caputo have been offered. In contrast to traditional fractional derivatives, recent
fractional derivatives that are based on nonsingular kernels that were suggested by Caputo-Fabrizio
[6] and Atangana-Baleanu [7] are more accurately represent physical dissipative procedures and
minimize a numerical collision. Here, we seek to expand such a tool to examine certain problems
which appear in the biological, social, and physical sciences, as well as other areas where there is data
inconsistency.

In 1960, Zadeh [8] introduced the concept of the theory of fuzzy sets as an extension of classical
set theory. Since then, it has started gaining the attraction of many researchers due to its skillin
analyzing unpredictabilityinfacts and particulars. Mainly, fuzzy set theory allows us to prospect new
estimations and expand the chances for effectively handling and analyzing fuzzy information. Fuzzy
mapping and control were developed by Chang and Zadeh [9] and the concept of the fuzzy set was
further developed upon. A number of researchers generalized this notion in order to build primary
fuzzy calculus on the basis of fuzzy mapping and control [10-12]. Fuzzy calculus deals with fuzzy
sets and fuzzy numbers, allowing for representing and manipulating unpredictable and unspecific
quantities. Fuzzy calculus is being found applicable in a wide range of fields, including mathematics,
computer science and engineering. Numerous fields, including topology, fixed-point theory, integral
inequalities, fractional calculus, bifurcation, image processing, pattern recognition, expert systems,
consumer electronics, control theory, artificial intelligence, and operations research have made
extensive use of the fuzzy calculus. Fuzzy fractional differential and integral equations (FFDIEs) have
received significant attention in the physical sciences during the past few decades. Among those who
initially proposed the fundamental idea of fuzzy integral equations were Dobius and Prada [13]. To
deal with such types of challenges, as the information is unclear and unreliable, fuzzy numbers are
employed for parameters instead of crisp numbers. FFDIEs may be employed to model these types
of concerns. As a consequence, many researchers evaluated such model’s details through numerical
or analytical techniques.

Nowadays, academics and scientists have demonstrated a great deal of interest in the field of
fuzzy fractional calculus (FFC), which is an augmentation of fractional calculus and fuzzy calculus.
It broadens the conventional calculus operations, such as differentiation and integration, to fuzzy
numbers of arbitraryorder. This allows for a more comprehensive analysis of functions and systems
that exhibit both fuzzy and fractional characteristics. Research in FFC continues to explore new
theoretical developments, such as the establishment of fuzzy fractional differential equations and the
development of appropriate techniques for solving them. This provides a more accurate and
powerful tool for modeling and analyzing complex systems with fractional and fuzzy characteristics,
allowing for a better mastery and control of real-world phenomena. Fuzzy fractional calculus has
been applied in areas such as finance, image processing, control systems, and others.For example,
fuzzy fractional operators can be used to upgrade image characteristics and grasp noise or
unpredictability of the data in image processing. Fuzzy fractional derivatives heavily rely on fuzzy
Riemann-Liouville or fuzzy Caputo-Liouville derivative.Many fuzzy fractional differential operators
are known to be nonlocal, indicating that their future states depend on their historical and current
situations. A range of singular and non-singular fuzzy fractional operators have been developed with
applications in a wide range of fields of science [5-10]. The nonlocality and singularity of the kernel
function, which can be seen in the integral operator's side-by-side with the normalizing function
arising alongside the integral ticks, are the most prevalent shortcomings of these two qualifiers.
Indeed, a more useful and clear definition must result from the unpreventable existence of real-world
core reproducing dynamic fractional systems. Atangana-Baleanu-Caputo (ABC), a novel fractional
fuzzy derivative construct that is utilized to synthesize and convey fresh tangible fuzzy mathematical
concepts, is introduced in this orientation. The new fuzzy fractional ABC derivative appears to be
releasing singularity with the local kernel function. This is because the kernel is based on the nature
of exponential decay, making fuzzy fractional order differential equations (FFPDEs) more plausible
in establishing several uncertain models [1-5].
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Further, FFPDEs have many real-world problems like heat transfer phenomena, nonlinear
propagation of traveling waves, damped nonlinear string, electronics, telecommunications,
dynamical systems and so on(see References [36-38]).To tackle FFPDEs, important tools and methods
were found in the literature. Such tools include Fourier integral transform, Laplace transform,
Sumudu transform, and so on. Among others, we found some analytical methods like Homotopy
methods, Adomian decomposition, Laplace Adomian decomposition methods, Taylor’s series
method, and other methods.In [31], the homotopy analysis transform method has been proposed and
implemented to derive new analytical solutions for the fuzzy heat-like equations. To the best of our
information, the above mentioned methods have not been properly used to deal with FFPDEs.

On the other hand, perturbation methods are important tools for solving nonlinear problems.
However, these methods, like other nonlinear analytical techniques, have their own set of restrictions.
That is, the applicability of perturbation techniques is severely limited by the assumption that the
Equation must have a small parameter. The Homotopy Perturbation Method (HPM),which is the
coupling of the homotopy method and classical perturbation technique,was first proposed by He [21]
and then used by many researchers in recent years to solve various types of linear and nonlinear
differential equations, see, for example, [22, 23] and references therein. The main significance of this
method is that it doesn’t require a small parameter in the Equation, so it overcomes the impediments
of the classical perturbation technique. In 2020, Muhammad Arfan et al. developed an algorithm
based on the HPM to compute an analytical solution for a two-dimensional fuzzy fractional heat
equation involving external source term, and found the efficiency and the capability of the method.
The Laplace transform, decomposition techniques, and the Adomian polynomial under the Caputo—
Fabrizio fractional differential operator have been applied to obtain the semi-analytical solution of
the 2D heat equation without an external diffusion term.

In [20], the authors applied the HPM along with a crucial integral transform called Elzaki
transformation (ET) to provide the solution of some nonlinear partial differential equations. This
method is called the Homotopy Perturbation Elzaki Transform method (HPETM). This method gives
a power series solution in the form of a rapidly convergent series lead to high accurate solutions with
only a few iterations. The efficiency of HPETM in solving nonlinear homogeneous and non-
homogeneous partial differential equations is also shown in [24-26].

In the present work, we focus on computingan approximate solution by the iterativemethod
based HPETM for the following two-dimensional fuzzy fractional heat equation:

DEti(pu, v, t) = toy (W, v, t) + Ty (v, ) + f(,v, 1), 0 < a <1, 1)

i(u,v,0) = gu,v),

where @ stands for Caputo fractional derivativeand f €C ([0, ) X [0, ) X [0, ), [0, 00)), ge
([0, ) X [0, ), [0, 00)). It is pointed out that, the two-dimensional heat equation representsthe
transfer of heat through an infinite thin sheet. Here in Equation (1), the term i represents the
temperature of the body at any point in the thin sheet. This phenomenon of heat transfer can be found
in many diffusion problems. Therefore, the investigation of two-dimensional Fuzzy fractional heat
equationshas much more application in various domains, such as heat transfer analysis in materials
with uncertain properties, modeling of temperature distribution in environmental systems, or
analysis of thermal processes in complex systems with imprecise parameters.
The two crisp fuzzy fractional equations will be fetched as follows:

DEu(u, v, t) = Uy (1, v, t) + uyy, (1, v, t) + f (1, v, 1), (2)

u(w,v,0) = guwv),
and

Diu(p, v, t) = U (v, 0) + uyy (v, 1) + f (1, v, 1), 3)

u(pwv,0) = gwv).
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For HPM, the considered Equation is as follows:
D(u) =0, 4)

where D is considered as a differential operator, any convex Homotopy deformationH (u,p) is as
follows:

H(u,p) = (1 =p)F(u) +p D(w), ()

where F(u) is considered as a basic operator with the known solution u,.
In such an approach, embedding parameter ‘p’ is used initially, and the solution of the Equation
is provided in the form of a power series.

U=1uy+pu +p?u, + pdug + -+ pu,, (6)
U= Li_r}} U, )

U=ug+u +u,+us+--+u, (8)
U=limu, ©)

U= XnzoUn, (10)

This helps us to obtain the solution.

2. Preliminaries

In this section, the most basic notations used in this paper are introduced.
Definition 1. For all fuzzy numbers, the lower and upper bounds of the fuzzy numbers satisfy the
following requirements [27]:
(i) u(r) is a bounded left-continuous nondecreasing function over [0, 1],
(ii) u(r) is a bounded right-continuous nonincreasing function over [0, 1],
(i) u(r) <u@r),0 <r < 1.
Definition 2. Fuzzy center of an arbitrary fuzzy number & = [u(r), u(r)] is defined as [27]:

ﬁc=w,fora110Sr<1. )

Definition 3. Fuzzy radius of an arbitrary fuzzy number @ = [u(r),u(r)] is defined as [27]:

ﬁr=M,foraIIOSr31. (

Definition 4. Fuzzy width of an arbitrary fuzzy number @ = [u(r),u(r)] is defined as [27]:
|lu(r) —u(r)|,forall 0 < r < 1. )

Definition 5. For any two arbitrary fuzzy numbers % = [x(r),X(r)], ¥ = [y(r),y(r)] andscalar k, the

fuzzy arithmetic is similar to the interval arithmetic defined as follows:
(i) x¥= jifandonlyif x(r) = y() and x(r) =y(r),

(i) +5 = [x() +y()E0) + ()
Definition 6. Let ¢:R — E is a fuzzy valued function s.t. r € [0,1] [28]

D) = [6,©, . C):

1. If ¢(&) isa differentiable function in the first form i.e., (1) differentiable, then

[6' O] = [0, @, )] )
2. If ¢(x) is a differentiable function in second form i.e., (2) differentiable, then

[0 ©] =[¢, @) ¢,/ O] )

doi:10.20944/preprints202309.0985.v1
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Definition 7. Let¢: (a,b) — E is said to be a strongly generalized H differentiable function at &, €

(a,b) if there exists ¢ '(&,) € E such that for h > 0 and close to zero [28]
’ i 9Goth)Od(E) _ 1. P(§0)BP(§o—h)
L ¢ ($) =lim P = lim - :

h—0

7 ¢(€0) — }lim ¢(fo)®_¢;1(fo+h) _ }llr% ¢(fo—fi)’?¢(fo)’

’ . 9o +h)OP(£0) . $(§o—n)O¢({0)

. =1 =1 ,

oot PEDOPE ) -0 PEOD 0N

4. ¢'(&) = lim TEEETY iy £0ITPH0TH

¢ (§o) hl_I:% y hl_I:I;lJ Y

Definition 8. Let¢(§), ¢ (§), ..., p V(&) are differentiable fuzzy valued functions with r-cut form

(28]

[T = [, 6]
1. If ¢(&), ¢ (8),..,p™ V(&) are (1) differentiable, then

@1 =6 ©, o7 ©] )
2. If ¢(&), ¢ '(©),..,p ™D (&) are (2) differentiable, then
"1 = [6©, 9]
3. If ¢(¢) is (1)-differentiable and ¢ (§), ..., @D (&) are (2) differentiable, then

@1 =47, 67@)]

4. If ¢(&) is (2)-differentiable and ¢ (§), ..., V(&) are (1) differentiable, then

@1 =[67©, 9] )

Definition 9. Elzaki transform is defined as follows [29]:
E@©) =v j " rte @, (11)

0
where f(t) is considered as the time function.
Efu:(x,t)] = %E[u(x, )] — 0 u(x,0) (12)
1

Elu(x,y,0] = 5E[uCxy 0] - 0 u(x,y,0) (13)
Flue(x,y,%.0)] = 5 FluCx,y,2,01 ~ 0 u(x,,2,0 14

Table 1 is provided regarding the basic properties of the Elzaki transform.

Table 1. Elzaki transform of the given function [29].

f( 1t t" et sinat cosat sinhat coshat

2 3 2 3 >
Ef®)] =T®) 66 sng™? 0 af af ad af
1—af 1+ a292 1+ a?62 1 — q26? 1 — q26?

Definition 10. The operator Df in the Caputo sense is defined as follows [30]:

1 fw O N l<a<
pay = ITm—a) J, =—pemia® M oS e
t U= qm

m—mﬂ(lﬂ), a=m.

Definition 11. The Elzaki transform in the Caputo sense is notified as follows [30]:
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E[Dfu(u,v,0)] = W - Z gr-a+2yk(0),
k=0

3. The main advantages of the study

The primary advantages of the study.

e  The Elzaki HPM can be applied right away to linear and nonlinear fuzzy fractional differential
equations, in contrast to the implicit finite difference technique, which necessitates the
discretization of space, time, and fractional order derivatives.

¢  When employing numerical methodologies, we can only get very close approximations.
However, the Elzaki HPM, series solutions deliver precise or almost precise results, providing
us the chance to further investigate the error estimate of each individual problem.

e  The algebraic convergence of series solutions of the proposed Elzaki HPM may be controlled
using initial approximation, deformation equation, auxiliary function, and non-zero
convergence control parameter.

Outline of the study
The present study is divided into different sections for a better understanding of the work.

e  Under the Section named “FORMULATION OF PROPOSED REGIME” the regimes
are developed regarding lower and upper bound solutions.

e Under the Section named “UNIQUENESS AND CONVERGENCE THEOREMS” the
theoretical aspects of convergence are validated.

e Under the Section named “NUMERICAL ARGUMENTATIONS” three examples are
validated for the series and exact solutions.

e  Under the Section named “ANALYSIS OF RESULTS” the graphical and tabular
analysis of the results are notified.

e Under the Section named “CONCLUDING REMARKS” the conclusion of the study
and future scope are provided.

4. Formulation of proposed regime

4.1. Methodology for Lower bound solution
Applying Elzaki transform upon Equation (2):
E[Déxﬂ(ﬂ, Vl t)] = E[E}tu (I’ll vl t) + EVV (M; vl t) + f(”) V; t)]

n—1

Elu 0] LN e (0) = 0,0+ 000 + £ 1,0
k=0

Elle O] _ N7 gresay ) 4 Eft 0,0+ 000, 0) + £ 1,0
k=0

Elunv,)] = 6% ) 8% 2uk(0) + 0“E[uy, (v, ) + i (0, v,6) + f (v, )]
0

=
I

n-1
u(u,v,t) = E~1|0¢ Z ok-ar2yk(0) |+ E~1 [G“E[gw(u, v, t) + U, (v, t) + f(u,v, t)]]
k=0

Applying HPM:
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oo

n-1
D vt = B [ea > e"-“@m)l
k=0

n=0

+pE™[0°F l(Z PG, t)) + (Z P, t)) +fw, t)‘
n=0 i n=0 v

Comparing p°:
uy(u, v, t) = E7H [0 X325 04 **2uk(0)]. )
Comparing p*:
El(#lvl t) = E_l |:90tE I:(EO(“IVI t)) + (EO(“!V' t)) +f(l'l!v! t)]] )
pu w
Comparing p*:
U (‘H, v, t) = E_l 0°E I:(El(.uf v, t)) + (El(“: v, t)) ]]
I nu v

Comparing p>:

ws(u,t) = £ |60k [(gz (v, t))w + (wv, t))w”-

n

Comparing p™:
En(.u-! v, t) = E_l leaE I:(En—l(,u’ v, t)) + (En—l(.u’ v, t)) ]l
Hu v

E(#:Vl t) = EO(.“;V’ t) + El(#lvi t) + 22(,“!1/: t) + et ES(#;V; t)

4.2. Methodology for Upper bound solution
Applying Elzaki transform upon Equation (3):

E[Dfu(u, v, 0)] = E U, (1, v, ©) + Uy (1, v, 1) + f (1, v, )]

_ n—-1
W - Z 0%=a+27°(0) = [t (1, v, £) + T (0, v, £) + £ (1,7, 1)]
k=0
n-1
Elu(u,v,t)] . _ —
— ga z ok “+2uk(0) + E[w,,(wv, ©) + Uy (v, ) + f(1,v, )]
k=0
n—-1
E[u(uv,t)] = 6% Y 052 27°(0) + 0“E[w,, (1, v, £) + Wy, (1, v, £) + f (1, v, 1)]
k=0
n—-1

u(u,v,t) =E~1 [0“ grk-a+2 ()| + E-1 [B“E[EW(H, v, t) +u, (v, t) + f(u,v, t)]].

k=0

Applying HPM:
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© n—-1
> Ty, = B 0% ) 642 (0)
n=0 k=0

+pE~1|0%E [(Z ™, (u, v, t)) + (Z p"u, (u, v, t)) + f(u,v, t)] .
n=0 n=0

un v

Comparing p°:

n-1
uo(u, v, t) = E71|6¢% Z 9"‘“+2ﬁk(0)l.
k=0

Comparing p:
u, (v, t) =E71 [H“E [(ﬁo(u, v, t))## + (ﬁo(u, v, t))W + f(u,v, t)”. )
Comparing p?:
%, (v, t) = E-1 [H“E (@G v.0), + @G, t))w”.
Comparing p:

B0 = E 00 (@ 0),, + @ vo), ||

Comparing p™

Ty, = B 0B |(@na (09, 0),, + (@nalev0), ]|

ulu,v,t) =ug(u, v, t) +uy(u, v, t) + uy (u, v, t) + us(u, v, t) + -+ u, (u, v, t).

5. Existence and Uniqueness
Theorem 1. Let X be a Banach space and let 6,,(x, @;) and 6,(x, a;)be in X. Suppose y € (0, 1), then

the series solution {6,,(x,a; which is defined converges to the lower bound solution
m g

m=0
whenever6,,(x,a;) <y 0,,_1(x,a;),¥Vm > N, that is for any given ¢ > 0, there exists a positive
number N, such that ||0,.,(x, a1)|| <€, Vm,n>N.

Proof. Provided
Mo(x,ay) = %(x, a;)

Ml(xl al) = @('x! al) + ﬁ(‘x! al)
MZ (xl al) = %(x! al) + ﬁ(xt al) + &(xl al)

M3 (x, al) = %(xr al) + ﬁ(x' 0!1) + ﬁ(x' al) + %(x, 0!1)

My, (x, a1) = @(x: a;) + ﬁ(x' a) + &(x: a;) + %(x» )+t e_m(x: a;).

The aim is to prove thatM,,(x, @;) is a Cauchy sequence in the Banach space.
It is provided that for y € (0,1)

[| My 41 (2, @1) — My (x, @p)|| = 1041 (x, 1) ]|

< Y0 (x, @)l
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< y2||9m_1(x,a1)||

< y3||9m_2(x,a1)||

< Y™ 116,(x, @) )

Let us find
[ My (x, 1) — My (x, a1)|| = [[Mpy (X, 01) = M1 (x, @1) + My 1 (X, 1) — Mpy_»(x, 1) +
My, (%, 1) — Myy_3(x, 00) + -+ + My (x, a1) — My (x, )|
||Mm(x' a;) — My, (x, a1)|| < ||Mm(x' ;) — My (x, 051)|| + ||Mm—1(x» ) — My, (x, a1)|| +
Mz (x, 1) — Mpp_5(x, )| + -+ + [|Myyq (x, 1) — My (x, @)
1M ) = Mo, )| = 7 || ]|+ [| 0o )] | + 92 || 0]
Y2600, || + -+ ¥y 60 (x, @)

- ym_n)_ n+1
—a-p ! 1160 (x, ay)|

+

||Mm(x, al) - Mn(x, al)” <
1-y
@=y™m M)y 1|60 (x,a)||
||Mm(x, al) - Mn(x, al)” <e€
mljer»oo [| M, (x, al) - M, (x, al)“ =0

= {Mm};:l=0

Considered € =

is a Cauchy sequence.
Theorem 2. Let X be a Banach space and let 6,,(x,a;)and 6, (x, a;)be in X.Suppose y € (0, 1), then
the series solution {%(x, al)};=0 which is defined Y5 _o 6, (x, @;) converges to the upper bound

solution whenever6,,(x, a;) < Y Om-1(x, 1), Ym > N, that is for any given &€ > 0, there exists a

positive number N, such that ||0p+n(x, a1)|| < €, Ymn>N.
Proof. Provided
No(x,a;) = G_O(x, a)
Ny(x,ay) = 9_0(75: a;) + 9_1(95: a),
No(x, @) = Bo(x, @) + 60;(x, @1) + 0, (x, ay),
Ns(x, @) = Bo(x, @) + 0;(x, @1) + 0,(x, @) + O5(x, 1),

Ny (x,@1) = 9_0(35' a) + 9_1(35: a;) + 9_2(x: a) + 9_3(35: a) + -+ ﬂ(x, ay).
Aim is to prove thatN,,(x,a;) is a Cauchy sequence. In the Banach space.It is provided that for y €

(0,1)
[INm+1 (6 a1) = Npp (x, @) = {641 (x, @)
< y1|BpCx )]
< V2||%(x;a’1)”
S V3 [Om—z (x, ay)||
< yY™H60Cx, )]
Let find

[Ny (x, 1) — Np(x, )| = [[Npyp (X, 1) — Ny (X, @1) + Npp—y (X, 1) — Npp_p(x, 1) +
N2 (x, 1) = Npp_3(x, 1) + -+ + Npyq (%, @1) — Np(x, 1) ||
[| Ny (x, @1) — Ny (x, )| < [[Npp (6, @1) = N1 O, @ )| + [ Nppm1 (3, @1) — N (%, @) ||+
N2 (x, @1) = Npp_3 O, @[] + -+ + || Ny (3, @1) — Ny (x, @) ||
[N G, 1) = N Gty @] = ™ |85 G )| + v |8 Ge, ]| + 7 |[Bo x, )| +
Y360, )] + o+ ¥ 160 (x, @)
a-r™" n+iy/g
[N (x, @1) = Ny (x, @) || < —a-p 160 (x, a1l
Considered
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1—y

€ = —
@ —y™ ™)y (0o (x, al)l|
||Nm(x. a1) - Nn(xr al)” <e€
im (1N (e @) = NG @)l = 0

= {Nm};ﬁ:O

is a Cauchy sequence.

Theorem 3. Let Z{zo 0; (x,a;) be finite and 0; (x, 1) be its approximate solution. Suppose y > 0,
such that 1 16;,,(x, a)|| < vl|6:(x, 2|,y € (0,1), Vi, then the maximum absolute error for the lower
bound solutﬁis N

Jj+1

Jj
18Gea) = ) 6,6 ) || < +— 16, )l

0 1= 14
i=
Proof.Let %/ ,6;(x,a;) < o

J )
l6Gr.a) = ) Bitha) I =11 ). 6iGxapl]
i=0

i=j+1
(o]
< ) lleea
i=j+1
oo
< D yillgyGal|
i=j+1

< 16oCx, @) ||/ + y/*2 + 73 4]
118 Cx, @) ly 7+
< -
. 1—y
Theorem 4. Let Y/_,6;(x, ;) be finite and 6;(x,a,) be its approximate solution. Suppose y > 0,

such that | 18;,,(x,a;)|| < ¥]16;(x,a;)||,¥ € (0,1),Vi, then the maximum absolute error for the upper
bound solution is
l yitt
16G @)~ ) Bilx ap) || < 7 I1Bax )l
i=0
Proof. Let},]_, 6;(x, a;) < oo, then

J )
1Bx,a) =Y Badll =1l ). Bitca)l]
i=0

i=j+1
o]
< D lEal
i=j+1
oo
< D yiliEG
i=j+1

< [|6o(x, a)|[[y/*t + y/*2 + 7% 4]
< Wiy’

6. Numerical examples

In the present section, three numerical examples are considered to validate. For each example,
series solutions are provided along with the exact solution. It is noted that the series solution
converges rapidly towards the exact solution.

Example 1 [32]
Diti(u, v, t) = iy, (uv, t) + iy, (v, t) + (x +y +t)
ii(x,y,0) = ke +),
where k = [K,E] =[r—11-r]
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6.1.1. Solution regarding lower bound:

Given
Dfu(pv, ) = uy (v, 6) + uyy (v, 6) + (u+v +1¢)
u(u,v,0) = ke~ W),
where k=1 —1.
From developed methodology for lower bound solution:
Comparing p°:

n-1

19(1

EO(IJ' v, t) =E

9k—a+2uk(0)l.
k=0
Considered n = 1:
uo(u, v, t) = E7H[6%u(0)]
uo(, v, t) = u(0)E~'[67]
uo(u,v, ) = u(0) = ke™ ),
Comparing p':

El(.u! v, t) = E_l [vaE [(EO(M! v, t))ﬂﬂ + (EO(#: v, t))vv + f(“t v, t)]]
u (v, t) = E[09E[ 2ke™®) + (x + y + )]
w, (v, t) = E1 [9“13[ 2ke—<#+v)]] + E70%E[ (u +v)]] + E~*[6°E[ ]]

w (v, t) = 2ke"WIETE[1]] + (x + y)EY[0%E[1]] + E7Y[6%E[ t]]
u (u, v, t) = Zke_(“”)E_l[v““] + (u+V)E v**2] + ET[ve*3]

a ta+1

t
u (u,v,t) = Zke‘(’”")— + (u +v)—+ @il

Comparing p?:
U (#! v, t) = E_l |:6aE [(El (H; v, t))ll-ll- + (El (HJ v, t))vv]]

EZ(MI v, t) = E_l

ta
0k | 4ke~0+ — |
- al

ta
wy (1, v, £) = 4ke~ W Iga’f [a]

(W, t) = 4&(3_(!“"’)5'—1 [92a+2]

2a

t
u, (u,v,t) = 4ke'(”+v)( 2T

Comparing p3:
us(uv,t) =E~* [eaE [(Ez (v, t))uu + (Ez (W, t))w]]

0%F | 8ke~H+V) e
- 2a)!

uz(u,v,t) = SKQ_(”-W)E_I

E3(Mf v, t) = E_l

(2a)!
us (4, v, t) = 8ke WHVIE-1[g3a+2]

3a

(Ba)!
u(uv,t) = uo(u,v t) +u (1, v, 6) + up (u, v, t) +u3(#,v t) +

t a+1 3a
u(u,v,t) = ke W) 4 Zke‘(‘”")— + (u+ v)—

us(u, v, t) = 8ke W) ———

e~ (u+v)
e g B g+

Remark: If f(u,v,t) =0
2a 3a

t* t t
m = —(u+v) —(u+v) —(u+v) —(u+v)
u(u,v,t) = ke + 2ke p + 4ke 2a)! + 8ke Ga)l +

® ayn
a(u, v, t) = Ke—(u+v) z 2t%)
n

—~ (na)!”
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6.1.2. Solution regarding upper bound:

Given
Diu(u, v, t) = uy, (u,v, t) + uy, (v, t) + (L +v +1t)
u(u,v,0) = ke ),
where k=1-r.
From developed methodology for upper bound solution:
Comparing p°:

n-1

Hocll,v, t) = E_l 9“

9k_a+2ﬁk(0)l'
k=0
Considered n = 1:

uo(u, v, t) = E7H[6%u(0)]
uo(u, v, t) = u(0)E~1[6?]
o (u, v, t) = u(0) = ke~ #+V),
Comparing p':
T (v, t) = E7 [09E[ 2ke ) + (u+ v + )|
(v, t) = E1 [9“13[ ZEe_(’”V)]] + E7[0%E[ (u +v)]] + E~*[6°E[ ¢]]
(v, t) = 2ke"WVIEGE[1]] + (u+Vv)E HOE[1]] + ET*[0%E[ t]]
w, (U, v, t) = zEe—ww)E—l[eW] + (u+V)E"1[0%2] + E71[6%+3]
tlZ tlZ+1
= —(x+y) _ -
w, (v, t) = 2ke + (u+v) +(a+ r
Comparing p?:

(v, 1) = B~ [e“E |(Gev0) + (wy, t))w]]

_ t“
U (wv,t) = E71|0%E [4ke—<“+” E”

_ t*
u,(u, v, t) = 4ke"WHIE-T [G“E [;]

u,(u, v, t) = ke~ WHIE-1[g2a+2]

2a
Uy (u,v,t) = 4ke—<#+v)( 207
Comparing p>:

TG, t) = B [9“5 |(wlev0) + (w0sv, t))w]]
“11°E [ ke~ () tz—a”
2a)!

s

us(u, v, t) = 8ke~WHVIE-1[g3a+2]

us(u,v,t) = E

Us(u, v, t) = 8ke~WHIE-1

30t
Us(, v, t) = 8ke~ W) Gayl
u(u,v,t) = uo(u,v ) +u (v, ) +u(pwv,t) +us(w,v, t) +-
t a+1 3a
v, t) = ke~ ) 4 2k —(u+V)_ — + 4k ke~ (V)
u(u,v,t) = ke + 2ke + (n+ ) ( +1)!+ e o) Ga )'
Remark: If f(u,v,t) =0
T o & e B ()tm
] — —(u+v) —(u+v) __ —(u+v —(u+v
u(u,v,t) = ke V) 4 2ke™ po + 4ke ¥ Za)! + 8ke~ Ga )l
_ _ o (2t9)"
= —(pu+v)
n=

Example 2 [32]:
DEi(p, v, t) =t (1, v, 0) + Wy (v, t) + (x +y + £2)
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i(u,v,0) = ksin[r(u + V)], k = [k(), k()] =[r—1,1-7].

6.2.1. Regarding lower bound solution:

DEu(u, v, t) =y, (1, v, t) + uy, (0, v, t) + (u +v + t?)
u(,v,0) =ksin[r(u+v) L k=r—1
From the methodology regarding Lower bound solution:
Comparing p°:

n-1

uo(p,v, t) =

2] k—a+22k (0)]

k=0
Considered n = 1:
uo(, v, t) = E71[6%u(0)]
uo(u, v, t) = u(0) = k sin[r(u +v)]
Comparing p':
w (v, ) = E7 [09E[—2kn?sin (w(u + v)) + ((u +v + t2)]]

u; (u,v,t) = E71 [H“E[—anzsin (m(u +v)) ]] + E7YO%E[(n +v) 1] + ETO%E[t?]]

w, (wv,t) = (—2kn?sin (m(u + v))EvE[1]] + (u + VE7[v*E[1]] + E7*[v*E[t?]]
u (v, t) = (=2kn’sin (m(u + V))E v + (u+ v)ETH [V + 2E7 v

ta ta ta+2
w (v, t) = (—2kn? sin(m(u + v)))a + (u+ V)E + 2 @t Dl

Comparing p?:
ta
w, (v, t) = E1 [v9E [4@4 sin(r(u +v))5”

u, (v, t) = 4kn* sin(m(u + v)) E71[v2%+2]
2

Qo)

u, (v, t) = 4km* sm(n(u + v))
Comparing p>:
Us (‘Ll, v, t) = E_l [QaE I:(EZ (H; v, t))#ll. + (EZ (:u! v, t))vv]]

t2a
el

us (v, t) = —8kn®sin(n(u +v))E~ 1[1/3‘”2]

23(.1""‘/; t) = E_1 0%E [_

u;(u,v,t) = —8km® sm(n(u + v)) Ga)!
E(‘u; v, t) = EO(“IV; t) + El(,ui v, t) + EZ(M:VJ t) + E3(HJ v, t) + -

a+2

t« t«
u(p,v,t) = ksin[r(u +v)] + (—2@112 sin(n(u + v)))a +(u+v) o + ZM

2a 3a

Q) 8km® sin(m(u +v)) Gl +

+ 4km* Sll‘l(T[(/,L + v))
Remark: If f(x,y,t) =0

) ' o t et s 2a
u(e,v,8) = k sinfn(u +v)] + (=2kn? sin(r(u +v))) 77 + 4 sin(r (e +))
3a

— 8kn®sin(m(u + v)) Ga)! +

- (DR

u(p,v,t) =k sin[n(u +v)] (na)!

n=0
6.2.2. Regarding upper bound solution:

Dfu(p, v, t) = Uy (v, ) + Wy (v, ) + (+ v + t%)
u(w,v,0) = ksin[t(u+v)k=1—r.
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From the methodology regarding Upper bound solution:
Comparing p°:

n-1

-1 9(1

uy(u,v,t) = E

9k—a+2ﬁk(0)l.
k=0
Considered n = 1:

ﬁO(#' v, t) = E—l[gZﬁ(o)]
ﬁO(#' v, t) = ﬂ(O)E_l[gz]
(v, t) = u(0) = k sin[w(u +v)].
Comparing p':
u; (uw,v,t) =E71 [O“E[—ZEnzsin (mu+v) +((u+v+ tz))]]
w4, (uv,t) = E1 [eaE[—ZEnzsin (e +v)) ]] + E70%E[(u +v) 1] + E-1[6°E[¢2]]
(1, v, t) = (—2kn?sin (m(u + V))E Y VEE[1]] + (u + v)E[vE[1]] + E"[v¥E[t?]]

(v, t) = (=2km?sin (m(u + v))E~ [vE*2] + (u + v)E~[ve*+2] 4+ 2E- [y +4]
ta+2

(a+2)!

— t% t«
wy (v, t) = (—2kn? sin(z(u +v))) = +W+v) = +2
Comparing p?:
— td
u,(u, v, t) = E71|09E [4k7‘[4 sin(m(u +v)) _,]

(1, v, t) = 4kr* sin(m(u +v)) E71[02%+2]

Za

U, (1, v, t) = 4km* sin(w(u + v)) ar
Comparing p3:

uz(u,v,t) =E71 [G“E [(ﬁz (u,v, t))uu + (ﬁz(u, v, t))w”

us(u,v,t) = E

VOE [_SEnG sin(m(u +v)) (;aa)'”

Uz, v, t) = —8knSsin(w(u +v)) E~ 1[1/3‘”2]
3a
(Ba)!
ﬁ(‘u; v, t) = a0(.“"‘/; t) + ﬂl(ul v, t) + ﬂz(ﬂ,v, t) + u3(“: v, t) + -

us(u, v, t) = —8km® sm(n(y + v))

u(u,v,t) = k sin[n(u +v)] + (—ZEnz sin(n( + v)))Z + (u+ V)i +2 o
v, # # al # al (a + 2)!
2 3a
+ 4kt sm(ﬂ(u + v)) o) — 8kn® sin(n(u + v)) Ga)l +
Remark: If f(x,y,t) =0
2a

(v, t) = k sin[r(u +v)] + (—2kn? sin(m(u + v)))— + 4T sin(m(u + v)) —— =
3a
— 8km® sin(ﬂ'(/l + v)) (3—01)! +
u(u,v,t) = k sin[r(u +v)] ; (_1);(517;! )"
Example 3 [32] :
et v, t) = %(x + y)z[ﬁuu + ﬁw] +(u+v+t?H)

@(u,v,0) = k(u+v)% k= [k(r), k()] =[r-1,1-r].
6.3.1. Regarding Lower bound solution:

1
DEu(uv,t) == (u+ V2w + U] + v+t

LC.: u(u,v,0) =k(u+v)2,k=r—1
Applying Elzaki transform:
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E[DEuGv, 0] = E [3 0+ 2 it + 1] + (a4 v +69)]

n-1
E[E(,g:xvt t)] _ Z Gk—a+22k(0) =F [% ([l + V)Z[Eul.t + Evv] + ([.l +v+ t4)]
n-1
Elu(pv,t) s 1
[E .;lav ] — I;IZ_OlHk a ZEk(O) +E [E(M + V)Z[Eul.t + Evv] + ([.l +v+ t4)]

EluGev,0)] = 6% Z Va2 (0) + 0 [3 e+ V02t + ] + (a4 v+ 09)

’(Z gr-a+2yk (0)
n-1
g Z 9k—0¢+22k(0)]

k=0

u(p,v,t) =

+E- [ “E[ (u+v)? [u,m+uw]+(u+v+t4)”

Applying HPM:

Z p u,(uv,t) =E*
n=0

1 (o] (o]
+pE~"6°E E(“ +v)? (Z P U (1, v, t)) + (Z P un (1, v, t))
n=0 up n=0 ha%
+ u+v+t?)
Comparing p°:
n-1
wy(uv,0) = E71|0° ) k-2 "(O)l

k=0

uo(,v, ) = u(0) = k(u +v)%
Comparing p:

w(v,0) = [e“E [+ 07 (o) + (uoler0) |+ Gt s t‘*)]]

w0 = 5 |06 [ G+ (. 0), + (o), ||+ =010 01

+E"1[0%E[t*]]
w (v, t) = E [G“E[Zk(u + v)z]] + E7Y0%E[(u + ]| + E71[0%E[t*]]
w(wv,t) = 2k(u + v)?E[0E[1]] + (u + v)E~Y[0%E[1]] + E7[0%E[t*]]
u; (v, t) = 2k(u + v)?E7 0% + (u + v)E 1[0%*2] + E-[veE[t*]]

te
u; (u,v,t) —2k(y+v)2—+(u+v)—+24E ya+4]
oc a+2

u (v, t) = 2k(u +V)za+ (n +V)E+ 24 @+2)
Comparing p?: . .

u(u,v,t) =E™*

0%E E (u+v)? [(%(lb v, t))uu + (El(ﬂ’ v t))w]”

— -1 a 1 2 ta
(v, ) = B |0°E |~ (u+ )2 [k ]

w (1, v, 8) = 4k +v)2E [e“E [Z—'”

u (v, t) = 4k(u +v)*E~1[0%4%2]

2a

o, v, 0) = 4+ )

Comparing p°:
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23(”5 v, t) = E_l

0°F E (1 +v)? [(Ez(ﬂ: v, t))w +(w Gy, t))w]”

1 5 ktm
V) [16 u (2a)!]

ws (v, t) = 8k(u + v)2E lg"’E [(;a)!”

uz(u, v, t) = 8k(u +v)*E~[03%*2]

3a

us(uw,v,t) = E"1|0%E

t
_ 2
E3 (”v v, t) - 8&(# + V) (3(1)'
u(p, v, t) =uo(,v, ) + uy (1, v, t) + up (v, 1) + us (v, t) + -
t% a a+2 2a
Vt)=k 242k 2— —+24 ——+ 4k 2
u(u,v,t) = k(u+v)? + 2k(u +v) a!+(#+V)a!+ (a+2)!+ (u+v) 2a)!

3a

+ 8k (u +v)? Gl

+ ..

Remark:

It fuv,t) =0:
a 2a 3a
u(u,v,t) = k(u+v)? + 2k(u +v)? % + 4k(p + V)Z—(;a)! +8k (u+v)* (Ga)!
=k 2 N (Zta)n
E(‘u, v, t) - _(.u + V) (na)! )

n=0

+ .-

6.3.2. Regarding upper bound solution:

_ 1 _
DU, v, t) = 5 (u+ VU, + U] + @ +v+th),

a(wv,0) =k(u+v)2u=1—-r.
Applying Elzaki transform:

_ 1 _ _
E[Dfu(u,v,t)] = E [E W+ V2 [Uy + U] + v+ t‘*)]

n-1
Elu(u,v, _ 1 _ —
[u(gav ] Z pr-a+27(0) = E [E M+ Uy, + U] + w4+ t4)]

k=0
n-1
Elu(u,v,t _ 1 _ _
% = E k=27 (0) + E [5 W+ V2 [Uy + U] + v+ t‘*)]
k=0
n-—1

E[i(uv, 0] = 6 Z g2k (0) + vaE B (0 + )2 [Ty + o] + (u+v + t4)]
k=0

n-—1 =
L Z 9k—a+2ﬁk(0)
k=0

_ 1 _ _
u(u,v,t) = E71 +E! [Q“E [E (u+ v)z[uw +U, |+ @+v+ t4)]].
Applying HPM:
[*3) n-—1
Z PUn (v, 1) = E71|67 ”k%zﬁk(o)l
n=0 k=0
1 [ee] B [ee] B
+PET |09 | (u+v)? (Z P (v, t)) ¥ (Z P (v, t))
n=0 up n=0 W
+u+v+tH)

Comparing p%:

n-1
o(u,v,t) = E~1 |0 Z ak—a+2a"(0)l
k=0
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o (u, v, £) = u(0) = k(u +v)2.
Comparing p':

1
u, (v, t) = E? [H“E [5 (e +)? | (@ (v, D), + @, B),,]+ @+v+ t“)”

1
Hl(#! v, t) = E_l 0“E [E (# + V)Z [(ﬁO(.u" v, t))## + (EO(:“' v, t))vv]]

+ E"HO%E[t*]]
4 (uv,t) = E1 [eaE[ZE(y + v)z]] + EL[0%E[(u + v)]] + E-Y[0°E[t*]]
(1 v, t) = 2k(u + v)2E"HOE[1]] + (u + v)E~Y[0%E[1]] + E7[6%E[t*]]
(v, t) = 2k(u +v)2ET[0%42] + (u + V)EH[092] + ETY[0%E[t*]]

a

— t t
w(uv,t) =2k(u+v)2—+ (u+v)— + 24 E71[vetY]
a! a!

+ E7YO%E[(1 +v)]]

_ ta ta ta+2
w(pv,t) =2k(p+v) —+@+v)—+24 ———.
Uy (u, v, t) U)o+t @t D)

Comparing p?*:

(v, t) = E71|0°E

1
= G +)? |G +w),, + (@ + V))W]”

LT [sz;_j]”
o[

U, (v, t) = 4k(u + v)2E~1[029+2]
2

a

u,(u,v,t) = E~1 l@"‘E

u,(u, v, t) = 4k(u + v)2E~1

u, (v, t) = 4k(u + v)? (;a)!'

Comparing p3:

E3(#' v, t) = E_l

1
6 [i (u+v)? [(ﬁz(u, v,0),, + @y, t))w]”

1 2|16 % t2@
E(H‘}'V) [16 (26{)']

us(u, v, t) = 8k(u + v)2E! IQ"‘E[ e ”

uz(u,v,t) =E71 lQ“E

2a)!
Us (v, 1) = 8k (i +v)*E71[674"7]
3a
E3 (ﬂ! v, t) = SE(H + V)Z

Ba)!
ﬁ(#l v, t) = a0(.“11/5 t) + ﬁl(/’tl v, t) + ﬁ2(:“!“/’ t) + ﬁ3(M’ v, t) o
N Bl ta ta a+2 _ 2a
U = 2 2 2— - 24 4 z
W, v, 1) = ke )P + 2k V)P () 24 ot e+ V)" oo
3a
- 2
+ 8k(u+v) Ga)l +
Remark:
If f(u,v,t)=0:
B 3 ta _ 2a _ 3a
. _ 9 2 2 2
Wk, v,€) = R V)2 o 2K )2 o 4+ ) o+ 8R4 ) s +
@t

u(u, v, t) = k(u + v)? ok
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7. Results and discussion

Remark 1. In Figure 1, the contour and surface graphs are matched for approximated and exact lower
bound solutions at t =1.

Approx. lower bound solution

Approx. lower bound solutien

200
400
1000

1000

200
-1200

1400

Approx. solution

o 1400

1600

1600
4 1800 -1800
3 2 1 0 1 2 3
x
Exact lower bound solution . Exact lower bound solution

400 <200

500 =400

600

<800
800

-1000

1200

Exact solution

1400
1600

1800

Figure 1. Comparison of Approximate and Exact lower bound solutions at t =1 for Example 1.

Remark 2. In Figure 2, the contour and surface graphs are matched for approximated and exact lower
bound solutions at ¢t =2.

Approx, lower bound solutien

Apprex. lower bound solution
T e

S T 2000
b 000 2000
5000 el
000

Approx. solution

2
1k =
o # 5000
4k o
-2 L\\. 1200
3 2 4 a z 3
x

h Exact lower bound solution
3F 3
i i e
oo
1 L Ak g
2 5000
- 3000 a
EE 200
4l 10000 i
10000
2B 20 12000
i % ! ! ! ! 14080 <1400
- 2 ] ] 1 H 3
¥

Figure 2. Comparison of Approximated and Exact lower bound solutions at t =2 for Example 1.
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Remark 3. In Figure 3, the contour and surface graphs are matched for approximated and exact lower
bound solutions at t = 3.

Approx. lower bound solution {“U‘ Approx. lower bound solution 10t
2 i
3 2
4 5 e
= -
5 3
=10 & 5
» =
g. E
7 g .
8 J -
5 a
40 -0
3 2 1 0 1 2 3
x
Exact lower bound solution i
g
g
5 -
3 5
3
2
o 5
g
i 7
: )
“
-10
x

Figure 3. Comparison of Approximated and Exact lower bound solutions at t =3 for Example 1.

Remark 4. In Figure 4, the contour and surface graphs are matched for approximated and exact upper
bound solutions at t =1.

Approx. upper bound solution

1800
- 1800
14 1600

1400
1200 "

120
1000

3 1000
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400

a0

e T
e / 2 200
0
8 B
° X

Approx. Upper bound solution

Apprex, solution

Exact upper bound solufion

Exact upper bound solution

1800

Figure 4. Comparison of Approximated and Exact upper bound solutions at ¢ =1 for Example 1.
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Remark 5. In Figure 5, the contour and surface graphs are matched for approximated and exact upper

bound solutions at t =2.

Approx. upper bound solution Approx. upper bound solution

14000
1000

18 12000

08 10000

8000 W

6000 8000

Approx, solution

4000 4000

2000 2000

Ja000 Exact upper bound solution
14000

e 12000

0000 T
8000 a0

6000 2000

Exaot solufion

4000 4000

2000 2000

Figure 5. Comparison of Approximated and Exact upper bound solutions at ¢ =2 for Example 1.

Remark 6. In Figure 6, the contour and surface graphs are matched for approximated and exact upper

bound solutions at t = 3.

Approx. upper bound solution Approx. upper bound solution 10t
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15+ N
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’
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e b |
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Figure 6. Comparison of Approximated and Exact upper bound solutions at ¢ =3 for Example 1.
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Remark 7. In Table 2, L., error for lower bound is provided at ¢t =0.5, 0.8 and 1.0.

Table 2. L.. error for lower bound at different time levels for Example 1.

N t=0.5 t=0.8 t=1
L..error for lower bound

11 7.3129E — 06 1.3592E — 03 1.6437E — 02

21 2.2737E — 13 2.2737E — 13 1.2278E — 11

31 2.2737E — 13 2.2737E — 13 6.8212E — 13

Remark 8. In Table 3, L.. error for upper bound is provided at t =0.5, 0.8 and 1.0 respectively.

Table 3. L.error for upper bound at different time levels for Example 1.

N t=05 t=0.8 t=1.0
L..error for upper bound

11 7.3129E — 06 1.3592E — 03 1.6437E — 02

21 2.2737E —13 2.2737E —13 1.2278E — 11

31 2.2737E — 13 2.2737E — 13 6.8212E — 13

Remark 9. In Table 4. Approximated and exact lower bound solutions are matched at t =0.5 and 1.0
respectively.

Table 4. Comparison of Approximated and Exact lower bound solutions at t =0.5 and 1.0 for Example
1.

(x,y) t =05 t =10
Approximate Exact lower Absolute Approximated Exactlower Absolute
lower bound bound lower bound bound
. . Error . . Error
solution solution solution solution

(=1.05,—1.74) —22.18418197 —22.18418445 2.48F — 06 —60.30006149—-60.30286546 2.80F — 03
(—=0.349,—1.04) —5.491031416 —5.491032028 6.12F — 07 —14.92547854—14.92617258 6.94F — 04
(0.349,-0.34) —1.35914 —1.35914 0 —3.69436 —3.69453 1.70E — 04

Remark 10. In Table 5. Approximated and exact upper bound solutions are matched at ¢t = 0.5 and
1.0 respectively.

Table 5. Comparison of Approximated and Exact upper bound solutions at t=0.5 and 1.0 for Example
1.

x,y) t=05 t=1.0
Exact A imated Exact
Approximate lower xac Absolute ,pproxiumate xac Absolute
. lower bound lower bound lower bound
bound solution R Error . R Error
solution solution solution

(-1.05,-1.74) 22.18418197 2218418445 248E — 06  60.30006149 6030286546 2.80E — 03
(=0.349,-1.04) 5491031416 5491032028 6.12E — 07 14.92547854 14.92617258 6.94E — 04
(0.349,—-0.34) 1.359141 1.359141 0 3.694356 3.694528  1.72E — 04
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Remark 11. In Figure 7, contour and surface graphs of lower bound solution are provided at t =0.1.

Exact solution

Approx. solution

i
il
\‘} i
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l‘n‘}-m t HILI‘V

ol

Approx. lower bound solution

i
o
O

«'"“m“”"um““”” “«1\

I
A

Exact lower bound solution

(i
i .“,‘,’ R
e t
I
e

b 0
i

Figure 7. Comparison of Approximated and Exact lower bound solutions at t =0.1 for Example 2.

Remark 12. In Figure 8, contour and surface graphs of lower bound solution are provided at t =0.3.

Approx. lower bound solution xwwu“
s
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05
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3 2 1 a 1 3 3
x
10
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o
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Approx. solution

Exact solution

Approx. lower hound solution
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Figure 8. Comparison of Approximated and Exact lower bound solutions at t =0.3 for Example 2.
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Remark 13. In Figure 9, contour and surface graphs of the lower bound solution are provided at t =

0.5.
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Figure 9. Comparison of Approximated and Exact lower bound solutions at t =0.5 for Example 2.

Remark 14. In Figure 10, contour and surface graphs of the upper bound solution are provided at t

=0.1.

Approx. solution

Approx. upper bound solution

Exact upper bound solution

Figure 10. Comparison of Approximated and Exact upper bound solutions at t =0.1 for Example 2.
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Remark 15. In Figure 11, contour and surface graphs of the upper bound solution are provided at t
=0.3.

Approx. upper bound solution x1? Approx. upper bound solution 0t

Exact upper bound solution _

Exact solution

Figure 11. Comparison of Approximated and Exact upper bound solutions at ¢ = 0.3 for Example 2.

Remark 15. In Figure 12, contour and surface graphs of the upper bound solution are provided at t
=0.5.
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Exact upper bound solution 107
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Figure 12. Comparison of Approximated and Exact upper bound solutions at t = 0.5 for Example 2.
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Remark 16. In Table 6, L.. error for lower and upper bound solutions is provided at t =0.5.

Table 6. L.. lower and upper bound solutions at ¢t = 0.5 for Example 2.

N L, lower bound L, upper bound
t =0.5

31 3.0858E — 04 3.0858E — 04

41 7.0620E — 10 7.0620E — 10

51 4.4801F — 13 4.4801F — 13

Remark 17. In Table 7, L.. error for lower and upper bound solutions is provided at ¢t =0.8.

Table 7. L.. lower and upper bound solutions at t = 0.8 for Example 2.

N L., lower bound L, upper bound
t=20.8

51 3.2516E — 06 3.2516E — 06

61 1.5514E - 10 1.5514E - 10

71 1.6530FE — 10 1.6530F — 10

Remark 18. In Table 8, L.. error for lower and upper bound solutions is provided at ¢t =1.0.

Table 8. L., lower and upper bound solutions at t = 1.0 for Example 2.

N L., lower bound L, upper bound
t=1.0

71 6.3548EF — 09 6.3548EF — 09

81 7.1974E — 09 7.1974E — 09

91 6.6640F — 09 6.6640F — 09

Remark 19. In Table 9, a comparison of approximated and exact solutions is provided for the lower
bound at t =0.1 and 0.2, along with the absolute error.

Table 9. Comparison of Approximated and Exact lower bound solutions at t =0.1 and 0.2 for Example

2.
(x,y) t =0.1 t =02
Approximate Exact Absolute Approximated Exact Absolute
lower bound lower bound lower bound lower bound
. . Error . . Error
solution solution solution solution

(—-1.89,-1.88) —0.045958919  —0.045946325 1.26E — 05 —0.028904696  —0.006382456 2.25E — 02
(=1.26,—-1.25) 0.069414203 0.069395182  1.90E — 05  0.043656302 0.009639763  3.40E — 02
(—=0.628,—-0.62) —0.05014 —0.05013 1.00E — 05 —0.03153 —0.00696 246E — 02

Remark 20. In Table 10, a comparison of approximated and exact solutions is provided for the upper
bound at ¢t =0.1 and 0.2, along with the absolute error.

Table 10. Comparison of Approximated and Exact upper bound solutions at t = 0.1 and 0.2 for

Example 2.
(xy) t =01 t =02
Approximated Exact Approximated Exact
upper bound upperbound  Abs.Err.  upperbound upperbound Abs. Err.
solution solution solution solution
(—1.89,—1.88) 0.045958919 0.045946325 1.26E — 05 0.028904696  0.028904696 0

(=1.26,-1.25) —0.069414203 —0.069395182 1.90E —05 —0.043656302 —0.043656302 0
(—0.628,—-0.62) 0.05014 0.050126 1.40E — 05 0.031534 0.031534 0
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Remark 21. In Figure 13, a comparison of approximated and exact lower bound solutions is provided

at t =1.

Approx. lower bound solution

Approx. solution

Exact solution

Approx. loveer bound solution

Exact lower bound solution
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-100
. ” %u
a 2
2 = 0
¥ 24 x

Figure 13. Comparison of Approximated and Exact lower bound solutions at ¢t =1 for Example 3.

Remark 22. In Figure 14, a comparison of approximated and exact lower bound solutions is provided

at t =2.

Approx. lower bound salution

Approx. solution

Exact solution

Approx. lower bound solution

Exact lower bound solution

Figure 14. Comparison of Approximated and Exact lower bound solutions at t =2 for Example 3.
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Remark 23. In Figure 15, a comparison of approximated and exact lower bound solutions is provided
at t =3.
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Figure 15. Comparison of Approximated and Exact lower bound solutions at ¢ =3 for Example 3.

Remark 24. In Figure 16, a comparison of approximated and exact upper bound solutions is provided
at t =1.

Approx, upper bound solution

Approx. solution

s

Exact upper bound solution

Exact solution

Figure 16. Comparison of Approximated and Exact upper bound solutions at t =1 for Example 3.


https://doi.org/10.20944/preprints202309.0985.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 September 2023

doi:10.20944/preprints202309.0985.v1

28

Remark 25. In Figure 17, a comparison of approximated and exact upper bound solutions is provided

at t =2.
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Figure 17. Comparison of Approximated and Exact upper bound solutions at t =2 for Example 3.

Remark 26: In Figure 18, a comparison of approximated and exact upper bound solutions is provided

at t =3.

Figure 18. Comparison of Approximated and Exact upper bound solutions at t =3 for Example 3.
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Remark 27:In Table 11, L., error for lower and upper bound solutions is provided at t =1.0.

Table 11. L.. lower and upper bound solutions at ¢t =1.0 for Example 3.

L., lower bound L., upper bound

N

t=1.0
11 1.2118E — 03 1.2118E — 03
21 9.6634E — 13 9.6634E — 13
31 5.6843E — 14 5.6843E — 14

Remark 28:In Table 12, L.. error for lower and upper bound solutions is provided at t =2.0.

Table 12. L.. lower and upper bound solutions at ¢t =2.0 for Example 3.

N L.. lower bound L.. upper bound
t =20

21 2.0725E — 06 2.0725E — 06

31 4.5475E — 13 4.5475E — 13

41 2.2737E — 13 2.2737E — 13

Remark 29: In Table 13, L., error for lower and upper bound solutions is provided at t =3.0.

Table 13. L.. lower and upper bound solutions at ¢t =3.0 for Example 3.

N L.. lower bound L.. upper bound
t =30

31 3.9126E — 09 3.9126E — 09

41 3.6380E — 12 3.6380E — 12

51 2.7285E — 12 2.7285E — 12

Remark 30. In Table 14, approximated and exact lower bound solutions are matched at t =0.5and t

= 1.0 along with absolute error.

Table 14. Comparison of Approximated and Exact lower bound solutions at t = 0.5 and t = 1.0 for

Example 3.
t =05 t =1.0
(x.y) Approximate Exact Absolute Approximated Exact Absolute
lower bound lower bound lower bound lower bound
. . Error . . Error
solution solution solution solution

(—1.89,—1.88) —19.31642354 —19.31642373 1.90E — 07 —52.50704738 —52.50748363 4.36E — 04
(=1.26,—1.25) —8.585077129 —8.585077215 8.60E — 08 —23.3364655 —23.33665939 1.94F — 04
(—=0.628,—0.62) —2.14627 —2.14627  0.00E +00  —5.83412 —5.83416  4.00E — 05

Remark 31. In Table 14, approximated and exact upper bound solutions are matched at t = 0.5 and
t =1.0, along with absolute error.

Table 15. Comparison of Approximated and Exact upper bound solutions at t = 0.5 and t = 1.0 for

Example 3.
(xy) t =05 t=10
A i E A i E
pproximate xact Absolute pproximated xact Absolute
lower bound lower bound lower bound lower bound
. ] Erro . ) Error
solution solution solution solution

(—1.89,—1.88) 1931642354 19.31642373 1.90E —07 52.50704738 52.50748363 4.36E — 04
(=1.26,—1.25) 8.585077129 8.585077215 8.60E —08 23.3364655  23.33665939 1.94E — 04
(—=0.628,—0.62) 2.146269 2.146269  0.00E + 00 5.834116 5.834165 4.90E — 05
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8. Concluding Remarks

The two-dimensional fuzzy fractional Heat equation is studied via a regime named Elzaki HPM.
A novel regime is developed via the fusion of the Elzaki transform and the Homotopy Perturbation
Method. Three numerical examples are studied in this paper. The compatibility of the approximated
and exact results is matched by means of graphs and tables.Via Figure 1 — Figure 18,the graphical
compatibility of the approximated and exact solutions for the lower and upper bound is validated.
Via Table 2 — Table 15, the numerical convergence and matching of approximated and exact solutions
are validated. It is affirmed on the basis of all these results that the proposed regime can produce
results that converge rapidly to the exact solution.The study conducted in this paper will surely open
new dimensions for researchers. This regime will be helpful in studying some higher-order fuzzy
fractional partial differential equations such as; the KdV equation, Kawahara equation and Sawada
Kotera equation and many others.
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