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Abstract: The two-dimensional Fuzzy Transform was applied in image compression. The quality of the image
compressed with this methodis better than that obtained using methods based on fuzzy relation equations and
comparable with that of the JPEG method, with better compression execution times. In this paper we propose
a variation of the method based on the two-dimensional Fuzzy Transform of image compression, in which the
image is first partitioned into blocks and then each block is compressed with the higher compression rate. The
advantage of this method consists into a greater compression of the image, guaranteeing a high quality of the
reconstructed image. The results show that our method is better than the Fuzzy Transform method improving
also the quality of the reconstructed image.

Keywords: F-transform; F!-transform; color image compression; RGB space; YUV space

1. Introduction

YUYV is a color model used in the NTSC, PAL, and SECAM color encoding systems., describing
the color space in terms of a brightness component (the Y band called luma) and the two chrominance
components (the U and V bands called chroma).

The YUV model has been used to advantage in image processing; its main advantage is that,
unlike the three Red, Green and Blue (RGB) bands, which are equally perceived by the human eye,
in YUV space, most of the color image information is contained in the Y band, as opposed to the U
and V bands. main applications of the YUV model in image processing, is then the lossy compression
of images, which can be performed mainly in the U and V bands, with slight loss of information.

YUV is used in the JPEG color image compression method [1,2] where the Discrete Cousine
Transform (DCT) algorithm is executed on the YUV space, sub-sampling and reducing in dynamic
range the UV channels in order to balance the reduction of data and the feel of human eyes. In [3] the
DCT algorithm is executed in the YUV space for wireless capsule endoscopy application; the results
show that the quality of the reconstructed images is better than that obtained by applying the DCT
image compression method in the RGB space.

Many authors proposed image compression and reconstruction algorithms applied on the YUV
space in order to improve the quality of the reconstructed images.

In [4,5] an image compression algorithm based on fuzzy relation equations is applied in the YUV
space to compress color images; the image is divided in blocks of equal sizes, coding the blocks in the
UV channels more strongly than the blocks in the Y band. In [6] the Fuzzy Transform technique (for
short, F-transform) [7,8] is applied to coding color images in the YUV space; the author show that the
quality of color images coded and decoded via F-transform in the YUV space is better than the one
obtained using the F-transform method in the RGB space and comparable with the one obtained
using the JPEG method.

A fractal image compression technique applied on the YUV space is proposed in [9]; the authors
show that the quality of color images coded/decoded using this approach is better than the one
obtained applying the fractal image compression method in the RGB space.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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Furthermore, comparison tests between RGB and YUV perception-oriented properties
performed in [10] show that compressed images in the YUV space provide better quality than images
compressed in the RGB spaces in a human-computer interaction and machine vision applications.

In [11] is applied a technique using Tchebichef bit allocation to compress images in the YUV
space; the results shown that this method improves the visual quality of color images compressed via
JPEG by 42%. A color image compression method applying a subsampling process to the two chroma
channels and a modification algorithm to the Y channel is applied to color images in [12] to improve
the JPEG performances.

An image compression method with learning-base filter is applied in [13] on color images
constructing the filter in YUV space instead of RGB space; author shows that the quality of the coded
images is better than the one obtained using the filter in the RGB space. In [14] an image lossy
compression algorithm in which quantization and subsampling are executed in the YUV space is
applied for wireless capsule endoscopy; the quality of the coded images results better than the one
obtained executing quantization and subsampling in the RGB space. In [15] a wavelet-based color
image compression method using trained convolutional neural network are used in the lifting
scheme is applied on the YUV executing the trained CNN on the Y, U, V channels separately; this
method improves the quality of the coded images obtained applying traditional wavelet-based color
image compression algorithms; however, execution times are much higher than those adopted by
applying traditional color image compression algorithms.

In [16] an image reconstruction method performed on the YUV space is applied to prevent from
corruption of data performed using adversarial perturbation of the image; the results show that the
image can be recovered on the YUV space without distortions and with a high visual quality.

In this paper we propose a novel image compression algorithm in which the bidimensional First-
Degree F-Transform algorithm [17,18] is applied for coding/decoding color images in the YUV space.

A generalization of the F-transform, called high order Fm-transform, has been proposed in [19]
in order to reduce the approximation error of the original function approximated with the inverse F-
transform. In the Fm -transform the components of the direct high order fuzzy transforms consist of
polynomials of degree s, unlike the components of the direct F-transform (labelled as F°-transform),
where they were constant values. The greater the degree of the polynomial, the smaller the error of
the approximation; however, as the degree of the polynomial increases, the computational
complexity of the algorithm increases.

In [18] the bi-dimensional first-order degree F-transform (F!-transform) is used to compress
images; authors show that the quality of the coded/decoded images is better than the one obtained
executing F-transform, with negligible augments in CPU time. The critical point of this method
consists of the fact that, unlike the F-transform and JPEG methods, it requires not the compressed
image to be saved in memory, but matrices of three coefficients of the same size as the compressed
image; therefore, it needs a memory area three times greater than that necessary to archive the
compressed image.

To solve this problem, we propose a new lossy color image compression algorithm in which is
executed the F!-transform algorithm to code/decode color images transformed in the YUV space. The
transformed image in each of the three channels is partitioned into blocks and each block is
compressed by the bi-dimensional direct F'-transform, compressing the blocks of the chroma
channels more. The image is subsequently reconstructed by decomposing the single blocks with the
use of the bi-dimensional inverse F!-transform.

The main benefits of this method are as follows:

=  the use of the bi-dimensional F'-transform represents a trade-off between the quality of the
compressed image and the CPU times. It reduces the information loss obtained by compressing
the image with the same compression rate using the F-transform algorithm with acceptable
coding/decoding CPU time;

=  the compression of the color images is carried out in the YUV space to guarantee a high visual
quality of the color images and solve the criticality of the F!-transform color image compression
method on the RGB space [18] which needs a larger memory to allocate the information of the
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compressed image. In fact, by performing a high compression of the two chrominance channels,
the size of the matrices in which the information of the compressed image is contained, is
reduced in these two channels, and this allows to reduce the memory allocation and CPU times.

We compare our color lossy image compression method with the JPEG method and with the
image compression methods based on the bi-dimensional F-transform [7,8] and F!-transform [19] on
the RGB space and on the bi-dimensional F-transform on the YUV space [6].

In the next Section the concepts of F-transform and F'-transform are briefly presented, and the
F-transform lossy color image compression method applied in YUV space is shown as well. Our
method is presented in Section 3. In Section 4 the comparative results obtained on datasets of color
images are shown and discussed; concluding discussions are contained in Section 5.

2. Preliminaries

2.1. The bi-dimensional F-Transform

Let [a,b] be a closed real interval and let {x1, x2, ..., xn} be a set of points of [a,b], called nodes, such
that x1=a <x2<...<xa=b.

Let {Ay,...,An} be a family of fuzzy sets of X, where Ai: [a,b] — [0,1: it forms a fuzzy partition of X
if the following conditions hold:

(1) Ai(xi) =1 for everyi=1,2,...,n;

(2) Ai(x) =0 if x& (xi1, xi+1), by setting xo=x1 =a and Xn+1 = Xn=b;

(3) Ai(x) is a continuous function over [a,b];

(4) Ai(x) is strictly increasing over [xi1, xi] foreachi=2, ..., n;

(5) Ai(x)is strictly decreasing over [xi, xi+1] for eachi=1,..., n-1;

(6) X1 4;(x) =1 forevery xe[a,b].

Let h = E. The fuzzy partition {As,..., An} is an uniform fuzzy partition if:

(7) n=3;

(8) xi=ath-(i-1), foreveryi=1,2, ..., n;

(9) Ai(xi—x) = Ai(xi+x) forevery x € [0,h] and i=2,...,n-1;

(10) Aina(x) = Ai(x- h) for every x € [xi xi1] and i=12,..., n-1.

Let f(x) be a continuous function over [a,b] and {A1, Az, ..., An} be a fuzzy partition of [a,b]. The
n-tuple F = [Fy,F,,...,Fy] is called unidimensional direct F-transform of f with respect to {A1, Az, ..., An}
if the following hold:

_ [y f0A (0dx

i=1,2,...
Pacoas @

i
The following function fr, defined in [a,b]:

fra() = Lt FiAi(%) )

is called uni-dimensional inverse F-transform of the function f.
The following theorem holds (cfr. [7, Theorem 2]):

Theorem 1. Let f(x) be a continuous function over [a,b]. For every € > 0 there exist an integer n(e) and a
fuzzy partition {A1, Az, ..., Ao} of [a,b] such that for all x € [a, b] |f(x) = frmee) (@) < €|.

Now consider the discrete case where the function fis known in a set of N points P = {ps,...,pn},
where pie[a,b]j=1,2,...,m. The set {py,...,pn} is called sufficiently dense with respect to the fixed fuzzy
partition {A1, Ao, ..., A} if for every i=1,...n, there exists at least an index j€ {1,...,m} such that
Ai(pj) > 0.

If the set P is sufficiently dense with respect to the fuzzy partition, we can define the discrete
direct F-transform with components:
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F.
! N, Ai(p)

i=1,2,...n 3)

and the discrete inverse F-transform:
frn(@j) = Xt FiAi(p)) j=1...N 4)
The following theorem applied to the discrete inverse F-transform holds (cfr. [7, Theorem 5]):
Theorem 2. Let f(x) be a continuous function over [a,bl, known in a discrete set of points {px,...,pm}. For every

€ > 0 there exist an integer n(e) and a fuzzy partition {A1, Az, ..., Awel of [a,b], with respect to which P is
sufficiently dense, that is such that for every j=1,...,N, |f(pj) = frne (pj) <e€

By Theorem 2, the inverse fuzzy transform (4) can be used to approximate the function fin a
point.

Now we consider functions in two variables. Let x1, x2, ..., xn be a set of n nodes in [a,b], where
n>2and x1=a<x<..<xn=Db, and let yy, y2, ..., ym be a set of n nodes in [c,d], where m > 2 and and
y1=c<y2<...<ym=d. Moreover, let Ai,...,An: [a,b] — [0,1] be a fuzzy partition of [a,b], Bs,...,.Bm: [c,d]
— [0,1] be a fuzzy partition of [c,d] and let f(x,y) be a function defined in the closed set [a,b]x[c,d].

We suppose that f assumes known values in a set of points (pj,qj) €[a,b]x[c,d], where i=1,...,N
and j =1,...,M, where the set P={p;, ..., pn} is sufficiently dense with respect to the fuzzy partition
{A1,..., An} and the set Q={qi, ... ,qu} is sufficiently dense with respect to the fuzzy partition
{Bs,...,Bm}.

In this case, we can define the bi-dimensional discrete F-transform of f, given by matrix [Frx] h =
1,...nand k =1,...,m with components:

. _ I3 £ (ia)AR(P)B(G))
hie M, N An(piB(a)

h=1,2,...n k=12,...m (5)

and the bi-dimensional discrete inverse F-transform of f with respect to {A1, A, ..., An} and {By,...,Bm}
given by

fnp;n(pi’ qj) = Zﬁzl er<n:1 Fhk Ah (pi) Bk(q]')r i=1/2/' . .,N, j=1/2/' . ‘rM (6)

2.2. The bi-dimensional F'-Transform

This paragraph introduces the concept of higher degree fuzzy transform or Fr-transform. One-
dimensional square-integrable functions will now be considered.

Let An, h =1,...,n, be the hth fuzzy set of the fuzzy partition {As,...,An} defined on [a,b] and
La([xn-1,xn41]) be the Hilbert space of square-integrable functions f,g: [xn-1,Xxm1] — R with the inner
product:

) St FGOg (AR (0 dx
fogm = fxxhh_+11 A, (x)dx

@)

Given a positive integer r, we denote with L, ([xs-1,xn1]) a linear subspace of the Hilbert space

La([xn-1,xn1]) having as orthogonal basis the polynomials {Pho, Ph1 ,..., B, } constructed applying the
Gram-Schmidt ortho-normalization defined as:

PO =1
s .
R = ot =Y (UR) s=1,r1 (8)
' (B R)
j=1 \"h’'h
The following Lemma holds (Cfr. 7, Lemma 1):
Lemma 1. Let F} be the orthogonal projection of the function fon L ([xn1,xw1]). Then:

doi:10.20944/preprints202309.0964.v1
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FE@) = ) aniPi() ©)

where
EPS N S FOO R (x)AR(X)dx

Xk-1
Chs = = (10)
TR, LR (0)2A (0 dx

F}, itis the hth component of the direct Fr-transform of f. The inverse Fr-transform of fin a point x
€ [a,b] is:

FaCd = ) FhAKC) a1
k=1

Forr=0, we have Ph0 =1 and the Fo-transform is given by the F-transform in one variable ( FhO (x)
= Ch0).

For r = 1, we have Fh1 (X) = (x — xn) and the hth component of the F'-transform is given by the
formula:

F ()= ano+cn1 (x—xn) = F (X)+ cna (X — Xn) (12)

If the function fis known in a set of N points P ={px,...pn}, cho and cn1 can be discretized in the form:

Ly f(pi)An(pi
T % (13)
Chi = 2iz1 f () (pi — xn)An(py) ”

L1 Ap(pi) (pi — xp)?

The Fl-tranform can be extended in a bi-dimensional space. Let L2 ([xn-1, xn1] % [yk1, yk]) be the
Hilbert space of square- integrable functions f: [xn-1, Xn1] x [yk1,ywi]— R with the weighted inner
product:

Xh+1 Yk+1
o= [ [ reneenm @By (15)
Xh-1 Yk-1
Two functions f, g € Lz ([xn-1, Xna] x [yk-, yke]) are orthogonal if (f, g)n, = 0.
Let f: X € R? — YE R be a continuous bi-dimensional function defined in a closed set [a,b] x [c,d].
Let {A1, Az,..., An} be a fuzzy partition of [a,b], and let {By, Be,..., Bm} be a fuzzy partition of [c,d].
Moreover, let {(p1,q1),..., (pngiN)}  a set of N points in which is known the function f, where
(pi9)€ [ab]x[c,d]. Let the set P={ps, ..., pn} be sufficiently dense with respect to the fuzzy partition
{A1,..., An} and let the set Q={q, ... ,qu} be sufficiently dense with respect to the fuzzy partition
{Bs,...,Bm}.
We can define the bi-dimensional direct F'-transform of f, with components:

Fhx,y) = cfp + cip(x — xp) + e (y — yi) (16)

where ¢y isthe component Fy of the bi-dimensional discrete direct F transform of f, given by (5). The
three coefficients in (17) are given by:

Ly £ (03 q5) - An(py) - Bi(a)

k= Fric = 17
e T Ay - BiCa)) 17)
o = 2/ @30 (9 = x0) - Anpy) B -

I (py - Xh)z - An(pj) - Bi(q))

doi:10.20944/preprints202309.0964.v1
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6
o1 = TR, fl\(lpj’ q;) - (qj 2— yi) - An(p)) - Bi(q)) (19)
(a5 —yk)" - An(py) - Bi(ay)
The inverse F'-transform of fin a point (x,y) € [a,b] x [c,d] is:
fia®y) = D\ > FhiAnGOB() (20)

h=1k=1

where Fl,(xy) is the (hk)th component of the bi-dimensional direct F!-transform, given by the
formula (16).

2.3. Coding/decoding images using the bi-dimensional F and F'-Transforms

Let I be a grey N x M image. A pixel can be considered a data point with coordinates (i j), where i
=1,2,...,.Nandj=1,2,...M; the value of this data point is given by the pixel value I(ij). In [8] the image
isnormalized in [0,1] according with the formula R(i,j) = 1(i,j)/(L-1) where L is the number of grey levels,
partitioned in blocks of equal sizes N(B)xM(B), coded to a block Fs of sizes n(B) x m(B) with n(B) <<
N(B) and m(B) << M(B), using the bi-dimensional direct F-transform.

Let {Ay,...,An@)} be a fuzzy partition of [1,N(B)] and let {By,...,.Bm@)} be a fuzzy partition of
[1,M(B))], each block is compressed by the bi-dimensional direct F-transform:

oo _ Tt Tt RGDARDBLG) o
hk = N
2P P An()Bi()
The coded image is reconstructed by merging all compressed blocks.
Each block is decompressed by using the bi-dimensional inverse F-transform. The pixel value
I(i,j) in the block is approximated by the value:

n(B) m(B)
Famg @) = D > FR A0 Bi() (22)
h=1 k=1
The decoded image is reconstructed by merging the decompressed blocks.

The F-transform compression and decompression algorithms are shown in pseudocode in
Algorithms 1a and 1b.

Algorithm 1a. F'-transform image compression

Input:  NxM Image I with L grey levels
Size of the blocks of the source image N(B)xM(B)
Size of the compressed blocks n(B)x m(B)
Output: nxm compressed image Ic
1. Normalize the source image I'in [0,1]
2. Partition the source image in blocks of size N(B)xM(B)
3. For each block
4. For h=1 ton(B)
5. For k=1 to m(B)
6 Compute the (hk)th component of the bidimensional direct F-transform by (21)
7 Next k
8 Nexth
9. Nextblock
10. Merge the compressed blocks
11. De-normalize the image
12. Return the compressed nxm image Ic
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Algorithm 1b. F-transform image decompression

Input: nxm compressed image I
Output: NxM decoded image Ip

1. Normalize the compressed image in [0,1]

2. Partition the compressed image I. in blocks of size n(B)xm(B)

3. For each compressed block

4. Fori=1 to N(B)

5. Forj=1 to M(B)

6 Compute the (i,j)th pixel of the decoded block by the bidimensional inverse F-transform (22)
7 Nextj

8 Nexti

9. Next compressed block

10. Merge the decompressed blocks

11. De-normalize the decompressed image

12. Return the decompressed NxM image Ip

In [17] an improvement of the quality of the decompressed image is accomplished using the bi-
dimensional F!-transform.
The blocks are compressed by using the bi-dimensional direct F!-transform:

Fif = cp + e —h) + Qi — k) (23)
where:

2o ® TP R, 1) AR ()Bk ()

7ok = P = ZM(B)ZN(B) An()Bk() e
o D TP 16,1 = HARDB()
Chic =7 THNG) 2 yM(E) (25)
iy An(D(G —h)? X707 B ()
o e TG, — klA()BKG)
it == (26)

Yi P B()( — k)2 P An(D)

The above three coefficients are constructed merging the coefficients of each block and finally
stored, forming the output of coding process.

In the inverse process the image is reconstructed by decompressing the block with the bi-
dimensional inverse F!-transform:

n(B) m(B)
) = Z > R AL ) B @7)
=1 k=1
where the bi-dimensional direct Fi-transform of the block FE, is calculated by (23).
The decompressed blocks are merged to form the decompressed image.
The Fl-transform compression and decompression algorithms are shown in pseudocode in
Algorithms 2a and 2b.

Algorithm 2a. F'-transform image compression

Input:  NxM Image I with L grey levels
Size of the blocks of the source image N(B)xM(B)
Size of the compressed blocks n(B)x m(B)
Output: nxm matrices of the direct Fl-transform coefficients ¢, ¢1® and ¢!
Normalize the source image Iin [0,1]
Partition the source image in blocks of size N(B)xM(B)
For each block
Forh=1ton(B)
For k=1 to m(B)

S .
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8
6. Compute the component cfp by (24)
7. Compute the component ciy by (25)
8. Compute the component cpi by (26)
9. Compute the (hk)th component of the bidimensional direct F'-transform by (26)
10. Next k
11. Nexth

12. Next block
13. Merge the compressed blocks to obtain the nxm matrices of the coefficients ¢, ¢!® and c°*
14. Return the compressed nxm matrices of the coefficients c°°, ¢!® and ¢!

Algorithm 2b. F'-transform image decompression

Input: nxm matrices of the direct F'-transform coefficients coefficients c°?, ¢!% and ¢!
Size of the blocks of the decoded image N(B)xM(B)
Size of the blocks of the coded image n(B)xm(B)
Output: NxM decoded image Ip
Partition the Fl-transform coefficients ¢, ¢1® and cin blocks of size n(B)xm(B)
For each compressed block
Fori=1 to N(B)
Forj=1to M(B)
Compute the (i,j)th pixel of the decoded block by the bidimensional inverse F'-transform (27)
Nextj
Next i
Next compressed block

O X NSO

Merge the decompressed blocks

=
I

De-normalize the decompressed image

—_
=

Return the decompressed NxM image Ip

3. The YUV-based F'-transform color image compression method

Let I be a NxM color image in L grey levels. All pixel values in the three bands R, G and B are
normalized in [0,1].

Considering a 256 grey levels color image and the scaled and offset version of the YUV color
space, the source image is transformed in the YUV space via the formula [20]:

Y] [0299 0587 0114 |[R] [16
Ul=[-0169 -0332 0500 ||G|+ 128] (28)
vl losoo -0419 —o0813/lBl l128

Then, the Fl-transform image compression algorithm is executed separately to the three
normalized images Y, U and V, using a strong compression for the chroma images U and V.

If N(B) and M(B) are the sizes of each block in the three channels, the blocks in the brightness
_ ny(B)xmy(B)

channel are compressed with rate gy = “NE)XME) and the blocks in the two chroma channels are
compressed with rate oyy = %ﬁ?gm ,where nuv(B) <<ny(B) and muv(B) << mx(B), so that guv

<<Qv.

The F!-transform image compression algorithm will store, in output for each channel, the three
matrixes of the coefficients of the bi-dimensional direct FI-transform: c®®, ¢'® and c®!. The size of
the three matrices in the brightness channel is ovy(NxM) and the size of the three matrices in each of
the two chroma channels is puv(NxM).

By suitably choosing the brightness and chroma compression rates, it is possible to reduce the
memory capacity needed to store the direct F'-transform coefficients in the RGB space.

For example, suppose we execute the F!-transform image compression algorithm in the RGB
space to compress a 256x256 color image, by partitioning the image into 16x16 blocks compressed
into 4x4 blocks. The compression rate will be gras = 0.0625 and the size of the matrix of each coefficient
is 64x64. Executing the Fl-transform algorithm in the YUV space and compressing the 16x16 blocks
in the two chroma channels in 2x2 blocks (ouv = 0.016) and the 16x16 blocks in the brightness channel
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in 8x8 blocks (ouv = 0.25), the size of the matrix of each coefficient in the U and V channels will be
32x32, and the size of the matrix of each coefficient in the Y channel will be 128x128. So, by carrying
out the compression of the source image in the YUV space in this way, an advantage is obtained both
in terms of visual quality of the reconstructed image and in terms of available memory necessary to
archive the coefficients of the direct F'-transforms in the three channels.

Below we show in pseudocode the YUV F!-transform color image compression algorithm
(Algorithm 3a).

Algorithm 3a. YUV F'-transform color image compression

Input:  NxM color image I with L grey levels

Size of the blocks of the source image N(B)xM(B)

Size of the compressed blocks in the Y channel ny(B)x my(B)

Size of the compressed blocks in the U and V channels nuv(B)xmuv(B)
Output: nxm matrices of thedirect Fl-transform coefficients ¢%°, ¢ and ¢®! in the Y, U and

channels

1. Extract the single band images I, Ic and Is

2. Transform the RGB images I, Ic and Isin the YUV images Iy, Iv and Iv by (28)

3. Execute F!-transform image compression (Iy, N(B), M(B), ny(B), my(B) ) //compress Iy
4. Execute F!-transform image compression (Iu, N(B), M(B), nuv(B), muv(B) ) //[compress Iu
5. Execute F'-transform image compression (Iv, N(B), M(B), nuv(B), muv(B) ) //[compress Iv
6.

Return the compressed matrices of the coefficients ¢, c!? and ¢! in thebands Y, Uand V

The decompression process is performed by executing the F!-transform image decompression
algorithm in the brightness and chroma channels. The F'-transform image decompression algorithm is
executed separately for each of the channels Y, U and V, by assigning as input both the three coefficient
matrices of the direct F'-transform and the dimensions of the original and compressed blocks.

Then the three decoded images Iby, Ipu, and Iov are transformed in the RGB space, by the formula

[20]:
R 1.164 0 1.596 - 16
=11.164 -0.813 -—-0.392(|U — 128 (29)
B 1.164 2.017 0 V —128

Finally, the decoded image in the RGB band (Ibr, Ipg, Ips) is returned.
Below is shown in pseudocode the YUV F'-transform color image decompression algorithm
(Algorithm 3b).

Algorithm 3b. YUV F'-transform image decompression

Input:  nxm matrices of the direct F-transform coefficients coefficients ¢%?, c¢!®and ¢°! in the Y,
U and V channels
Size of the blocks of the decoded image N(B)xM(B)
Size of the compressed blocks in the Y channel ny(B)x my(B)
Size of the compressed blocks in the U and V channels nuv(B)xmuv(B)
Output: NxM decoded image Ip

00, ¢1%and c¢%in blocks of size ny(B)xmy(B)

c
Ipy = Fl-transform image decompression (cy°, cy ,cy , N(B), M(B), nv(B), my(B) )  //Y ch. decomp.
Ipu = Fl-transform image decompression (cJ°, cU ,CU , N(B), M(B), nuv(B), muv(B) ) //U ch. decomp.
Ipv = Fl-transform image decompression (c°, ¢{?, cg?, N(B), M(B), nuv(B), muv(B) ) //V ch. decomp.

Transform the YUV images Ipy, Ibu and Ibvin the RGB images Iog, Ioc and Ios by (29)

S

Return the decompressed NxM color image in the RGB space (Iog, I and Ios)

We compare our lossy color image compression report with the JPEG algorithms and the color
image compression methods based on F-transform in the RGB space [8], and F-transform on the YUV
space [6] and F!-transform on the RGB space [17].

The Peak Signal to Noise index (PSNR) used to measure the quality of the decoded images. To
measure the gain obtained executing the YUV F!-transform algorithm with respect to another color
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image compression method, we measure the PSNR gain, expressed in percentage and given by the

formula

[(PSNR YUV F! — transform) - (PSNR other method)] - 100
(PSNR other method)

In next Section the results applied to color image dataset are shown and discussed.

Gain(YUV F! — transform) = (30)

4. Results

We test the YUV Fl-transform lossy color image compression algorithm on the color image
dataset provided by the University of Southern California Signal and Image Processing Institute (USC
SIPI) and published on the website http://sipi.usc.edu/database.

The dataset is made up of over 50 color images of different sizes. For brevity, we show in detail
the results obtained for the 256x256 source images 4.1.04 and the 412x512 source image 4.2.07; they
are shown in Figure 1.

Each image was compressed and decompressed by performing JPEG, YUV F-transform, F'-
transform and YUV F'-transform lossy image compression algorithms.

(b)
Figure 1. Source images: (a) 256x256 image 4.1.04; (b): 512x512 image 4.2.07.

We compare the four image compression methods measuring the quality of the reconstructed
image as the compression rate change. The compression rate used by executing YUV F-transform and
YUV Fl-transform is the mean compression rate set for each channel Y, U and V.

In Figure 2 we show, for the original image 4.1.04, the decoded images obtained by executing
the four algorithms with a compression rate o = 0.10.
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Figure 2. Decoded image 4.1.04, 0 = 0.10, obtained via: (a) JPEG; (b) F!-transform; (c):YUV F-transform;
(d) YUV Fl-transform.

Figure 3 shows, for the original image 4.1.04, the decoded images obtained by executing the four
algorithms setting a compression rate @ = 0.25.

(d)

Figure 3. Decoded image 4.1.04, o = 0.25, obtained via: (a) JPEG; (b) F!-transform; (c):YUV F-transform;
(d) YUV F'-transform.

Figure 4 shows the trend of the PSNR index obtained varying the compression rate. The trends
obtained by executing JPEG and F'-transform are similar. However, for strong compressions (0 <0.1),
the PSNR value calculated by executing JPEG decreases exponentially as the compression increases:
this result shows that the quality of the decoded image obtained by JPEG drops quickly for very high
compressions. The highest PSNR values are obtained by performing YUV F-transform and YUV F!-
transform. In particular, the PSNR values obtained with the two methods are similar for ¢ <0.2, while,
for lower compressions, YUV F!-transform provides decompressed images of better quality than
those obtained with YUV F-transform.
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Figure 4. PSNR trend for the color image 4.1.04 obtained by executing the four color image
compressions algorithms.

Now we show the results obtained for the color image 4.2.07. In Figure 5 we give the decoded
images obtained by executing the four algorithms with compression rate ¢ ~ 0.10.

Figure 5. Decoded image 4.2.07, 0 = 0.10, obtained via: (a) JPEG; (b) F!-transform; (c):YUV F-transform;
(d) YUV Fl-transform.

Figure 6 shows the decoded images of 4.2.07 obtained by executing the four algorithms with a
compression rate g = 0.25.
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Figure 6. Decoded image 4.2.07, o = 0.25, obtained via: (a) JPEG; (b) F!-transform; (c):YUV F-transform;
(d) YUV Fl-transform.

Figure 7 shows the trend of the PSNR index obtained by varying the compression rate. The best
values of PSNR are obtained by executing YUV F'-transform. The trend of the PSNR obtained by
executing YUV F-transform is better than the one obtained by executing F-transform and JPEG. As
the results obtained for the color image 4.1.04 show, the trend of PSNR obtained by executing JPEG
for the image 4.2.07 decays rapidly as compression increases (0 <0.1).

50
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46
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38
36
34
32
30

PSNR

0 0.1 0.2 0.3 0.4 0.5
P
JPEG  —— F1trRGB =~ — FtrYyUV ~ ——F1tryUv

Figure 7. PSNR trend for the color image 4.2.07 obtained by executing the four color image
compressions algorithms.

In Figure 8 we show the trends of the gain of the YUV F!-transform algorithm with respect to
the other three color image compression algorithms, where the gain index is calculated by (30) and is
averaged for all the images of the dataset used in the comparative tests. The gain of the proposed
method with respect to YUV F-transform is approximately equal to 2% regardless of the compression
rate. The gain of YUV F!-transform with respect to F'-transform varies from 3%, for small
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compressions, to 4% for high compressions (o < 0.2). The gain of YUV F!-transform with respect to
JPEG varies from 3%, for small compressions, to 5% for medium-high compressions (0.1 < o < 0.2);
for compression rates lower than 0.1 the gain index increases quickly as the compression increases
until it reaches 7%.

7.00%
6.00%
5.00%

4.00% N
3.00%
2.00% __—__-/—\___—___

1.00%

Gain

0.00%
0 0.1 0.2 0.3 0.4 0.5
p

JPEG — F1trRGB — Ftryuv

Figure 8. Trend of the Gain of YUV-F'transform with respect to the other three color image
compression methods.

These results shown that the quality of the images coded/decoded by YUV-F'transform is higher
than that obtained using YUV-Ftransform, F'transform and JPEG, regardless of the compression
level.

Finally, in Table 1 we show the mean coding and decoding CPU time obtained by executing the
four color image compression algorithms: the average values refer to the CPU times measured for all
images of the same size and for all compression rates: we  see that both the coding and decoding
CPU times measured by executing YUV Fl-transform are comparable with those obtainedwith the
other four image compression methods. Therefore, YUV-F!-transform improves the quality of the
reconstructed images obtained by executing JPEG, F'-transform and YUV F-transform and provides
CPU times similar to those obtained by executing the other image compression three methods at same
time.

Table 1. Mean coding and decoding CPU time obtained for the 256x256 and 512x512 images by
executing the four image compression algorithms.

CPU time JPEG F1trRGB FtrYUV FitrYUV
Coding 256x256 2.76 2.78 241 3.09
512x512 5.75 5.88 5.66 6.01
Decoding 256x256 5.82 5.86 5.04 5.73
512x512 9.52 9.85 9.12 9.56

5. Conclusions

A lossy color image compression process employing the bi-dimensional Fl-transform in YUV
space is proposed. The benefit of this approach is to improve the quality of the reconstructed image,
with acceptable CPU coding/decoding times. In fact, the Fl-transform method manages to retain
more information of the original image than other image compression methods, but with memory to
be allocated and execution times. The proposed method on the YUV space allows to obtain a high
quality of the decompressed image, without increasing the allocated memory and the CPU times.
The results show that this method improves the quality of the decompressed image compared to that
obtained with the use of JPEG, F-transform applied in YUV space and F'.transform applied in RGB
space. Moreover the execution times are compatible with those obtained by executing the other three
color image compression methods.
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In the future we intend to adapt the YUV F!-transform algorithm to the compression of large
color images
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