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Abstract: In this research, a computation algorithm is established for a fractional order 2D fuzzy 

heat equation. In this study, Elzaki transform and HPM fusion is produced. Computing the desired 

outcome in series yields a fast convergence on an appropriate response. Examples are provided to 

support the conclusions, which are then compared with a particular approach to show the 

effectiveness and potential of the suggested approach. Two crisp equations—one for the lower 

bound solution and one for the upper bound solution are constructed from the input fuzzy 

fractional heat equation. The contour and surface representations of the approximate and exact 

results are offered for the lower and upper-bound solutions. The 𝑙∞-error norm is used in this study 

to validate the numerical convergence aspect. Together with the absolute inaccuracy, the 

approximate and exact solutions are matched. It has been demonstrated that the proposed regime 

will make it feasible to work with fuzzy fractional partial differential equations in a wide range of 

dimensions. 

Keywords: Elzaki transform; homotopy perturbation method; 2D fuzzy fractional heat equation 

 

1. Introduction 

In the course of the last few decades, academics and scientists have demonstrated a great deal 

of interest in the field of fractional calculus (FC), which is concerned with derivatives and integrals 

of non-integer order. As we know, classical calculus has been developed as a vast subject, and many 

researchers have been working on it till now. Due to the ideas of German mathematiciansLebiez and 

L-Hospital, the theory of fractional calculus came into existence about 300 years ago. FC can be 

assumed to be a well-developed and established subject. Both memory effects and hereditary 

properties influence the problem under consideration. We all know that classical differential 

equations have numerous applications that model many natural phenomena and physical 

phenomena compared to classical differential equations. In the last few decades, an abundance of 

research papers, monographs, and books have been published, covering an extensive range of 

subjects such as existence theory and analytical results.For instance, mathematical models involving 

fractional as well as integer order derivatives have been investigated for different real-world 

problems in literature (we refer the readers to References [12-19] and the references therein). There 

are numerous local and nonlocal fractional notions in the literature, notably those of Riemann-

Liouville, Grunwald, Caputo, Riesz, conformable and Caputo-Fabrizio. Since most physical 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 September 2023                   doi:10.20944/preprints202309.0985.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202309.0985.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

implementations rely on historical and nonlocal properties, nonlocal derivatives are more intriguing 

than local derivatives. On the basis of singular kernels, some of these operations, notably Riemann-

Liouville and Caputo have been offered. In contrast to traditional fractional derivatives, recent 

fractional derivatives that are based on nonsingular kernels that were suggested by Caputo-Fabrizio 

[6] and Atangana-Baleanu [7] are more accurately represent physical dissipative procedures and 

minimize a numerical collision. Here, we seek to expand such a tool to examine certain problems 

which appear in the biological, social, and physical sciences, as well as other areas where there is data 

inconsistency. 

In 1960, Zadeh [8] introduced the concept of the theory of fuzzy sets as an extension of classical 

set theory. Since then, it has started gaining the attraction of many researchers due to its skillin 

analyzing unpredictabilityinfacts and particulars. Mainly, fuzzy set theory allows us to prospect new 

estimations and expand the chances for effectively handling and analyzing fuzzy information. Fuzzy 

mapping and control were developed by Chang and Zadeh [9] and the concept of the fuzzy set was 

further developed upon. A number of researchers generalized this notion in order to build primary 

fuzzy calculus on the basis of fuzzy mapping and control [10–12]. Fuzzy calculus deals with fuzzy 

sets and fuzzy numbers, allowing for representing and manipulating unpredictable and unspecific 

quantities. Fuzzy calculus is being found applicable in a wide range of fields, including mathematics, 

computer science and engineering. Numerous fields, including topology, fixed-point theory, integral 

inequalities, fractional calculus, bifurcation, image processing, pattern recognition, expert systems, 

consumer electronics, control theory, artificial intelligence, and operations research have made 

extensive use of the fuzzy calculus. Fuzzy fractional differential and integral equations (FFDIEs) have 

received significant attention in the physical sciences during the past few decades. Among those who 

initially proposed the fundamental idea of fuzzy integral equations were Dobius and Prada [13]. To 

deal with such types of challenges, as the information is unclear and unreliable, fuzzy numbers are 

employed for parameters instead of crisp numbers. FFDIEs may be employed to model these types 

of concerns. As a consequence, many researchers evaluated such model’s details through numerical 
or analytical techniques. 

Nowadays, academics and scientists have demonstrated a great deal of interest in the field of 

fuzzy fractional calculus (FFC), which is an augmentation of fractional calculus and fuzzy calculus. 

It broadens the conventional calculus operations, such as differentiation and integration, to fuzzy 

numbers of arbitraryorder. This allows for a more comprehensive analysis of functions and systems 

that exhibit both fuzzy and fractional characteristics. Research in FFC continues to explore new 

theoretical developments, such as the establishment of fuzzy fractional differential equations and the 

development of appropriate techniques for solving them. This provides a more accurate and 

powerful tool for modeling and analyzing complex systems with fractional and fuzzy characteristics, 

allowing for a better mastery and control of real-world phenomena. Fuzzy fractional calculus has 

been applied in areas such as finance, image processing, control systems, and others.For example, 

fuzzy fractional operators can be used to upgrade image characteristics and grasp noise or 

unpredictability of the data in image processing. Fuzzy fractional derivatives heavily rely on fuzzy 

Riemann–Liouville or fuzzy Caputo-Liouville derivative.Many fuzzy fractional differential operators 

are known to be nonlocal, indicating that their future states depend on their historical and current 

situations. A range of singular and non-singular fuzzy fractional operators have been developed with 

applications in a wide range of fields of science [5-10]. The nonlocality and singularity of the kernel 

function, which can be seen in the integral operator's side-by-side with the normalizing function 

arising alongside the integral ticks, are the most prevalent shortcomings of these two qualifiers. 

Indeed, a more useful and clear definition must result from the unpreventable existence of real-world 

core reproducing dynamic fractional systems. Atangana-Baleanu-Caputo (ABC), a novel fractional 

fuzzy derivative construct that is utilized to synthesize and convey fresh tangible fuzzy mathematical 

concepts, is introduced in this orientation. The new fuzzy fractional ABC derivative appears to be 

releasing singularity with the local kernel function. This is because the kernel is based on the nature 

of exponential decay, making fuzzy fractional order differential equations (FFPDEs) more plausible 

in establishing several uncertain models [1-5]. 
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Further, FFPDEs have many real-world problems like heat transfer phenomena, nonlinear 

propagation of traveling waves, damped nonlinear string, electronics, telecommunications, 

dynamical systems and so on(see References [36–38]).To tackle FFPDEs, important tools and methods 

were found in the literature. Such tools include Fourier integral transform, Laplace transform, 

Sumudu transform, and so on. Among others, we found some analytical methods like Homotopy 

methods, Adomian decomposition, Laplace Adomian decomposition methods, Taylor’s series 
method, and other methods.In [31], the homotopy analysis transform method has been proposed and 

implemented to derive new analytical solutions for the fuzzy heat-like equations. To the best of our 

information, the above mentioned methods have not been properly used to deal with FFPDEs. 

On the other hand, perturbation methods are important tools for solving nonlinear problems. 

However, these methods, like other nonlinear analytical techniques, have their own set of restrictions. 

That is, the applicability of perturbation techniques is severely limited by the assumption that the 

Equation must have a small parameter. The Homotopy Perturbation Method (HPM),which is the 

coupling of the homotopy method and classical perturbation technique,was first proposed by He [21] 

and then used by many researchers in recent years to solve various types of linear and nonlinear 

differential equations, see, for example, [22, 23] and references therein. The main significance of this 

method is that it doesn’t require a small parameter in the Equation, so it overcomes the impediments 

of the classical perturbation technique. In 2020, Muhammad Arfan et al. developed an algorithm 

based on the HPM to compute an analytical solution for a two-dimensional fuzzy fractional heat 

equation involving external source term, and found the efficiency and the capability of the method. 

The Laplace transform, decomposition techniques, and the Adomian polynomial under the Caputo–
Fabrizio fractional differential operator have been applied to obtain the semi-analytical solution of 

the 2D heat equation without an external diffusion term. 

In [20], the authors applied the HPM along with a crucial integral transform called Elzaki 

transformation (ET) to provide the solution of some nonlinear partial differential equations. This 

method is called the Homotopy Perturbation Elzaki Transform method (HPETM). This method gives 

a power series solution in the form of a rapidly convergent series lead to high accurate solutions with 

only a few iterations. The efficiency of HPETM in solving nonlinear homogeneous and non-

homogeneous partial differential equations is also shown in [24-26].  

In the present work, we focus on computingan approximate solution by the iterativemethod 

based HPETM for the following two-dimensional fuzzy fractional heat equation: 𝐷𝑡𝛼𝑢̃(𝜇, 𝜈, 𝑡) =  𝑢̃𝑥𝑥(𝜇, 𝜈, 𝑡) + 𝑢̃𝑦𝑦(𝜇, 𝜈, 𝑡) + 𝑓(𝜇, 𝜈, 𝑡), 0 < 𝛼 ≤ 1, (1) 𝑢̃(𝜇, 𝜈, 0) =   𝑔̃(𝜇, 𝜈),  

where 𝛼  stands for Caputo fractional derivativeand 𝑓 ∈ 𝐶([0,∞) × [0,∞) × [0,∞), [0,∞)), 𝑔̃ ∈([0,∞) × [0,∞), [0,∞)) . It is pointed out that, the two-dimensional heat equation representsthe 

transfer of heat through an infinite thin sheet. Here in Equation (1), the term 𝑢̃  represents the 

temperature of the body at any point in the thin sheet. This phenomenon of heat transfer can be found 

in many diffusion problems. Therefore, the investigation of two-dimensional Fuzzy fractional heat 

equationshas much more application in various domains, such as heat transfer analysis in materials 

with uncertain properties, modeling of temperature distribution in environmental systems, or 

analysis of thermal processes in complex systems with imprecise parameters.  

The two crisp fuzzy fractional equations will be fetched as follows: 𝐷𝑡𝛼𝑢(𝜇, 𝜈, 𝑡) =  𝑢𝑥𝑥(𝜇, 𝜈, 𝑡) + 𝑢𝑦𝑦(𝜇, 𝜈, 𝑡) + 𝑓(𝜇, 𝜈, 𝑡), (2) 𝑢(𝜇, 𝜈, 0) =   𝑔(𝜇, 𝜈),  

and 𝐷𝑡𝛼𝑢(𝜇, 𝜈, 𝑡) =  𝑢𝑥𝑥(𝜇, 𝜈, 𝑡) + 𝑢𝑦𝑦(𝜇, 𝜈, 𝑡) + 𝑓(𝜇, 𝜈, 𝑡), (3) 𝑢(𝜇, 𝜈, 0) =   𝑔(𝜇, 𝜈).  
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For HPM, the considered Equation is as follows: 𝐷(𝑢) = 0, (4) 

where 𝐷 is considered as a differential operator, any convex Homotopy deformation𝐻(𝑢, 𝑝) is as 

follows: 𝐻(𝑢, 𝑝) = (1 − 𝑝)𝐹(𝑢) + 𝑝 𝐷(𝑢), (5) 

where 𝐹(𝑢) is considered as a basic operator with the known solution 𝑢0. 

In such an approach, embedding parameter ‘𝑝’ is used initially, and the solution of the Equation 
is provided in the form of a power series. 𝑈 = 𝑢0 + 𝑝 𝑢1 + 𝑝2𝑢2 + 𝑝3𝑢3 +⋯+ 𝑝𝑛𝑢𝑛, (6) 𝑈 = lim𝑝→1𝑈, (7) 

𝑈 = 𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 +⋯+ 𝑢𝑛, (8) 𝑈 = lim𝑝→1𝑈, (9) 

𝑈 =  ∑ 𝑢𝑛∞𝑛=0 ,  
(10) 

This helps us to obtain the solution. 

2. Preliminaries 

In this section, the most basic notations used in this paper are introduced. 

Definition 1. For all fuzzy numbers, the lower and upper bounds of the fuzzy numbers satisfy the 

following requirements [27]: 

(i) 𝑢(𝑟) is a bounded left-continuous nondecreasing function over [0, 1], 

(ii) 𝑢(𝑟) is a bounded right-continuous nonincreasing function over [0, 1], 

(iii) 𝑢(𝑟)  ≤  𝑢(𝑟) ,0 ≤  𝑟 ≤  1. 

Definition 2. Fuzzy center of an arbitrary fuzzy number ũ  =  [u(r), u(r)] is defined as [27]: 𝑢̃𝑐 = [𝑢(𝑟)+𝑢(𝑟)]2 , for all 0 ≤  𝑟 ≤  1. ) 

Definition 3. Fuzzy radius of an arbitrary fuzzy number ũ  =  [u(r), u(r)] is defined as [27]: 𝑢̃𝑟 = [𝑢(𝑟)−𝑢(𝑟)]2 , for all 0 ≤  𝑟 ≤  1. ( 

Definition 4. Fuzzy width of an arbitrary fuzzy number ũ  =  [u(r), u(r)] is defined as [27]: |𝑢(𝑟) − 𝑢(𝑟)| , for all 0 ≤  𝑟 ≤  1. ) 

Definition 5. For any two arbitrary fuzzy numbers x̃ =  [x(r), x(r)], ỹ =  [y(r), y(r)] andscalar k, the 

fuzzy arithmetic is similar to the interval arithmetic defined as follows: 

(i) 𝑥̃ =  𝑦̃ if and only if 𝑥(𝑟)  =  𝑦(𝑟) and 𝑥(𝑟) = 𝑦(𝑟), 
(ii) 𝑥̃ + 𝑦̃  =  [𝑥(𝑟) + 𝑦(𝑟), 𝑥(𝑟) + 𝑦(𝑟)]. 
Definition 6. Let 𝜙: 𝑅 → 𝐸 is a fuzzy valued function s.t. 𝑟 ∈ [0,1] [28] [𝜙(𝜉)]𝑟 = [𝜙𝑟(𝜉), 𝜙𝑟(𝜉)]:  

1. If 𝜙(𝜉) is a differentiable function in the first form i.e., (1) differentiable, then [𝜙′(𝜉)]𝑟 = [𝜙𝑟′(𝜉), 𝜙𝑟′(𝜉)]. ) 

2. If 𝜙(𝑥) is a differentiable function in second form i.e., (2) differentiable, then [𝜙′(𝜉)]𝑟 = [𝜙𝑟′(𝜉), 𝜙𝑟′(𝜉)]. ) 
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Definition 7. Let𝜙: (𝑎, 𝑏) → 𝐸 is said to be a strongly generalized H differentiable function at 𝜉0 ∈(𝑎, 𝑏) if there exists 𝜙′(𝜉0) ∈ 𝐸 such that for ℎ > 0 and close to zero [28] 

1. 𝜙′(𝜉0) = limℎ→0 𝜙(𝜉0+ℎ)Θ𝜙(𝜉0)ℎ = limℎ→0 𝜙(𝜉0)Θ𝜙(𝜉0−ℎ)ℎ , 
2. 𝜙′(𝜉0) = limℎ→0 𝜙(𝜉0)Θ𝜙(𝜉0+ℎ)−ℎ = limℎ→0 𝜙(𝜉0−ℎ)Θ𝜙(𝜉0)−ℎ , 
3. 𝜙′(𝜉0) = limℎ→0 𝜙(𝜉0+ℎ)Θ𝜙(𝜉0)ℎ = limℎ→0 𝜙(𝜉0−ℎ)Θ𝜙(𝜉0)−ℎ , 
4. 𝜙′(𝜉0) = limℎ→0 𝜙(𝜉0)Θ𝜙(𝜉0+ℎ)−ℎ = limℎ→0 𝜙(𝜉0)Θ𝜙(𝜉0−ℎ)ℎ . 
Definition 8. Let𝜙(𝜉), 𝜙′(𝜉), … , 𝜙(𝑛−1)(𝜉) are differentiable fuzzy valued functions with r-cut form 

[28] [𝜙(𝜉)]𝑟 = [𝜙𝑟(𝜉), 𝜙𝑟(𝜉)].  

1. If 𝜙(𝜉), 𝜙′(𝜉), … , 𝜙(𝑛−1)(𝜉) are (1) differentiable, then [𝜙𝑛(𝜉)]𝑟 = [𝜙𝑟(𝑛)(𝜉), 𝜙𝑟(𝑛)(𝜉)]. ) 

2. If 𝜙(𝜉), 𝜙′(𝜉), … , 𝜙(𝑛−1)(𝜉) are (2) differentiable, then [𝜙𝑛(𝜉)]𝑟 = [𝜙𝑟(𝑛)(𝜉), 𝜙𝑟(𝑛)(𝜉)].  

3. If 𝜙(𝜉) is (1)-differentiable and 𝜙′(𝜉), … , 𝜙(𝑛−1)(𝜉) are (2) differentiable, then [𝜙𝑛(𝜉)]𝑟 = [𝜙𝑟(𝑛)(𝜉), 𝜙𝑟(𝑛)(𝜉)].  

4. If 𝜙(𝜉) is (2)-differentiable and 𝜙′(𝜉), … , 𝜙(𝑛−1)(𝜉) are (1) differentiable, then [𝜙𝑛(𝜉)]𝑟 = [𝜙𝑟(𝑛)(𝜉), 𝜙𝑟(𝑛)(𝜉)] ) 

Definition 9. Elzaki transform is defined as follows [29]: 𝐸(𝜃) = 𝜈∫ 𝑓(𝑡)𝑒−(𝑡𝜃)𝑑𝑡∞

0 , (11) 

where 𝑓(𝑡) is considered as the time function. 𝐸[𝑢𝑡(𝑥, 𝑡)] =  1𝜃 𝐸[𝑢(𝑥, 𝑡)] − 𝜃 𝑢(𝑥, 0) (12) 

𝐸[𝑢𝑡(𝑥, 𝑦, 𝑡)] =  1𝜃 𝐸[𝑢(𝑥, 𝑦, 𝑡)] − 𝜃 𝑢(𝑥, 𝑦, 0) (13) 

𝐸[𝑢𝑡(𝑥, 𝑦, 𝑧, 𝑡)] =  1𝜃 𝐸[𝑢(𝑥, 𝑦, 𝑧, 𝑡)] − 𝜃 𝑢(𝑥, 𝑦, 𝑧, 0) (14) 

Table 1 is provided regarding the basic properties of the Elzaki transform. 

Table 1. Elzaki transform of the given function [29]. 𝒇(𝒕) 1 𝑡 𝑡𝑛 𝑒𝑎𝑡 𝑠𝑖𝑛𝑎𝑡 𝑐𝑜𝑠𝑎𝑡 𝑠𝑖𝑛ℎ𝑎𝑡 𝑐𝑜𝑠ℎ𝑎𝑡 𝑬[𝒇(𝒕)]  =  𝑻(𝜃) 𝜃 𝜃 ∠𝑛 𝜃𝑛+2 

𝜃21 − 𝑎𝜃 

𝑎𝜃31 + 𝑎2𝜃2 

𝑎𝜃21 + 𝑎2𝜃2 

𝑎𝜃31 − 𝑎2𝜃2 

𝑎𝜃21 − 𝑎2𝜃2 

Definition 10. The operator 𝐷𝑡𝛼  in the Caputo sense is defined as follows [30]: 

𝐷𝑡𝛼𝑢 =  {  
  1
Γ(m − α) ∫ 𝜇𝑚(𝑡)(𝜓 − 𝑡)𝛼−𝑚+1 𝑑𝑡,   𝜓

𝜃 𝑚 − 1 < 𝛼 < 𝑚,𝑑𝑚𝑑𝑡𝑚 𝜇(𝜓),                                             𝛼 = 𝑚.   

Definition 11. The Elzaki transform in the Caputo sense is notified as follows [30]: 
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𝐸[𝐷𝑡𝛼𝑢(𝜇, 𝜈, 𝑡)] = 𝐸[𝑢(𝜇, 𝜈, 𝑡)]𝜃𝛼 −∑𝜃𝑘−𝛼+2𝑢𝑘(0)𝑛−1
𝑘=0 .  

3. The main advantages of the study 

The primary advantages of the study. 

• The Elzaki HPM can be applied right away to linear and nonlinear fuzzy fractional differential 

equations, in contrast to the implicit finite difference technique, which necessitates the 

discretization of space, time, and fractional order derivatives. 

• When employing numerical methodologies, we can only get very close approximations. 

However, the Elzaki HPM, series solutions deliver precise or almost precise results, providing 

us the chance to further investigate the error estimate of each individual problem. 

• The algebraic convergence of series solutions of the proposed Elzaki HPM may be controlled 

using initial approximation, deformation equation, auxiliary function, and non-zero 

convergence control parameter. 

Outline of the study 

The present study is divided into different sections for a better understanding of the work. 

• Under the Section named “FORMULATION OF PROPOSED REGIME” the regimes 
are developed regarding lower and upper bound solutions. 

• Under the Section named “UNIQUENESS AND CONVERGENCE THEOREMS” the 
theoretical aspects of convergence are validated. 

• Under the Section named “NUMERICAL ARGUMENTATIONS” three examples are 
validated for the series and exact solutions. 

• Under the Section named “ANALYSIS OF RESULTS” the graphical and tabular 
analysis of the results are notified. 

• Under the Section named “CONCLUDING REMARKS” the conclusion of the study 
and future scope are provided. 

4. Formulation of proposed regime 

4.1. Methodology for Lower bound solution 

Applying Elzaki transform upon Equation (2): 𝐸[𝐷𝑡𝛼𝑢(𝜇, 𝜈, 𝑡)] = 𝐸[𝑢𝜇𝜇(𝜇, 𝜈, 𝑡) + 𝑢𝜈𝜈(𝜇, 𝜈, 𝑡) + 𝑓(𝜇, 𝜈, 𝑡)]  

𝐸[𝑢(𝜇, 𝜈, 𝑡)]𝜃𝛼 −∑𝜃𝑘−𝛼+2𝑢𝑘(0)𝑛−1
𝑘=0 = 𝐸[𝑢𝜇𝜇(𝜇, 𝜈, 𝑡) + 𝑢𝜈𝜈(𝜇, 𝜈, 𝑡) + 𝑓(𝜇, 𝜈, 𝑡)]  

𝐸[𝑢(𝜇, 𝜈, 𝑡)]𝜃𝛼 =∑𝜃𝑘−𝛼+2𝑢𝑘(0)𝑛−1
𝑘=0 + 𝐸[𝑢𝜇𝜇(𝜇, 𝜈, 𝑡) + 𝑢𝜈𝜈(𝜇, 𝜈, 𝑡) + 𝑓(𝜇, 𝜈, 𝑡)]  

𝐸[𝑢(𝜇, 𝜈, 𝑡)] = 𝜃𝛼∑𝜃𝑘−𝛼+2𝑢𝑘(0)𝑛−1
𝑘=0 + 𝜃𝛼𝐸[𝑢𝜇𝜇(𝜇, 𝜈, 𝑡) + 𝑢𝜈𝜈(𝜇, 𝜈, 𝑡) + 𝑓(𝜇, 𝜈, 𝑡)]  

𝑢(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼∑𝜃𝑘−𝛼+2𝑢𝑘(0)𝑛−1
𝑘=0 ] + 𝐸−1 [𝜃𝛼𝐸[𝑢𝜇𝜇(𝜇, 𝜈, 𝑡) + 𝑢𝜈𝜈(𝜇, 𝜈, 𝑡) + 𝑓(𝜇, 𝜈, 𝑡)]]  

Applying HPM: 
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 7 

 

∑𝑝𝑛𝑢𝑛(𝜇, 𝜈, 𝑡)∞

𝑛=0 = 𝐸−1 [𝜃𝛼∑𝜃𝑘−𝛼+2𝑢𝑘(0)𝑛−1
𝑘=0 ]  

+𝑝𝐸−1 [𝜃𝛼𝐸 [(∑𝑝𝑛𝑢𝑛(𝜇, 𝜈, 𝑡)∞

𝑛=0 )𝜇𝜇 + (∑𝑝𝑛𝑢𝑛(𝜇, 𝜈, 𝑡)∞

𝑛=0 )𝜈𝜈 + 𝑓(𝜇, 𝜈, 𝑡)]]  

Comparing 𝑝0: 𝑢0(𝜇, 𝜈, 𝑡) = 𝐸−1[𝜃𝛼 ∑ 𝜃𝑘−𝛼+2𝑢𝑘(0)𝑛−1𝑘=0 ]. ) 

Comparing 𝑝1: 𝑢1(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [(𝑢0(𝜇, 𝜈, 𝑡))𝜇𝜇 + (𝑢0(𝜇, 𝜈, 𝑡))𝜈𝜈 + 𝑓(𝜇, 𝜈, 𝑡)]]. ) 

Comparing 𝑝2: 𝑢2(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [(𝑢1(𝜇, 𝜈, 𝑡))𝜇𝜇 + (𝑢1(𝜇, 𝜈, 𝑡))𝜈𝜈]].  

Comparing 𝑝3: 𝑢3(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [(𝑢2(𝜇, 𝜈, 𝑡))𝜇𝜇 + (𝑢2(𝜇, 𝜈, 𝑡))𝜈𝜈]].  

Comparing 𝑝𝑛: 𝑢𝑛(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [(𝑢𝑛−1(𝜇, 𝜈, 𝑡))𝜇𝜇 + (𝑢𝑛−1(𝜇, 𝜈, 𝑡))𝜈𝜈]].  𝑢(𝜇, 𝜈, 𝑡) =  𝑢0(𝜇, 𝜈, 𝑡) + 𝑢1(𝜇, 𝜈, 𝑡) + 𝑢2(𝜇, 𝜈, 𝑡) + ⋯+ 𝑢3(𝜇, 𝜈, 𝑡).  

4.2. Methodology for Upper bound solution 

Applying Elzaki transform upon Equation (3): 𝐸[𝐷𝑡𝛼𝑢(𝜇, 𝜈, 𝑡)] = 𝐸[𝑢𝜇𝜇(𝜇, 𝜈, 𝑡) + 𝑢𝜈𝜈(𝜇, 𝜈, 𝑡) + 𝑓(𝜇, 𝜈, 𝑡)]  

𝐸[𝑢(𝜇, 𝜈, 𝑡)]𝜃𝛼 −∑𝜃𝑘−𝛼+2𝑢𝑘(0)𝑛−1
𝑘=0 = 𝐸[𝑢𝜇𝜇(𝜇, 𝜈, 𝑡) + 𝑢𝜈𝜈(𝜇, 𝜈, 𝑡) + 𝑓(𝜇, 𝜈, 𝑡)]  

𝐸[𝑢(𝜇, 𝜈, 𝑡)]𝜃𝛼 = ∑𝜃𝑘−𝛼+2𝑢𝑘(0)𝑛−1
𝑘=0 + 𝐸[𝑢𝜇𝜇(𝜇, 𝜈, 𝑡) + 𝑢𝜈𝜈(𝜇, 𝜈, 𝑡) + 𝑓(𝜇, 𝜈, 𝑡)]  

𝐸[𝑢(𝜇, 𝜈, 𝑡)] = 𝜃𝛼∑𝜃𝑘−𝛼+2𝑢𝑘(0)𝑛−1
𝑘=0 + 𝜃𝛼𝐸[𝑢𝜇𝜇(𝜇, 𝜈, 𝑡) + 𝑢𝜈𝜈(𝜇, 𝜈, 𝑡) + 𝑓(𝜇, 𝜈, 𝑡)]  

𝑢(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼∑𝜃𝑘−𝛼+2𝑢𝑘(0)𝑛−1
𝑘=0 ] + 𝐸−1 [𝜃𝛼𝐸[𝑢𝜇𝜇(𝜇, 𝜈, 𝑡) + 𝑢𝜈𝜈(𝜇, 𝜈, 𝑡) + 𝑓(𝜇, 𝜈, 𝑡)]].  

Applying HPM: 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 September 2023                   doi:10.20944/preprints202309.0985.v1

https://doi.org/10.20944/preprints202309.0985.v1


 8 

 

∑𝑝𝑛𝑢𝑛(𝜇, 𝜈, 𝑡)∞

𝑛=0 = 𝐸−1 [𝜃𝛼 ∑𝜃𝑘−𝛼+2𝑢𝑘(0)𝑛−1
𝑘=0 ] + 𝑝𝐸−1 [𝜃𝛼𝐸 [(∑𝑝𝑛𝑢𝑛(𝜇, 𝜈, 𝑡)∞

𝑛=0 )𝜇𝜇 + (∑𝑝𝑛𝑢𝑛(𝜇, 𝜈, 𝑡)∞

𝑛=0 )𝜈𝜈 + 𝑓(𝜇, 𝜈, 𝑡)]].  

Comparing 𝑝0: 
𝑢0(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼∑𝜃𝑘−𝛼+2𝑢𝑘(0)𝑛−1

𝑘=0 ].  

Comparing 𝑝1: 𝑢1(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [(𝑢0(𝜇, 𝜈, 𝑡))𝜇𝜇 + (𝑢0(𝜇, 𝜈, 𝑡))𝜈𝜈 + 𝑓(𝜇, 𝜈, 𝑡)]]. ) 

Comparing 𝑝2: 𝑢2(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [(𝑢1(𝜇, 𝜈, 𝑡))𝜇𝜇 + (𝑢1(𝜇, 𝜈, 𝑡))𝜈𝜈]].  

Comparing 𝑝3: 𝑢3(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [(𝑢2(𝜇, 𝜈, 𝑡))𝜇𝜇 + (𝑢2(𝜇, 𝜈, 𝑡))𝜈𝜈]]. ⋮ ) 

Comparing 𝑝𝑛: 𝑢𝑛(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [(𝑢𝑛−1(𝜇, 𝜈, 𝑡))𝜇𝜇 + (𝑢𝑛−1(𝜇, 𝜈, 𝑡))𝜈𝜈]].  𝑢(𝜇, 𝜈, 𝑡) = 𝑢0(𝜇, 𝜈, 𝑡) + 𝑢1(𝜇, 𝜈, 𝑡) + 𝑢2(𝜇, 𝜈, 𝑡) + 𝑢3(𝜇, 𝜈, 𝑡) + ⋯+ 𝑢𝑛(𝜇, 𝜈, 𝑡).  

 

5. Existence and Uniqueness 

Theorem 1. Let 𝑋 be a Banach space and let 𝜃𝑚(𝑥, 𝛼1) and 𝜃𝑛(𝑥, 𝛼1)be in X. Suppose 𝛾 ∈ (0, 1), then 

the series solution {𝜃𝑚(𝑥, 𝛼1)}𝑚=0∞
 which is defined converges to the lower bound solution 

whenever𝜃𝑚(𝑥, 𝛼1) ≤ 𝛾 𝜃𝑚−1(𝑥, 𝛼1), ∀𝑚 > 𝑁 , that is for any given 𝜀 >  0 , there exists a positive 

number N, such that ||𝜃𝑚+𝑛(𝑥, 𝛼1)|| ≤ 𝜖, ∀𝑚, 𝑛 > 𝑁 . 
Proof. Provided 𝑀0(𝑥, 𝛼1) =  𝜃0(𝑥, 𝛼1)  𝑀1(𝑥, 𝛼1) =  𝜃0(𝑥, 𝛼1) + 𝜃1(𝑥, 𝛼1)  𝑀2(𝑥, 𝛼1) =  𝜃0(𝑥, 𝛼1) + 𝜃1(𝑥, 𝛼1) + 𝜃2(𝑥, 𝛼1)  𝑀3(𝑥, 𝛼1) =  𝜃0(𝑥, 𝛼1) + 𝜃1(𝑥, 𝛼1) + 𝜃2(𝑥, 𝛼1) + 𝜃3(𝑥, 𝛼1)  …  𝑀𝑚(𝑥, 𝛼1) =  𝜃0(𝑥, 𝛼1) + 𝜃1(𝑥, 𝛼1) + 𝜃2(𝑥, 𝛼1) + 𝜃3(𝑥, 𝛼1) + ⋯+ 𝜃𝑚(𝑥, 𝛼1).  

The aim is to prove that𝑀𝑚(𝑥, 𝛼1) is a Cauchy sequence in the Banach space. 

It is provided that for 𝛾 ∈ (0,1) ||𝑀𝑚+1(𝑥, 𝛼1) −  𝑀𝑚(𝑥, 𝛼1)|| = ||𝜃𝑚+1(𝑥, 𝛼1)||  ≤ 𝛾||𝜃𝑚(𝑥, 𝛼1)||  
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≤ 𝛾2||𝜃𝑚−1(𝑥, 𝛼1)||  ≤ 𝛾3||𝜃𝑚−2(𝑥, 𝛼1)||  ⋮  ≤ 𝛾𝑚+1||𝜃0(𝑥, 𝛼1)||. ) 

Let us find ||𝑀𝑚(𝑥, 𝛼1) − 𝑀𝑛(𝑥, 𝛼1)||  = ||𝑀𝑚(𝑥, 𝛼1) − 𝑀𝑚−1(𝑥, 𝛼1) + 𝑀𝑚−1(𝑥, 𝛼1) − 𝑀𝑚−2(𝑥, 𝛼1) + 𝑀𝑚−2(𝑥, 𝛼1) − 𝑀𝑚−3(𝑥, 𝛼1) + ⋯+𝑀𝑛+1(𝑥, 𝛼1) − 𝑀𝑛(𝑥, 𝛼1)|| ||𝑀𝑚(𝑥, 𝛼1) − 𝑀𝑛(𝑥, 𝛼1)|| ≤ ||𝑀𝑚(𝑥, 𝛼1) − 𝑀𝑚−1(𝑥, 𝛼1)|| + ||𝑀𝑚−1(𝑥, 𝛼1) − 𝑀𝑚−2(𝑥, 𝛼1)|| + ||𝑀𝑚−2(𝑥, 𝛼1) − 𝑀𝑚−3(𝑥, 𝛼1)|| + ⋯+ ||𝑀𝑛+1(𝑥, 𝛼1) − 𝑀𝑛(𝑥, 𝛼1)|| ||𝑀𝑚(𝑥, 𝛼1) − 𝑀𝑛(𝑥, 𝛼1)|| = 𝛾𝑚 ||𝜃0(𝑥, 𝛼1)|| + 𝛾𝑚−1 ||𝜃0(𝑥, 𝛼1)|| + 𝛾𝑚−2 ||𝜃0(𝑥, 𝛼1)|| + 𝛾𝑚−3||𝜃0(𝑥, 𝛼1)||  + ⋯+ 𝛾𝑛+1||𝜃0(𝑥, 𝛼1)|| ||𝑀𝑚(𝑥, 𝛼1) − 𝑀𝑛(𝑥, 𝛼1)|| ≤ (1 − 𝛾𝑚−𝑛)(1 − 𝛾) 𝛾𝑛+1||𝜃0(𝑥, 𝛼1)|| 
Considered 𝜖 = 1−𝛾(1−𝛾𝑚−𝑛)𝛾𝑛+1||𝜃0(𝑥,𝛼1)|| ||𝑀𝑚(𝑥, 𝛼1) − 𝑀𝑛(𝑥, 𝛼1)|| < 𝜖 lim𝑚,𝑛→∞ ||𝑀𝑚(𝑥, 𝛼1) − 𝑀𝑛(𝑥, 𝛼1)|| = 0 ⇒ {𝑀𝑚}𝑚=0∞  

is a Cauchy sequence. 

Theorem 2. Let 𝑋 be a Banach space and let 𝜃𝑚(𝑥, 𝛼1)and 𝜃𝑛(𝑥, 𝛼1)be in 𝑋. Suppose γ ∈ (0, 1), then 

the series solution {𝜃𝑚(𝑥, 𝛼1)}𝑚=0∞
 which is defined∑ 𝜃𝑚(𝑥, 𝛼1)∞𝑚=0  converges to the upper bound 

solution whenever𝜃𝑚(𝑥, 𝛼1) ≤ γ 𝜃𝑚−1(𝑥, 𝛼1), ∀𝑚 > 𝑁 , that is for any given 𝜀 >  0 , there exists a 

positive number 𝑁, such that ||𝜃𝑚+𝑛(𝑥, 𝛼1)|| ≤ 𝜖, ∀𝑚, 𝑛 > 𝑁 . 
Proof. Provided 𝑁0(𝑥, 𝛼1) =  𝜃0(𝑥, 𝛼1) 𝑁1(𝑥, 𝛼1) =  𝜃0(𝑥, 𝛼1) + 𝜃1(𝑥, 𝛼1), 𝑁2(𝑥, 𝛼1) =  𝜃0(𝑥, 𝛼1) + 𝜃1(𝑥, 𝛼1) + 𝜃2(𝑥, 𝛼1), 𝑁3(𝑥, 𝛼1) =  𝜃0(𝑥, 𝛼1) + 𝜃1(𝑥, 𝛼1) + 𝜃2(𝑥, 𝛼1) +  𝜃3(𝑥, 𝛼1), ⋮ 𝑁𝑚(𝑥, 𝛼1) = 𝜃0(𝑥, 𝛼1) + 𝜃1(𝑥, 𝛼1) + 𝜃2(𝑥, 𝛼1) +  𝜃3(𝑥, 𝛼1) + ⋯+ 𝜃𝑚(𝑥, 𝛼1). 
Aim is to prove that𝑁𝑚(𝑥, 𝛼1) is a Cauchy sequence. In the Banach space.It is provided that for 𝛾 ∈(0,1) ||𝑁𝑚+1(𝑥, 𝛼1) − 𝑁𝑚(𝑥, 𝛼1)|| = ||𝜃𝑚+1(𝑥, 𝛼1)|| ≤ 𝛾||𝜃𝑚(𝑥, 𝛼1)|| ≤ 𝛾2||𝜃𝑚−1(𝑥, 𝛼1)|| ≤ 𝛾3||𝜃𝑚−2(𝑥, 𝛼1)|| ⋮ ≤ 𝛾𝑚+1||𝜃0(𝑥, 𝛼1)||. 
Let find ||𝑁𝑚(𝑥, 𝛼1) − 𝑁𝑛(𝑥, 𝛼1)||  = ||𝑁𝑚(𝑥, 𝛼1) − 𝑁𝑚−1(𝑥, 𝛼1) + 𝑁𝑚−1(𝑥, 𝛼1) − 𝑁𝑚−2(𝑥, 𝛼1) + 𝑁𝑚−2(𝑥, 𝛼1) − 𝑁𝑚−3(𝑥, 𝛼1) + ⋯+ 𝑁𝑛+1(𝑥, 𝛼1) − 𝑁𝑛(𝑥, 𝛼1)|| ||𝑁𝑚(𝑥, 𝛼1) − 𝑁𝑛(𝑥, 𝛼1)||  ≤ ||𝑁𝑚(𝑥, 𝛼1) − 𝑁𝑚−1(𝑥, 𝛼1)|| + ||𝑁𝑚−1(𝑥, 𝛼1) − 𝑁𝑚−2(𝑥, 𝛼1)||+ ||𝑁𝑚−2(𝑥, 𝛼1) − 𝑁𝑚−3(𝑥, 𝛼1)|| + ⋯+ ||𝑁𝑛+1(𝑥, 𝛼1) − 𝑁𝑛(𝑥, 𝛼1)|| ||𝑁𝑚(𝑥, 𝛼1) − 𝑁𝑛(𝑥, 𝛼1)|| = 𝛾𝑚 ||𝜃0(𝑥, 𝛼1)|| + 𝛾𝑚−1 ||𝜃0(𝑥, 𝛼1)|| + 𝛾𝑚−2 ||𝜃0(𝑥, 𝛼1)|| + 𝛾𝑚−3||𝜃0(𝑥, 𝛼1)|| + ⋯+ 𝛾𝑛+1||𝜃0(𝑥, 𝛼1)|| ||𝑁𝑚(𝑥, 𝛼1) − 𝑁𝑛(𝑥, 𝛼1)|| ≤ (1 − 𝛾𝑚−𝑛)(1 − 𝛾) 𝛾𝑛+1||𝜃0(𝑥, 𝛼1)||. 
Considered 
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𝜖 = 1 − 𝛾(1 − 𝛾𝑚−𝑛)𝛾𝑛+1||𝜃0(𝑥, 𝛼1)|| ||𝑁𝑚(𝑥, 𝛼1) − 𝑁𝑛(𝑥, 𝛼1)|| < 𝜖 lim𝑚,𝑛→∞ ||𝑁𝑚(𝑥, 𝛼1) − 𝑁𝑛(𝑥, 𝛼1)|| = 0 ⇒ {𝑁𝑚}𝑚=0∞  

is a Cauchy sequence. 

Theorem 3. Let ∑ 𝜃𝑖(𝑥, 𝛼1)𝑗𝑖=0  be finite and 𝜃𝑖(𝑥, 𝛼1) be its approximate solution. Suppose 𝛾 > 0, 

such that ||𝜃𝑖+1(𝑥, 𝛼1)|| ≤ 𝛾||𝜃𝑖(𝑥, 𝛼1)||, 𝛾 ∈ (0,1), ∀𝑖, then the maximum absolute error for the lower 

bound solution is ||𝜃(𝑥, 𝛼1) −∑𝜃𝑖(𝑥, 𝛼1)𝑗
𝑖=0 || ≤ 𝛾𝑗+11 − 𝛾 ||𝜃0(𝑥, 𝛼1)||. 

Proof.Let ∑ 𝜃𝑖(𝑥, 𝛼1)𝑗𝑖=0 < ∞ ||𝜃(𝑥, 𝛼1) −∑𝜃𝑖(𝑥, 𝛼1)𝑗
𝑖=0 || = || ∑ 𝜃𝑖(𝑥, 𝛼1)∞

𝑖=𝑗+1 || 
≤ ∑ ||𝜃𝑖(𝑥, 𝛼1)||∞

𝑖=𝑗+1  

≤ ∑ 𝛾𝑖||𝜃0(𝑥, 𝛼1)||∞
𝑖=𝑗+1  ≤ ||𝜃0(𝑥, 𝛼1)||[𝛾𝑗+1 + 𝛾𝑗+2 + 𝛾𝑗+3 +⋯] ≤ ||𝜃0(𝑥, 𝛼1)||𝛾𝑗+11 − 𝛾 . 

Theorem 4. Let ∑ 𝜃𝑖(𝑥, 𝛼1)𝑗𝑖=0  be finite and 𝜃𝑖(𝑥, 𝛼1) be its approximate solution. Suppose 𝛾 > 0, 

such that ||𝜃𝑖+1(𝑥, 𝛼1)|| ≤ 𝛾||𝜃𝑖(𝑥, 𝛼1)||, 𝛾 ∈ (0,1), ∀𝑖, then the maximum absolute error for the upper 

bound solution is ||𝜃(𝑥, 𝛼1) −∑𝜃𝑖(𝑥, 𝛼1)𝑗
𝑖=0 || ≤ 𝛾𝑗+11 − 𝛾 ||𝜃0(𝑥, 𝛼1)||. 

Proof. Let∑ 𝜃𝑖(𝑥, 𝛼1)𝑗𝑖=0 < ∞, then ||𝜃(𝑥, 𝛼1) −∑𝜃𝑖(𝑥, 𝛼1)𝑗
𝑖=0 || = || ∑ 𝜃𝑖(𝑥, 𝛼1)∞

𝑖=𝑗+1 || 
≤ ∑ ||𝜃𝑖(𝑥, 𝛼1)||∞

𝑖=𝑗+1  

≤ ∑ 𝛾𝑖||𝜃0(𝑥, 𝛼1)||∞
𝑖=𝑗+1  ≤ ||𝜃0(𝑥, 𝛼1)||[𝛾𝑗+1 + 𝛾𝑗+2 + 𝛾𝑗+3 +⋯] ≤ ||𝜃0(𝑥, 𝛼1)||𝛾𝑗+11 − 𝛾 . 

6. Numerical examples 

In the present section, three numerical examples are considered to validate. For each example, 

series solutions are provided along with the exact solution. It is noted that the series solution 

converges rapidly towards the exact solution. 

Example 1 [32] 𝐷𝑡𝛼𝑢̃(𝜇, 𝜈, 𝑡) = 𝑢̃𝜇𝜇(𝜇, 𝜈, 𝑡) +  𝑢̃𝜈𝜈(𝜇, 𝜈, 𝑡) + (𝑥 + 𝑦 + 𝑡) 𝑢̃(𝑥, 𝑦, 0) = 𝑘̃𝑒−(𝑥+𝑦), 
where 𝑘̃ = [𝑘, 𝑘] = [𝑟 − 1, 1 − 𝑟] 
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6.1.1. Solution regarding lower bound: 

Given 𝐷𝑡𝛼𝑢(𝜇, 𝜈, 𝑡) = 𝑢𝜇𝜇(𝜇, 𝜈, 𝑡) +  𝑢𝑦𝑦(𝜇, 𝜈, 𝑡) + (𝜇 + 𝜈 + 𝑡) 𝑢(𝜇, 𝜈, 0) = 𝑘𝑒−(𝜇+𝜈), 
where 𝑘 = 𝑟 − 1. 

From developed methodology for lower bound solution: 

Comparing 𝑝0: 𝑢0(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼∑𝜃𝑘−𝛼+2𝑢𝑘(0)𝑛−1
𝑘=0 ]. 

Considered 𝑛 = 1: 𝑢0(𝜇, 𝜈, 𝑡) = 𝐸−1[𝜃2𝑢(0)] 𝑢0(𝜇, 𝜈, 𝑡) = 𝑢(0)𝐸−1[𝜃2] 𝑢0(𝜇, 𝜈, 𝑡) = 𝑢(0) = 𝑘𝑒−(𝜇+𝜈). 
Comparing 𝑝1: 𝑢1(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝑣𝛼𝐸 [(𝑢0(𝜇, 𝜈, 𝑡))𝜇𝜇 + (𝑢0(𝜇, 𝜈, 𝑡))𝜈𝜈 + 𝑓(𝜇, 𝜈, 𝑡)]] 𝑢1(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸[ 2𝑘𝑒−(𝜇+𝜈) + (𝑥 + 𝑦 + 𝑡)]] 𝑢1(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸[ 2𝑘𝑒−(𝜇+𝜈)]] + 𝐸−1[𝜃𝛼𝐸[ (𝜇 + 𝜈)]] + 𝐸−1[𝜃𝛼𝐸[ 𝑡]] 𝑢1(𝜇, 𝜈, 𝑡) = 2𝑘𝑒−(𝜇+𝜈)𝐸−1[𝜃𝛼𝐸[1]] + (𝑥 + 𝑦)𝐸−1[𝜃𝛼𝐸[1]] + 𝐸−1[𝜃𝛼𝐸[ 𝑡]] 𝑢1(𝜇, 𝜈, 𝑡) = 2𝑘𝑒−(𝜇+𝜈)𝐸−1[𝜈𝛼+2] +  (𝜇 + 𝜈)𝐸−1[𝜈𝛼+2] + 𝐸−1[𝜈𝛼+3] 𝑢1(𝜇, 𝜈, 𝑡) = 2𝑘𝑒−(𝜇+𝜈) 𝑡𝛼𝛼!  +  (𝜇 + 𝜈) 𝑡𝛼𝛼! + 𝑡𝛼+1(𝛼 + 1)!. 
Comparing 𝑝2: 𝑢2(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [(𝑢1(𝜇, 𝜈, 𝑡))𝜇𝜇 + (𝑢1(𝜇, 𝜈, 𝑡))𝜈𝜈]] 𝑢2(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [ 4𝑘𝑒−(𝜇+𝜈) 𝑡𝛼𝛼!]] 𝑢2(𝜇, 𝜈, 𝑡) = 4𝑘𝑒−(𝜇+𝜈)𝐸−1 [𝜃𝛼𝐸 [𝑡𝛼𝛼!]] 𝑢2(𝜇, 𝜈, 𝑡) = 4𝑘𝑒−(𝜇+𝜈)𝐸−1[𝜃2𝛼+2] 𝑢2(𝜇, 𝜈, 𝑡) = 4𝑘𝑒−(𝜇+𝜈) 𝑡2𝛼(2𝛼)!. 
Comparing 𝑝3: 𝑢3(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [(𝑢2(𝜇, 𝜈, 𝑡))𝜇𝜇 + (𝑢2(𝜇, 𝜈, 𝑡))𝜈𝜈]] 𝑢3(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [ 8𝑘𝑒−(𝜇+𝜈) 𝑡2𝛼(2𝛼)!]] 𝑢3(𝜇, 𝜈, 𝑡) = 8𝑘𝑒−(𝜇+𝜈)𝐸−1 [𝜃𝛼𝐸 [ 𝑡2𝛼(2𝛼)!]] 𝑢3(𝜇, 𝜈, 𝑡) = 8𝑘𝑒−(𝜇+𝜈)𝐸−1[𝜃3𝛼+2] 𝑢3(𝜇, 𝜈, 𝑡) = 8𝑘𝑒−(𝜇+𝜈) 𝑡3𝛼(3𝛼)! 𝑢(𝜇, 𝜈, 𝑡) = 𝑢0(𝜇, 𝜈, 𝑡) + 𝑢1(𝜇, 𝜈, 𝑡) + 𝑢2(𝜇, 𝜈, 𝑡) + 𝑢3(𝜇, 𝜈, 𝑡) + ⋯ 𝑢(𝜇, 𝜈, 𝑡) =  𝑘𝑒−(𝜇+𝜈) + 2𝑘𝑒−(𝜇+𝜈) 𝑡𝛼𝛼!  + (𝜇 + 𝜈) 𝑡𝛼𝛼! + 𝑡𝛼+1(𝛼 + 1)! + 4𝑘𝑒−(𝜇+𝜈) 𝑡2𝛼(2𝛼)! + 8𝑘𝑒−(𝜇+𝜈) 𝑡3𝛼(3𝛼)! + ⋯ 

Remark: If 𝑓(𝜇, 𝜈, 𝑡) = 0 𝑢(𝜇, 𝜈, 𝑡) =  𝑘𝑒−(𝜇+𝜈) + 2𝑘𝑒−(𝜇+𝜈) 𝑡𝛼𝛼!  + 4𝑘𝑒−(𝜇+𝜈) 𝑡2𝛼(2𝛼)! + 8𝑘𝑒−(𝜇+𝜈) 𝑡3𝛼(3𝛼)! + ⋯ 

𝑢(𝜇, 𝜈, 𝑡) = 𝑘𝑒−(𝜇+𝜈)∑(2𝑡𝛼)𝑛(𝑛𝛼)!∞
𝑛=0 . 
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6.1.2. Solution regarding upper bound: 

Given 𝐷𝑡𝛼𝑢(𝜇, 𝜈, 𝑡) = 𝑢𝜇𝜇(𝜇, 𝜈, 𝑡) +  𝑢𝜈𝜈(𝜇, 𝜈, 𝑡) + (𝜇 + 𝜈 + 𝑡) 𝑢(𝜇, 𝜈, 0) = 𝑘𝑒−(𝑥+𝑦), 
where 𝑘 = 1 − 𝑟. 
From developed methodology for upper bound solution: 

Comparing 𝑝0: 𝑢0(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼∑𝜃𝑘−𝛼+2𝑢𝑘(0)𝑛−1
𝑘=0 ]. 

Considered 𝑛 = 1: 𝑢0(𝜇, 𝜈, 𝑡) = 𝐸−1[𝜃2𝑢(0)] 𝑢0(𝜇, 𝜈, 𝑡) = 𝑢(0)𝐸−1[𝜃2] 𝑢0(𝜇, 𝜈, 𝑡) = 𝑢(0) = 𝑘𝑒−(𝜇+𝜈). 
Comparing 𝑝1: 𝑢1(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸[ 2𝑘𝑒−(𝜇+𝜈) + (𝜇 + 𝜈 + 𝑡)]] 𝑢1(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸[ 2𝑘𝑒−(𝜇+𝜈)]] + 𝐸−1[𝜃𝛼𝐸[ (𝜇 + 𝜈)]] + 𝐸−1[𝜃𝛼𝐸[ 𝑡]] 𝑢1(𝜇, 𝜈, 𝑡) = 2𝑘𝑒−(𝜇+𝜈)𝐸−1[𝜃𝛼𝐸[1]] + (𝜇 + 𝜈)𝐸−1[𝜃𝛼𝐸[1]] + 𝐸−1[𝜃𝛼𝐸[ 𝑡]] 𝑢1(𝜇, 𝜈, 𝑡) = 2𝑘𝑒−(𝜇+𝜈)𝐸−1[𝜃𝛼+2] + (𝜇 + 𝜈)𝐸−1[𝜃𝛼+2] + 𝐸−1[𝜃𝛼+3] 𝑢1(𝜇, 𝜈, 𝑡) = 2𝑘𝑒−(𝑥+𝑦) 𝑡𝛼𝛼!  +  (𝜇 + 𝜈) 𝑡𝛼𝛼! + 𝑡𝛼+1(𝛼 + 1)!. 
Comparing 𝑝2: 𝑢2(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [(𝑢1(𝜇, 𝜈, 𝑡))𝜇𝜇 + (𝑢1(𝜇, 𝜈, 𝑡))𝜈𝜈]] 𝑢2(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [ 4𝑘𝑒−(𝜇+𝜈) 𝑡𝛼𝛼!]] 𝑢2(𝜇, 𝜈, 𝑡) = 4𝑘𝑒−(𝜇+𝜈)𝐸−1 [𝜃𝛼𝐸 [𝑡𝛼𝛼!]] 𝑢2(𝜇, 𝜈, 𝑡) = 4𝑘𝑒−(𝜇+𝜈)𝐸−1[𝜃2𝛼+2] 𝑢2(𝜇, 𝜈, 𝑡) = 4𝑘𝑒−(𝜇+𝜈) 𝑡2𝛼(2𝛼)!. 
Comparing 𝑝3: 𝑢3(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [(𝑢2(𝜇, 𝜈, 𝑡))𝜇𝜇 + (𝑢2(𝜇, 𝜈, 𝑡))𝑦𝑦]] 𝑢3(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [ 8𝑘𝑒−(𝜇+𝜈) 𝑡2𝛼(2𝛼)!]] 𝑢3(𝜇, 𝜈, 𝑡) = 8𝑘𝑒−(𝜇+𝜈)𝐸−1 [𝜃𝛼𝐸 [ 𝑡2𝛼(2𝛼)!]] 𝑢3(𝜇, 𝜈, 𝑡) = 8𝑘𝑒−(𝜇+𝜈)𝐸−1[𝜃3𝛼+2] 𝑢3(𝜇, 𝜈, 𝑡) = 8𝑘𝑒−(𝜇+𝜈) 𝑡3𝛼(3𝛼)!. 𝑢(𝜇, 𝜈, 𝑡) = 𝑢0(𝜇, 𝜈, 𝑡) + 𝑢1(𝜇, 𝜈, 𝑡) + 𝑢2(𝜇, 𝜈, 𝑡) + 𝑢3(𝜇, 𝜈, 𝑡) + ⋯ 𝑢(𝜇, 𝜈, 𝑡) =  𝑘𝑒−(𝜇+𝜈) + 2𝑘𝑒−(𝜇+𝜈) 𝑡𝛼𝛼!  + (𝜇 + 𝜈) 𝑡𝛼𝛼! + 𝑡𝛼+1(𝛼 + 1)! + 4𝑘𝑒−(𝜇+𝜈) 𝑡2𝛼(2𝛼)! + 8𝑘𝑒−(𝜇+𝜈) 𝑡3𝛼(3𝛼)! + ⋯ 

Remark: If 𝑓(𝜇, 𝜈, 𝑡) = 0 𝑢(𝜇, 𝜈, 𝑡) =  𝑘𝑒−(𝜇+𝜈) + 2𝑘𝑒−(𝜇+𝜈) 𝑡𝛼𝛼!  +  4𝑘𝑒−(𝜇+𝜈) 𝑡2𝛼(2𝛼)! + 8𝑘𝑒−(𝜇+𝜈) 𝑡3𝛼(3𝛼)! + ⋯ 

𝑢(𝜇, 𝜈, 𝑡) = 𝑘𝑒−(𝜇+𝜈)∑(2𝑡𝛼)𝑛(𝑛𝛼)!∞
𝑛=0 . 

Example 2 [32]: 𝐷𝑡𝛼𝑢̃(𝜇, 𝜈, 𝑡) = 𝑢̃𝜇𝜇(𝜇, 𝜈, 𝑡) +  𝑢̃𝜈𝜈(𝜇, 𝜈, 𝑡) + (𝑥 + 𝑦 + 𝑡2) 
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𝑢̃(𝜇, 𝜈, 0) = 𝑘̃ 𝑠𝑖𝑛[𝜋(𝜇 + 𝜈)], 𝑘̃ = [𝑘(𝑟), 𝑘(𝑟)] = [𝑟 − 1, 1 − 𝑟]. 
6.2.1. Regarding lower bound solution: 𝐷𝑡𝛼𝑢(𝜇, 𝜈, 𝑡) = 𝑢𝜇𝜇(𝜇, 𝜈, 𝑡) + 𝑢𝜈𝜈(𝜇, 𝜈, 𝑡) + (𝜇 + 𝜈 + 𝑡2) 𝑢(𝜇, 𝜈, 0) = 𝑘 𝑠𝑖𝑛[𝜋(𝜇 + 𝜈)], 𝑘 = 𝑟 − 1 

From the methodology regarding Lower bound solution: 

Comparing 𝑝0: 𝑢0(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼∑𝜃𝑘−𝛼+2𝑢𝑘(0)𝑛−1
𝑘=0 ] 

Considered 𝑛 = 1: 𝑢0(𝜇, 𝜈, 𝑡) = 𝐸−1[𝜃2𝑢(0)] 𝑢0(𝜇, 𝜈, 𝑡) = 𝑢(0) = 𝑘 𝑠𝑖𝑛[𝜋(𝜇 + 𝜈)] 
Comparing 𝑝1: 𝑢1(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸[−2𝑘𝜋2sin (𝜋(𝜇 + 𝜈))  + ((𝜇 + 𝜈 + 𝑡2))]] 𝑢1(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸[−2𝑘𝜋2sin (𝜋(𝜇 + 𝜈)) ]] + 𝐸−1[𝜃𝛼𝐸[(𝜇 + 𝜈) ]] + 𝐸−1[𝜃𝛼𝐸[𝑡2]] 𝑢1(𝜇, 𝜈, 𝑡) = (−2𝑘𝜋2sin (𝜋(𝜇 + 𝜈)))𝐸−1[𝜈𝛼𝐸[1 ]] + (𝜇 + 𝜈)𝐸−1[𝜈𝛼𝐸[1 ]] + 𝐸−1[𝜈𝛼𝐸[𝑡2]] 𝑢1(𝜇, 𝜈, 𝑡) = (−2𝑘𝜋2sin (𝜋(𝜇 + 𝜈)))𝐸−1[𝜈𝛼+2] + (𝜇 + 𝜈)𝐸−1[𝜈𝛼+2] + 2𝐸−1[𝜈𝛼+4] 𝑢1(𝜇, 𝜈, 𝑡) = (−2𝑘𝜋2 sin(𝜋(𝜇 + 𝜈))) 𝑡𝛼𝛼! + (𝜇 + 𝜈) 𝑡𝛼𝛼! + 2 𝑡𝛼+2(𝛼 + 2)!. 
Comparing 𝑝2: 𝑢2(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝑣𝛼𝐸 [4𝑘𝜋4 sin(𝜋(𝜇 + 𝜈)) 𝑡𝛼𝛼!]] 𝑢2(𝜇, 𝜈, 𝑡) = 4𝑘𝜋4 sin(𝜋(𝜇 + 𝜈)) 𝐸−1[𝜈2𝛼+2] 𝑢2(𝜇, 𝜈, 𝑡) = 4𝑘𝜋4 sin(𝜋(𝜇 + 𝜈)) 𝑡2𝛼(2𝛼)!. 
Comparing 𝑝3: 𝑢3(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [(𝑢2(𝜇, 𝜈, 𝑡))𝜇𝜇 + (𝑢2(𝜇, 𝜈, 𝑡))𝜈𝜈]] 𝑢3(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [−8𝑘𝜋6 sin(𝜋(𝜇 + 𝜈)) 𝑡2𝛼(2𝛼)!]] 𝑢3(𝜇, 𝜈, 𝑡) = −8𝑘𝜋6 sin(𝜋(𝜇 + 𝜈)) 𝐸−1[𝜈3𝛼+2] 𝑢3(𝜇, 𝜈, 𝑡) = −8𝑘𝜋6 sin(𝜋(𝜇 + 𝜈)) 𝑡3𝛼(3𝛼)! 𝑢(𝜇, 𝜈, 𝑡) = 𝑢0(𝜇, 𝜈, 𝑡) + 𝑢1(𝜇, 𝜈, 𝑡) + 𝑢2(𝜇, 𝜈, 𝑡) + 𝑢3(𝜇, 𝜈, 𝑡) + ⋯ 𝑢(𝜇, 𝜈, 𝑡) = 𝑘 𝑠𝑖𝑛[𝜋(𝜇 + 𝜈)] + (−2𝑘𝜋2 sin(𝜋(𝜇 + 𝜈))) 𝑡𝛼𝛼! + (𝜇 + 𝜈) 𝑡𝛼𝛼! + 2 𝑡𝛼+2(𝛼 + 2)!+ 4𝑘𝜋4 sin(𝜋(𝜇 + 𝜈)) 𝑡2𝛼(2𝛼)! − 8𝑘𝜋6 sin(𝜋(𝜇 + 𝜈)) 𝑡3𝛼(3𝛼)! + ⋯ 

Remark: If 𝑓(𝑥, 𝑦, 𝑡) = 0 𝑢(𝜇, 𝜈, 𝑡) = 𝑘 𝑠𝑖𝑛[𝜋(𝜇 + 𝜈)] + (−2𝑘𝜋2 sin(𝜋(𝜇 + 𝜈))) 𝑡𝛼𝛼! + 4𝑘𝜋4 sin(𝜋(𝜇 + 𝜈)) 𝑡2𝛼(2𝛼)!− 8𝑘𝜋6 sin(𝜋(𝜇 + 𝜈)) 𝑡3𝛼(3𝛼)! + ⋯ 

𝑢(𝜇, 𝜈, 𝑡) = 𝑘 𝑠𝑖𝑛[𝜋(𝜇 + 𝜈)]∑ (−1)𝑛(2𝜋2𝑡𝛼)𝑛(𝑛𝛼)!∞
𝑛=0 . 

6.2.2. Regarding upper bound solution: 𝐷𝑡𝛼𝑢(𝜇, 𝜈, 𝑡) = 𝑢𝜇𝜇(𝜇, 𝜈, 𝑡) +  𝑢𝜈𝜈(𝜇, 𝜈, 𝑡) + (𝜇 + 𝜈 + 𝑡2) 𝑢(𝜇, 𝜈, 0) = 𝑘 𝑠𝑖𝑛[𝜋(𝜇 + 𝜈)], 𝑘 = 1 − 𝑟. 
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From the methodology regarding Upper bound solution: 

Comparing 𝑝0: 𝑢0(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼∑𝜃𝑘−𝛼+2𝑢𝑘(0)𝑛−1
𝑘=0 ]. 

Considered 𝑛 = 1: 𝑢0(𝜇, 𝜈, 𝑡) = 𝐸−1[𝜃2𝑢(0)] 𝑢0(𝜇, 𝜈, 𝑡) = 𝑢(0)𝐸−1[𝜃2] 𝑢0(𝜇, 𝜈, 𝑡) = 𝑢(0) = 𝑘 𝑠𝑖𝑛[𝜋(𝜇 + 𝜈)]. 
Comparing 𝑝1: 𝑢1(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸[−2𝑘𝜋2sin (𝜋(𝜇 + 𝜈))  + ((𝜇 + 𝜈 + 𝑡2))]] 𝑢1(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸[−2𝑘𝜋2sin (𝜋(𝜇 + 𝜈)) ]] + 𝐸−1[𝜃𝛼𝐸[(𝜇 + 𝜈) ]] + 𝐸−1[𝜃𝛼𝐸[𝑡2]] 𝑢1(𝜇, 𝜈, 𝑡) = (−2𝑘𝜋2sin (𝜋(𝜇 + 𝜈)))𝐸−1[𝜈𝛼𝐸[1 ]] + (𝜇 + 𝜈)𝐸−1[𝜈𝛼𝐸[1 ]] + 𝐸−1[𝜈𝛼𝐸[𝑡2]] 𝑢1(𝜇, 𝜈, 𝑡) = (−2𝑘𝜋2sin (𝜋(𝜇 + 𝜈)))𝐸−1[𝜈𝛼+2] + (𝜇 + 𝜈)𝐸−1[𝜈𝛼+2] + 2𝐸−1[𝜈𝛼+4] 𝑢1(𝜇, 𝜈, 𝑡) = (−2𝑘𝜋2 sin(𝜋(𝜇 + 𝜈))) 𝑡𝛼𝛼! + (𝜇 + 𝜈) 𝑡𝛼𝛼! + 2 𝑡𝛼+2(𝛼 + 2)!. 
Comparing 𝑝2: 𝑢2(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [4𝑘𝜋4 sin(𝜋(𝜇 + 𝜈)) 𝑡𝛼𝛼!]] 𝑢2(𝜇, 𝜈, 𝑡) = 4𝑘𝜋4 sin(𝜋(𝜇 + 𝜈)) 𝐸−1[𝜃2𝛼+2] 𝑢2(𝜇, 𝜈, 𝑡) = 4𝑘𝜋4 sin(𝜋(𝜇 + 𝜈)) 𝑡2𝛼(2𝛼)!. 
Comparing 𝑝3: 𝑢3(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [(𝑢2(𝜇, 𝜈, 𝑡))𝜇𝜇 + (𝑢2(𝜇, 𝜈, 𝑡))𝜈𝜈]] 𝑢3(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝑣𝛼𝐸 [−8𝑘𝜋6 sin(𝜋(𝜇 + 𝜈)) 𝑡2𝛼(2𝛼)!]] 𝑢3(𝜇, 𝜈, 𝑡) = −8𝑘𝜋6 sin(𝜋(𝜇 + 𝜈)) 𝐸−1[𝜈3𝛼+2] 𝑢3(𝜇, 𝜈, 𝑡) = −8𝑘𝜋6 sin(𝜋(𝜇 + 𝜈)) 𝑡3𝛼(3𝛼)! 𝑢(𝜇, 𝜈, 𝑡) = 𝑢0(𝜇, 𝜈, 𝑡) + 𝑢1(𝜇, 𝜈, 𝑡) + 𝑢2(𝜇, 𝜈, 𝑡) + 𝑢3(𝜇, 𝜈, 𝑡) + ⋯ 𝑢(𝜇, 𝜈, 𝑡) = 𝑘 𝑠𝑖𝑛[𝜋(𝜇 + 𝜈)] + (−2𝑘𝜋2 sin(𝜋(𝜇 + 𝜈))) 𝑡𝛼𝛼! + (𝜇 + 𝜈) 𝑡𝛼𝛼! + 2 𝑡𝛼+2(𝛼 + 2)!+ 4𝑘𝜋4 sin(𝜋(𝜇 + 𝜈)) 𝑡2𝛼(2𝛼)! − 8𝑘𝜋6 sin(𝜋(𝜇 + 𝜈)) 𝑡3𝛼(3𝛼)! + ⋯ 

Remark: If 𝑓(𝑥, 𝑦, 𝑡) = 0 𝑢(𝜇, 𝜈, 𝑡) = 𝑘 𝑠𝑖𝑛[𝜋(𝜇 + 𝜈)] + (−2𝑘𝜋2 sin(𝜋(𝜇 + 𝜈))) 𝑡𝛼𝛼! + 4𝑘𝜋4 sin(𝜋(𝜇 + 𝜈)) 𝑡2𝛼(2𝛼)!− 8𝑘𝜋6 sin(𝜋(𝜇 + 𝜈)) 𝑡3𝛼(3𝛼)! + ⋯ 

𝑢(𝜇, 𝜈, 𝑡) = 𝑘 𝑠𝑖𝑛[𝜋(𝜇 + 𝜈)]∑ (−1)𝑛(2𝜋2𝑡𝛼)𝑛(𝑛𝛼)!∞
𝑛=0 . 

Example 3 [32] : 𝐷𝑡𝛼𝑢̃(𝜇, 𝜈, 𝑡) = 12 (𝑥 + 𝑦)2[𝑢̃𝜇𝜇 + 𝑢̃𝜈𝜈] + (𝜇 + 𝜈 + 𝑡4) 𝑢̃(𝜇, 𝜈, 0) = 𝑘̃(𝜇 + 𝜈)2, 𝑘̃ = [𝑘(𝑟), 𝑘(𝑟)] = [𝑟 − 1, 1 − 𝑟]. 
6.3.1. Regarding Lower bound solution: 𝐷𝑡𝛼𝑢(𝜇, 𝜈, 𝑡) = 12 (𝜇 + 𝜈)2[𝑢𝜇𝜇 + 𝑢𝜈𝜈] + (𝜇 + 𝜈 + 𝑡4) 
I.C.: 𝑢(𝜇, 𝜈, 0) = 𝑘(𝜇 + 𝜈)2, 𝑘 = 𝑟 − 1 

Applying Elzaki transform: 
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𝐸[𝐷𝑡𝛼𝑢(𝜇, 𝜈, 𝑡)] = 𝐸 [12 (𝜇 + 𝜈)2[𝑢𝜇𝜇 + 𝑢𝜈𝜈] + (𝜇 + 𝜈 + 𝑡4)] 𝐸[𝑢(𝜇, 𝜈, 𝑡)]𝜃𝛼 −∑𝜃𝑘−𝛼+2𝑢𝑘(0)𝑛−1
𝑘=0 = 𝐸 [12 (𝜇 + 𝜈)2[𝑢𝜇𝜇 + 𝑢𝜈𝜈] + (𝜇 + 𝜈 + 𝑡4)] 𝐸[𝑢(𝜇, 𝜈, 𝑡)]𝜃𝛼 =∑𝜃𝑘−𝛼+2𝑢𝑘(0)𝑛−1
𝑘=0 + 𝐸 [12 (𝜇 + 𝜈)2[𝑢𝜇𝜇 + 𝑢𝜈𝜈] + (𝜇 + 𝜈 + 𝑡4)] 𝐸[𝑢(𝜇, 𝜈, 𝑡)] = 𝜃𝛼∑𝜈𝑘−𝛼+2𝑢𝑘(0)𝑛−1
𝑘=0 + 𝜃𝛼𝐸 [12 (𝜇 + 𝜈)2[𝑢𝜇𝜇 + 𝑢𝜈𝜈] + (𝜇 + 𝜈 + 𝑡4)] 𝑢(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼∑𝜃𝑘−𝛼+2𝑢𝑘(0)𝑛−1

𝑘=0 ] + 𝐸−1 [𝜃𝛼𝐸 [12 (𝜇 + 𝜈)2[𝑢𝜇𝜇 + 𝑢𝜈𝜈] + (𝜇 + 𝜈 + 𝑡4)]]. 
Applying HPM: ∑𝑝𝑛𝑢𝑛(𝜇, 𝜈, 𝑡)∞

𝑛=0  = 𝐸−1 [𝜃𝛼∑𝜃𝑘−𝛼+2𝑢𝑘(0)𝑛−1
𝑘=0 ]

+ 𝑝𝐸−1 [𝜃𝛼𝐸 [12 (𝜇 + 𝜈)2 [(∑𝑝𝑛𝑢𝑛(𝜇, 𝜈, 𝑡)∞
𝑛=0 )𝜇𝜇 + (∑𝑝𝑛𝑢𝑛(𝜇, 𝜈, 𝑡)∞

𝑛=0 )𝜈𝜈]
+ (𝜇 + 𝜈 + 𝑡4)]]. 

Comparing 𝒑𝟎: 𝑢0(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼∑𝜃𝑘−𝛼+2𝑢𝑘(0)𝑛−1
𝑘=0 ] 𝑢0(𝜇, 𝜈, 𝑡) = 𝑢(0) = 𝑘(𝜇 + 𝜈)2. 

Comparing 𝒑𝟏: 𝑢1(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [12 (𝜇 + 𝜈)2 [(𝑢0(𝜇, 𝜈, 𝑡))𝜇𝜇 + (𝑢0(𝜇, 𝜈, 𝑡))𝜈𝜈] + (𝜇 + 𝜈 + 𝑡4)]] 𝑢1(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [12 (𝜇 + 𝜈)2 [(𝑢0(𝜇, 𝜈, 𝑡))𝜇𝜇 + (𝑢0(𝜇, 𝜈, 𝑡))𝜈𝜈]]] +  𝐸−1[𝜃𝛼𝐸[(𝜇 + 𝜈)]]+ 𝐸−1[𝜃𝛼𝐸[𝑡4]] 𝑢1(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸[2𝑘(𝜇 + 𝜈)2]] +  𝐸−1[𝜃𝛼𝐸[(𝜇 + 𝜈)]] + 𝐸−1[𝜃𝛼𝐸[𝑡4]] 𝑢1(𝜇, 𝜈, 𝑡) = 2𝑘(𝜇 + 𝜈)2𝐸−1[𝜃𝛼𝐸[1]] + (𝜇 + 𝜈)𝐸−1[𝜃𝛼𝐸[1]] + 𝐸−1[𝜃𝛼𝐸[𝑡4]] 𝑢1(𝜇, 𝜈, 𝑡) = 2𝑘(𝜇 + 𝜈)2𝐸−1[𝜃𝛼+2] + (𝜇 + 𝜈)𝐸−1[𝜃𝛼+2] + 𝐸−1[𝜈𝛼𝐸[𝑡4]] 𝑢1(𝜇, 𝜈, 𝑡) = 2𝑘(𝜇 + 𝜈)2 𝑡𝛼𝛼! + (𝜇 + 𝜈) 𝑡𝛼𝛼! + 24 𝐸−1[𝜈𝛼+4] 𝑢1(𝜇, 𝜈, 𝑡) = 2𝑘(𝜇 + 𝜈)2 𝑡𝛼𝛼! + (𝜇 + 𝜈) 𝑡𝛼𝛼! + 24 𝑡𝛼+2(𝛼 + 2)! 
Comparing 𝒑𝟐: 𝑢2(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [12 (𝜇 + 𝜈)2 [(𝑢1(𝜇, 𝜈, 𝑡))𝜇𝜇 + (𝑢1(𝜇, 𝜈, 𝑡))𝜈𝜈]]] 𝑢2(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [12 (𝜇 + 𝜈)2 [8𝑘 𝑡𝛼𝛼!]]] 

𝑢2(𝜇, 𝜈, 𝑡) = 4𝑘(𝜇 + 𝜈)2𝐸−1 [𝜃𝛼𝐸 [𝑡𝛼𝛼!]] 𝑢2(𝜇, 𝜈, 𝑡) = 4𝑘(𝜇 + 𝜈)2𝐸−1[𝜃2𝛼+2] 𝑢2(𝜇, 𝜈, 𝑡) = 4𝑘(𝜇 + 𝜈)2 𝑡2𝛼(2𝛼)!. 
Comparing 𝒑𝟑: 
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𝑢3(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [12 (𝜇 + 𝜈)2 [(𝑢2(𝜇, 𝜈, 𝑡))𝜇𝜇 + (𝑢2(𝜇, 𝜈, 𝑡))𝜈𝜈]]] 𝑢3(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [12 (𝜇 + 𝜈)2 [16 𝑘 𝑡2𝛼(2𝛼)!]]] 
𝑢3(𝜇, 𝜈, 𝑡) = 8𝑘(𝜇 + 𝜈)2𝐸−1 [𝜃𝛼𝐸 [ 𝑡2𝛼(2𝛼)!]] 𝑢3(𝜇, 𝜈, 𝑡) = 8𝑘(𝜇 + 𝜈)2𝐸−1[𝜃3𝛼+2] 𝑢3(𝜇, 𝜈, 𝑡) = 8𝑘(𝜇 + 𝜈)2 𝑡3𝛼(3𝛼)! 𝑢(𝜇, 𝜈, 𝑡) = 𝑢0(𝜇, 𝜈, 𝑡) + 𝑢1(𝜇, 𝜈, 𝑡) + 𝑢2(𝜇, 𝜈, 𝑡) + 𝑢3(𝜇, 𝜈, 𝑡) + ⋯ 𝑢(𝜇, 𝜈, 𝑡) = 𝑘(𝜇 + 𝜈)2 + 2𝑘(𝜇 + 𝜈)2 𝑡𝛼𝛼! + (𝜇 + 𝜈) 𝑡𝛼𝛼! + 24 𝑡𝛼+2(𝛼 + 2)! + 4𝑘(𝜇 + 𝜈)2 𝑡2𝛼(2𝛼)!+ 8𝑘 (𝜇 + 𝜈)2 𝑡3𝛼(3𝛼)! + ⋯ 

Remark: 

If 𝑓(𝜇, 𝜈, 𝑡) = 0: 𝑢(𝜇, 𝜈, 𝑡) = 𝑘(𝜇 + 𝜈)2 + 2𝑘(𝜇 + 𝜈)2 𝑡𝛼𝛼! + 4𝑘(𝜇 + 𝜈)2 𝑡2𝛼(2𝛼)! + 8𝑘 (𝜇 + 𝜈)2 𝑡3𝛼(3𝛼)! + ⋯ 

𝑢(𝜇, 𝜈, 𝑡) = 𝑘(𝜇 + 𝜈)2∑(2𝑡𝛼)𝑛(𝑛𝛼)!∞
𝑛=0 . 

6.3.2. Regarding upper bound solution: 𝐷𝑡𝛼𝑢(𝜇, 𝜈, 𝑡) = 12 (𝜇 + 𝜈)2[𝑢𝜇𝜇 + 𝑢𝜈𝜈] + (𝜇 + 𝜈 + 𝑡4), 𝑢(𝜇, 𝜈, 0) = 𝑘(𝜇 + 𝜈)2, 𝑢 = 1 − 𝑟 . 
Applying Elzaki transform: 𝐸[𝐷𝑡𝛼𝑢(𝜇, 𝜈, 𝑡)] = 𝐸 [12 (𝜇 + 𝜈)2[𝑢𝜇𝜇 + 𝑢𝜈𝜈] + (𝜇 + 𝜈 + 𝑡4)] 𝐸[𝑢(𝜇, 𝜈, 𝑡)]𝜃𝛼 −∑𝜃𝑘−𝛼+2𝑢𝑘(0)𝑛−1

𝑘=0 = 𝐸 [12 (𝜇 + 𝜈)2[𝑢𝜇𝜇 + 𝑢𝜈𝜈] + (𝜇 + 𝜈 + 𝑡4)] 𝐸[𝑢(𝜇, 𝜈, 𝑡)]𝜃𝛼 =∑𝜃𝑘−𝛼+2𝑢𝑘(0)𝑛−1
𝑘=0 + 𝐸 [12 (𝜇 + 𝜈)2[𝑢𝜇𝜇 + 𝑢𝜈𝜈] + (𝜇 + 𝜈 + 𝑡4)] 𝐸[𝑢(𝜇, 𝜈, 𝑡)] = 𝜃𝛼∑𝜃𝑘−𝛼+2𝑢𝑘(0)𝑛−1
𝑘=0 + 𝜈𝛼𝐸 [12 (𝑥 + 𝑦)2[𝑢𝜇𝜇 + 𝑢𝜈𝜈] + (𝜇 + 𝜈 + 𝑡4)] 𝑢(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼∑𝜃𝑘−𝛼+2𝑢𝑘(0)𝑛−1

𝑘=0 ] + 𝐸−1 [𝜃𝛼𝐸 [12 (𝜇 + 𝜈)2[𝑢𝜇𝜇 + 𝑢𝜈𝜈] + (𝜇 + 𝜈 + 𝑡4)]]. 
Applying HPM: ∑𝑝𝑛𝑢𝑛(𝜇, 𝜈, 𝑡)∞

𝑛=0  = 𝐸−1 [𝜃𝛼∑𝜈𝑘−𝛼+2𝑢𝑘(0)𝑛−1
𝑘=0 ]

+ 𝑝𝐸−1 [𝜃𝛼𝐸 [12 (𝜇 + 𝜈)2 [(∑𝑝𝑛𝑢𝑛(𝜇, 𝜈, 𝑡)∞
𝑛=0 )𝜇𝜇 + (∑𝑝𝑛𝑢𝑛(𝜇, 𝜈, 𝑡)∞

𝑛=0 )𝜈𝜈]
+ (𝜇 + 𝜈 + 𝑡4)]]. 

Comparing 𝒑𝟎: 𝑢0(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼∑𝜃𝑘−𝛼+2𝑢𝑘(0)𝑛−1
𝑘=0 ] 
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𝑢0(𝜇, 𝜈, 𝑡) = 𝑢(0) = 𝑘(𝜇 + 𝜈)2. 
Comparing 𝒑𝟏: 𝑢1(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [12 (𝜇 + 𝜈)2 [(𝑢0(𝜇, 𝜈, 𝑡))𝜇𝜇 + (𝑢0(𝜇, 𝜈, 𝑡))𝜈𝜈] + (𝜇 + 𝜈 + 𝑡4)]] 𝑢1(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [12 (𝜇 + 𝜈)2 [(𝑢0(𝜇, 𝜈, 𝑡))𝜇𝜇 + (𝑢0(𝜇, 𝜈, 𝑡))𝜈𝜈]]] +  𝐸−1[𝜃𝛼𝐸[(𝜇 + 𝜈)]]+ 𝐸−1[𝜃𝛼𝐸[𝑡4]] 𝑢1(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸[2𝑘(𝜇 + 𝜈)2]] +  𝐸−1[𝜃𝛼𝐸[(𝜇 + 𝜈)]] + 𝐸−1[𝜃𝛼𝐸[𝑡4]] 𝑢1(𝜇, 𝜈, 𝑡) = 2𝑘(𝜇 + 𝜈)2𝐸−1[𝜃𝛼𝐸[1]] + (𝜇 + 𝜈)𝐸−1[𝜃𝛼𝐸[1]] + 𝐸−1[𝜃𝛼𝐸[𝑡4]] 𝑢1(𝜇, 𝜈, 𝑡) = 2𝑘(𝜇 + 𝜈)2𝐸−1[𝜃𝛼+2] + (𝜇 + 𝜈)𝐸−1[𝜃𝛼+2] + 𝐸−1[𝜃𝛼𝐸[𝑡4]] 𝑢1(𝜇, 𝜈, 𝑡) = 2𝑘(𝜇 + 𝜈)2 𝑡𝛼𝛼! + (𝜇 + 𝜈) 𝑡𝛼𝛼! + 24 𝐸−1[𝜈𝛼+4] 𝑢1(𝜇, 𝜈, 𝑡) = 2𝑘(𝜇 + 𝜈)2 𝑡𝛼𝛼! + (𝜇 + 𝜈) 𝑡𝛼𝛼! + 24 𝑡𝛼+2(𝛼 + 2)!. 
Comparing 𝒑𝟐: 𝑢2(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [12 (𝑥 + 𝑦)2 [(𝑢1(𝜇 + 𝜈))𝜇𝜇 + (𝑢1(𝜇 + 𝜈))𝜈𝜈]]] 

𝑢2(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [12 (𝜇 + 𝜈)2 [8𝑘 𝑡𝛼𝛼!]]] 
𝑢2(𝜇, 𝜈, 𝑡) = 4𝑘(𝜇 + 𝜈)2𝐸−1 [𝜃𝛼𝐸 [𝑡𝛼𝛼!]] 𝑢2(𝜇, 𝜈, 𝑡) = 4𝑘(𝜇 + 𝜈)2𝐸−1[𝜃2𝛼+2] 𝑢2(𝜇, 𝜈, 𝑡) = 4𝑘(𝜇 + 𝜈)2 𝑡2𝛼(2𝛼)!. 

Comparing 𝒑𝟑: 𝑢3(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [12 (𝜇 + 𝜈)2 [(𝑢2(𝜇, 𝜈, 𝑡))𝜇𝜇 + (𝑢2(𝜇, 𝜈, 𝑡))𝜈𝜈]]] 
𝑢3(𝜇, 𝜈, 𝑡) = 𝐸−1 [𝜃𝛼𝐸 [12 (𝜇 + 𝜈)2 [16 𝑘 𝑡2𝛼(2𝛼)!]]] 
𝑢3(𝜇, 𝜈, 𝑡) = 8𝑘(𝜇 + 𝜈)2𝐸−1 [𝜃𝛼𝐸 [ 𝑡2𝛼(2𝛼)!]] 𝑢3(𝜇, 𝜈, 𝑡) = 8𝑘(𝜇 + 𝜈)2𝐸−1[𝜃3𝛼+2] 𝑢3(𝜇, 𝜈, 𝑡) = 8𝑘(𝜇 + 𝜈)2 𝑡3𝛼(3𝛼)! 𝑢(𝜇, 𝜈, 𝑡) = 𝑢0(𝜇, 𝜈, 𝑡) + 𝑢1(𝜇, 𝜈, 𝑡) + 𝑢2(𝜇, 𝜈, 𝑡) + 𝑢3(𝜇, 𝜈, 𝑡) + ⋯ 𝑢(𝜇, 𝜈, 𝑡) = 𝑘(𝜇 + 𝜈)2 + 2𝑘(𝜇 + 𝜈)2 𝑡𝛼𝛼! + (𝜇 + 𝜈) 𝑡𝛼𝛼! + 24 𝑡𝛼+2(𝛼 + 2)! + 4𝑘(𝜇 + 𝜈)2 𝑡2𝛼(2𝛼)!+ 8𝑘(𝜇 + 𝜈)2 𝑡3𝛼(3𝛼)! + ⋯ 

Remark: 

If 𝑓(𝜇, 𝜈, 𝑡) = 0: 𝑢(𝜇, 𝜈, 𝑡) = 𝑘(𝜇 + 𝜈)2 + 2𝑘(𝜇 + 𝜈)2 𝑡𝛼𝛼! + 4𝑘(𝜇 + 𝜈)2 𝑡2𝛼(2𝛼)! + 8𝑘(𝜇 + 𝜈)2 𝑡3𝛼(3𝛼)! + ⋯ 

𝑢(𝜇, 𝜈, 𝑡) = 𝑘(𝜇 + 𝜈)2∑(2𝑡𝛼)𝑛(𝑛𝛼)!∞
𝑛=0 . 
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7. Results and discussion 

Remark 1. In Figure 1, the contour and surface graphs are matched for approximated and exact lower 

bound solutions at 𝑡 = 1. 

 

Figure 1. Comparison of Approximate and Exact lower bound solutions at 𝑡 = 1 for Example 1. 

Remark 2. In Figure 2, the contour and surface graphs are matched for approximated and exact lower 

bound solutions at 𝑡 = 2. 

 

Figure 2. Comparison of Approximated and Exact lower bound solutions at 𝑡 = 2 for Example 1. 
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Remark 3. In Figure 3, the contour and surface graphs are matched for approximated and exact lower 

bound solutions at 𝑡 = 3. 

 

Figure 3. Comparison of Approximated and Exact lower bound solutions at 𝑡 = 3 for Example 1. 

Remark 4. In Figure 4, the contour and surface graphs are matched for approximated and exact upper 

bound solutions at 𝑡 = 1. 

 

Figure 4. Comparison of Approximated and Exact upper bound solutions at 𝑡 = 1 for Example 1. 
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Remark 5. In Figure 5, the contour and surface graphs are matched for approximated and exact upper 

bound solutions at 𝑡 = 2. 

 

Figure 5. Comparison of Approximated and Exact upper bound solutions at 𝑡 = 2 for Example 1. 

Remark 6. In Figure 6, the contour and surface graphs are matched for approximated and exact upper 

bound solutions at 𝑡 = 3. 

 

Figure 6. Comparison of Approximated and Exact upper bound solutions at 𝑡 = 3 for Example 1. 
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Remark 7. In Table 2, 𝐿∞ error for lower bound is provided at 𝑡 = 0.5, 0.8 and 1.0. 

Table 2. 𝐿∞ error for lower bound at different time levels for Example 1. 

N t = 0.5 t = 0.8 t = 1 𝑳∞error for lower bound 

11 7.3129𝐸 − 06 1.3592𝐸 − 03 1.6437𝐸 − 02 
21 2.2737𝐸 − 13 2.2737𝐸 − 13 1.2278𝐸 − 11 
31 2.2737𝐸 − 13 2.2737𝐸 − 13 6.8212𝐸 − 13 

Remark 8. In Table 3, 𝐿∞ error for upper bound is provided at 𝑡 = 0.5, 0.8 and 1.0 respectively. 

Table 3. 𝑳∞error for upper bound at different time levels for Example 1. 

N t = 0.5 t = 0.8 t = 1.0 𝑳∞error for upper bound 

11 7.3129𝐸 − 06 1.3592𝐸 − 03 1.6437𝐸 − 02 
21 2.2737𝐸 − 13 2.2737𝐸 − 13 1.2278𝐸 − 11 
31 2.2737𝐸 − 13 2.2737𝐸 − 13 6.8212𝐸 − 13 

Remark 9. In Table 4. Approximated and exact lower bound solutions are matched at t = 0.5 and 1.0 

respectively. 

Table 4. Comparison of Approximated and Exact lower bound solutions at t = 0.5 and 1.0 for Example 

1. 

(x, y) 𝒕 = 0.5 𝒕 = 1.0 

 

Approximate 

lower bound 

solution 

Exact lower 

bound 

solution 

Absolute 

Error 

Approximated 

lower bound 

solution 

Exact lower 

bound 

solution 

Absolute 

Error (−𝟏. 𝟎𝟓,−𝟏. 𝟕𝟒) −22.18418197 −22.18418445 2.48𝐸 − 06 −60.30006149 −60.30286546 2.80𝐸 − 03 (−𝟎. 𝟑𝟒𝟗,−𝟏. 𝟎𝟒) −5.491031416 −5.491032028 6.12𝐸 − 07 −14.92547854 −14.92617258 6.94𝐸 − 04 (𝟎. 𝟑𝟒𝟗,−𝟎. 𝟑𝟒) −1.35914 −1.35914 0 −3.69436 −3.69453 1.70𝐸 − 04 

Remark 10. In Table 5. Approximated and exact upper bound solutions are matched at 𝑡 = 0.5 and 

1.0 respectively. 

Table 5. Comparison of Approximated and Exact upper bound solutions at t = 0.5 and 1.0 for Example 

1. (𝒙, 𝒚) 𝒕 = 0.5 𝒕 = 1.0 

 
Approximate lower 

bound solution 

Exact 

lower bound 

solution 

Absolute 

Error 

Approximated 

lower bound 

solution 

Exact 

lower bound 

solution 

Absolute 

Error (−𝟏. 𝟎𝟓,−𝟏. 𝟕𝟒) 22.18418197 22.18418445 2.48𝐸 − 06 60.30006149 60.30286546 2.80𝐸 − 03 (−𝟎. 𝟑𝟒𝟗,−𝟏. 𝟎𝟒) 5.491031416 5.491032028 6.12𝐸 − 07 14.92547854 14.92617258 6.94𝐸 − 04 (𝟎. 𝟑𝟒𝟗,−𝟎. 𝟑𝟒) 1.359141 1.359141 0 3.694356 3.694528 1.72𝐸 − 04 
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Remark 11. In Figure 7, contour and surface graphs of lower bound solution are provided at 𝑡 = 0.1. 

 

Figure 7. Comparison of Approximated and Exact lower bound solutions at 𝑡 = 0.1 for Example 2. 

Remark 12. In Figure 8, contour and surface graphs of lower bound solution are provided at 𝑡 = 0.3. 

 

Figure 8. Comparison of Approximated and Exact lower bound solutions at 𝑡 = 0.3 for Example 2. 
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Remark 13. In Figure 9, contour and surface graphs of the lower bound solution are provided at 𝑡 = 

0.5. 

 

Figure 9. Comparison of Approximated and Exact lower bound solutions at 𝑡 = 0.5 for Example 2. 

Remark 14. In Figure 10, contour and surface graphs of the upper bound solution are provided at 𝑡 
= 0.1. 

 

Figure 10. Comparison of Approximated and Exact upper bound solutions at 𝑡 = 0.1 for Example 2. 
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Remark 15. In Figure 11, contour and surface graphs of the upper bound solution are provided at 𝑡 
= 0.3. 

 

Figure 11. Comparison of Approximated and Exact upper bound solutions at 𝑡 = 0.3 for Example 2. 

Remark 15. In Figure 12, contour and surface graphs of the upper bound solution are provided at 𝑡 
= 0.5. 

 

Figure 12. Comparison of Approximated and Exact upper bound solutions at 𝒕 = 0.5 for Example 2. 
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Remark 16. In Table 6, 𝐿∞ error for lower and upper bound solutions is provided at 𝑡 = 0.5. 

Table 6. 𝐿∞ lower and upper bound solutions at 𝑡 = 0.5 for Example 2. 𝑵 𝑳∞ lower bound 𝑳∞ upper bound 

 𝒕 =  𝟎. 𝟓 𝟑𝟏 3.0858𝐸 − 04 3.0858𝐸 − 04 𝟒𝟏 7.0620𝐸 − 10   7.0620𝐸 − 10 𝟓𝟏 4.4801𝐸 − 13 4.4801𝐸 − 13 

Remark 17. In Table 7, 𝐿∞ error for lower and upper bound solutions is provided at 𝑡 = 0.8. 

Table 7. 𝐿∞ lower and upper bound solutions at t = 0.8 for Example 2. 𝑵 𝑳∞ lower bound 𝑳∞ upper bound 

 𝒕 =  𝟎. 𝟖 𝟓𝟏 3.2516𝐸 − 06 3.2516𝐸 − 06 𝟔𝟏 1.5514𝐸 − 10 1.5514𝐸 − 10 𝟕𝟏 1.6530𝐸 − 10 1.6530𝐸 − 10 

Remark 18. In Table 8, 𝐿∞ error for lower and upper bound solutions is provided at 𝑡 = 1.0. 

Table 8. 𝐿∞ lower and upper bound solutions at t = 1.0 for Example 2. 𝑵 𝑳∞ lower bound 𝑳∞ upper bound 

 𝒕 =  𝟏. 𝟎 𝟕𝟏 6.3548𝐸 − 09 6.3548𝐸 − 09 𝟖𝟏 7.1974𝐸 − 09 7.1974𝐸 − 09 𝟗𝟏 6.6640𝐸 − 09 6.6640𝐸 − 09 

Remark 19. In Table 9, a comparison of approximated and exact solutions is provided for the lower 

bound at 𝑡 = 0.1 and 0.2, along with the absolute error. 

Table 9. Comparison of Approximated and Exact lower bound solutions at t = 0.1 and 0.2 for Example 

2. (𝒙, 𝒚) 𝒕 = 0.1 𝒕 = 0.2 

 

Approximate 

lower bound 

solution 

Exact 

lower bound 

solution 

Absolute 

Error 

Approximated 

lower bound 

solution 

Exact 

lower bound 

solution 

Absolute 

Error (−𝟏. 𝟖𝟗,−𝟏. 𝟖𝟖) −0.045958919 −0.045946325 1.26𝐸 − 05 −0.028904696 −0.006382456 2.25𝐸 − 02 (−𝟏. 𝟐𝟔,−𝟏. 𝟐𝟓) 0.069414203 0.069395182 1.90𝐸 − 05 0.043656302 0.009639763 3.40𝐸 − 02 (−𝟎. 𝟔𝟐𝟖,−𝟎. 𝟔𝟐) −0.05014 −0.05013 1.00𝐸 − 05 −0.03153 −0.00696 2.46𝐸 − 02 
Remark 20. In Table 10, a comparison of approximated and exact solutions is provided for the upper 

bound at 𝑡 = 0.1 and 0.2, along with the absolute error. 

Table 10. Comparison of Approximated and Exact upper bound solutions at t = 0.1 and 0.2 for 

Example 2. (𝒙, 𝒚) 𝒕 = 0.1 𝒕 = 0.2 

 

Approximated 

upper bound 

solution 

Exact 

upper bound 

solution 

Abs. Err. 

Approximated 

upper bound 

solution 

Exact 

upper bound 

solution 

Abs. Err. (−𝟏. 𝟖𝟗,−𝟏. 𝟖𝟖) 0.045958919 0.045946325 1.26𝐸 − 05 0.028904696 0.028904696 0 (−𝟏. 𝟐𝟔,−𝟏. 𝟐𝟓) −0.069414203 −0.069395182 1.90𝐸 − 05 −0.043656302 −0.043656302 0 (−𝟎. 𝟔𝟐𝟖,−𝟎. 𝟔𝟐) 0.05014 0.050126 1.40𝐸 − 05 0.031534 0.031534 0 
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Remark 21. In Figure 13, a comparison of approximated and exact lower bound solutions is provided 

at 𝑡 = 1. 

 

Figure 13. Comparison of Approximated and Exact lower bound solutions at 𝑡 = 1 for Example 3. 

Remark 22. In Figure 14, a comparison of approximated and exact lower bound solutions is provided 

at 𝑡 = 2. 

 

Figure 14. Comparison of Approximated and Exact lower bound solutions at 𝑡 = 2 for Example 3. 
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Remark 23. In Figure 15, a comparison of approximated and exact lower bound solutions is provided 

at 𝑡 = 3. 

 

Figure 15. Comparison of Approximated and Exact lower bound solutions at 𝑡 = 3 for Example 3. 

Remark 24. In Figure 16, a comparison of approximated and exact upper bound solutions is provided 

at 𝑡 = 1. 

 

Figure 16. Comparison of Approximated and Exact upper bound solutions at 𝑡 = 1 for Example 3. 
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Remark 25. In Figure 17, a comparison of approximated and exact upper bound solutions is provided 

at 𝑡 = 2. 

 

Figure 17. Comparison of Approximated and Exact upper bound solutions at 𝑡 = 2 for Example 3. 

Remark 26: In Figure 18, a comparison of approximated and exact upper bound solutions is provided 

at 𝑡 = 3. 

 

Figure 18. Comparison of Approximated and Exact upper bound solutions at 𝑡 = 3 for Example 3. 
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Remark 27:In Table 11, 𝐿∞ error for lower and upper bound solutions is provided at 𝑡 = 1.0. 

Table 11. 𝐿∞ lower and upper bound solutions at 𝑡 = 1.0 for Example 3. 𝑵 
𝑳∞ lower bound 𝑳∞ upper bound 𝒕 =  𝟏. 𝟎 𝟏𝟏 1.2118𝐸 − 03 1.2118𝐸 − 03 𝟐𝟏 9.6634𝐸 − 13 9.6634𝐸 − 13 𝟑𝟏 5.6843𝐸 − 14 5.6843𝐸 − 14 

Remark 28:In Table 12, 𝐿∞ error for lower and upper bound solutions is provided at 𝑡 = 2.0. 

Table 12. 𝐿∞ lower and upper bound solutions at 𝑡 = 2.0 for Example 3. 𝑵 
𝑳∞ lower bound 𝑳∞ upper bound 𝒕 = 𝟐. 𝟎 𝟐𝟏 2.0725𝐸 − 06 2.0725𝐸 − 06 𝟑𝟏 4.5475𝐸 − 13 4.5475𝐸 − 13 𝟒𝟏 2.2737𝐸 − 13 2.2737𝐸 − 13 

Remark 29: In Table 13, 𝐿∞ error for lower and upper bound solutions is provided at 𝑡 = 3.0. 

Table 13. 𝐿∞ lower and upper bound solutions at 𝑡 = 3.0 for Example 3. 𝑵 𝑳∞ lower bound 𝑳∞ upper bound 

 𝒕 =  𝟑. 𝟎 𝟑𝟏 3.9126𝐸 − 09 3.9126𝐸 − 09 𝟒𝟏 3.6380𝐸 − 12 3.6380𝐸 − 12 𝟓𝟏 2.7285𝐸 − 12 2.7285𝐸 − 12 
Remark 30. In Table 14, approximated and exact lower bound solutions are matched at 𝑡 = 0.5 and t 

= 1.0 along with absolute error. 

Table 14. Comparison of Approximated and Exact lower bound solutions at t = 0.5 and t = 1.0 for 

Example 3. 

(𝒙, 𝒚) 𝒕 = 0.5 𝒕 = 1.0 

Approximate 

lower bound 

solution 

Exact 

lower bound 

solution 

Absolute 

Error 

Approximated 

lower bound 

solution 

Exact 

lower bound 

solution 

Absolute 

Error (−𝟏. 𝟖𝟗,−𝟏. 𝟖𝟖) −19.31642354 −19.31642373 1.90𝐸 − 07 −52.50704738 −52.50748363 4.36𝐸 − 04 (−𝟏. 𝟐𝟔,−𝟏. 𝟐𝟓) −8.585077129 −8.585077215 8.60𝐸 − 08 −23.3364655 −23.33665939 1.94𝐸 − 04 (−𝟎. 𝟔𝟐𝟖,−𝟎. 𝟔𝟐) −2.14627 −2.14627 0.00𝐸 + 00 −5.83412 −5.83416 4.00𝐸 − 05 
Remark 31. In Table 14, approximated and exact upper bound solutions are matched at 𝑡 = 0.5 and 𝑡 = 1.0, along with absolute error. 

Table 15. Comparison of Approximated and Exact upper bound solutions at t = 0.5 and t = 1.0 for 

Example 3. (𝒙, 𝒚) 𝒕 = 0.5 𝒕 = 1.0 

 

Approximate 

lower bound 

solution 

Exact 

lower bound 

solution 

Absolute 

Error 

Approximated 

lower bound 

solution 

Exact 

lower bound 

solution 

Absolute 

Error (−𝟏. 𝟖𝟗,−𝟏. 𝟖𝟖) 19.31642354 19.31642373 1.90𝐸 − 07 52.50704738 52.50748363 4.36𝐸 − 04 (−𝟏. 𝟐𝟔,−𝟏. 𝟐𝟓) 8.585077129 8.585077215 8.60𝐸 − 08 23.3364655 23.33665939 1.94𝐸 − 04 (−𝟎. 𝟔𝟐𝟖,−𝟎. 𝟔𝟐) 2.146269 2.146269 0.00𝐸 + 00 5.834116 5.834165 4.90𝐸 − 05 
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8. Concluding Remarks 

The two-dimensional fuzzy fractional Heat equation is studied via a regime named Elzaki HPM. 

A novel regime is developed via the fusion of the Elzaki transform and the Homotopy Perturbation 

Method. Three numerical examples are studied in this paper. The compatibility of the approximated 

and exact results is matched by means of graphs and tables.Via Figure 1 – Figure 18,the graphical 

compatibility of the approximated and exact solutions for the lower and upper bound is validated. 

Via Table 2 – Table 15, the numerical convergence and matching of approximated and exact solutions 

are validated. It is affirmed on the basis of all these results that the proposed regime can produce 

results that converge rapidly to the exact solution.The study conducted in this paper will surely open 

new dimensions for researchers. This regime will be helpful in studying some higher-order fuzzy 

fractional partial differential equations such as; the KdV equation, Kawahara equation and Sawada 

Kotera equation and many others. 
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