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Abstract: We consider a stochastic production planning problem with regime switching. There are

k ≥ 1 regimes corresponding to different economic cycles. The problem is to minimize the production

costs and analyze the problem by the value function approach. Our main contribution is to show that

the optimal production is characterized by an exact solution of an elliptic system of partial differential

equations. A verification result is given for the determined solution.

Keywords: production planning; regime switching; PDE system

1. Introduction and proposal of the paper

We consider a factory producing N ≥ 1 types of economic goods that stores them in an

inventory-designated place. The model is described mathematically in the next.

Let (Ω,F ,F,P) be a complete filtered probability space, where P is the historical probability and

F = {Ft| t ∈ [0, ∞)},

is generated by an R
N-valued Brownian motion denoted by w = (w1, ..., wN) with respect to the

probability P.

In the production planning problem, the regime switching is captured by a continuous time

homogeneous Markov chain ε (t) adapted to F that can take k different values, modelling k regimes

which should be noted by 1, 2, ..., k. The Markov chain’s rate matrix that denotes the strongly ireductible

generator of ε, is denoted by G = [ϑij]k×k where

ϑii = −aii < 0 for all i, ϑij = aij ≥ 0 for all i 6= j,

and the diagonal elements ϑii may be expressed as

ϑii = − Σ
j 6=i

ϑij. (1)

In this case, if Pt (t) = E[ε(t)] ∈ R, then

dPt(t)

dt
= Gε(t). (2)

Moreover, ε(t) it is explicitly described by the integral form

ε(t) = ε(0) +
∫ t

0
Gε(u) du + M(t), (3)
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where M(t) is a martingale with respect to F. Here and hereafter, we use the notation from other

papers to keep the applicative character of the problem,

p (t) = (p1(t), ..., pN(t)) ,

represent the production rate at time t (control variable) adjusted for the demand rate.

These adjusted for demand inventory levels are modeled by the following system of stochastic

differential equations

dyi(t) = pidt + σε(t)dwi, yi(0) = y0
i for i = 1, ..., N, (4)

where yi(t) is an Itô process in R (i.e., the inventory level of good i, at times t, adjusted for demand), pi

is the deterministic part, σε(t) is a random regime-dependent constant (non-zero) diffusion coefficient

taking on the values σ1, σ2, ... , σk and y0
i is the initial condition (i.e., initial inventory level of goods i).

The stochasticity here is due to demand adjustment, which is random and dependent on the

regime. This is the most commonly used process when the demand is more volatile in some periods

(e.g., some states of the Markov chain) and less volatile in other periods.

The performance over time of a demand-adjusted production

p (t) = (p1(t), ..., pN(t)) ,

is measured by means of its cost. At this point, we introduce the cost functional which yields the cost

J (p1, ..., pN) := E
∫ ∞

0
(|p(t)|2 + |y(t)|2)e−αε(t)tdt, y(t) = (y1(t), ..., yN(t)) , (5)

which measures the quadratic loss.

We measure deviations from the demand, from what place the loss. Here αε(t) is a regime

dependent, taking on the values α1 ≥ 0, α2 ≥ 0, ... , αk ≥ 0, constant psychological rate of time

discount from what place the exponential discounting.

At the moment, we are ready to frame our objective, which is to minimize the cost functional, i.e.,

inf
p1,...,pN

J (p1, ..., pN) , (6)

subject to the Itô equation (4).

This model problem was proposed by Bensoussan, Sethi, Vickson and Derzko [1] in the context

of no regime switching in the economy and for the case of a factory producing one type of economic

goods. Later, many other authors are concerned with regime switching.

In production management, Cadenillas, Lakner and Pinedo [2] adapted the model problem in [1]

to study the optimal production stochastic control planning problem of a company within an economy

characterized by the two-state regime switching with limited/unlimited information. Later, Dong,

Malikopoulos, Djouadi and Kuruganti [9] applied in the civil engineering the model described by [2]

to the study of the optimal stochastic control problem for home energy systems with solar and energy

storage devices when the demand is subject to Brownian motion; the two switching regimes are the

peak and off peak energy demand.

A good deal of attention to this subject has been also devoted by Pirvu and Zhang [17] where the

authors studied the effect of high versus low discount rates to a consumption-investment decision

problem.

After that, there have been numerous applications of regime switching in many important

problems in economics, operations research, actuarial science, finance, reinsurance, and other fields,

see the works of: Capponi and Figueroa-López [3], Elliott and Hamada [11], Gharbi and Kenne [13],

Yao, Zhang and Zhou [22] and Wang, Chang and Fang [23] for more details.
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There are of course other research studies that may also serve to better explain the importance of

regime switching in the real world.

In a precursor to this article, Covei and Pirvu [5], formulate and analyze the production-planning

problem in the continuous time case, with no regime switching in the economy over an infinite time.

In the paper [7], the author improved the results of [5], in the sense that the value function in the

production model is given in the closed form. Related works that deal with no regime switching in the

economy are Sheng-Zhu-Wang [20] and Qin-Bai-Ralescu [18].

Recently, Canepa, Covei and Pirvu [4], considered the production planning problem with regime

switching in the economy over a finite horizon time. Here, the solution is obtained through numerical

approaches. Although a closed form expression for the corresponding case of regime switching on a

particular state space consisting of two regimes over an infinite horizon time is available in the paper

of [6]. So, at least one question suggested by the paper of [14] has some nice features: can we obtain a

closed form solution when the state space consists of several numbers of states? Our present paper

fills the gap in the literature by proving a closed form solution to the stochastic production planning

problem with regime switching in the economy over an infinite horizon in a general state space.

The technique presented in this paper makes a methodological contribution that is of independent

interest in other considerable number of works on regime switching.

To conclude this introduction, our paper is structured as follows. In Section 2 we give the

relationship of our model with a system of partial differential equations (PDE system). Section 3

presents a closed form solution and the uniqueness of solution for our production planning problem.

A numerical approximation of the solution for the production planning problem is also given in

Section 4. In Section 5 we present a verification result. We introduced in Section 6 the equilibrium

production rates as the the subgame perfect production rates. They are the output of an interpersonal

game between the present self and future selves. The equilibrium production rates are time consistent

meaning there is no incentive to deviate from them. It turns out that in our setting the optimal

production rates are among the equilibrium ones so they are time consistent. In Section 7, we give

some applications. Finally, in Section 8 we want to discuss our strategy.

Having presented the model that we want to solve, now we provide our means to tackle it.

2. Reduction of the model to a PDE system

Our approach is based on the value function and dynamic programming, which leads to the

Hamilton-Jacobi-Bellman (HJB) system of equations.

To characterize the value function, we apply the probabilistic approach. We search for functions

V (x, 1), ..., V (x, k) such that the stochastic process Sp(t) defined below

Sp (t) = e−αε(t)tV (y (t) , ε(t))−
∫ t

0
[|p(s)|2 + |y(s)|2]e−αε(s)s ds, (7)

is supermartingale for all

p (t) = (p1(t), ..., pN(t)),

and martingale for the optimal control

p∗ (t) = (p∗1(t), ..., p∗N(t)) .

As shown by [5], if this is achieved, with the following transversality condition

lim
t→∞

E[e−αε(t)tV (y (t) , ε(t))] = 0, (8)

and some estimates on the value function yield that

− V(x, i) = inf J (p1, ..., pN) , (9)
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where x = (x1, ..., xN) ∈ R
N assumes values

(y1 (0) , ..., yN (0)).

Once such a function is found, it turns out that (u1, ..., uk) with

u1(x) = −V (x, 1) , ..., uk(x) = −V (x, k) ,

is the value function. We search for u1, ...., uk the functions in C2 [0, ∞), and the

supermartingale/martingale requirement yields by using Itô’s Lemma for Markov modulated

diffusion, the HJB system of equations, which characterizes the value function

−









σ2
1
2 ∆u1

...
σ2

k
2 ∆uk









+ Ga,α







u1

...

uk






−







|x|2
...

|x|2






=









inf
p
{p∇u1 + |p|2}

...

inf
p
{p∇uk + |p|2}









, (10)

where

Ga,α =











a11 + α1 −a12 ... −a1k

−a21 a22 + α2 ... −a2k

... ... ... ...

−ak1 −ak2 ... akk + αk











.

For the transformation of the HJB system, it is essential to observe that

inf
p
{p∇ui + |p|2} = −1

4
|∇ui|2 , i = 1, 2, ..., k. (11)

Thus, the HJB system (10) can be written as a PDE system















− σ2
1
2 ∆u1 + (a11 + α1) u1 − ∑

k
i=2 a1iui − |x|2 = − 1

4 |∇u1|2 ,

...

− σ2
k
2 ∆uk + (akk + αk) uk − ∑

k−1
i=1 akiui − |x|2 = − 1

4 |∇uk|2 .

(12)

To perform the verification, i.e., show that the HJB system gives the solution to the optimization

problem, one should write (12) with the following boundary condition

u1(x) → ∞, ..., uk(x) → ∞, as |x| → ∞. (13)

The value function will give us in turn the candidate optimal control. The first-order optimality

conditions on the left-hand side of (11) are sufficient for optimality since we deal with a quadratic

(convex) function and they produce the candidate optimal control as follows:

p∗i (t) = pi(y1 (t) , . . . , yN (t) , ε(t)), i = 1, ..., N,

and

pi(x1, ..., xN , j) = −1

2

∂uj

∂xi
(x1, ..., xN) , for i ∈ {1, ..., n}, j ∈ {1, ..., k}. (14)

The production rate pi is allowed to be negative. A negative production rate would correspond to a

write-off or disposal of inventory (for example, due to obsolescence or perishability).

Our next goal of this paper is to determine the candidate optimal control in closed form.
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3. Closed form solution for the PDE system

In spite of their clear simplicity, the PDE system (12) with boundary conditions (13) presents

a host of mathematical difficulties arising from the presence of nonlinear gradient terms |∇u1|2, ...,

|∇uk|2, see for details [8].

The following result will be proved and is the main original element of the article.

Theorem 1. Assume that Ga,α is a positive definite matrix with all elements of G−1
a,α positive. Then, the PDE

system (12) with boundary condition (13) has a unique radially symmetric convex positive classical solution

with quadratic growth.

Proof of Theorem 1

In the following, we construct the function

(u1, ..., uk) ∈ C2 [0, ∞)× ... × C2 [0, ∞) ,

which satisfies (12) with boundary condition (13). One way of solving this partial differential equation

is to show that there exists

(u1 (x) , ..., uk (x)) =
(

β1 |x|2 + η1, ..., βk |x|2 + ηk

)

, with β1, ..., βk, η1, ..., ηk ∈ (0, ∞) , (15)

that solves (1).

The main task for the proof of existence of (15) is performed by proving that there exists

β1, ..., βk, η1, ..., ηk ∈ (0, ∞) ,

such that















− 2β1 Nσ2
1

2 + (a11 + α1)
(

β1 |x|2 + η1

)

− ∑
k
i=2 a1i

(

βi |x|2 + ηi

)

− |x|2 = − 1
4 (2β1 |x|)2 ,

...

− 2βk Nσ2
k

2 + (akk + αk)
(

βk |x|2 + ηk

)

− ∑
k−1
i=1 aki

(

βi |x|2 + ηi

)

− |x|2 = − 1
4 (2βk |x|)2 ,

or equivalently, after grouping the terms















|x|2
[

−∑
k
i=2 a1iβi + (a11 + α1)β1 + β2

1 − 1
]

− β1Nσ2
1 − ∑

k
i=2 a1iηi + (a11 + α1)η1 = 0,

...

|x|2
[

−∑
k−1
i=1 akiβi + (akk + αk)βk + β2

k − 1
]

− βk Nσ2
k − ∑

k−1
i=1 akiηi + (akk + αk) ηk = 0.

Now, we consider the system of equations



































−∑
k
i=2 a1iβi + (a11 + α1)β1 + β2

1 − 1 = 0

...

−∑
k−1
i=1 akiβi + (akk + αk)βk + β2

k − 1 = 0

−β1Nσ2
1 − ∑

k
i=2 a1iηi + (a11 + α1)η1 = 0

...

−βk Nσ2
k − ∑

k−1
i=1 akiηi + (akk + αk) ηk = 0.

(16)

To solve (16), we can rearrange those equations 1, ... , k such







a11 + α1 ... −a1k

... ... ...

−ak1 ... akk + αk













β1

...

βk






=







1 − β2
1

...

1 − β2
k






. (17)
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The arguments in [15,16] say that the system (17) has a unique positive solution. Next, letting

(β1, ..., βk) ∈ (0, ∞)× ... × (0, ∞)

a unique solution of (17) we observe that the Equations k + 1, ... , 2k of (16) can be written equivalently

as






β1Nσ2
1

...

βk Nσ2
k






=







a11 + α1 ... −a1k

... ... ...

−ak1 ... akk + αk













η1

...

ηk






, (18)

from where using the fact that G−1
a,α has all elements positive, we can see that there exist and are unique

η1,..., ηk ∈ (0, ∞) that solve (16) and then

(u1 (x) , ..., uk (x)) ,

solve (12). This finishes the proof of Theorem 1.

Because our solution depends on solving a non-linear algebraic system of equations the exact

solution of the PDE system cannot be determined using a computer software. In order to be

implemented the solution of the PDE system (12) in a software application in the next section it

is necessary to give the numerical approximation of solution to (16), and therefore the arguments in

[15,16] are used again.

4. Numerical solution of an algebraic nonlinear system in building the solution for the PDE
system

We intend to approximate β1, ..., βk, η1, ..., ηk ∈ (0, ∞) in (15) by the Newton-Raphson method. To

do this, we denote
h1 (β1, .., βk) = −∑

k
i=2 a1iβi + (a11 + α1)β1 + β2

1 − 1,

...

hk (β1, .., βk) = −∑
k−1
i=1 akiβi + (akk + αk)βk + β2

k − 1,

(19)

and

J(h1,...,hk)
=







a11 + α1 + 2β1 ... −a1k

... ... ...

−ak1β1 ... akk + αk + 2βk






,

the Jacobian matrix of (19). For n = 1, 2, ... we find the approximate of the unique parameters

(β1, ..., βk) ∈ (0, ∞)× ... × (0, ∞) ,

in the following way







βn+1
1

...

βn+1
k






=







βn
1

...

βn
k






−







a11 + α1 + 2βn
1 ... −a1k

... ... ...

−ak1 ... akk + αk + 2βn
k







−1





h1

(

βn
1 , .., βn

k

)

...

hk

(

βn
1 , .., βn

k

)






,

with β0
1, .., β0

k ∈ (0, ∞). Clearly η1,..., ηk ∈ (0, ∞) are easy determined from (18).

Now we are moving on to the verification result which is also inspired from [6].

5. Verification

Next, we show that the control of (14) obtained in our reduction strategy is indeed optimal. We

apply the supermartingale and martingale approach.
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Repeating the same argument in [4], as the first step we can show that the stochastic process Sp(t)

defined below

Sp (t) = e−αε(t)tV (y (t) , ε(t))−
∫ t

0
[|p(s)|2 + |y(s)|2]e−αε(s)s ds,

is supermartingale for all

p (t) = (p1(t), ..., pN(t)) ,

and martingale for the optimal control

p∗ (t) = (p∗1(t), ..., p∗N(t)) .

Owing to the well-known Itô Lemma for Markov modulated diffusion (see [22] for more on this) we

have

dSp (s) = e−αε(s)s[
σ2

ε(s)

2
∆V (y (s) , ε(s))− |y (s)|2 + p (s)∇V (y (s) , ε(s))

− |p (s)|2 − (αε(s) + aε(s)ε(s))V (y (s) , ε (s))

+
k

∑
i=1, i 6=ε(s)

aε(s)iV (y (s) , i)]ds + dZ(s),

for some martingale Z(s), and Z(0) = 0. Therefore

ESp (t) = Sp (0) + E[
∫ t

0
e−αε(s)s[

σ2
ε(s)

2
∆V (y (s) , ε(s))− |y (s)|2 + p (s)∇V (y (s) , ε(s))]ds]

+E[
∫ t

0
e−αε(s)s[− |p (s)|2 − (αε(s) + aε(s)ε(s))V (y (s) , ε (s))]ds]

+E[
∫ t

0
e−αε(s)s[

k

∑
i=1, i 6=ε(s)

aε(s)iV (y (s) , i)]ds].

Then, the claim yields considering HJB equation (10) and (12) which says that Sp (t) is martingale for

the optimal control and supermartingale otherwise. This last fact combined with the transversality

condition yields the claim.

In the second step, let us establish the optimality of
(

p∗1 , ..., p∗N
)

. Considering the quadratic

estimate on the value function

V (x, 1) = −β1 |x|2 − η1, ... , V (x, k) = −βk |x|2 − ηk, (20)

where βi, ηi ∈ (0, ∞) are the solution of (16).

Let us provide a lower bound estimate for α1, ..., αk so that the transversality condition (8) is met

lim
t→∞

E[e−αǫ(t)t|y (t) |2] = 0,

holds true. The SDE system (4) in this case becomes

dyi (t) = −βǫ(t)yi (t) dt + σε(t)dWi(t), i = 1, . . . N.

Using Itô’s Lemma, one gets

d(yi (t))
2 = 2yi (t) dyi (t) + dyi (t) dyi (t)

= [−2βǫ(t)(yi (t))
2 + σ2

ǫ(t)]dt + 2yi (t) σǫ(t)dWi(t).
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We introduce

Fi(t) = E[(yi (t))
2].

By taking expectations in the above equation, we get

Fi(t) = E

[

∫ t

0
[−2βǫ(s)(yi (s))

2 + σ2
ǫ(s)]ds + [(yi (0))

2]

]

= E

[

∫ t

0
[−2βǫ(s)(yi (s))

2 + σ2
ǫ(s)]ds

]

+ y2
i (0)) .

Let

D2 = max{σ2
1 , ..., σ2

k }, D3 = max([(y1 (0))
2], ..., [(yk (0))

2]).

Then, in the light of the above equation, we get

Fi(t) ≤
∫ t

0
D2ds + D3.

Hence, we have that

Fi(t) ≤ D2t + D3.

Therefore, one must to choose α1, ..., αk ∈ (0, ∞) for the transversality condition to hold true and the

proof is completed. Finally, a simple system of nonlinear equations (16) remains to be solved.

6. The Equilibrium Production

For a production rate {pi(t)}t≥0 and its corresponding inventory level {yi(t)}t≥0 given by (4), we

introduce equilibrium production as the subgame perfect production in the definition below (for more

on this economic concept see [10]).

Definition 1. Let F = (Fi, i = 1, . . . N) : R× {1, 2, . . . k} → R
N be a vector map such that for any x > 0

and i ∈ {1, 2, . . . , k}
lim inf

ǫ↓0

J( p̄i)− J(pǫ
i )

ǫ
≤ 0, (21)

where the subgame perfect production

p̄i(s) := Fi(ȳi(s), ǫ(s)).

Here, the process {ȳi(s)}s≥0 is the inventory level process corresponding to { p̄i(s)}s≥0. The production

rate {pǫ
i(s)}s≥0 is defined by

pǫ
i(s) =

{

p̄i(s), s ∈ [0, ∞]\Eǫ,0

pi(s), s ∈ Eǫ,0,
(22)

with Eǫ,0 = [0, ǫ]; {pi(s)}s∈Eǫ,0
is any production rate. If (21) holds true, then p̄i(s), i = 1 . . . N, is a

subgame perfect production rate.

The equilibrium production are by design time consistent meaning that they will be implemented

at a future date even if the optimization criterion is updated. In some situations the optimal production

may be time inconsistent meaning that they will fail to be implemented in the future because they are

not optimal anymore if the optimization criterion is updated; they will be implementable only in the

presence of a commitment mechanism, that is why sometimes they are referred as pre commitment

production. Let us remark that in our setting the optimal production rate

pi, i ∈ {1, ..., N}, (23)

is a subgame perfect production with
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Fi(x, j) := −1

2

∂uj

∂xi
(x),

since

(pi, i = 1 . . . N) = arg min
p1,...,pN

J (p1, ..., pN)

and thus (21) is automatically satisfied. Therefore the equilibrium production is time consistent.

7. Applications

We offer some applications, which also are inspired by the paper of Ghosh, Arapostathis, Marcus

[14].

Application 1. Suppose there is one machine producing two products and let ε (t) the machine

state that can take values in two regimes 1=good and 2=bad, i.e., for every t ∈ [0, ∞) we have

ε (t) ∈ {1, 2}. We consider ε (t) a continuous time Markov chain with generator

(

− 1
2

1
2

1
2 − 1

2

)

,

and the inventory yi (t) which is governed by the Itô system of stochastic differential equations (4)

with the diffusion σ1 = σ2 = 1√
2

and let α1 = α2 = 1
2 the discount factor. Under these assumptions, the

system (17) becomes
(

a11 + α1 −a11

−a22 a22 + α2

)(

β1

β2

)

=

(

1 − β2
1

1 − β2
2

)

,

or, with our data
{

β2
1 + β1 − 1

2 β2 − 1 = 0

β2
2 − 1

2 β1 + β2 − 1 = 0

which has a unique positive solution

β1 =
1

4

(√
17 − 1

)

, β2 =
1

4

(√
17 − 1

)

.

On the other hand the system (18) becomes

(

β1Nσ2
1

β2Nσ2
2

)

=

(

a11 + α1 −a11

−a22 a22 + α2

)(

η1

η2

)

,

or, with our data
(

β1

β2

)

=

(

1 − 1
2

− 1
2 1

)(

η1

η2

)

,

which has a unique positive solution

η1 =
4

3
β1 +

2

3
β2 =

1

2

(√
17 − 1

)

, η2 =
2

3
β1 +

4

3
β2 =

1

2

(√
17 − 1

)

.

Then

V ((x1, x2) , 1) = V ((x1, x2) , 2) = −1

4

(√
17 − 1

) (

x2
1 + x2

2

)

− 1

2

(√
17 − 1

)

and furthermore, the production rate is

pi(x1, x2, j) = −1

2

(√
17 − 1

)

xi, for i ∈ {1, 2}, j ∈ {1, 2}.
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We also give the approximate of β1, β2, η1, η2 by using the Newton-Raphson Method. Denote

h1 (β1, β2) = −a12β2 + (a11 + α1)β1 + β2
1 − 1

h2 (β1, β2) = −a21β1 + (a22 + α2)β2 + β2
2 − 1

and

J(h1,...,hk)
=

(

2β1 + 1 − 1
2

− 1
2 2β2 + 1

)

.

We construct











(

βn+1
1

βn+1
2

)

=

(

βn
1

βn
2

)

−
(

a11 + α1 + 2βn
1 −a1k

−ak1 akk + αk + 2βn
k

)−1(

h1

(

βn
1 , βn

2

)

h2

(

βn
1 , βn

2

)

)

β0
1 = β0

2 = 0.1.

Using the standard computation, approximations to four digits are

n = 1 =⇒ β1
1 = 1.4429 and β1

2 = 1.4429

n = 2 =⇒ β2
1 = 0.9102 and β2

2 = 0.9102

n = 3 =⇒ β3
1 = 0.7808 and β3

2 = 0.7808

n = 4 =⇒ β4
1 = 0.7808 and β4

2 = 0.7808

On the other hand

β1 = β2 =
1

4

(√
17 − 1

)

≃ 0.780 7.

Clearly, the approximations for η1 and η2 are

η1 = η2 ≃ 1. 561 6.

Application 2. Suppose there is one machine producing three products and let ε (t) the machine

state that can take values in three regimes 1, 2, 3, i.e., for every t ∈ [0, ∞) we have ε (t) ∈ {1, 2, 3}. We

consider ε (t) a continuous time Markov chain with generator







−3 3 0

4 −7 3

0 4 −4






,

and the inventory yi (t) which is governed by (4) with σ1 = σ2 = σ3 = 1√
3

and let α1 = α2 = α3 = 1

the discount factor. Under these assumptions, the system (17) becomes







a11 + 1 −a11 0

−a22 a22 + a11 + 1 −a11

0 −a22 a22 + 1













β1

β2

β3






=







1 − β2
1

1 − β2
2

1 − β2
3






,

or, with our data










β2
1 + 4β1 − 3β2 − 1 = 0

β2
2 + 8β2 − 4β1 − 3β3 − 1 = 0

β2
3 + 5β3 − 4β2 − 1 = 0

which has a unique positive solution

β1 = β2 = β3 =
1

2

(√
5 − 1

)

.
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On the other hand, the system (18) becomes







β1Nσ2
1

β2Nσ2
2

β3Nσ2
3






=







a11 + 1 −a11 0

−a22 a22 + a11 + 1 −a11

0 −a22 a22 + 1













η1

η2

η3






,

or, with our data






β1

β2

β3






=







3 + 1 −3 0

−4 4 + 3 + 1 −3

0 −4 4 + 1













η1

η2

η3






,

from where






η1

η2

η3






=







7
13

15
52

9
52

5
13

5
13

3
13

4
13

4
13

5
13













β1

β2

β3






,

has a unique positive solution

η1 = η2 = η3 =
1

2

√
5 − 1

2
.

Then

V ((x1, x2, x3) , 1) = V ((x1, x2, x3) , 2) = V ((x1, x2, x3) , 3)

= −1

2

(√
5 − 1

) (

x2
1 + x2

2 + x2
3 + 1

)

and furthermore, the production rate is

pi(x1, x2, x3, j) = −1

2

(√
5 − 1

)

xi, for i ∈ {1, 2, 3}, j ∈ {1, 2, 3}.

We also point out that the numerical approximations for β1, β2, β3, using Newton-Raphson Method

described, are
n = 1 =⇒ β1

1 = 0.8418 β1
2 = 1.017 β1

3 = 1.2789

n = 2 =⇒ β2
1 = 0.6575 β2

2 = 0.6761 β2
3 = 0.7066

n = 3 =⇒ β3
1 = 0.6192 β3

2 = 0.6196 β3
3 = 0.6202

n = 4 =⇒ β4
1 = 0.618 β4

2 = 0.618 β4
3 = 0.618

when β0
1 = 1, β0

2 = 2 and β0
3 = 3. Clearly 1

2

(√
5 − 1

)

≃ 0.618 .

8. Final Remark and Conclusion

When wi are correlated with correlation ρ, the HJB system (10) becomes

−









σ2
1
2 ∆u1

...
σ2

k
2 ∆uk









+ Ga,α







u1

...

uk






− ρ

2









σ2
1 ∑i 6=j

∂2u1
∂xi∂xj

...

σ2
k ∑i 6=j

∂2uk
∂xi∂xj









−







|x|2
...

|x|2






=









inf
p
{p∇u1 + |p|2}

...

inf
p
{p∇uk + |p|2}









,

which has the same solution as (10), due to the mixed derivative terms (see [8] for details).

In summary, we have reduced the stochastic production-planning problem with several regime

switching in the economy to demonstrate that there is an exact solution for the PDE system which

models the stochastic production problem.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 September 2023                   doi:10.20944/preprints202309.0965.v1

https://doi.org/10.20944/preprints202309.0965.v1


12 of 12

References

1. A. Bensoussan, S.P. Sethi, R. Vickson, N. Derzko, Stochastic production planning with production constraints,

SIAM. J. Control. Optim. 22 (1984), 920-935.

2. A. Cadenillas, P. Lakner, M. Pinedo, Optimal production management when demand depends on the

business cycle, Operations Research, 61(4) (2013), 1046-1062.

3. A. Capponi, J. E. Figueroa-López, Dynamic Portfolio Optimization with a Defaultable Security and

Regime-Switching, Mathematical Finance, (2012), 207-249.

4. E. C. Canepa, D.-P. Covei, T. A. Pirvu, Stochastic production planning with regime switching, Journal of

Industrial & Management Optimization, 19 (2023), 1697-1713.

5. D.-P. Covei, T.A. Pirvu, An elliptic partial differential equation and its application, Appl. Math. Lett., 101

(2020), 1-7.

6. D.-P. Covei, T.A. Pirvu, An elliptic partial differential equations system and its applications, Carpathian J.

Math., 37 (2021), 427-440.

7. D.-P. Covei, An elliptic partial differential equation modeling the production planning problem, J. Appl. Anal.

Comput., 11(2) (2021), 903-910

8. D.-P. Covei, On a parabolic partial differential equation and system modeling a production planning problem,

Electronic Research Archive, 30(4) 2022, 1340-1353.

9. J. Dong, A. Malikopoulos, S. M. Djouadi, T. Kuruganti, Application of Optimal Production Control theory

for Home Energy Management in a Micro Grid, 2016 American Control Conference (ACC), (2016), 5014-5019.

10. I. Ekeland, T.A. Pirvu, Investment and consumption without commitment, Mathematics and Financial

Economics, 2 (2008), 57-86.

11. R. Elliott, A.S. Hamada, Option Pricing Using A Regime Switching Stochastic Discount Factor, International

Journal of Theoretical and Applied Finance, 17 (2014), 1-26.

12. W.H. Fleming, S.P. Sethi, H.M. Soner, An Optimal Stochastic Production Planning Problem with Randomly

Fluctuating Deman, SIAM. J. Control Optim., 25 (1987), 1494-1502.

13. A. Gharbi, J.P. Kenne, Optimal production control problem in stochastic multiple-product multiple-machine

manufacturing systems, IIE Transactions, 35 (2003), 941-952.

14. M. K. Ghosh, A. Arapostathis, S. I. Marcus, Optimal Control of Switching Diffusions with Application to

Flexible Manufacturing Systems, Siam J. Control and Optimization, 31 (1992), 1183–1204.
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