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Abstract: We consider a stochastic production planning problem with regime switching. There are
k > 1 regimes corresponding to different economic cycles. The problem is to minimize the production
costs and analyze the problem by the value function approach. Our main contribution is to show that
the optimal production is characterized by an exact solution of an elliptic system of partial differential
equations. A verification result is given for the determined solution.

Keywords: production planning; regime switching; PDE system

1. Introduction and proposal of the paper

We consider a factory producing N > 1 types of economic goods that stores them in an
inventory-designated place. The model is described mathematically in the next.
Let (Q), F,F,P) be a complete filtered probability space, where P is the historical probability and

F={F|te[0,0)},

is generated by an RN-valued Brownian motion denoted by w = (wy, ..., wy) with respect to the
probability P.

In the production planning problem, the regime switching is captured by a continuous time
homogeneous Markov chain ¢ (¢) adapted to F that can take k different values, modelling k regimes
which should be noted by 1, 2, ..., k. The Markov chain’s rate matrix that denotes the strongly ireductible
generator of ¢, is denoted by G = [8;{]5.x where

9y = —a;; < 0forall i, 191']' = ajj > 0foralli # j,

and the diagonal elements ¢;; may be expressed as

0 = _]Eiﬂij- @
In this case, if P; (t) = E[e(t)] € R, then
ap(t) _
T Ge(t). 2)
Moreover, ¢(t) it is explicitly described by the integral form
t
e(t) = £(0) + / Ge(u) du + M(1), 3)
0

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202309.0965.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 September 2023 doi:10.20944/preprints202309.0965.v1

20f12

where M(t) is a martingale with respect to F. Here and hereafter, we use the notation from other
papers to keep the applicative character of the problem,

p () = (pr(t), - pn(t)),

represent the production rate at time f (control variable) adjusted for the demand rate.
These adjusted for demand inventory levels are modeled by the following system of stochastic
differential equations

dyi(t) = pidt + oy dw;, yi(0) = yfori=1,..,N, 4)

where y;(t) is an It6 process in R (i.e., the inventory level of good i, at times ¢, adjusted for demand), p;
is the deterministic part, 0;(;) is a random regime-dependent constant (non-zero) diffusion coefficient
taking on the values 01, 03, ... , 0k and 1V is the initial condition (i.e., initial inventory level of goods i).
The stochasticity here is due to demand adjustment, which is random and dependent on the
regime. This is the most commonly used process when the demand is more volatile in some periods
(e.g., some states of the Markov chain) and less volatile in other periods.
The performance over time of a demand-adjusted production

p(t) = (pr(t), - pn (1)),

is measured by means of its cost. At this point, we introduce the cost functional which yields the cost

H(rreespa) = E [ pOF + () P)e™0"at,y(t) = (1 (0), - y(0), ®

which measures the quadratic loss.

We measure deviations from the demand, from what place the loss. Here a. () is a regime
dependent, taking on the values ay > 0, ap > 0, ... , ax > 0, constant psychological rate of time
discount from what place the exponential discounting.

At the moment, we are ready to frame our objective, which is to minimize the cost functional, i.e.,

Jinf T (1), ©)
subject to the It6 equation (4).

This model problem was proposed by Bensoussan, Sethi, Vickson and Derzko [1] in the context
of no regime switching in the economy and for the case of a factory producing one type of economic
goods. Later, many other authors are concerned with regime switching.

In production management, Cadenillas, Lakner and Pinedo [2] adapted the model problem in [1]
to study the optimal production stochastic control planning problem of a company within an economy
characterized by the two-state regime switching with limited /unlimited information. Later, Dong,
Malikopoulos, Djouadi and Kuruganti [9] applied in the civil engineering the model described by [2]
to the study of the optimal stochastic control problem for home energy systems with solar and energy
storage devices when the demand is subject to Brownian motion; the two switching regimes are the
peak and off peak energy demand.

A good deal of attention to this subject has been also devoted by Pirvu and Zhang [17] where the
authors studied the effect of high versus low discount rates to a consumption-investment decision
problem.

After that, there have been numerous applications of regime switching in many important
problems in economics, operations research, actuarial science, finance, reinsurance, and other fields,
see the works of: Capponi and Figueroa-Lépez [3], Elliott and Hamada [11], Gharbi and Kenne [13],
Yao, Zhang and Zhou [22] and Wang, Chang and Fang [23] for more details.
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There are of course other research studies that may also serve to better explain the importance of
regime switching in the real world.

In a precursor to this article, Covei and Pirvu [5], formulate and analyze the production-planning
problem in the continuous time case, with no regime switching in the economy over an infinite time.
In the paper [7], the author improved the results of [5], in the sense that the value function in the
production model is given in the closed form. Related works that deal with no regime switching in the
economy are Sheng-Zhu-Wang [20] and Qin-Bai-Ralescu [18].

Recently, Canepa, Covei and Pirvu [4], considered the production planning problem with regime
switching in the economy over a finite horizon time. Here, the solution is obtained through numerical
approaches. Although a closed form expression for the corresponding case of regime switching on a
particular state space consisting of two regimes over an infinite horizon time is available in the paper
of [6]. So, at least one question suggested by the paper of [14] has some nice features: can we obtain a
closed form solution when the state space consists of several numbers of states? Our present paper
fills the gap in the literature by proving a closed form solution to the stochastic production planning
problem with regime switching in the economy over an infinite horizon in a general state space.

The technique presented in this paper makes a methodological contribution that is of independent
interest in other considerable number of works on regime switching.

To conclude this introduction, our paper is structured as follows. In Section 2 we give the
relationship of our model with a system of partial differential equations (PDE system). Section 3
presents a closed form solution and the uniqueness of solution for our production planning problem.
A numerical approximation of the solution for the production planning problem is also given in
Section 4. In Section 5 we present a verification result. We introduced in Section 6 the equilibrium
production rates as the the subgame perfect production rates. They are the output of an interpersonal
game between the present self and future selves. The equilibrium production rates are time consistent
meaning there is no incentive to deviate from them. It turns out that in our setting the optimal
production rates are among the equilibrium ones so they are time consistent. In Section 7, we give
some applications. Finally, in Section 8 we want to discuss our strategy.

Having presented the model that we want to solve, now we provide our means to tackle it.

2. Reduction of the model to a PDE system

Our approach is based on the value function and dynamic programming, which leads to the
Hamilton-Jacobi-Bellman (HJB) system of equations.

To characterize the value function, we apply the probabilistic approach. We search for functions
V (x,1), ..., V (x,k) such that the stochastic process S?(t) defined below

SP(t) = e "0V (y () e(t)) — /Ot[liﬂ(S)l2 + [y (s)[le” "  ds, @)

is supermartingale for all

p () = (p1(t), - pn(H)),

and martingale for the optimal control

As shown by [5], if this is achieved, with the following transversality condition

lim E[e™*0'V (y (t), (t))] = 0, ®)

t—o0

and some estimates on the value function yield that

= V(x,i) =inf] (p1, .. pn), ©)
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where x = (x1,...,xy) € RN assumes values
(y1(0), -, yn (0)).
Once such a function is found, it turns out that (u1, ..., u;) with
ur(x) ==V (x,1), .., up(x) = =V (xk),
is the value function. We search for uj,...,u; the functions in C2 [0,00), and the

supermartingale/martingale requirement yields by using It6’s Lemma for Markov modulated
diffusion, the HJB system of equations, which characterizes the value function

2 : 2
%Aul m ’x‘z 1Il}f{qu1+ |p| }
— +Gau | o | — = , (10)
2 2 . 2
% Auy, U | x| lrr}f{quk +pl7}
where
app+ap —dip .. a4
—a dayy +ay ... —a
Gan = 21 22 + a2 2k
—Ag1 —Ary .. g ok

For the transformation of the HJB system, it is essential to observe that

. 2y 1 2 .

1rr}f{qui +pI°} = ~2 |Vu;|=, i=1,2,..,k (11)
Thus, the HJB system (10) can be written as a PDE system

2
—FAuy + (a1 + ar) uy — T g ayu; — |xP = =} [V 2,
(12)

o2 — 2 2
— % Ay + (age + ax) U — Zé‘:ll agu; — |x|° = —% Vug|®.

To perform the verification, i.e., show that the HJB system gives the solution to the optimization
problem, one should write (12) with the following boundary condition

up(x) — oo,..., ug(x) — 00, as |x| — oo. (13)

The value function will give us in turn the candidate optimal control. The first-order optimality
conditions on the left-hand side of (11) are sufficient for optimality since we deal with a quadratic
(convex) function and they produce the candidate optimal control as follows:

pi(t) =Py (5),-. . yn (1), (b)), i=1,.., N,

and
1 au]

Pi(x1, . XN, J) = 53y (x1,..,xn), forie {1,..,n}, je{1,.. k}. (14)

The production rate p; is allowed to be negative. A negative production rate would correspond to a
write-off or disposal of inventory (for example, due to obsolescence or perishability).
Our next goal of this paper is to determine the candidate optimal control in closed form.
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3. Closed form solution for the PDE system

In spite of their clear simplicity, the PDE system (12) with boundary conditions (13) presents
a host of mathematical difficulties arising from the presence of nonlinear gradient terms |V |?, ...,
|Viue|?, see for details [8].

The following result will be proved and is the main original element of the article.

Theorem 1. Assume that G, is a positive definite matrix with all elements of G, ! positive. Then, the PDE
system (12) with boundary condition (13) has a unique radially symmetric convex positive classical solution
with quadratic growth.

Proof of Theorem 1
In the following, we construct the function

(U1, ..., ux) € C2[0,00) X ... x C2[0,00),

which satisfies (12) with boundary condition (13). One way of solving this partial differential equation
is to show that there exists

(11 (x) ot () = (B 21”411, B [¥ P+ 776 ), With B, e Bio 11, ¢ € (0,00), (15)

that solves (1).
The main task for the proof of existence of (15) is performed by proving that there exists

ﬁl/ weey ﬁkl N1y Yk € (0/ OO) ’

such that

2
—B 4 (o ) (B2 ) = Dy e (B3P ) — P = = 281 [x))?,

2B No? ,
2B (g + ) (B 32+ ) — D g (B | +i) =[x = =% (2Be 1)),

or equivalently, after grouping the terms
x| [— Ci o anBi+ (a1 +a1)p1 + B3 — 1} — BiNo? — Y5, ayigi + (a11 + a1)p = 0,

Jx[? [ i1 @iPi+ (A + o) B+ B — 1] — BeNo — S agini + (@ + o) 7 = 0.
Now, we consider the system of equations
- Zﬁ-(:z amifi+ (a1 +a1)pr + P —1=0

Vi) aiBi + (ag + ) B+ pE —1=10 16)
_ﬁlNal Zi‘:z ayin; + (a1 + @)y =0

_ﬁkNUk Zl 1 kit + (akk + ak) e = 0.

To solve (16), we can rearrange those equations 1, ... , k such

o . —ag B1 1-p53
T (17)

—ay v A 0 Bk 1-—- ‘B%
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The arguments in [15,16] say that the system (17) has a unique positive solution. Next, letting

(B1, - Br) € (0,00) x ... x (0,00)

a unique solution of (17) we observe that the Equations k + 1, ... , 2k of (16) can be written equivalently
as
,BlNO’lz ay +ayp .. —aixk /Al
= N (18)

2
BrNo —Ag e gt Mk

from where using the fact that G, ! has all elements positive, we can see that there exist and are unique
N1, Nk € (0, 00) that solve (16) and then

(ug (%), e ug (X)),

solve (12). This finishes the proof of Theorem 1.

Because our solution depends on solving a non-linear algebraic system of equations the exact
solution of the PDE system cannot be determined using a computer software. In order to be
implemented the solution of the PDE system (12) in a software application in the next section it
is necessary to give the numerical approximation of solution to (16), and therefore the arguments in
[15,16] are used again.

4. Numerical solution of an algebraic nonlinear system in building the solution for the PDE
system

We intend to approximate B4, ..., Bx, 1, -, ffx € (0,00) in (15) by the Newton-Raphson method. To
do this, we denote

h1 (B1, - Bk) = — Thp a1iBi + (an +aq)p1+ B2 — 1,

e (19)
hie (B1y s B) = — L2 aaBi + (awe + ) Bre + B2 — 1,
and
app +ay+2B1 .. —a1x
Jhy,y) = ,
—ar 1 o Ok g + 2Pk

the Jacobian matrix of (19). For n = 1,2, ... we find the approximate of the unique parameters

(ﬁl,...,ﬁk) € (0,00) X oo X (0,00),
in the following way

—1
gt Bl ay +ag + 2% .. —ay hy (B, .., BY)

eee 7

Bit! B} —a o g+ g+ 287 hy (B, ., BY)

with B9, .., BY € (0,00). Clearly 71,..., 75 € (0, 00) are easy determined from (18).
Now we are moving on to the verification result which is also inspired from [6].

5. Verification

Next, we show that the control of (14) obtained in our reduction strategy is indeed optimal. We
apply the supermartingale and martingale approach.
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Repeating the same argument in [4], as the first step we can show that the stochastic process S ()

defined below ,
SP (1) = e "0V (y (t) e(1)) — / [1p(s) 2 + [y (s)[PJe™ 1" ds,
0
is supermartingale for all
p(t) = (p1(t), .. pn(1)),
and martingale for the optimal control

p*(t) = (pi(t), ., pn(t)).

Owing to the well-known It6 Lemma for Markov modulated diffusion (see [22] for more on this) we
have

ZAV (y(s),¢(5) = ly (5)* +p () VV (4 (), &(s))

— [P ()7 = (te(s) + e(s)e(s))V (v (5) £ (5))
+ i ag(s)iV (y (s),1)]ds +dZ(s),
i=1,i7#¢(s)

for some martingale Z(s), and Z(0) = 0. Therefore

r — p ' —e(5)S @ _ 2
ESP (1) S (0)+E[/0 e N[ =AV (Y (s) e(s) =y ()" + P (s) VV (y (s), (s))]ds]

+E[/Ofe—as<s>5{_ Ip (S)|2 _ (ocs(s) + ag(s)e(s))V (Y () € (s))]ds]
k

t
+E[/ e %} ag(s)iV (y (s),1)]ds].
0 i=1,ie(s)

Then, the claim yields considering HJB equation (10) and (12) which says that SP (¢) is martingale for
the optimal control and supermartingale otherwise. This last fact combined with the transversality
condition yields the claim.

In the second step, let us establish the optimality of (pj, ..., py). Considering the quadratic
estimate on the value function

V(x,1) = =By x> =11, e, V (,k) = =B |x]* — i, (20)

where B;, 17; € (0,00) are the solution of (16).
Let us provide a lower bound estimate for &, ..., a so that the transversality condition (8) is met

lim E[e~ 0|y (t) |*] = 0,

t—o0
holds true. The SDE system (4) in this case becomes
dyi (t) = _ﬁe(t)]/i (i’) dt + (rg(t)dWi(t),i =1,...N.

Using It6’s Lemma, one gets

d(y; (1)* = 2u; (¢)dy; () + dy; (t) dy; (¢) |
= [=2Ben (i (1) + 02t +2y; (1) oy d W' ().
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We introduce
Fi(t) = E[(vi ())]-

By taking expectations in the above equation, we get
! 2, 2 2
RO = | [ 2260 (0 () + o2l + (13 07
t
— | [ 2600 0 (92 + 2 | 7 0).

Let
Dy = max{alz,..., a,%}, D3 = max([(11 0))3, ..., [(yk (0)))).

Then, in the light of the above equation, we get

t
Fi(t) S/ D2d5+D3.
0

Hence, we have that

Fi(t) < Dyt + Ds.

Therefore, one must to choose a7, ..., ax € (0,0) for the transversality condition to hold true and the
proof is completed. Finally, a simple system of nonlinear equations (16) remains to be solved.

6. The Equilibrium Production

For a production rate {p;(t) }+>0 and its corresponding inventory level {y;(t) };>0 given by (4), we
introduce equilibrium production as the subgame perfect production in the definition below (for more
on this economic concept see [10]).

Definition 1. Let F = (F,i = 1,...N) : R x {1,2,...k} — RN be a vector map such that for any x > 0
andi€ {1,2,...,k}

SN T(e

liming) P —J(PD)

<0, 21
€l0 € - 1)

where the subgame perfect production
pi(s) := Fi(7i(s),(s))-
Here, the process {i;(s) }s>o is the inventory level process corresponding to {p;(s) }s>o. The production

rate { p€(s) }s>o is defined by
W@:v$LSEMMWm )

P
' Pi(s)/ S 6 EG,O/

with Eco = [0,€]; {pi(s) }seE., is any production rate. If (21) holds true, then p;(s),i =1...N,isa
subgame perfect production rate.

The equilibrium production are by design time consistent meaning that they will be implemented
at a future date even if the optimization criterion is updated. In some situations the optimal production
may be time inconsistent meaning that they will fail to be implemented in the future because they are
not optimal anymore if the optimization criterion is updated; they will be implementable only in the
presence of a commitment mechanism, that is why sometimes they are referred as pre commitment
production. Let us remark that in our setting the optimal production rate

i ie{l,..,N}, (23)

is a subgame perfect production with
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. 1 au]-
Fi(x,j) :== _Eaixi(x)’
since
(pji=1...N)=arg min J(p1,..,pN)
PPN

and thus (21) is automatically satisfied. Therefore the equilibrium production is time consistent.

7. Applications

We offer some applications, which also are inspired by the paper of Ghosh, Arapostathis, Marcus
[14].

Application 1. Suppose there is one machine producing two products and let ¢ (¢) the machine
state that can take values in two regimes 1=good and 2=bad, i.e., for every t € [0,0) we have
e (t) € {1,2}. We consider ¢ (t) a continuous time Markov chain with generator

)

and the inventory y; (t) which is governed by the It6 system of stochastic differential equations (4)
with the diffusion o7 = 0, = % and letag = ap = % the discount factor. Under these assumptions, the

an+war —an B\ _ [ 1-B
—ax@p  axp+a B2 1-45 )7

Bl +hL—3pr—1=0
B3~ 3Pt pa—1=0

NI—=
Nl—

system (17) becomes

or, with our data

which has a unique positive solution

ﬁlzl(\/ﬁfl)/ﬁzz

1 (vi7-1).

N

On the other hand the system (18) becomes

B1No? _ [ autar —an Uit
B2No2 —axy  a»+a mn )’
P _ 1 - % m
B2 -3 1 mn )’

which has a unique positive solution

or, with our data

4 2 1 2 4 1
ﬂ1:§ﬁ1+§ﬁ2:§(\/17—1), 17225,31‘1'5,5225 (V17_1)-
Then

V((x1,%2),1) = V ((x1,%2),2) = —31 (V17 -1) (3 +3) - % (vi7-1)

and furthermore, the production rate is

1
Pi(x1,32,) = =5 (m_ 1) x;, fori € {1,2}, j e {1,2}.
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We also give the approximate of 81, B2, 771, 2 by using the Newton-Raphson Method. Denote

hi (B1, B2) = —aaPo + (a11 +a1) 1 + B — 1
hy (B, B2) = —ax1P1 + (a2 + a2) o+ B3 — 1

[ 2+1 =}
](hlr---rhk) - _% 28,+1 )

and

We construct
-1
TN B [ an e+ 28] — a1k h (B, B3)
! B3 —g Ak + &g + 2B} o (81, B3)
By =p3=0.1.
Using the standard computation, approximations to four digits are

n=1= pl=14429 and Bl =14429
n=2= p2=09102 and B3 =0.9102
n=3= p3=07808 and B3 =0.7808
n=4= p;=07808 and B3 =0.7808

On the other hand
p1=pB2 =

Clearly, the approximations for #; and 7 are

(\/ﬁ - 1) ~0.7807.

I

7 =1 ~ 1.5616.

Application 2. Suppose there is one machine producing three products and let ¢ (¢) the machine
state that can take values in three regimes 1, 2, 3, i.e., for every t € [0,c0) we have ¢ () € {1,2,3}. We
consider ¢ (t) a continuous time Markov chain with generator

-3 3 0
4 -7 3 ,
0 4 -4

and the inventory y; (t) which is governed by (4) withoqy = 0y = 03 = % andleta; =ap = a3 =1
the discount factor. Under these assumptions, the system (17) becomes

an +1 —ay 0 B1 1-p7
—axp ap+ap+1  —an B | =1 1-8 |,
0 —a ap +1 B3 1- 53

or, with our data
B2+4p1 —3B—1=0
B3 +8B2—4P1—3B3—1=0
B3+5B83 4B —1=0

which has a unique positive solution

Br=po=pa=5 (V5-1).

N =

doi:10.20944/preprints202309.0965.v1
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On the other hand, the system (18) becomes

,BlNU’lz a1 + 1 —al1 0 m
BaNo3 | = —axp ap+tapp+1  —anp m |,
BsNo2 0 —a axn +1 13
or, with our data
B1 3+1 -3 0 m
B | = -4 44+3+1 -3 m |,
‘Bg 0 —4 441 13
from where
I N AN
3 B B 13 B3

has a unique positive solution
1
m=m=1s=5V5-
Then

V((x1,x2,%3),1) = V((x1,x2,%3),2) =V ((x1,x2,%3),3)
= —% (\/5—1> (x%+x§+x§+1)

and furthermore, the production rate is

1 .
Pi(x1,%2,%3,) = =5 (f5— 1) x;, fori € {1,2,3}, j € {1,2,3}.

We also point out that the numerical approximations for 81, B2, B3, using Newton-Raphson Method
described, are

n=1= pl=08418 B =1.017 PBL=1.2789

n=2= p2=06575 p3=06761 B3 =0.7066

n=3= p3=06192 B53=0619 pB3=0.6202

n=4=— p;=0618 p3=0618 pi=0618

when B{ =1, Y =2 and BJ = 3. Clearly % (\@ — 1) ~ 0.618.

8. Final Remark and Conclusion

When w; are correlated with correlation p, the HJB system (10) becomes

2 2 az . 2
FAuy Uy OF L 8xigalcj |x|? 1rr}f{qu1 +1pl}
T ESc T i g - . |= ,
2 2 2 . 2
% o e % L o g inf{pViue + |p’}

which has the same solution as (10), due to the mixed derivative terms (see [8] for details).

In summary, we have reduced the stochastic production-planning problem with several regime
switching in the economy to demonstrate that there is an exact solution for the PDE system which
models the stochastic production problem.
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