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12021131487@stu.nxu.edu.cn (J.L.); 12022131729@stu.nxu.edu.cn (Y.W.); 12021131500@stu.nxu.edu.cn (J.W.) 
* Correspondence: tianjia@nxu.edu.cn  

Abstract: The Yellow River Basin (YRB) is a crucial ecological zone and an environmentally 
vulnerable region in China. Understanding the temporal and spatial trends of terraced-field areas 
(TRAs) and the factors underlying them in the YRB is essential for improving land use, conserving 
water resources, promoting biodiversity, and preserving cultural heritage. In this study, we 
employed machine learning on the Google Earth Engine (GEE) platform to obtain spatial 
distribution images of TRAs from 1990 to 2020 using Landsat 5 (1990－2010) and Landsat 8 (2015－
2020) remote sensing data. The GeoDa software platform was used for spatial autocorrelation 
analysis, revealing distinct spatial clustering patterns. Mixed linear and random forest models were 
constructed to identify the driving force factors behind TRA changes. The research findings reveal 
that TRAs were primarily concentrated in the upper and middle reaches of the YRB, encompassing 
provinces such as Shaanxi, Shanxi, Qinghai, and Gansu, with areas exceeding 40,000 km2, whereas 
other provinces had TRAs of less than 30,000 km2 in total. The TRAs exhibited a relatively stable 
trend, with provinces such as Gansu, Qinghai, and Shaanxi showing an overall upward trajectory. 
Conversely, Shanxi and Inner Mongolia demonstrated an overall declining trend. When compared 
with other provinces, the variations in TRAs in Ningxia, Shandong, Sichuan, and Henan appeared 
to be more stable. The linear mixed model (LMM) revealed that farmland, shrubs, and grassland 
had significant positive effects on the TRA, explaining 41.6% of the variance. The random forest 
model also indicated positive effects for these factors, with high R² values of 0.983 and 0.86 for the 
training and testing sets, respectively, thus outperforming the LMM. The findings of this study can 
contribute to the restoration of the YRB's ecosystem and support sustainable development. The 
insights gained will be valuable for policymaking and decision support in soil and water 
conservation, agricultural planning, and environmental protection in the region. 

Keywords: terraced-field areas (TRAs); machine learning; Yellow River Basin (YRB); linear mixed 
model (LMM); random forest regression; Google Earth Engine (GEE) 

 

1. Introduction 

Terraced fields are one of the important soil and water conservation measures and play an 
important role in agricultural production, water resources management, ecological balance, etc. 
Particularly in arid areas, they can modify the terrain and improve soil conditions, making more 
efficient use of rainfall and protecting water and soil [1,2], optimizing land use [3,4], increasing crop 
yields and promoting sustainability [5], in addition, terraces It also serves as a diverse habitat for 
organisms [6] and is also a cultural and historical heritage [7,8]. Studying the spatiotemporal changes 
in terraced-field areas (TRAs) and the factors driving these changes allows us to gain a better 
understanding and manage water resources, reduce soil erosion and protect water quality, thereby 
promoting the sustainable development of terraces [9].  
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In this regard, researchers such as Austin et al. [10] have utilized airborne optical detection and 
ranging (LiDAR) technology to acquire high-resolution digital elevation models (DEMs) for TRAs. 
Through an in-depth analysis of terrain indices, including slope, aspect, and curvature, along with 
other land features, they have inferred and interpreted the spatial distribution and morphological 
characteristics of terraced fields. Similarly, Zhang et al. [11] employed visual interpretation and 
geographic information system (GIS) techniques to extract gully shoulders, terraced fields, and land 
use distribution in small watersheds, achieving significant research outcomes. Furthermore, several 
scholars have extensively employed time-series remote sensing data to investigate the temporal and 
spatial trends in TRAs as well as their driving force factors. In a study by Tian et al. [1], the 
distribution of terraced fields was identified using Google Earth imagery, and the effect of vegetation 
restoration and terraced fields on soil erosion was estimated using the universal soil loss equation 
(USLE) model. By analyzing remote sensing imagery from 2000 to 2018, their research revealed the 
significant role of terraced fields in controlling soil erosion and emphasized the impact of vegetation 
changes on soil erosion. Yu et al. [12] studied terraced fields for mountainous rice cultivation and 
discovered that forests played a crucial role in shaping terraced rice fields. 

Although the existing methods for terraced field interpretation have reached a relatively mature 
stage, they often come with inherent limitations. Many of these methods require extensive image data 
downloads, involve complex processing procedures, demand high computational resources, and are 
time consuming. Addressing these challenges through the utilization of machine learning on the 
Google Earth Engine (GEE) platform can facilitate efficient terraced field interpretation while 
maintaining an acceptable level of accuracy. Furthermore, significant research gaps exist in the study 
of the temporal–spatial patterns and influencing factors of TRAs in the Yellow River Basin (YRB). 
Consequently, there is an urgent need to delve deeper into investigating the spatial distribution, 
temporal changes, and factors driving change in terraced fields in this region.  

Despite the challenges associated with extensive image data acquisition, intricate processing 
procedures, elevated computational resource requirements, and protracted time investment, this 
study aimed to conduct a comprehensive exploration of TRAs within the YRB. This investigation 
encompassed their spatial distribution, temporal trends, and the factors driving these changes and 
aimed at bridging existing research gaps. By deploying an array of strategies, we harnessed the 
capabilities of the GEE remote sensing cloud platform and implemented inventive remote-sensing 
land cover and land use classification data [13–15] to develop meticulous interpretational 
methodologies. These methodologies integrated digital elevation models (DEMs) [16] for the 
categorization of terraced fields. Throughout the interpretation process, we amalgamated remote 
sensing data and terrain indices, adjusting the model parameters to attain an optimal model for 
heightening interpretation precision and efficiency. Simultaneously, we conducted an exhaustive 
analysis of the spatiotemporal trends and the factors impacting TRAs. The principal aim of this study 
was to "enrich the knowledge base by disclosing the inherent patterns of TRA within the YRB and 
providing novel perspectives for the domain of TRA research." Its innovation lies in the fusion of 
remote sensing data and terrain indices, which is facilitated by the utilization of the GEE platform 
coupled with modifications to models and parameters to enhance the precision and efficiency of the 
TRA interpretation. Furthermore, this research contributes to a more profound comprehension of the 
alterations in terraced field patterns, facilitates the formulation of scientifically robust strategies for 
soil and water conservation, encourages sustainable agricultural progress, and advances 
environmental safeguarding. Hence, this study has significant theoretical and practical importance. 

2. Study Area 

The Yellow River, the second longest river in China, originates from the Bayan Har Mountains 
and flows into the Bohai Sea. It traverses provinces including Qinghai, Sichuan, Gansu, Ningxia, 
Inner Mongolia, Shaanxi, Shanxi, Henan, and Shandong (Figure 1a,b). The YRB spans between 
95°53′E to 119°12′E longitude and 32°9′N to 41°50′N latitude, covering an area of 7.5×105 km2 [17]. 
This region encompasses four distinct geographical units from west to east: the Qinghai–Tibet 
Plateau, the Inner Mongolian Plateau, the Loess Plateau, and the Huang–Huai–Hai Plain [18]. The 
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majority of the YRB experiences a semi-arid climate characterized by limited natural water resources 
and an annual average precipitation of less than 450 millimeters. The topography varies across the 
basin, with higher elevations in the west and lower elevations in the east (Figure 1a). The distribution 
of vegetation in the YRB follows a trend similar to that of precipitation, transitioning from sparse 
shrub grassland to grassland, broadleaf forest, and crops as one moves from west to east. The area is 
known for its diverse soil types, including meadow soil, chestnut calcareous soil, yellow loam, and 
brown soil. The annual average temperature ranges from -3.5°C to 15°C [19,20]. The land use in the 
YRB includes grassland, farmland, woodland, barren, and sparsely vegetated areas (Figure 1c). 
However, the YRB has become one of China's most ecologically fragile regions due to excessive water 
resource development and escalating environmental issues [21]. 

 
Figure 1. Overview of the research area: (a) spatial distribution of digital elevation model (DEM), (b) 
geographical distribution of the YRB in China, (c) spatial distribution of land use, (d) spatial 
distribution of provinces within the YRB (with area percentages in parentheses). 

3. Materials and Methods 

3.1. Data 

3.1.1. Vegetation index 

The normalized difference vegetation index (NDVI) data employed in this research were 
computed using remote sensing data from Landsat 5 (operated from 1984 to 2013) for the years 1990
－2010 and Landsat 8 (operating since 2013) for the years 2015－2020, in both cases obtained via the 
GEE platform (https://earthengine.google.com/, accessed on June 5, 2022).  

3.1.2. Datasets of driving force factors 

The temperature data for this study were obtained from the European Centre for Medium-Range 
Weather Forecasts (ECMWF) Fifth Generation Reanalysis (ERA5) monthly datasets 
(https://www.ecmwf.int/, accessed on August 5, 2022). ERA5 is a global atmospheric reanalysis that 
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provides hourly estimates of atmospheric variables, including temperature, from 1979 to the present, 
at an approximate spatial resolution of 31 km. 

Precipitation data were sourced from the Climate Hazards Group InfraRed Precipitation with 
Station (CHIRPS) daily dataset from the University of California, Santa Barbara, Climate Hazards 
Group (UCSB-CHG) (https://www.chc.ucsb.edu/data/chirps/, accessed on August 5, 2022). CHIRPS 
is a high-resolution, quasi-global precipitation dataset that merges satellite and station observations 
that has been delivering daily estimates of precipitation since 1981 at an approximate spatial 
resolution of 0.05 degrees (around 5 km). 

Nighttime light data were obtained from the National Qinghai–Tibet Plateau Data Center 
(http://data.tpdc.ac.cn, accessed on June 25, 2022). The data, with a spatial resolution of 
approximately 100 m－1 km, were produced using a nighttime light convolutional long short-term 
memory (NTLSTM) network and were applied to generate the world's first artificial nighttime light 
dataset (PANDA) for China, spanning the years 1984－2020. 

The global population dataset World Pop (https://www.worldpop.org, accessed on June 27, 
2022), with a spatial resolution of 100 meters, served as the source of national population data. This 
dataset, available on the GEE platform, is provided by the World Pop project, an open-source 
initiative offering global population distribution data. 

3.1.3. Land types  

The land use data utilized in this study came from the China Land Cover Dataset (CLCD) 
(https://doi.org/10.5281/zenodo.5816591, accessed on August 5, 2022). The CLCD provides land cover 
information for China from 1985 to 1990 and then annually up to 2020. It has a spatial resolution of 
30 m and is based on 335,709 Landsat scenes processed on the GEE.  

3.1.4. Labeled samples of terraced fields 

Terraced field coordinates in the YRB were collected every five years from 1990 to 2020 using 
Google Earth Pro. 

Table 1. Driving force factors and data sources. 

 Value (Abbreviation) Unit Data source 

1 
Terrace-field area 

(TRA) 
km2 This study 

2 
Normalized difference 

vegetation index 
(NDVI) 

/ 

USGS Landsat 5 Level 2, Collection 2, Tier 1（1990－2010） 
https://earthengine.google.com/, accessed on June 5, 2022 
USGS Landsat 8 Level 2, Collection 2, Tier 1（2015－2020) 
https://earthengine.google.com/, accessed on June 5, 2022 

3 Forest (FA) km2 

CLCD from Jie Yang; Xin Huang 
https://doi.org/10.5281/zenodo.5816591/,accessed on August 5, 2022 

4 Shrub (SA) km2 
5 Grassland (GA) km2 
6 Water (WA) km2 
7 Snow/Ice (SIA) km2 
8 Barren (BA) km2 
9 Cropland (CP) km2 
10 Impervious (IA) km2 

11 Precipitation (PRE) mm 
Climate Hazards Group InfraRed Precipitation with Station Data 
https://www.chc.ucsb.edu/data/chirpson /, accessed on August 5, 

2022 

12 Temperature (TEMP) °C 
ERA5 Monthly Aggregates 

https://www.ecmwf.int/,accessed on August 5, 2022 

13 Population (POP) / 
National Science & Technology Infrastructure of China 
https://www.worldpop.org/, accessed on June 27, 2022 
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14 Night light (NL） / 
Third Pole Environment Data Center 

http://data.tpdc.ac.cn/,accessed on June 25, 2022 

3.2. Terraced Field Interpretation 

This study utilized the image retrospective function in Google Earth Pro to display high-
resolution images for every five years from 1990 to 2020. The annotation feature was used to mark 
the images, and the marked coordinates were imported into the GEE. The sample collection was 
divided into two categories: terraced fields were assigned a value of 1 and non-terraced-field areas 
were assigned a value of 0, which included water bodies, buildings, wetlands, grasslands, forests, 
barrens, shrubs, and more. There were 500 sampling points for each of the years, with 250 terraced 
fields and 250 non-terraced-field areas. The training set and test set were divided in a ratio of 60% to 
40%. 

The model was trained on the GEE platform, based on the vector boundary of the YRB and using 
the annotated data and Landsat 5 and Landsat 8 images; image interpretation was performed for the 
five-year intervals from 1990 to 2020. The interpreted images were analyzed by calculating the area 
according to provincial and municipal administrative regions and tabulating the results. 

3.3. Spatial Autocorrelation Analysis 

Spatial autocorrelation is the analysis of the spatial distribution characteristics of spatial units 
based on the matching of positional similarity and attribute similarity [22]. If the values at nearby 
locations are similar, positive spatial autocorrelation occurs; if they are dissimilar, negative spatial 
autocorrelation occurs. The methods used in this study included the global Moran's index, local 
Moran's index, and Moran’s scatter plot [23]. 

3.4.1. Global spatial autocorrelation 

The global spatial autocorrelation test examines the presence or absence of spatial correlation in 
the attribute values of adjacent or nearby spatial units [24].The expression for the global Moran's I 
index is as follows:  � = � ∑  ���� ∑  ���� ���(����̅)�����̅�∑  ���� ∑  ���� ��� ∑  ���� (����)� = ∑  ���� ∑  ���� ���(����̅)�����̅��� ∑  ���� ∑  ��� ���   (1)

where �� is the attribute value of feature i, �̅ is its mean value from 1990 to 2020, ���  is the spatial 
weight between feature i and j, n is the total number of features, and �� = �� ∑  � (�� − �̅)�. 

3.4.2. Local spatial autocorrelation 

Because there are differences in spatial autocorrelation levels between different spatial units and 
their neighborhoods within the study area, global evaluation cannot accurately indicate the specific 
spatial location of aggregation or anomaly occurrence [25]. To overcome this deficiency, a local spatial 
autocorrelation analysis must be performed. The main methods are the local indicators of spatial 
association (LISAs) [26] and Moran scatter plots [27]. 

Local indicators of spatial association (LISAs) are used to evaluate the degree of similarity or 
difference between the attribute values of the observation unit and its surrounding units. LISAs 
include the local Moran's index and local Geary's index, and the expression for the local Moran's 
index is as follows: �� = �(�� − �̅) ∑  � ������ − �̅�∑  � (�� − �)� = ��� ∑  � �������� = ��� �  � ������ (2)

where ��� and ��� are standardized observation values. 
The Moran scatter plot reflects the local spatial autocorrelation of spatial location attributes [25] 

and is used to express the existence of concentrated aggregation or anomaly features within a local 
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region. It is presented in the form of coordinates in four quadrants, namely, high–high (HH) in the 
first quadrant, high–low (HL) anomaly in the second quadrant, low–low (LL) aggregation in the third 
quadrant, and low–high (LH) anomaly in the fourth quadrant, to characterize the local spatial 
connectivity of the four types of aggregation between the region units and their neighbors. 

3.4. Durbin–Watson Test 

In regression analysis, the independence of variables within the model is a challenge that 
requires careful attention. To assess this independence, the classical Durbin–Watson test is a widely 
utilized method. In this study, we conducted Durbin–Watson tests using SPSS 26 software to 
investigate the independence of residuals within our model. Specifically, we used TRA as the 
dependent variable and incorporated influential factors such as FA, GA, SA, and WA as independent 
variables within the framework of regression analysis.  

3.5. Analysis Methods for Driving Force Factors 

3.5.1. Spearman Correlation Analysis 

Spearman rank correlation coefficient is a method for studying the correlation of variables. In 
this study, the Spearman rank correlation coefficient was used to examine the relationship between 
TRA, FA, SA, GA, WA, SIA, BA, CP, IA, POP, PRE, TEMP, NDVI, and NL in the YRB to determine 
the reasons for differences in TRA distribution. The calculation method was as follows: � = ∑  � (�� − �̅)(�� − ��)�∑  � (�� − �̅)� ∑  � (�� − ��)� (3)

where ��  and ��  represent the values of two variables for each data point, and �̅ and �� denote the 
means of the two variables. 

3.5.2. Linear Mixed Model (LMM) Analysis 

In this study, we employed an LMM to analyze the factors driving changes in TRAs. Initially, 
we systematically selected driving force variables one by one from a set of potential factors. This 
involved conducting Durbin–Watson tests for independence, Spearman correlation analysis, and 
multicollinearity evaluation to ensure the independence and correlation among variables. 
Subsequently, we utilized an LMM to establish a fitting model for TRAs. This approach was used to 
enhance the robustness of our analysis and enable accurate inference of the relationships between 
variables in the context of TRA prediction. The basic form of the LMM is as follows: ��� = �� + ����� + ��� + ���  (4)

where ���  is the �th observation in the �th group, ���  is one or more predictor variables for the 
observation, �� and �� are the fixed-effect coefficients, ���  is the random effect coefficient for the �th group, and ��� is the random error term for the observation. In this model, �� and �� represent 
the average intercept and slope of the entire dataset, whereas �� represents the deviation for each 
group. The model assumes that the random effect ��� follows a normal distribution and the random 
error ��� also follows a normal distribution. The objective of this model is to estimate the values for a 
terraced area.  

3.5.3. Random Forest Model Analysis   

In this part of the study, mirroring the process of constructing the LMM, we systematically 
selected driving variables one by one from a set of potential factors. This procedure encompassed 
conducting Durbin–Watson tests for independence, Spearman correlation analysis, and 
multicollinearity evaluation to ensure the qualification of variables incorporated into the model. 
Subsequently, we employed the random forest model to establish a fitted model for TRAs. 
Specifically, we first shuffled the collected 406 pieces of data and set the training ratio to 0.7 for 
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random forest regression prediction. Cross-validation parameters were set at 3, with each tree having 
a maximum depth of 10 and a maximum of 50 leaf nodes. A total of 100 decision trees were employed, 
utilizing the bootstrapping method for model construction. Additionally, we refitted the model for 
the top three variables of importance, resulting in the final fitted model. 

 
Figure 2. Flow chart of the research. The definitions of the abbreviated variables can be found in Table 
1. 

4. Results 

4.1. Evaluation of the Interpretation Accuracy of TRA   

This model demonstrated very high overall accuracy, as it was measured by the following 
average accuracy metrics: an overall accuracy of 0.92, a Kappa coefficient of 0.84, a precision of 0.98, 
a recall of 0.86, and an F1 score of 0.92. In the time range from 1990 to 2020, various accuracy 
indicators were similar to the average value, and there were no outliers. The accuracy in 2005 was 
the highest, while the accuracy in 1990 was relatively low, and the accuracy in other years was not 
much different. 
  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 September 2023                   doi:10.20944/preprints202309.0970.v1

https://doi.org/10.20944/preprints202309.0970.v1


 8 

 

Table 2. Interpretation accuracy assessment for TRA. 

Year Confusion matrix Overall Accuracy kappa Precision Recall F1 
1990 [[90,4], [19,98]] 0.89 0.78 0.96 0.83 0.89 
1995 [[94,1], [12,106]] 0.93 0.87 0.99 0.89 0.94 
2000 [[108,4], [18,92]] 0.90 0.80 0.96 0.86 0.91 
2005 [[67,1], [7,87]] 0.95 0.89 0.99 0.91 0.95 
2010 [[70,0], [11,133]] 0.94 0.88 1.00 0.86 0.93 
2015 [[67,1], [15,103]] 0.91 0.82 0.99 0.82 0.90 
2020 [[64,1], [9,86]] 0.90 0.87 0.98 0.88 0.92 

Average Value 0.92 0.84 0.98 0.86 0.92 

4.2. Trend Analysis of TRA Changes Every Five Years in a 30-Year Period 

4.2.1. Analysis of spatiotemporal changes 

Based on the analysis of Figure 3a,c, it was evident that over the past 30 years, Gansu and 
Qinghai had featured larger absolute values of TRAs, whereas Sichuan and Shandong exhibited 
relatively smaller absolute values of TRAs. The trend lines in the graph revealed that TRAs with 
provinces such Gansu, Qinghai, and Shaanxi showing overall upward trends. Conversely, Shanxi 
and Inner Mongolia exhibited overall downward trends. When compared with other provinces, the 
TRA variations in Ningxia, Shandong, Sichuan, and Henan appeared to be more stable. Notably, 
based on TRAs, provinces within the YRB could be distinctly divided into two regions: the upstream 
region, including Shaanxi, Shanxi, Gansu, and Qinghai, with TRAs exceeding 40,000 square 
kilometers, and other regions, with TRAs less than 30,000 square kilometers. Shifting to the analysis 
of Figure 3b,c, it was revealed that Gansu province accounted for approximately 25% of the total TRA 
within the YRB, whereas Sichuan and Shandong possessed the smallest TRAs, comprising only 
around 1% of the total area. Disparities in the total TRA among the provinces within the YRB existed, 
where provinces such as Shaanxi, Shanxi, Qinghai, and Gansu (belonging to the upstream region) 
exhibited larger TRAs, whereas other provinces tended to have smaller TRAs. It is worth noting that 
the relatively smaller TRAs in certain provinces, such as Sichuan and Shandong, were due to their 
smaller land areas within the YRB.  
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Figure 3. Spatiotemporal analysis of provincial TRA and proportion of the total in the YRB (1990–
2020): (a) TRA time series plot, (b) variation in the percentage of TRAs relative to total area across the 
provinces in the YRB, (c) distribution of TRAs in the YRB in the last 30 years. 

From the data in Table 3, it was evident that there were differences in the degree of TRA 
variability coefficients among different provinces within the YRB. Shaanxi and Gansu provinces 
exhibited relatively stable TRA variability coefficients of 10.65% and 10.69%, respectively. Shandong 
and Shanxi provinces had coefficients of 16.09% and 17.63%, respectively, showing relatively steady 
fluctuations in their total TRAs. Provinces such as Ningxia, Qinghai, Inner Mongolia, and Henan 
displayed coefficients ranging from 19.99% to 30.17%, indicating a moderate degree of TRA 
fluctuation. Notably, Sichuan province stood out with the high coefficient of 41.87%, suggesting 
significant fluctuations in its total terraced-rice area over the past thirty years. 

Table 3. Variability coefficients of the TRA in YRB provinces from 1990 to 2020. 

Province Coefficient of Variation
Shaanxi 10.65% 
Gansu 10.69% 

Shandong 16.09% 
Shanxi 17.63% 

Ningxia 19.99% 
Qinghai 22.37% 

Inner Mongolia 29.44% 
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Henan 30.17% 
Sichuan 41.87% 

4.2.2. Spatial autocorrelation analysis 

Based on the analysis of Figure 4a, it was observed that the global Moran's I index for the TRA 
in the YRB gradually decreased from 0.386 in 1990 to 0.355 in 2005, indicating a gradual reduction in 
regional disparities. However, from 2005 to 2020, the fluctuation of the Moran's I index slightly 
increased to 0.403, suggesting a gradual increase in regional disparities in total TRA during this 
period. According to the analysis results from Figure 4b, most scatter points were close to the y=x 
line, but there were still a small number of scatter points irregularly distributed on both sides of the 
y=x line. This indicated a high predictive accuracy for the model, but there was still a slight bias. 

Local indicators of spatial association (LISA) cluster maps helped visualize the clustering of 
regions with similar values on a map, highlighting spatial patterns and revealing potential 
relationships between neighboring areas. Based on the analysis results from Figure 4c, it was found 
that the terraced areas in the YRB had exhibited significant spatial clustering patterns over the past 
30 years rather than being randomly distributed. These clustering patterns had remained relatively 
stable over time and space, with minimal changes observed from 1990 to 2020. At the level of city-
level administrative regions, the central part of the TRA and certain western regions exhibited a 
higher degree of clustering, whereas the eastern regions of Henan and Shandong, as well as the 
western region of Sichuan, showed a lower degree of clustering. This indicated that the HH clustering 
zone was primarily located in the middle and upper reaches of the Yellow River, including Qinghai, 
Gansu, and the intersection area of Sichuan. In the middle reaches, it excluded the northern arid and 
sandy zones, including the Hetao region. The downstream regions (such as Henan and Shandong) 
exhibited a lower level of clustering, constituting the LL clustering zone. Additionally, in the western 
part of Sichuan, there were adjacent areas characterized by alternating low and high clustering of 
terraced fields that belonged to the LH terraced field clustering zone. Finally, no HL clustering zone 
was observed for the past 30 years. 
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Figure 4. Spatial autocorrelation analysis of TRA in the YRB: (a) bar chart of global Moran’s I index 
from 1990 to 2020, (b) Moran scatter map of municipal TRA in the YRB, (c) local indicators of spatial 
association (LISA) cluster map. 

4.3. Driving Force Analysis 

4.3.1. Durbin–Watson test   

The purpose of the Durbin–Watson test was to examine whether there was independence among 
model residuals. The Durbin–Watson statistic ranged from 0 to 4, with the following interpretations: 
a value close to 2 indicated relatively high independence among residuals, whereas a deviation from 
2 suggested a lack of independence among residuals. This study rigorously applied the Durbin–
Watson test to determine the independence of model residuals, a crucial step in ensuring the 
robustness of the regression analysis results. Due to the nature of data collection in this study, which 
involved surveys conducted at the same location but different times, the Durbin–Watson test yielded 
a low score. As shown in Table 4, the Durbin–Watson score was 0.814, indicating a lack of 
independence among data points. Consequently, traditional linear regression was not suitable for 
analysis. To address this issue, this study simultaneously employed an LMM and a random forest 
model for accurate prediction. These models offered enhanced robustness and flexibility by better 
fitting the data and considering potential confounding variables that might have affected the 
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outcomes. By leveraging these advanced modeling techniques, this study aimed to comprehensively 
understand the relationship between predictive variables and focal outcomes. 

For the Durbin–Watson test on independent variables, the independent variables were 
(constant), NDVI, CP, NL, WA, FA, TEMP, SA, GA, PRE, IA, POP, BA, and SIA. The dependent 
variable was the total TRA. 

Table 4. Machine Learning Accuracy Metrics. 

R R2 Adjusted R2 Errors in standard estimatesDurbin–Watson Test
0.9390.881 0.877 2078.984 0.814 

4.3.2. Spearman correlation analysis  

As seen in Figure 5, there were no significant differences between the total TRA and IA, NDVI, 
or PRE, whereas strong correlations existed between the total TRA and other variables. Specifically, 
the correlation coefficients between TRA and CP, FA, SA, GA, WA, SIA, BA, POP, and TEMP were 
all positive, indicating a positive correlation. In other words, as the TRA value increased, the values 
of these variables also increased. Notably, the correlation coefficients between the total TRA and IA, 
PRE, and NDVI were low, indicating a weak relationship between these variables and TRA. This was 
not consistent with a significant relationship. The strongest correlation coefficient was between the 
total TRA and SA, indicating a very strong positive correlation between these two variables. Based 
on the above analysis, some conclusions could be drawn, such as there is a strong correlation between 
the total TRA and SA, GA, and FA. After conducting Spearman correlation analysis, the variables CP, 
FA, SA, GA, WA, IA, NL, PRE, TEMP, and NDVI were selected for inclusion in the multicollinearity 
evaluation. 

 
Figure 5. Spearman correlation heat map of influencing factors and the total TRA in the YRB. The 
definitions for the abbreviated variables can be found in Table 1. 
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4.3.3. Multicollinearity diagnosis 

Based on the multicollinearity diagnosis conducted using SPSS 26, we determined that the 
variables retained after removing the non-compliant driving force factors (SIA, BA, Pop) met the 
criteria. In Table 5, the "Collinearity Statistics" column displays the tolerance and VIF values, 
indicating the absence of significant multicollinearity among the variables. All VIF values of the 
independent variables were below five, and the tolerance values were all above 0.1. Consequently, 
we concluded that there were no noteworthy collinearity issues in the driving force analysis of this 
study that necessitated special attention. It is important to note that collinearity is a significant factor 
that can impact the outcomes of regression analysis. Hence, during related research, it is essential to 
adequately address collinearity concerns and undertake effective diagnosis and mitigation. This 
study diligently analyzed and managed collinearity issues to ensure the reliability and precision of 
the results. 

Table 5. Multicollinearity evaluation results. The definitions of the abbreviated variables can be found 
in Table 1. 

Model 
Unstandardized 

Coefficients 
Standardized 
Coefficients t p 

Collinearity 
Statistics 

B SE Beta Tolerance VIF 
(Constant) -698.683 435.9  -1.603 0.110   

CP 5.664 0.728 0.243 7.783 0.000 0.314 3.185 
FA -0.383 0.698 -0.015 -0.549 0.584 0.401 2.493 
SA 18.227 1.394 0.415 13.079 0.000 0.305 3.281 
GA 4.467 0.169 0.834 26.432 0.000 0.308 3.248 
WA -30.728 2.105 -0.382 -14.595 0.000 0.448 2.231 
IA -7.970 7.819 -0.036 -1.019 0.309 0.251 3.979 
NL 0.933 0.513 0.061 1.82 0.069 0.274 3.647 
PRE 0.016 1.122 0.000 0.014 0.989 0.284 3.516 

TEMP 8.166 29.966 0.008 0.273 0.785 0.373 2.680 
NDVI -578.482 1329.254 -0.015 -0.435 0.664 0.259 3.862 

4.4. Linear Mixed Model (LMM) Analysis 

Following the multicollinearity evaluation using SPSS 26, the driving force factors that passed 
the test were taken as independent variables, whereas TRA served as the dependent variable and the 
years were utilized as the repeated factors for the LMM. Upon analyzing the results in Table 6, CP, 
SA, and GA were selected, with all three having a significance level of less than 0.05. This selection 
process streamlined the equation and enhanced its practicality. Subsequently, these chosen variables 
were refitted, leading to the outcomes presented in Table 7. Based on the analysis of the data in Table 
7, the variables CP, SA, and GA exerted a significant positive influence on the dependent variable 
within the model, demonstrated by their positive coefficients. Furthermore, the R-squared value of 
the model stood at 0.416, indicating that these variables accounted for 41.6% of the variability in the 
dependent variable. Consequently, it can be concluded that CP, SA, and GA hold a substantial 
positive impact on the dependent variable when the total TRA is used as the outcome variable. It is 
worth noting that the R-squared value of the model was not particularly high, prompting this study 
to consider employing a random forest model, as elaborated in the upcoming section. 
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Table 6. Effective variable selection and LMM fitting results. The definitions of the abbreviated 
variables can be found in Table 1. 

Coefficient Estimation Standard Error 
Degrees of 
Freedom 

t Significance 
Confidence Interval 

Lower Limit Upper Limit 
intercept -549.804 831.325 92.159 -0.661 0.510 -2200.850 1101.242 

CP 6.020 1.346 118.460 4.472 0.000 3.354 8.685 
SA 7.613 2.061 227.015 3.694 0.000 3.552 11.675 
GA 1.040 0.369 90.456 2.816 0.006 0.306 1.774 
FA 1.898 1.996 58.803 0.951 0.346 -2.096 5.894 
IA 7.572 8.877 205.494 0.853 0.395 -9.930 25.076 
NL 0.512 0.715 194.384 0.716 0.475 -0.898 1.923 

NDVI -726.050 1420.014 285.714 -0.511 0.610 -3521.070 2068.965 
PRE -0.369 1.043 308.927 -0.354 0.724 -2.422 1.683 

TEMP -13.734 61.226 134.584 -0.224 0.823 -134.824 107.355 
WA -0.139 4.233 97.060 -0.033 0.974 -8.541 8.262 

Table 7. Top three significant variables from the initial model and results of the LMM fitting. The 
definitions of the abbreviated variables can be found in Table 1. 

Coefficient Estimation Standard Error 
Degrees of 
Freedom t Significance 

Confidence Interval 
Lower Limit Upper Limit 

Intercept -759.448 543.901 51.552 -1.396 0.169 -1851.090 332.197 
CP 5.796 1.191 118.419 4.869 0.000 3.439 8.154 
SA 8.641 1.717 197.685 5.032 0.000 5.254 12.027 
GA 1.216 0.311 61.801 3.913 0.000 0.595 1.837 

4.5. Random Forest Model 

4.5.1. Optimizing the model through variable importance assessment 

To enhance the precision of the study, both an LMM and a random forest model were employed 
for analysis. Given the relatively low R-squared value of the linear mixed model, a deliberate effort 
was made to bolster the study's reliability by means of comparative analysis involving multiple 
models. Initially, a rigorous process involving the screening of variables for multicollinearity was 
carried out, followed by diagnostic assessments. Subsequently, the importance of each variable was 
evaluated through simulation using the random forest regression model, with the results depicted in 
Figure 6a. Based on these outcomes, the three most critical variables, namely, CP, SA, and GA, were 
selected. Subsequently, an in-depth simulation using the random forest model was conducted to 
explore their impact on the study, with the corresponding results presented in Figure 6b. Specifically, 
the significance of SA accounted for 43.0%, GA accounted for 44.0%, and CP accounted for 13.0%.  
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Figure 6. This figure illustrates the feature importance in random forest regression: (a) importance of 
variables in the model established with variables identified through multicollinearity evaluation, (b) 
importance of the top three variables when only using the three variables to establish model. The 
definitions of the abbreviated variables can be found in Table 1. 

4.5.2. Evaluation of accuracy metrics for the random forest model 

As shown in Figure 7, the evaluation results of the random forest model indicated that both the 
training and testing sets exhibited relatively low values for MSE (mean squared error), RMSE (root 
mean squared error), and MAE (mean absolute error), suggesting minimal predictive errors for the 
model. Additionally, the MAPE (mean absolute percentage error) was also relatively low, indicating 
modest prediction errors in relation to the actual values. The R² (coefficient of determination) values 
on the training and testing sets were 0.983 and 0.86, respectively. In comparison with the R² value of 
0.416 obtained by the LMM model, the random forest model demonstrated superior performance. 

 

Figure 7. Prediction results and accuracy metrics for the random forest model used with the training 
and testing sets. The dashed line in Figure 7 is used to distinguish between the testing set and the 
training set. 

5. Discussion 

5.1. Advantages of Utilizing GEE for Terrace Interpretation and Analyzing Spatiotemporal Variability of 
TRAs 

In this study, we utilize the GEE platform to address the limitations of traditional remote sensing 
monitoring of terraces. Its integration with Google servers simplifies online processing and eliminates 
time-consuming data preparation [28]. GEE provides direct access to global Landsat reflectance data, 
providing real-time updates and simplified pre-processing. Its powerful server can efficiently process 
large-scale remote sensing data [29] and is supported by user-friendly built-in tools [30]. GEE 
overcomes spatiotemporal challenges and maintains high accuracy, precision, and recall. In this 
study, we built a total of seven models covering the period from 1990 to 2020. The accuracy of these 
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models is generally similar, although there are slight differences. Among them, the 2015 model 
performed the best, while the 1990 model had relatively low accuracy. This difference can be 
attributed to the fact that the model in this study was trained on manually collected samples and 
used Landsat 5 satellite data from 1990 to 2010, while Landsat 7 satellite data was used in 2015 and 
2020. 

Cao et al. [31], using GEE and multi-source data, created a high-resolution terraced-field map 
for all of China. This achievement informed our research. Yang et al. [32] combined random forest 
classifiers and phenological data to enhance accuracy and depict historical land use changes. Our 
study maximized GEE capabilities by merging DEM and Landsat data to calculate indices such as 
NDVI and KNDWI. Using random forest, we improved TRA identification. GEE streamlined TRA 
extraction, advancing our research. Our study applied random forest in machine learning to identify 
TRAs in the YRB. Our model displayed impressive predictive accuracy, which is crucial for informed 
decisions and strategies. It excelled in the measures of precision, recall, and F1 score [33], affirming 
its robustness [34]. Effective feature selection and training contributed to this success. Rigorous 
preprocessing and validation ensured reliability. Overall, our study demonstrated the model's 
reliability. 

5.2. Spatiotemporal Variation Patterns of TRA in the YRB 

When examining the spatiotemporal shifts depicted in Figure 8, we can discern diverse trends 
in the total TRA size across distinct regions over the preceding decades. Notably, certain areas 
experienced TRA growth within specific periods, followed by subsequent decline, whereas other 
regions showed distinctive evolving patterns. Terraced fields, as a historically significant form of 
agriculture, appear to have been influenced by various aspects of modern agricultural development. 
According to the research of Pepe et al. [35], Yang et al. [36], and Claessens et al. [37], fluctuations in 
terraced-field areas (TRAs) seem to be associated with diverse factors, including local natural 
conditions, land use patterns, agricultural techniques, and economic development levels. For 
instance, certain locales may have implemented strategies for terraced-field conservation and 
restoration during particular timeframes, resulting in TRA expansion. Furthermore, Figure 3 shows 
the continuity of spatial and temporal terraced field patterns within the YRB over the last few 
decades. This resilience underscores the traditional essence and relative stability of terraced 
cultivation in the region. As shown in Table 3, the coefficient of variation in TRA distribution was 
used to elucidate the disparities in TRA variation among different provinces in China. Dong et al. 
[38] discovered that regions with higher stability may hold relative advantages in agricultural 
management and policy implementation, whereas areas with greater volatility might require more 
adaptive coping strategies. Consequently, in regions such as Shanxi and Gansu, there could be better 
performance in agricultural management and policy execution. 

Through spatial autocorrelation analysis, we found a certain degree of spatial correlation in the 
distribution of terraced fields in the YRB, indicating that the distribution of TRAs was not entirely 
random. Particularly in the midstream areas of the YRB, a high–high (HH) clustering trend exists, 
where adjacent areas have relatively larger TRA values. However, in the downstream regions of the 
YRB, the spatial correlation of the TRAs is lower and there are significant differences in TRA values 
among neighboring areas. According to the research findings of Wang et al. [39] on land use in the 
YRB, this phenomenon is likely attributable to various factors including geography, climate, and land 
use. Based on observations from the Moran scatter plots and cluster maps, our model demonstrated 
a high level of predictive accuracy, with most scatter points closely aligned with the y=x line, 
indicating that the predicted results aligned well with actual observations and further confirming the 
model’s strong accuracy. 
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Figure 8. Fluctuations in TRA size at the provincial level in the YRB from 1990 to 2020. 

5.3. Driving force factors of TRA Changes in the YRB 

The comparison between the random forest model and the LMM highlights the clear advantages 
of the random forest approach. In terms of predictive performance, the R-squared value of the LMM 
model was relatively modest at 0.416. In contrast, the random forest model excelled with significantly 
higher R-squared values of 0.983 on the training set and 0.860 on the testing set. This substantial 
improvement in predictive accuracy on both datasets underscores the effectiveness of the random 
forest methodology in capturing complex relationships within the data. It suggests that the random 
forest model's ability to handle non-linearities and interactions leads to a more accurate 
representation of the underlying patterns compared with the LMM. Consequently, the random forest 
model emerged as a robust choice for modeling the given dataset and achieving superior predictive 
outcomes. 

Through our model analysis, we drew the conclusion that the primary factors influencing TRA 
size included SA, GA, and CP. These findings provide crucial insights for a deeper understanding 
and interpretation of the driving forces behind TRA changes. Additionally, in the study conducted 
by Yang et al. [32], it was revealed that over the past thirty years, the proportions of rice cultivation 
in the Honghe Hani terraced fields were 10.651%, 8.810%, and 5.711%, respectively. Notably, these 
areas underwent conversion into forests, shrublands, or grasslands, aligning harmoniously with the 
conclusions of our study. Furthermore, the research by Zhou et al. [40] highlighted that land 
consolidation predominantly contributed to the expansion of cultivated terraced-land areas. These 
findings collectively substantiate the conclusions of our study, indicating that farmland, shrubbery, 
and grasslands exert a positive impact on the extent of terraced terrain. 

Firstly, the impact of SA on TRA may be related to the root characteristics. The root systems of 
shrubs contribute to stabilizing soil, preventing soil erosion, and facilitating water penetration and 
retention, thereby providing a dependable water resource for the TRA. Additionally, SA offers 
shading, reducing the evaporative water loss from TRAs, promoting water retention capacity and 
enhancing crop growth [41]. Secondly, GA plays a crucial role within the terraced ecosystem. The 
coverage of GA vegetation effectively prevents soil erosion, maintaining the integrity of the terraced 
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structures. GA also aids in the accumulation of organic matter, improving soil quality, enhancing 
water retention capacity, and providing abundant nutrients for TRAs. Lastly, the influence of CP on 
TRAs could be attributed to the fact that agricultural activities, including cultivation and planting, 
directly increase the extent of TRAs. The development and effective utilization of CP expands the 
coverage of a TRA, thereby enlarging its extent.  

6. Conclusions 

In summary, the integration of the GEE platform and the random forest model enabled a rapid 
and efficient interpretation of terraced fields. Furthermore, a comprehensive analysis of the 
spatiotemporal variations in TRA within the YRB revealed that, overall, TRA in the YRB exhibited a 
relatively stable trend. Provinces such as Gansu, Qinghai, Shaanxi, and Shanxi showed an increasing 
trend for TRA, whereas others displayed a decreasing trend. Spatial autocorrelation analysis 
indicated that between 1990 and 2005, the Moran's index for TRAs within the YRB gradually 
decreased, suggesting a reduction in regional disparities; however, this trend was reversed, and the 
values increased from 2005 to 2020. The distribution of terrace fields in the YRB exhibited a certain 
degree of spatial correlation, implying that the distribution of TRA was not entirely random. 
Additionally, no high–low (HL) clusters were observed in the past 30 years. By using LMM and the 
random forest model to fit the TRA data, it was found that the random forest model outperformed 
the LMM in all accuracy indicators. In terms of the R2 value, the random forest model performed 
better, with a value of 0.983; it reached 0.860 on the testing set. This suggests that the random forest 
model provides a more effective explanation of the data. These practical findings can play a pivotal 
role in policy formulation and decision making, offering a scientific foundation for the pursuit of 
regional ecological balance and sustainable development objectives. 

Author Contributions: Conceptualization, Z.L. and J.T.; methodology, Z.L. and Q.Y.; validation, Z.L., J.T., and 
Q.Y.; formal analysis, Z.L. and X.F.; investigation, L.Z., Y.W., and J.W.; resources, Z.L., J.T., and J.L.; data 
curation, Z.L. and Q.Y.; writing—original draft preparation, Z.L.; writing—review and editing, Z.L. and J.T.; 
visualization, Z.L.; supervision, J.T.; project administration, J.T.; funding acquisition, J.T. All authors have read 
and agreed to the published version of the manuscript. 

Funding: This research was funded by the National Natural Science Foundation of China (Project No.31960330 
and Project No.31560232). 

Data Availability Statement: The data presented in this study are available on reasonable request from the 
corresponding author. 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 

1. Peng, T.; Xiaojing, T.; Ren, G.; Guangju, Z.; Lin, Y.; Xingmin, M.; Peng, G.; Wenyi, S.; Yulin, L. Response of 
soil erosion to vegetation restoration and terracing on the Loess Plateau. Catena 2023, 227. 

2. Haiyan, F. Effect of soil conservation measures and slope on runoff, soil, TN, and TP losses from cultivated 
lands in northern China. Ecological Indicators 2021, 126. 

3. Arigaw, A.K.; Bedewi, S.A.; Yohannes, M.D. Sediment yield responses to land use land cover change and 
developing best management practices in the upper Gidabo dam watershed. Sustainable Water Resources 
Management 2023, 9. 

4. Jayanta, L.; Anup, D.; Kumar, G.P.; Krishnappa, R.; Rattan, L.; Gandhiji, I.R.; Prasad, N.C.; Utpal, D. Double 
no-till and rice straw retention in terraced sloping lands improves water content, soil health and 
productivity of lentil in Himalayan foothills. Soil & Tillage Research 2022, 221. 

5. Xiaopeng, S.; Xin, S.; Jianjun, Y.; Yangyang, Z.; Ziqiang, Y.; Guibin, Z.; K., A.L.; Feng, Z.; Feng-Min, L. Yield 
benefits from joint application of manure and inorganic fertilizer in a long-term field pea, wheat and potato 
crop rotation. Field Crops Research 2023, 294. 

6. Dan, W.; Wei, W.; Zongshan, L.; Qindi, Z. Coupling Effects of Terracing and Vegetation on Soil Ecosystem 
Multifunctionality in the Loess Plateau, China. Sustainability 2023, 15. 

7. Mengli, M.; En, L.; Tiantao, W.; Hengling, M.; Wei, Z.; Bingyue, L. Genetic Diversity and Association 
Mapping of Grain-Size Traits in Rice Landraces from the Honghe Hani Rice Terraces System in Yunnan 
Province. Plants (Basel, Switzerland) 2023, 12. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 September 2023                   doi:10.20944/preprints202309.0970.v1

https://doi.org/10.20944/preprints202309.0970.v1


 19 

 

8. Tarolli, P.; Preti, F.; Romano, N. Terraced landscapes: From an old best practice to a potential hazard for 
soil degradation due to land abandonment. Anthropocene 2014, 6. 

9. Wendi, W.; Eugenio, S.; Paolo, T. Steep-slope viticulture: The effectiveness of micro-water storage in 
improving the resilience to weather extremes. Agricultural Water Management 2023, 286. 

10. Hopkins, A.J.; Snyder, N.P. Performance evaluation of three DEM-based fluvial terrace mapping methods. 
Earth Surface Processes and Landforms 2016, 41. 

11. Yuanmei, Z.Y.Y.S.L.Z.L.H.H. Effect of narrow terrace on gully erosion in Northern Shaanxi Loess area. 
Editorial Office of Transactions of the Chinese Society of Agricultural Engineering 2015, 31. 

12. Meng, Y.; Yangbing, L.; Guangjie, L.; Limin, Y.; Mei, C. Agroecosystem composition and landscape 
ecological risk evolution of rice terraces in the southern mountains, China. Ecological Indicators 2022, 145. 

13. Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth 
System Science Data 2021, 13, 3907-3925. 

14. Edwin, W.H.; R., O.P.; Tulsi, K.; Amanda, A.; Zamir, L. Identification and Delineation of Broad-Base 
Agricultural Terraces in Flat Landscapes in Northeastern Oklahoma, USA. Land 2023, 12. 

15. Feng-bo, L.; Guang-de, L.; Xi-yue, Z.; Hui-xiang, N.; Chun-chun, X.; Chao, Y.; Xiu-mei, Y.; Jin-fei, F.; Fu-
ping, F. Elevation and Land Use Types Have Significant Impacts on Spatial Variability of Soil Organic 
Matter Content in Hani Terraced Field of Yuanyang County, China. Rice Science 2015, 22. 

16. João, R.; André, D.; Sérgio, F.; Ana, Q.; Dalila, S. Influence of DEM Resolution on the Hydrological 
Responses of a Terraced Catchment: An Exploratory Modelling Approach. Remote Sensing 2022, 15. 

17. Yan, Z.; Yujun, W.; Shuwei, S.; Xiaodong, C. Quantifying Interregional Flows of Ecosystem Services to 
Enhance Water Security in the Yellow River Basin, China. Journal of Water Resources Planning and 
Management 2023, 149. 

18. Lingling, W.; Wenyi, Y.; Peiqing, X.; Xinxin, H. The Spatiotemporal Characteristics of Flow-Sediment 
Relationships in a Hilly Watershed of the Chinese Loess Plateau. International journal of environmental 
research and public health 2022, 19. 

19. THE EFFECT OF A SMALL INITIAL DISTORTION OF THE BASIC FLOW ON THE SUBCRITICAL 
TRANSITION IN PLANE POISEUILLE FLOW. Quarterly of Applied Mathematics 2001, 59. 

20. Xiaolei, W.; Shouhai, S.; Xue, Z.; Zirong, H.; Mei, H.; Lei, X. Detecting Spatially Non-Stationary between 
Vegetation and Related Factors in the Yellow River Basin from 1986 to 2021 Using Multiscale 
Geographically Weighted Regression Based on Landsat. Remote Sensing 2022, 14. 

21. Tianqi, R.; Pengyan, Z.; Guanghui, L.; Qianxu, W.; Hongtao, Z.; Yinghui, C.; Ying, Z. Spatial correlation 
evolution and prediction scenario of land use carbon emissions in the Yellow River Basin. Ecological 
Indicators 2023, 154. 

22. Wenping, F.; Xueyan, S.; Mengnan, L.; Baoyan, S.; Mingliang, M.; Yan, L. Spatio-temporal evolution of 
resources and environmental carrying capacity and its influencing factors -A case study of shandong 
peninsula urban agglomeration. Environmental research 2023. 

23. Huibo, Q.; Xinyi, S.; Fei, L.; Meijuan, L.; Xiaowei, G. Spatial-temporal characteristics and influencing factors 
of county-level carbon emissions in Zhejiang Province, China. Environmental science and pollution research 
international 2022, 30. 

24. Xiong, L.; Wang, F.; Cheng, B.; Yu, C. Identifying factors influencing the forestry production efficiency in 
Northwest China. Resources, Conservation & Recycling 2018, 130. 

25. Qiqi, Y.; Lijie, P.; Caixia, J.; Guofang, G.; Hongmei, T.; Xiaoqing, W.; Gaili, H. Unveiling the spatial-temporal 
variation of urban land use efficiency of Yangtze River Economic Belt in China under carbon emission 
constraints. Frontiers in Environmental Science 2023. 

26. Wu, Y.H. Analysis on Spatial Difference of the Rural Resident’s per Capita Net Income in Qinhuangdao 
City Based on ESDA. Advanced Materials Research 2014, 3248. 

27. Min, Z.; Haiyun, T.; Ehsan, E.; Zainab, K.; Kaili, W.; Nimra, N. Spatial-Temporal Changes and Influencing 
Factors of Ecological Protection Levels in the Middle and Lower Reaches of the Yellow River. Sustainability 
2022, 14. 

28. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-
scale geospatial analysis for everyone. Remote Sensing of Environment 2017, 202. 

29. Jiaqi, C.; Yulong, G.; Qiang, X.; Donghao, L.; Weiqiang, C.; Lingfei, S.; Guangxing, J.; Ling, L. Extraction of 
Information on the Flooding Extent of Agricultural Land in Henan Province Based on Multi-Source Remote 
Sensing Images and Google Earth Engine. Agronomy 2023, 13. 

30. Paulina, Z.; Ewa, D.; Kamil, M. Accuracy of the evaluation of forest areas based on Landsat data using free 
software. Folia Forestalia Polonica 2023, 65. 

31. Bowen, C.; Le, Y.; Victoria, N.; Philippe, C.; Wei, L.; Yuanyuan, Z.; Wei, W.; Die, C.; Zhuang, L.; Peng, G. A 
30m terrace mapping in China using Landsat 8 imagery and digital elevation model based on the Google 
Earth Engine. Earth System Science Data 2021, 13. 

32. Yang, J.; Xu, J.; Zhou, Y.; Zhai, D.; Chen, H.; Li, Q.; Zhao, G. Paddy Rice Phenological Mapping throughout 
30-Years Satellite Images in the Honghe Hani Rice Terraces. Remote Sensing 2023, 15. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 September 2023                   doi:10.20944/preprints202309.0970.v1

https://doi.org/10.20944/preprints202309.0970.v1


 20 

 

33. Machine Learning; Investigators at University of Technology Sydney Detail Findings in Machine Learning 
(A Comparative Analysis of Machine Learning Models for Quality Pillar Assessment of Saas Services By 
Multi-class Text Classification of Users' Reviews). Computer Weekly News 2020. 

34. Kynkäänniemi, T.; Karras, T.; Laine, S.; Lehtinen, J.; Aila, T. Improved Precision and Recall Metric for 
Assessing Generative Models. CoRR 2019, abs/1904.06991. 

35. Pepe, G.; Mandarino, A.; Raso, E.; Scarpellini, P.; Brandolini, P.; Cevasco, A. Investigation on farmland 
abandonment of terraced slopes using multitemporal data sources comparison and its implication on 
hydro-geomorphological processes. Water 2019, 11, 1552. 

36. Yang, K.; Lu, C. Evaluation of land-use change effects on runoff and soil erosion of a hilly basin—the Yanhe 
River in the Chinese Loess Plateau. Land Degradation & Development 2018, 29, 1211-1221. 

37. Claessens, L.; Stoorvogel, J.; Antle, J. Exploring the impacts of field interactions on an integrated assessment 
of terraced crop systems in the Peruvian Andes. Journal of Land Use Science 2010, 5, 259-275. 

38. Dong, S.; Xin, L.; Li, S.; Xie, H.; Zhao, Y.; Wang, X.; Li, X.; Song, H.; Lu, Y. Extent and spatial distribution 
of terrace abandonment in China. Journal of Geographical Sciences 2023, 33, 1361-1376. 

39. Wang, S.-Y.; Liu, J.-S.; Ma, T.-B. Dynamics and changes in spatial patterns of land use in Yellow River Basin, 
China. Land Use Policy 2010, 27, 313-323. 

40. Jian, Z.; Chao, L.; Xiaotong, C.; Chenying, L. Is Cultivated Land Increased by Land Consolidation 
Sustainably Used in Mountainous Areas? Land 2022, 11. 

41. Huisheng, Y.; Ge, S.; Tong, L.; Yanjun, L. Spatial Pattern Characteristics and Influencing Factors of Green 
Use Efficiency of Urban Construction Land in Jilin Province. Complexity 2020, 2020. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 
products referred to in the content. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 September 2023                   doi:10.20944/preprints202309.0970.v1

https://doi.org/10.20944/preprints202309.0970.v1

