
Article

Not peer-reviewed version

Fuzzy Transform Image

Compression in the YUV Space

Barbara Cardone , Ferdinando Di Martino

*

 , Salvatore Sessa

*

Posted Date: 14 September 2023

doi: 10.20944/preprints202309.0964.v1

Keywords: F-transform; F1-transform; color image compression; RGB space; YUV space.

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2793463
https://sciprofiles.com/profile/140335
https://sciprofiles.com/profile/116858

Article

Fuzzy Transform Image Compression in the YUV
Space

Barbara Cardone 1, Ferdinando Di Martino 1,2,* and Salvatore Sessa 1,2

1 Dipartimento di Architettura, Università degli Studi di Napoli Federico II, Via Toledo 402, 80134 Napoli,

Italy; sessa@unina.it
2 Centro Interdipartimentale di Ricerca “Alberto Calza Bini”,Università degli Studi di Napoli Federico II, Via

Toledo 402, 80134 Napoli, Italy

* Correspondence: fdimarti@unina.it

Abstract: The two-dimensional Fuzzy Transform was applied in image compression. The quality of the image

compressed with this methodis better than that obtained using methods based on fuzzy relation equations and

comparable with that of the JPEG method, with better compression execution times. In this paper we propose

a variation of the method based on the two-dimensional Fuzzy Transform of image compression, in which the

image is first partitioned into blocks and then each block is compressed with the higher compression rate. The

advantage of this method consists into a greater compression of the image, guaranteeing a high quality of the

reconstructed image. The results show that our method is better than the Fuzzy Transform method improving

also the quality of the reconstructed image.

Keywords: F-transform; F1-transform; color image compression; RGB space; YUV space

1. Introduction

YUV is a color model used in the NTSC, PAL, and SECAM color encoding systems., describing

the color space in terms of a brightness component (the Y band called luma) and the two chrominance

components (the U and V bands called chroma).

The YUV model has been used to advantage in image processing; its main advantage is that,

unlike the three Red, Green and Blue (RGB) bands, which are equally perceived by the human eye,

in YUV space, most of the color image information is contained in the Y band, as opposed to the U

and V bands. main applications of the YUV model in image processing, is then the lossy compression

of images, which can be performed mainly in the U and V bands, with slight loss of information.

YUV is used in the JPEG color image compression method [1,2] where the Discrete Cousine

Transform (DCT) algorithm is executed on the YUV space, sub-sampling and reducing in dynamic

range the UV channels in order to balance the reduction of data and the feel of human eyes. In [3] the

DCT algorithm is executed in the YUV space for wireless capsule endoscopy application; the results

show that the quality of the reconstructed images is better than that obtained by applying the DCT

image compression method in the RGB space.

Many authors proposed image compression and reconstruction algorithms applied on the YUV

space in order to improve the quality of the reconstructed images.

In [4,5] an image compression algorithm based on fuzzy relation equations is applied in the YUV

space to compress color images; the image is divided in blocks of equal sizes, coding the blocks in the

UV channels more strongly than the blocks in the Y band. In [6] the Fuzzy Transform technique (for

short, F-transform) [7,8] is applied to coding color images in the YUV space; the author show that the

quality of color images coded and decoded via F-transform in the YUV space is better than the one

obtained using the F-transform method in the RGB space and comparable with the one obtained

using the JPEG method.

A fractal image compression technique applied on the YUV space is proposed in [9]; the authors

show that the quality of color images coded/decoded using this approach is better than the one

obtained applying the fractal image compression method in the RGB space.

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 September 2023 doi:10.20944/preprints202309.0964.v1

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202309.0964.v1
http://creativecommons.org/licenses/by/4.0/

 2

Furthermore, comparison tests between RGB and YUV perception-oriented properties

performed in [10] show that compressed images in the YUV space provide better quality than images

compressed in the RGB spaces in a human-computer interaction and machine vision applications.

In [11] is applied a technique using Tchebichef bit allocation to compress images in the YUV

space; the results shown that this method improves the visual quality of color images compressed via

JPEG by 42%. A color image compression method applying a subsampling process to the two chroma

channels and a modification algorithm to the Y channel is applied to color images in [12] to improve

the JPEG performances.

An image compression method with learning-base filter is applied in [13] on color images

constructing the filter in YUV space instead of RGB space; author shows that the quality of the coded

images is better than the one obtained using the filter in the RGB space. In [14] an image lossy

compression algorithm in which quantization and subsampling are executed in the YUV space is

applied for wireless capsule endoscopy; the quality of the coded images results better than the one

obtained executing quantization and subsampling in the RGB space. In [15] a wavelet-based color

image compression method using trained convolutional neural network are used in the lifting

scheme is applied on the YUV executing the trained CNN on the Y, U, V channels separately; this

method improves the quality of the coded images obtained applying traditional wavelet-based color

image compression algorithms; however, execution times are much higher than those adopted by

applying traditional color image compression algorithms.

In [16] an image reconstruction method performed on the YUV space is applied to prevent from

corruption of data performed using adversarial perturbation of the image; the results show that the

image can be recovered on the YUV space without distortions and with a high visual quality.

In this paper we propose a novel image compression algorithm in which the bidimensional First-

Degree F-Transform algorithm [17,18] is applied for coding/decoding color images in the YUV space.

A generalization of the F-transform, called high order Fm-transform, has been proposed in [19]

in order to reduce the approximation error of the original function approximated with the inverse F-

transform. In the Fm -transform the components of the direct high order fuzzy transforms consist of

polynomials of degree s, unlike the components of the direct F-transform (labelled as F°-transform),

where they were constant values. The greater the degree of the polynomial, the smaller the error of

the approximation; however, as the degree of the polynomial increases, the computational

complexity of the algorithm increases.

In [18] the bi-dimensional first-order degree F-transform (F1-transform) is used to compress

images; authors show that the quality of the coded/decoded images is better than the one obtained

executing F-transform, with negligible augments in CPU time. The critical point of this method

consists of the fact that, unlike the F-transform and JPEG methods, it requires not the compressed

image to be saved in memory, but matrices of three coefficients of the same size as the compressed

image; therefore, it needs a memory area three times greater than that necessary to archive the

compressed image.

To solve this problem, we propose a new lossy color image compression algorithm in which is

executed the F1-transform algorithm to code/decode color images transformed in the YUV space. The

transformed image in each of the three channels is partitioned into blocks and each block is

compressed by the bi-dimensional direct F1-transform, compressing the blocks of the chroma

channels more. The image is subsequently reconstructed by decomposing the single blocks with the

use of the bi-dimensional inverse F1-transform.

The main benefits of this method are as follows:

 the use of the bi-dimensional F1-transform represents a trade-off between the quality of the

compressed image and the CPU times. It reduces the information loss obtained by compressing

the image with the same compression rate using the F-transform algorithm with acceptable

coding/decoding CPU time;

 the compression of the color images is carried out in the YUV space to guarantee a high visual

quality of the color images and solve the criticality of the F1-transform color image compression

method on the RGB space [18] which needs a larger memory to allocate the information of the

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 September 2023 doi:10.20944/preprints202309.0964.v1

https://doi.org/10.20944/preprints202309.0964.v1

 3

compressed image. In fact, by performing a high compression of the two chrominance channels,

the size of the matrices in which the information of the compressed image is contained, is

reduced in these two channels, and this allows to reduce the memory allocation and CPU times.

We compare our color lossy image compression method with the JPEG method and with the

image compression methods based on the bi-dimensional F-transform [7,8] and F1-transform [19] on

the RGB space and on the bi-dimensional F-transform on the YUV space [6].

In the next Section the concepts of F-transform and F1-transform are briefly presented, and the

F-transform lossy color image compression method applied in YUV space is shown as well. Our

method is presented in Section 3. In Section 4 the comparative results obtained on datasets of color

images are shown and discussed; concluding discussions are contained in Section 5.

2. Preliminaries

2.1. The bi-dimensional F-Transform

Let [a,b] be a closed real interval and let {x1, x2, …, xn} be a set of points of [a,b], called nodes, such

that x1 = a < x2 <…< xn = b.

Let {A1,…,An} be a family of fuzzy sets of X, where Ai : [a,b] → [0,1: it forms a fuzzy partition of X

if the following conditions hold:

(1) Ai(xi) = 1 for every i =1,2,…,n;

(2) Ai(x) = 0 if x∉(xi-1, xi+1), by setting x0 = x1 = a and xn+1 = xn = b;

(3) Ai(x) is a continuous function over [a,b];

(4) Ai(x) is strictly increasing over [xi-1, xi] for each i = 2, …, n ;

(5) Ai(x) is strictly decreasing over [xi, xi+1] for each i = 1,…, n-1;

(6) ∑ 𝐴௜(𝑥) = 1௡௜ୀଵ for every x∈[a,b].

Let h = ୠିୟ୬ିଵ. The fuzzy partition {A1,…, An} is an uniform fuzzy partition if:

(7) n≥3;

(8) xi =a+h∙(i-1), for every i = 1, 2, …, n;

(9) Ai(xi – x) = Ai(xi + x) for every x ∈ [0,h] and i = 2,…, n-1;

(10) Ai+1(x) = Ai(x - h) for every x ∈ [xi, xi+1] and i = 1,2,…, n-1.

Let f(x) be a continuous function over [a,b] and {A1, A2, …, An} be a fuzzy partition of [a,b]. The
n-tuple F = [Fଵ, Fଶ, . . . , F୬] is called unidimensional direct F-transform of f with respect to {A1, A2, …, An}

if the following hold: F୧ = ׬ ୤(୶)୅౟(୶)ୢ୶ౘ౗׬ ୅౟(୶)ୢ୶ౘ౗ i=1,2,…,n (1)

The following function 𝑓ி,௡ defined in [a,b]: 𝑓ி,௡(x) = ∑ F୧୬୧ୀଵ A୧(x) (2)

is called uni-dimensional inverse F-transform of the function f.

The following theorem holds (cfr. [7, Theorem 2]):

Theorem 1. Let f(x) be a continuous function over [a,b]. For every ε > 0 there exist an integer n(ε) and a

fuzzy partition {A1, A2, …, An(ε)} of [a,b] such that for all x ∈ [a, b] ห𝑓(𝑥) − 𝑓ி,௡(ఌ)(𝑥) < 𝜖ห.
Now consider the discrete case where the function f is known in a set of N points P = {p1,...,pN},

where pj∈[a,b] j = 1,2,…,m. The set {p1,...,pN} is called sufficiently dense with respect to the fixed fuzzy

partition {A1, A2, …, An} if for every i = 1,…,n, there exists at least an index j∈{1,…,m} such that

Ai(pj) > 0.

If the set P is sufficiently dense with respect to the fuzzy partition, we can define the discrete

direct F-transform with components:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 September 2023 doi:10.20944/preprints202309.0964.v1

https://doi.org/10.20944/preprints202309.0964.v1

 4

F୧ = ∑ ௙(୮ౠ)୅౟(୮ౠ)ౠొసభ∑ ୅౟(୮ౠ)ౠొసభ i=1,2,…,n (3)

and the discrete inverse F-transform: 𝑓ி,௡(p௝) = ∑ F୧୬୧ୀଵ A୧(p௝) j= 1,…,N (4)

The following theorem applied to the discrete inverse F-transform holds (cfr. [7, Theorem 5]):

Theorem 2. Let f(x) be a continuous function over [a,b], known in a discrete set of points {p1,...,pm}. For every

ε > 0 there exist an integer n(ε) and a fuzzy partition {A1, A2, …, An(ε)} of [a,b], with respect to which P is

sufficiently dense, that is such that for every j = 1,…,N, ห𝑓൫𝑝௝൯ − 𝑓ி,௡(ఌ)൫𝑝௝൯ < 𝜖ห.
By Theorem 2, the inverse fuzzy transform (4) can be used to approximate the function f in a

point.

Now we consider functions in two variables. Let x1, x2, …, xn be a set of n nodes in [a,b] , where

n > 2 and x1 = a < x2 <…< xn = b, and let y1, y2, …, ym be a set of n nodes in [c,d], where m > 2 and and

y1 = c < y2 <…< ym = d. Moreover, let A1,…,An : [a,b] → [0,1] be a fuzzy partition of [a,b], B1,…,Bm : [c,d]

→ [0,1] be a fuzzy partition of [c,d] and let f(x,y) be a function defined in the closed set [a,b]×[c,d].

We suppose that f assumes known values in a set of points (pj,qj) ∈[a,b]×[c,d], where i = 1,…,N

and j = 1,…,M, where the set P={p1, … , pN} is sufficiently dense with respect to the fuzzy partition

{A1,…, An} and the set Q={q1, … ,qM} is sufficiently dense with respect to the fuzzy partition

{B1,…,Bm}.

In this case, we can define the bi-dimensional discrete F-transform of f, given by matrix [Fhk] h =

1,…,n and k = 1,…,m with components: Fhk = ∑ ∑ ௙(୮౟,୯ౠ)୅౞(୮౟)୆ౡ(୯ౠ)౟ొసభ౉ౠసభ∑ ∑ ୅౞(୮౟)୆ౡ(୯ౠ)౟ొసభ౉ౠసభ h=1,2,…,n k=1,2,…,m (5)

and the bi-dimensional discrete inverse F-transform of f with respect to {A1, A2, …, An} and {B1,…,Bm}

given by 𝑓௡௠ி ൫p୧, q୨൯ = ∑ ∑ F୦୩୫୩ୀଵ A୦(p୧)୬୦ୀଵ B୩൫q୨൯, i=1,2,…,N, j=1,2,…,M (6)

2.2. The bi-dimensional F1-Transform

This paragraph introduces the concept of higher degree fuzzy transform or Fr-transform. One-

dimensional square-integrable functions will now be considered.

Let Ah, h = 1,…,n, be the hth fuzzy set of the fuzzy partition {A1,…,An} defined on [a,b] and

L2([xh−1,xh+1]) be the Hilbert space of square-integrable functions f,g: [xh−1,xh+1] ⟶ R with the inner

product:

⟨𝑓, 𝑔⟩௛ = ׬ 𝑓(x)𝑔(x)A୦(x)dx୶౞శభ୶౞షభ׬ A୦(x)dx୶౞శభ୶౞షభ (7)

Given a positive integer r, we denote with 2
r
L ([xh−1,xh+1]) a linear subspace of the Hilbert space

L2([xh−1,xh+1]) having as orthogonal basis the polynomials {
0
h
P ,

1
h
P ,…,

r

h
P } constructed applying the

Gram-Schmidt ortho-normalization defined as:

൞P୦଴ = 1P୦ୱାଵ = xୱାଵ − ෍ ൻxୱାଵ, P୦୨ൿൻP୦୨ , P୦୨ൿୱ
୨ୀଵ s=1,...,r-1 (8)

The following Lemma holds (Cfr. 7, Lemma 1):

Lemma 1. Let 𝐹௞௥ be the orthogonal projection of the function f on 2
r
L ([xh−1,xh+1]). Then:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 September 2023 doi:10.20944/preprints202309.0964.v1

https://doi.org/10.20944/preprints202309.0964.v1

 5

𝐹௛௥(𝑥) = ෍ 𝑐௛,௜𝑃௛௦(𝑥)௥
௦ୀଵ (9)

where

c୦,ୱ = ⟨f, P୩୦ୱ ⟩୩ൻP୦ୱ, P୦ୱൿ୦ = ׬ 𝑓(x) P୦ୱ(x)A୦(x)dx୶ౡశభ୶ౡషభ׬ (P୦ୱ(x))ଶA୦(x)dx୶ౡశభ୶ౡషభ (10)

F୦୰ it is the hth component of the direct Fr-transform of f . The inverse Fr-transform of f in a point x ∊ [a,b] is:

𝑓୊,୬୰ (x) = ෍ F୦୰ A୩(x)୬
୩ୀଵ (11)

For r = 0, we have
0
h
P = 1 and the F0-transform is given by the F-transform in one variable (

0
h
F (x)

= ch,0).

For r = 1, we have
1
h
F (x) = (x − xh) and the hth component of the F1-transform is given by the

formula:

1
h
F (x) = ch,0 + ch,1 (x − xh) =

0
h
F (x)+ ch,1 (x − xh) (12)

If the function f is known in a set of N points P ={p1,…pN}, ch,0 and ch,1 can be discretized in the form: c୦,଴ = ∑ 𝑓(p୧)A୦(p୧)୬୧ୀଵ∑ A୦(p୧)୬୧ୀଵ (13)

c୦,ଵ = ∑ 𝑓(p୧)(p୧ − x୦)A୦(p୧)୬୧ୀଵ∑ A୦(p୧)୬୧ୀଵ (p୧ − x୦)ଶ (14)

The F1-tranform can be extended in a bi-dimensional space. Let L2 ([xh−1, xh+1] × [yk−1, yk+1]) be the

Hilbert space of square- integrable functions f: [xh−1, xh+1] × [yk−1,yk+1]→ R with the weighted inner

product:

⟨𝑓, 𝑔⟩௛௞ = න න 𝑓(𝑥, 𝑦)𝑔(x, y)A୦(x)B୩(y)dx … dy୷ౡశభ
୷ౡషభ

୶౞శభ
୶೓షభ (15)

Two functions 𝑓, 𝑔 ∈ L2 ([xh−1, xh+1] × [yk−1, yk+1]) are orthogonal if ⟨𝑓, 𝑔⟩௛௞ = 0.

Let f: X ⊆ R2 → Y⊆ R be a continuous bi-dimensional function defined in a closed set [a,b] × [c,d].

Let {A1, A2,…, An} be a fuzzy partition of [a,b], and let {B1, B2,…, Bm} be a fuzzy partition of [c,d].

Moreover, let {(p1,q1),…, (pN,qjN)} a set of N points in which is known the function f, where

(pj,qj)∈ [a,b]×[c,d]. Let the set P={p1, … , pN} be sufficiently dense with respect to the fuzzy partition

{A1,…, An} and let the set Q={q1, … ,qM} be sufficiently dense with respect to the fuzzy partition

{B1,…,Bm}.

We can define the bi-dimensional direct F1-transform of f, with components: F୦୩ଵ (x, y) = c୦୩଴଴ + chk10(x − x୦) + chk01(y − y୩) (16)

where c௛௞଴଴ is the component F௛௞ of the bi-dimensional discrete direct F transform of f, given by (5). The

three coefficients in (17) are given by:

c୦୩଴଴ = F୦୩ = ∑ 𝑓(p୨, q୨) ⋅ A୦(p୨) ⋅ B୩(q୨)୒୨ୀଵ ∑ A୦(p୨) ⋅ B୩(q୨)ே௝ୀଵ (17)

c୦୩ଵ଴ = ∑ 𝑓(p୨, q୨) ⋅ ൫p୨ − x୦൯ ⋅ A୦(p୨) ⋅ B୩(q୨)୒୨ୀଵ∑ ൫p୨ − x୦൯ଶ ⋅ A୦(p୨) ⋅ B୩(q୨)୒୨ୀଵ (18)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 September 2023 doi:10.20944/preprints202309.0964.v1

https://doi.org/10.20944/preprints202309.0964.v1

 6

c୦୩଴ଵ = ∑ 𝑓(p୨, q୨) ⋅ ൫q୨ − y୩൯ ⋅ A୦(p୨) ⋅ B୩(q୨)୒୨ୀଵ∑ ൫q୨ − y୩൯ଶ ⋅ A୦(p୨) ⋅ B୩(q୨)୒୨ୀଵ (19)

The inverse F1-transform of f in a point (x,y) ∊ [a,b] × [c,d] is:

𝑓୊,୬ଵ (x, y) = ෍ ෍ F୦,୩ଵ A୦(x)B୩(y)௠
௞ୀଵ

௡
௛ୀଵ (20)

where F୦,୩ଵ (x, y) is the (h,k)th component of the bi-dimensional direct F1-transform, given by the

formula (16).

2.3. Coding/decoding images using the bi-dimensional F and F1-Transforms

Let I be a grey N × M image. A pixel can be considered a data point with coordinates (i,j), where i

= 1,2,…,N and j = 1,2,…M; the value of this data point is given by the pixel value I(i,j). In [8] the image

is normalized in [0,1] according with the formula R(i,j) = I(i,j)/(L-1) where L is the number of grey levels,

partitioned in blocks of equal sizes N(B)×M(B), coded to a block FB of sizes n(B) × m(B) with n(B) <<

N(B) and m(B) << M(B), using the bi-dimensional direct F-transform.

Let {A1,…,An(B)} be a fuzzy partition of [1,N(B)] and let {B1,…,Bm(B)} be a fuzzy partition of

[1,M(B))], each block is compressed by the bi-dimensional direct F-transform:

F୦୩୆ = ∑ ∑ R(i, j)A୦(i)B୩(j)୒(୆)୧ୀଵ୑(୆)୨ୀଵ∑ ∑ A୦(i)B୩(j)୒(୆)୧ୀଵ୑(୆)୨ୀଵ (21)

The coded image is reconstructed by merging all compressed blocks.

Each block is decompressed by using the bi-dimensional inverse F-transform. The pixel value

I(i,j) in the block is approximated by the value:

𝑓௡ಳ௠ಳிಳ (i, j) = ෍ ෍ F୦୩୆୫(୆)
୩ୀଵ A୦(i)୬(୆)

୦ୀଵ B୩(j) (22)

The decoded image is reconstructed by merging the decompressed blocks.

The F-transform compression and decompression algorithms are shown in pseudocode in

Algorithms 1a and 1b.

Algorithm 1a. F1-transform image compression

 Input: N×M Image I with L grey levels

 Size of the blocks of the source image N(B)×M(B)

 Size of the compressed blocks n(B)× m(B)

 Output: n×m compressed image IC

1. Normalize the source image I in [0,1]

2. Partition the source image in blocks of size N(B)×M(B)

3. For each block

4. For h = 1 to n(B)

5. For k = 1 to m(B)

6. Compute the (hk)th component of the bidimensional direct F-transform by (21)

7. Next k

8. Next h

9. Next block

10. Merge the compressed blocks

11. De-normalize the image

12. Return the compressed n×m image IC

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 September 2023 doi:10.20944/preprints202309.0964.v1

https://doi.org/10.20944/preprints202309.0964.v1

 7

Algorithm 1b. F-transform image decompression

 Input: n×m compressed image Ic

 Output: N×M decoded image ID

1. Normalize the compressed image in [0,1]

2. Partition the compressed image Ic in blocks of size n(B)×m(B)

3. For each compressed block

4. For i = 1 to N(B)

5. For j = 1 to M(B)

6. Compute the (i,j)th pixel of the decoded block by the bidimensional inverse F-transform (22)

7. Next j

8. Next i

9. Next compressed block

10. Merge the decompressed blocks

11. De-normalize the decompressed image

12. Return the decompressed N×M image ID

In [17] an improvement of the quality of the decompressed image is accomplished using the bi-

dimensional F1-transform.

The blocks are compressed by using the bi-dimensional direct F1-transform: F୦୩ଵ୆ = c୦୩଴଴ + chk10(i − h) + chk01(j − k) (23)

where:

c୦୩଴଴ = F୦୩୆ = ∑ ∑ R(i, j)A୦(i)B୩(j)୒(୆)୧ୀଵ୑(୆)୨ୀଵ∑ ∑ A୦(i)B୩(j)୒(୆)୧ୀଵ୑(୆)୨ୀଵ (24)

c୦୩ଵ଴ == ∑ ∑ 𝐼(i, j)|𝑖 − ℎ|A୦(i)B୩(j)୒(୆)୧ୀଵ୑(୆)୨ୀଵ∑ A୦(i)(i − h)ଶ୒(୆)୧ୀଵ ∑ B୩(j)୑(୆)୨ୀଵ (25)

c୦୩଴ଵ == ∑ ∑ 𝐼(i, j)|𝑗 − 𝑘|A୦(i)B୩(j)୒(୆)୧ୀଵ୑(୆)୨ୀଵ∑ B୩(j)(j − k)ଶ୑(୆)୨ୀଵ ∑ A୦(i)୒(୆)୧ୀଵ (26)

The above three coefficients are constructed merging the coefficients of each block and finally

stored, forming the output of coding process.

In the inverse process the image is reconstructed by decompressing the block with the bi-

dimensional inverse F1-transform:

𝑓௡ಳ௠ಳଵிಳ (i, j) = ෍ ෍ F୦୩୆୫(୆)
୩ୀଵ A୦(i)୬(୆)

୦ୀଵ B୩(j) (27)

where the bi-dimensional direct F1-transform of the block F୦୩୆ is calculated by (23).

The decompressed blocks are merged to form the decompressed image.

The F1-transform compression and decompression algorithms are shown in pseudocode in

Algorithms 2a and 2b.

Algorithm 2a. F1-transform image compression

 Input: N×M Image I with L grey levels

 Size of the blocks of the source image N(B)×M(B)

 Size of the compressed blocks n(B)× m(B)

 Output: n×m matrices of the direct F1-transform coefficients c଴଴, cଵ଴ and c଴ଵ

1. Normalize the source image I in [0,1]

2. Partition the source image in blocks of size N(B)×M(B)

3. For each block

4. For h = 1 to n(B)

5. For k = 1 to m(B)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 September 2023 doi:10.20944/preprints202309.0964.v1

https://doi.org/10.20944/preprints202309.0964.v1

 8

6. Compute the component c୦୩଴଴ by (24)

7. Compute the component c୦୩ଵ଴ by (25)

8. Compute the component c୦୩଴ଵ by (26)

9. Compute the (hk)th component of the bidimensional direct F1-transform by (26)

10. Next k

11. Next h

12. Next block

13. Merge the compressed blocks to obtain the n×m matrices of the coefficients c଴଴, cଵ଴ and c଴ଵ

14. Return the compressed n×m matrices of the coefficients c଴଴, cଵ଴ and c଴ଵ

Algorithm 2b. F1-transform image decompression

 Input: n×m matrices of the direct F1-transform coefficients coefficients c଴଴, cଵ଴ and c଴ଵ

 Size of the blocks of the decoded image N(B)×M(B)

 Size of the blocks of the coded image n(B)×m(B)

 Output: N×M decoded image ID

1. Partition the F1-transform coefficients c଴଴, cଵ଴ and c଴ଵin blocks of size n(B)×m(B)

2. For each compressed block

3. For i = 1 to N(B)

4. For j = 1 to M(B)

5. Compute the (i,j)th pixel of the decoded block by the bidimensional inverse F1-transform (27)

6. Next j

7. Next i

8. Next compressed block

9. Merge the decompressed blocks

10. De-normalize the decompressed image

11. Return the decompressed N×M image ID

3. The YUV-based F1-transform color image compression method

Let I be a N×M color image in L grey levels. All pixel values in the three bands R, G and B are

normalized in [0,1].

Considering a 256 grey levels color image and the scaled and offset version of the YUV color

space, the source image is transformed in the YUV space via the formula [20]:

൥YUV൩ = ൥ 0.299 0.587 0.114−0.169 −0.332 0.5000.500 −0.419 −0.813൩ ൥RGB൩ + ൥16128128൩ (28)

Then, the F1-transform image compression algorithm is executed separately to the three

normalized images Y, U and V, using a strong compression for the chroma images U and V.

If N(B) and M(B) are the sizes of each block in the three channels, the blocks in the brightness

channel are compressed with rate ϱଢ଼ = ௡ೊ(୆)×௠ೊ(୆)୒(୆)×୑(୆) and the blocks in the two chroma channels are compressed with rate ϱ୙୚ = ௡ೆೇ(୆)×௠ೆೇ(୆)୒(୆)×୑(୆) , where nUV(B) << nY(B) and mUV(B) << mY(B), so that ρUV

<< ρY .

The F1-transform image compression algorithm will store, in output for each channel, the three

matrixes of the coefficients of the bi-dimensional direct F1-transform: c଴଴, cଵ଴ and c଴ଵ. The size of

the three matrices in the brightness channel is ρY(N×M) and the size of the three matrices in each of

the two chroma channels is ρUV(N×M).

By suitably choosing the brightness and chroma compression rates, it is possible to reduce the

memory capacity needed to store the direct F1-transform coefficients in the RGB space.

For example, suppose we execute the F1-transform image compression algorithm in the RGB

space to compress a 256×256 color image, by partitioning the image into 16x16 blocks compressed

into 4×4 blocks. The compression rate will be ρRGB = 0.0625 and the size of the matrix of each coefficient

is 64×64. Executing the F1-transform algorithm in the YUV space and compressing the 16×16 blocks

in the two chroma channels in 2×2 blocks (ρUV = 0.016) and the 16×16 blocks in the brightness channel

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 September 2023 doi:10.20944/preprints202309.0964.v1

https://doi.org/10.20944/preprints202309.0964.v1

 9

in 8×8 blocks (ρUV = 0.25), the size of the matrix of each coefficient in the U and V channels will be

32×32, and the size of the matrix of each coefficient in the Y channel will be 128×128. So, by carrying

out the compression of the source image in the YUV space in this way, an advantage is obtained both

in terms of visual quality of the reconstructed image and in terms of available memory necessary to

archive the coefficients of the direct F1-transforms in the three channels.

Below we show in pseudocode the YUV F1-transform color image compression algorithm

(Algorithm 3a).

Algorithm 3a. YUV F1-transform color image compression

 Input: N×M color image I with L grey levels

 Size of the blocks of the source image N(B)×M(B)

 Size of the compressed blocks in the Y channel nY(B)× mY(B)

 Size of the compressed blocks in the U and V channels nUV(B)×mUV(B)

 Output: n×m matrices of thedirect F1-transform coefficients c଴଴ , cଵ଴ and c଴ଵ in the Y, U and

channels

1. Extract the single band images IR, IG and IB

2. Transform the RGB images IR, IG and IB in the YUV images IY, IU and IV by (28)

3. Execute F1-transform image compression (IY, N(B), M(B), nY(B), mY(B)) //compress IY

4. Execute F1-transform image compression (IU, N(B), M(B), nUV(B), mUV(B)) //compress IU

5. Execute F1-transform image compression (IV, N(B), M(B), nUV(B), mUV(B)) //compress IV

6. Return the compressed matrices of the coefficients c଴଴, cଵ଴ and c଴ଵ in the bands Y, U and V

The decompression process is performed by executing the F1-transform image decompression

algorithm in the brightness and chroma channels. The F1-transform image decompression algorithm is

executed separately for each of the channels Y, U and V, by assigning as input both the three coefficient

matrices of the direct F1-transform and the dimensions of the original and compressed blocks.

Then the three decoded images IDY, IDU, and IDV are transformed in the RGB space, by the formula

[20]:

൥𝑅𝐺𝐵൩ = ൥1.164 0 1.5961.164 −0.813 −0.3921.164 2.017 0 ൩ ൥𝑌 − 16𝑈 − 128𝑉 − 128൩ (29)

Finally, the decoded image in the RGB band (IDR, IDG, IDB) is returned.

Below is shown in pseudocode the YUV F1-transform color image decompression algorithm

(Algorithm 3b).

Algorithm 3b. YUV F1-transform image decompression

 Input: n×m matrices of the direct F1-transform coefficients coefficients c଴଴, cଵ଴ and c଴ଵ in the Y,

U and V channels

 Size of the blocks of the decoded image N(B)×M(B)

 Size of the compressed blocks in the Y channel nY(B)× mY(B)

 Size of the compressed blocks in the U and V channels nUV(B)×mUV(B)

 Output: N×M decoded image ID

1. c଴଴, cଵ଴ and c଴ଵin blocks of size nY(B)×mY(B)

2. IDY = F1-transform image decompression (c௒଴଴, c௒ଵ଴, c௒଴ଵ, N(B), M(B), nY(B), mY(B)) //Y ch. decomp.

3. IDU = F1-transform image decompression (c୙଴଴, c୙ଵ଴, c୙଴ଵ, N(B), M(B), nUV(B), mUV(B)) //U ch. decomp.

4. IDV = F1-transform image decompression (c௏଴଴, c୚ଵ଴, c୚଴ଵ, N(B), M(B), nUV(B), mUV(B)) //V ch. decomp.

5. Transform the YUV images IDY, IDU and IDV in the RGB images IDR, IDG and IDB by (29)

6. Return the decompressed N×M color image in the RGB space (IDR, IDG and IDB)

We compare our lossy color image compression report with the JPEG algorithms and the color

image compression methods based on F-transform in the RGB space [8], and F-transform on the YUV

space [6] and F1-transform on the RGB space [17].

The Peak Signal to Noise index (PSNR) used to measure the quality of the decoded images. To

measure the gain obtained executing the YUV F1-transform algorithm with respect to another color

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 September 2023 doi:10.20944/preprints202309.0964.v1

https://doi.org/10.20944/preprints202309.0964.v1

 10

image compression method, we measure the PSNR gain, expressed in percentage and given by the

formula Gain(YUV 𝐹ଵ − transform) = [(PSNR YUV 𝐹ଵ − transform) - (PSNR other method)] ⋅ 100(PSNR other method) (30)

In next Section the results applied to color image dataset are shown and discussed.

4. Results

We test the YUV F1-transform lossy color image compression algorithm on the color image

dataset provided by the University of Southern California Signal and Image Processing Institute (USC

SIPI) and published on the website http://sipi.usc.edu/database.

The dataset is made up of over 50 color images of different sizes. For brevity, we show in detail

the results obtained for the 256x256 source images 4.1.04 and the 412x512 source image 4.2.07; they

are shown in Figure 1.

Each image was compressed and decompressed by performing JPEG, YUV F-transform, F1-

transform and YUV F1-transform lossy image compression algorithms.

(a) (b)

Figure 1. Source images: (a) 256x256 image 4.1.04; (b): 512x512 image 4.2.07.

We compare the four image compression methods measuring the quality of the reconstructed

image as the compression rate change. The compression rate used by executing YUV F-transform and

YUV F1-transform is the mean compression rate set for each channel Y, U and V.

In Figure 2 we show, for the original image 4.1.04, the decoded images obtained by executing

the four algorithms with a compression rate ρ ≈ 0.10.

(a) (b)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 September 2023 doi:10.20944/preprints202309.0964.v1

https://doi.org/10.20944/preprints202309.0964.v1

 11

(c) (d)

Figure 2. Decoded image 4.1.04, ρ ≈ 0.10, obtained via: (a) JPEG; (b) F1-transform; (c):YUV F-transform;

(d) YUV F1-transform.

Figure 3 shows, for the original image 4.1.04, the decoded images obtained by executing the four

algorithms setting a compression rate ρ ≈ 0.25.

(a) (b)

(c) (d)

Figure 3. Decoded image 4.1.04, ρ ≈ 0.25, obtained via: (a) JPEG; (b) F1-transform; (c):YUV F-transform;

(d) YUV F1-transform.

Figure 4 shows the trend of the PSNR index obtained varying the compression rate. The trends

obtained by executing JPEG and F1-transform are similar. However, for strong compressions (ρ < 0.1),

the PSNR value calculated by executing JPEG decreases exponentially as the compression increases:

this result shows that the quality of the decoded image obtained by JPEG drops quickly for very high

compressions. The highest PSNR values are obtained by performing YUV F-transform and YUV F1-

transform. In particular, the PSNR values obtained with the two methods are similar for ρ < 0.2, while,

for lower compressions, YUV F1-transform provides decompressed images of better quality than

those obtained with YUV F-transform.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 September 2023 doi:10.20944/preprints202309.0964.v1

https://doi.org/10.20944/preprints202309.0964.v1

 12

Figure 4. PSNR trend for the color image 4.1.04 obtained by executing the four color image

compressions algorithms.

Now we show the results obtained for the color image 4.2.07. In Figure 5 we give the decoded

images obtained by executing the four algorithms with compression rate ρ ≈ 0.10.

(a) (b)

(c) (d)

Figure 5. Decoded image 4.2.07, ρ ≈ 0.10, obtained via: (a) JPEG; (b) F1-transform; (c):YUV F-transform;

(d) YUV F1-transform.

Figure 6 shows the decoded images of 4.2.07 obtained by executing the four algorithms with a

compression rate ρ ≈ 0.25.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 September 2023 doi:10.20944/preprints202309.0964.v1

https://doi.org/10.20944/preprints202309.0964.v1

 13

(a) (b)

(c) (d)

Figure 6. Decoded image 4.2.07, ρ ≈ 0.25, obtained via: (a) JPEG; (b) F1-transform; (c):YUV F-transform;

(d) YUV F1-transform.

Figure 7 shows the trend of the PSNR index obtained by varying the compression rate. The best

values of PSNR are obtained by executing YUV F1-transform. The trend of the PSNR obtained by

executing YUV F-transform is better than the one obtained by executing F-transform and JPEG. As

the results obtained for the color image 4.1.04 show, the trend of PSNR obtained by executing JPEG

for the image 4.2.07 decays rapidly as compression increases (ρ < 0.1).

Figure 7. PSNR trend for the color image 4.2.07 obtained by executing the four color image

compressions algorithms.

In Figure 8 we show the trends of the gain of the YUV F1-transform algorithm with respect to

the other three color image compression algorithms, where the gain index is calculated by (30) and is

averaged for all the images of the dataset used in the comparative tests. The gain of the proposed

method with respect to YUV F-transform is approximately equal to 2% regardless of the compression

rate. The gain of YUV F1-transform with respect to F1-transform varies from 3%, for small

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 September 2023 doi:10.20944/preprints202309.0964.v1

https://doi.org/10.20944/preprints202309.0964.v1

 14

compressions, to 4% for high compressions (ρ < 0.2). The gain of YUV F1-transform with respect to

JPEG varies from 3%, for small compressions, to 5% for medium-high compressions (0.1 < ρ < 0.2);

for compression rates lower than 0.1 the gain index increases quickly as the compression increases

until it reaches 7%.

Figure 8. Trend of the Gain of YUV-F1transform with respect to the other three color image

compression methods.

These results shown that the quality of the images coded/decoded by YUV-F1transform is higher

than that obtained using YUV-Ftransform, F1transform and JPEG, regardless of the compression

level.

Finally, in Table 1 we show the mean coding and decoding CPU time obtained by executing the

four color image compression algorithms: the average values refer to the CPU times measured for all

images of the same size and for all compression rates: we see that both the coding and decoding

CPU times measured by executing YUV F1-transform are comparable with those obtainedwith the

other four image compression methods. Therefore, YUV-F1-transform improves the quality of the

reconstructed images obtained by executing JPEG, F1-transform and YUV F-transform and provides

CPU times similar to those obtained by executing the other image compression three methods at same

time.

Table 1. Mean coding and decoding CPU time obtained for the 256x256 and 512x512 images by

executing the four image compression algorithms.

CPU time JPEG F1trRGB FtrYUV F1trYUV

Coding
256x256 2.76 2.78 2.41 3.09

512x512 5.75 5.88 5.66 6.01

Decoding
256x256 5.82 5.86 5.04 5.73

512x512 9.52 9.85 9.12 9.56

5. Conclusions

A lossy color image compression process employing the bi-dimensional F1-transform in YUV

space is proposed. The benefit of this approach is to improve the quality of the reconstructed image,

with acceptable CPU coding/decoding times. In fact, the F1-transform method manages to retain

more information of the original image than other image compression methods, but with memory to

be allocated and execution times. The proposed method on the YUV space allows to obtain a high

quality of the decompressed image, without increasing the allocated memory and the CPU times.

The results show that this method improves the quality of the decompressed image compared to that

obtained with the use of JPEG, F-transform applied in YUV space and F1-transform applied in RGB

space. Moreover the execution times are compatible with those obtained by executing the other three

color image compression methods.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 September 2023 doi:10.20944/preprints202309.0964.v1

https://doi.org/10.20944/preprints202309.0964.v1

 15

In the future we intend to adapt the YUV F1-transform algorithm to the compression of large

color images

Author Contributions: Conceptualization, B. C.. and S.S.; methodology, B. C., F.D.M. and S.S.; software, B. C.,

F.D.M. and S.S.; validation, B. C., F.D.M. and S.S.; formal analysis, B. C., F.D.M. and S.S.; investigation, B. C.,

F.D.M. and S.S.; resources, B. C., F.D.M. and S.S.; data curation, B. C., F.D.M. and S.S.; writing—original draft

preparation, B. C., F.D.M. and S.S.; writing—review and editing, B. C., F.D.M. and S.S.; visualization, B. C.,

F.D.M. and S.S.; supervision, B. C., F.D.M. and S.S.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wallace, G. The JPEG still picture compression standard. IEEE Transactions on Consumer Electronics 1992,

38(1), xviii–xxxiv, doi: 10.1109/30.125072..

2. Raid, A. M.; Khedr, W. M.; El-Dosuky, M. A.: Ahmed, W. Jpeg image compression using discrete cosine

transform-A survey. International Journal of Computer Science & Engineering Survey (IJCSES) 2014, 5(2), 39-

47, doi 10.5121/ijcses.2014.5204.

3. Mostafa, A.; Wahid, K.; Ko, S.B. An Efficient YUV-based Image Compression Algorithm for Wireless

Capsule Endoscopy, IEEE CCECE 2011 2011 24th Canadian Conference on Electrical and Computer

Engineering (CCECE) 8-11 May 2011, Niagara Falls, Ontario, Canada., pp 943-946, doi:

10.1109/ICCITechn.2011.6164787.

4. Nobuhara, H.; Pedrycz, W.; Hirota, K. Relational image compression: optimizations through the design of

fuzzy coders and YUV color space, Soft Computing 2005, 9(6), 471–479, doi:10.1007/s00500-004-0366-7.

5. Nobuhara, H.; Hirota, K.; Di Martino, F.; Pedrycz, W.; Sessa S. Fuzzy relation equations for

compression/decompression processes of colour images in the RGB and YUV colour spaces, Fuzzy

Optimization and Decision Making 2005, 4(3), 235–246, doi: 10.1007/s10700-005-1892-1.

6. Di Martino, F.; Loia, V.; Sessa, S. Direct and Inverse Fuzzy Transforms for Coding/Decoding Color Images

in YUV Space, Journal of Uncertain Systems 2009, 3(1), 11-30.

7. Perfilieva, I. Fuzzy Transform: Theory and Application. Fuzzy Sets and Systems 2006, 157, 993-1023, doi:

10.1016/j.fss.2005.11.012.

8. Di Martino, F.; Loia, V.; Perfilieva, I.; Sessa, S. An Image Coding/Decoding Method Based on Direct and

Inverse Fuzzy Transforms. International Journal of Approximate Reasoning 2008, 48, 110-131,

doi:10.1016/j.ijar.2007.06.008.

9. Son, T. N.; Hoang, T. M.; Dzung, N. T.; Giang, N. H. Fast FPGA implementation of YUV-based fractal image

compression, 2014 IEEE Fifth International Conference on Communications and Electronics (ICCE),

Danang, Vietnam, 2014, pp. 440-445, doi: 10.1109/CCE.2014.6916745.

10. Podpora, M.; Korbas, G. P.; Kawala-Janik, A. YUV vs RGB – Choosing a Color Space for Human-Machine

Interaction, 2014 Federated Conference on Computer Science and Information Systems, Warsaw, Poland,

7 - 10 September 2014, vol. 3 pp. 29–34, doi: 10.15439/2014F206.

11. Ernawan, F.; Kabir, N.; Zamli, K.Z., An efficient image compression technique using Tchebichef bit

allocation. Optik, 2017, 148, 106-119.

12. Zhu, S.; Cui, C.; Xiong, R.; Guo, U.; Zeng, B. Efficient Chroma Sub-Sampling and Luma Modification for

Color Image Compression, in IEEE Transactions on Circuits and Systems for Video Technology, vol. 29,

no. 5, pp. 1559-1563, May 2019, doi: 10.1109/TCSVT.2019.2895840.

13. Sun, H.; Liu, C.; Katto, J.; Fan, Y. An Image Compression Framework with Learning-Based Filter,

Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW), 14-19 June 2020, Seattle, WA, USA, pp. 152-153.

14. Malathkar, N.V.; Soni, S.K. High compression efficiency image compression algorithm based on

subsampling for capsule endoscopy. Multimed Tools Appl 2021, 80, 22163–22175, doi:10.1007/s11042-021-

10808-0.

15. Ma, H.; Liu, D.; Yan, N.; Li, H.; Wu, F. End-to-End Optimized Versatile Image Compression With Wavelet-

Like Transform IEEE Transactions on Pattern Analysis and Machine Intelligence 2022, 44, (3),. 1247-1263, doi:

10.1109/TPAMI.2020.3026003.

16. Yin, Z.; Chen, L.;Lyu, W.;Luo, B. Reversible attack based on adversarial perturbation and reversible data

hiding in YUV colorspace. Pattern Recognition Letters 2023, 166, 1-7, doi:10.1016/j.patrec.2022.12.018.

17. Di Martino, F.; Sessa, S.; Perfilieva, I. First Order Fuzzy Transform for Images Compression. Journal of Signal

Information Processing 2017, 8, 178-94, doi:10.4236/jsip.2017.83012.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 September 2023 doi:10.20944/preprints202309.0964.v1

https://doi.org/10.20944/preprints202309.0964.v1

 16

18. Di Martino, F.; Sessa, S. Fuzzy Transforms for Image Processing and Data Analysis - Core Concepts,

Processes and Applications; Springer Nature: Cham, Switzerland, 2020, pp. 217, doi:10.1007/978-3-030-

44613-0.

19. Perfilieva, I.; Dankova, M.; Bede, B. Towards a higher degree F-transform. Fuzzy Sets and Systems 2011, 180,

3–19, doi:10.1016/j.fss.2010.11.002.

20. Technical Committee ISO/IEC JTC 1/SC 29 Coding of audio, picture, multimedia and hypermedia

information, ISO/IEC 10918-1:1994 - Information technology — Digital compression and coding of

continuous-tone still images: Requirements and guidelines, 1994, 182 pp.

21. Wang, Y.; Tohidypour, H.R.; Pourazad, M.T.; Nasiopoulo, P.; Leung, V.C.M. Comparison of Modern

Compression Standards on Medical Images for Telehealth Applications. In 2023 IEEE International

Conference on Consumer Electronics (ICCE), 2023, pp. 1-6.

22. Prativadibhayankaram, S.; Richter, T.; Sparenberg, H.; Fößel, S. Color Learning for Image

Compression. arXiv preprint arXiv, 2023, 2306.17460.

23. Yin, Z.; Chen, L.;Lyu, W.;Luo, B. Reversible attack based on adversarial perturbation and reversible data

hiding in YUV colorspace. Pattern Recognition Letters 2023, 166, 1-7, doi:10.1016/j.patrec.2022.12.018.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 September 2023 doi:10.20944/preprints202309.0964.v1

https://doi.org/10.20944/preprints202309.0964.v1

