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Abstract: The two-dimensional Fuzzy Transform was applied in image compression. The quality of the image 

compressed with this methodis better than that obtained using methods based on fuzzy relation equations and 

comparable with that of the JPEG method, with better compression execution times. In this paper we propose 

a variation of the method based on the two-dimensional Fuzzy Transform of image compression, in which the 

image is first partitioned into blocks and then each block is compressed with the higher compression rate. The 

advantage of this method consists into a greater compression of the image, guaranteeing a high quality of the 

reconstructed image. The results show that our method is better than the Fuzzy Transform method improving 

also the quality of the reconstructed image. 

Keywords: F-transform; F1-transform; color image compression; RGB space; YUV space 

 

1. Introduction 

YUV is a color model used in the NTSC, PAL, and SECAM color encoding systems., describing 

the color space in terms of a brightness component (the Y band called luma) and the two chrominance 

components (the U and V bands called chroma).  

The YUV model has been used to advantage in image processing; its main advantage is that, 

unlike the three Red, Green and Blue (RGB) bands, which are equally perceived by the human eye, 

in YUV space, most of the color image information is contained in the Y band, as opposed to the U 

and V bands. main applications of the YUV model in image processing, is then the lossy compression 

of images, which can be performed mainly in the U and V bands, with slight loss of information.  

YUV is used in the JPEG color image compression method [1,2] where the Discrete Cousine 

Transform (DCT) algorithm is executed on the YUV space, sub-sampling and reducing in dynamic 

range the UV channels in order to balance the reduction of data and the feel of human eyes. In [3] the 

DCT algorithm is executed in the YUV space for wireless capsule endoscopy application; the results 

show that the quality of the reconstructed images is better than that obtained by applying the DCT 

image compression method in the RGB space. 

Many authors proposed image compression and reconstruction algorithms applied on the YUV 

space in order to improve the quality of the reconstructed images. 

In [4,5] an image compression algorithm based on fuzzy relation equations is applied in the YUV 

space to compress color images; the image is divided in blocks of equal sizes, coding the blocks in the 

UV channels more strongly than the blocks in the Y band. In [6] the Fuzzy Transform technique (for 

short, F-transform) [7,8] is applied to coding color images in the YUV space; the author show that the 

quality of color images coded and decoded via F-transform in the YUV space is better than the one 

obtained using the F-transform method in the RGB space and comparable with the one obtained 

using the JPEG method. 

A fractal image compression technique applied on the YUV space is proposed in [9]; the authors 

show that the quality of color images coded/decoded using this approach is better than the one 

obtained applying the fractal image compression method in the RGB space. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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Furthermore, comparison tests between RGB and YUV perception-oriented properties 

performed in [10] show that compressed images in the YUV space provide better quality than images 

compressed in the RGB spaces in a human-computer interaction and machine vision applications. 

In [11] is applied a technique using Tchebichef bit allocation to compress images in the YUV 

space; the results shown that this method improves the visual quality of color images compressed via 

JPEG by 42%. A color image compression method applying a subsampling process to the two chroma 

channels and a modification algorithm to the Y channel is applied to color images in [12] to improve 

the JPEG performances. 

An image compression method with learning-base filter is applied in [13] on color images 

constructing the filter in YUV space instead of RGB space; author shows that the quality of the coded 

images is better than the one obtained using the filter in the RGB space. In [14] an image lossy 

compression algorithm in which quantization and subsampling are executed in the YUV space is 

applied for wireless capsule endoscopy; the quality of the coded images results better than the one 

obtained executing quantization and subsampling in the RGB space. In [15] a wavelet-based color 

image compression method using trained convolutional neural network are used in the lifting 

scheme is applied on the YUV executing the trained CNN on the Y, U, V channels separately; this 

method improves the quality of the coded images obtained applying traditional wavelet-based color 

image compression algorithms; however, execution times are much higher than those adopted by 

applying traditional color image compression algorithms.  

In [16] an image reconstruction method performed on the YUV space is applied to prevent from 

corruption of data performed using adversarial perturbation of the image; the results show that the 

image can be recovered on the YUV space without distortions and with a high visual quality. 

In this paper we propose a novel image compression algorithm in which the bidimensional First-

Degree F-Transform algorithm [17,18] is applied for coding/decoding color images in the YUV space.  

A generalization of the F-transform, called high order Fm-transform, has been proposed in [19] 

in order to reduce the approximation error of the original function approximated with the inverse F-

transform. In the Fm -transform the components of the direct high order fuzzy transforms consist of 

polynomials of degree s, unlike the components of the direct F-transform (labelled as F°-transform), 

where they were constant values. The greater the degree of the polynomial, the smaller the error of 

the approximation; however, as the degree of the polynomial increases, the computational 

complexity of the algorithm increases.   

In [18] the bi-dimensional first-order degree F-transform (F1-transform) is used to compress 

images; authors show that the quality of the coded/decoded images is better than the one obtained 

executing F-transform, with negligible augments in CPU time. The critical point of this method 

consists of the fact that, unlike the F-transform and JPEG methods, it requires not the compressed 

image to be saved in memory, but matrices of three coefficients of the same size as the compressed 

image; therefore, it needs a memory area three times greater than that necessary to archive the 

compressed image. 

To solve this problem, we propose a new lossy color image compression algorithm in which is 

executed the F1-transform algorithm to code/decode color images transformed in the YUV space. The 

transformed image in each of the three channels is partitioned into blocks and each block is 

compressed by the bi-dimensional direct F1-transform, compressing the blocks of the chroma 

channels more. The image is subsequently reconstructed by decomposing the single blocks with the 

use of the bi-dimensional inverse F1-transform. 

The main benefits of this method are as follows: 

 the use of the bi-dimensional F1-transform represents a trade-off between the quality of the 

compressed image and the CPU times. It reduces the information loss obtained by compressing 

the image with the same compression rate using the F-transform algorithm with acceptable 

coding/decoding CPU time; 

 the compression of the color images is carried out in the YUV space to guarantee a high visual 

quality of the color images and solve the criticality of the F1-transform color image compression 

method on the RGB space [18]  which needs a larger memory to allocate the information of the 
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compressed image. In fact, by performing a high compression of the two chrominance channels, 

the size of the matrices in which the information of the compressed image is contained, is 

reduced in these two channels, and this allows to reduce the memory allocation and CPU times. 

We compare our color lossy image compression method with the JPEG method and with the 

image compression methods based on the bi-dimensional F-transform [7,8] and F1-transform [19] on 

the RGB space and on the bi-dimensional F-transform on the YUV space [6]. 

In the next Section the concepts of F-transform and F1-transform are briefly presented, and the 

F-transform lossy color image compression method applied in YUV space is shown as well. Our 

method is presented in Section 3. In Section 4 the comparative results obtained on datasets of color 

images are shown and discussed; concluding discussions are contained in Section 5. 

2. Preliminaries 

2.1. The bi-dimensional F-Transform 

Let [a,b] be a closed real interval and let {x1, x2, …, xn} be a set of points of [a,b], called nodes, such 

that x1 = a < x2 <…< xn = b. 

Let {A1,…,An} be a family of fuzzy sets of X, where Ai : [a,b] → [0,1: it forms a fuzzy partition of X 

if the following conditions hold:   

(1) Ai(xi) = 1 for every i =1,2,…,n; 

(2) Ai(x) = 0 if x∉(xi-1, xi+1), by setting x0 = x1 = a and xn+1 = xn = b; 

(3) Ai(x) is a continuous function over [a,b]; 

(4) Ai(x) is strictly increasing over [xi-1, xi] for each i = 2, …, n ; 

(5) Ai(x) is  strictly decreasing over [xi, xi+1] for each i = 1,…, n-1; 

(6) ∑ 𝐴௜(𝑥) = 1௡௜ୀଵ  for every x∈[a,b]. 

Let h = ୠିୟ୬ିଵ. The fuzzy partition {A1,…, An} is an uniform fuzzy partition if:  

(7)  n≥3; 

(8)  xi =a+h∙(i-1), for every i = 1, 2, …, n; 

(9) Ai(xi – x) = Ai(xi + x)  for every  x ∈ [0,h]  and  i = 2,…, n-1; 

(10) Ai+1(x) = Ai(x - h) for every  x ∈ [xi, xi+1]  and  i = 1,2,…, n-1.   

Let f(x) be a continuous function over [a,b] and {A1, A2, …, An} be a fuzzy partition of [a,b]. The 
n-tuple F = [Fଵ, Fଶ, . . . , F୬] is called unidimensional direct F-transform of f with respect to {A1, A2, …, An}  

if the following hold: F୧ = ׬ ୤(୶)୅౟(୶)ୢ୶ౘ౗׬ ୅౟(୶)ୢ୶ౘ౗      i=1,2,…,n (1)

The following function 𝑓ி,௡ defined in [a,b]:  𝑓ி,௡(x) = ∑ F୧୬୧ୀଵ A୧(x)      (2)

is called uni-dimensional inverse F-transform of the function f. 

The following theorem holds (cfr. [7, Theorem 2]): 

Theorem 1. Let f(x) be a continuous function over [a,b]. For every ε > 0  there exist an integer n(ε) and a 

fuzzy partition {A1, A2, …, An(ε)} of [a,b] such that for all x ∈ [a, b] ห𝑓(𝑥) −  𝑓ி,௡(ఌ)(𝑥) < 𝜖ห. 
Now consider the discrete case where the function f is known in a set of N points P = {p1,...,pN}, 

where pj∈[a,b] j = 1,2,…,m. The set {p1,...,pN} is called sufficiently dense with respect to the fixed fuzzy 

partition {A1, A2, …, An} if for every  i = 1,…,n,  there exists at least an index j∈{1,…,m} such that 

Ai(pj) > 0. 

If the set P is sufficiently dense with respect to the fuzzy partition, we can define the discrete 

direct F-transform with components: 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 September 2023                   doi:10.20944/preprints202309.0964.v1

https://doi.org/10.20944/preprints202309.0964.v1


 4 

 

F୧ = ∑ ௙(୮ౠ)୅౟(୮ౠ)ౠొసభ∑ ୅౟(୮ౠ)ౠొసభ          i=1,2,…,n (3)

and the discrete inverse F-transform:  𝑓ி,௡(p௝) = ∑ F୧୬୧ୀଵ A୧(p௝)    j= 1,…,N  (4)

The following theorem applied to the discrete inverse F-transform holds (cfr. [7, Theorem 5]): 

Theorem 2. Let f(x) be a continuous function over [a,b], known in a discrete set of points {p1,...,pm}. For every 

ε > 0 there exist an integer n(ε) and a fuzzy partition {A1, A2, …, An(ε)} of [a,b], with respect to which P is 

sufficiently dense, that is such that for every j = 1,…,N, ห𝑓൫𝑝௝൯ −  𝑓ி,௡(ఌ)൫𝑝௝൯ < 𝜖ห. 
By Theorem 2, the inverse fuzzy transform (4) can be used to approximate the function f in a 

point.  

Now we consider functions in two variables. Let x1, x2, …, xn  be a set of n nodes in [a,b] , where 

n > 2 and x1 = a < x2 <…< xn = b, and let y1, y2, …, ym be a set of n nodes in [c,d], where m > 2 and and  

y1 = c < y2 <…< ym = d. Moreover, let A1,…,An : [a,b] → [0,1] be a fuzzy partition of [a,b], B1,…,Bm : [c,d] 

→ [0,1] be a fuzzy partition of [c,d] and let f(x,y) be a function defined in the closed set [a,b]×[c,d]. 

We suppose that f assumes known values in a set of points (pj,qj) ∈[a,b]×[c,d], where  i = 1,…,N 

and j = 1,…,M, where the set P={p1, … , pN} is sufficiently dense with respect to the fuzzy partition 

{A1,…, An}  and the set Q={q1, … ,qM} is sufficiently dense with respect to the fuzzy partition 

{B1,…,Bm}. 

In this case, we can define the bi-dimensional discrete F-transform of f, given by matrix [Fhk] h = 

1,…,n and k = 1,…,m with components: Fhk = ∑ ∑ ௙(୮౟,୯ౠ)୅౞(୮౟)୆ౡ(୯ౠ)౟ొసభ౉ౠసభ∑ ∑ ୅౞(୮౟)୆ౡ(୯ౠ)౟ొసభ౉ౠసభ     h=1,2,…,n  k=1,2,…,m (5)

and the bi-dimensional discrete inverse F-transform of f with respect to {A1, A2, …, An} and {B1,…,Bm} 

given by 𝑓௡௠ி ൫p୧, q୨൯ = ∑ ∑ F୦୩୫୩ୀଵ A୦(p୧)୬୦ୀଵ B୩൫q୨൯,    i=1,2,…,N,  j=1,2,…,M (6)

2.2. The bi-dimensional F1-Transform 

This paragraph introduces the concept of higher degree fuzzy transform or Fr-transform. One-

dimensional square-integrable functions will now be considered. 

Let Ah, h = 1,…,n, be the hth fuzzy set of the fuzzy partition {A1,…,An}  defined on [a,b] and 

L2([xh−1,xh+1]) be the Hilbert space of square-integrable functions f,g: [xh−1,xh+1] ⟶ R with the inner 

product: 

⟨𝑓, 𝑔⟩௛ = ׬ 𝑓(x)𝑔(x)A୦(x)dx୶౞శభ୶౞షభ׬ A୦(x)dx୶౞శభ୶౞షభ     (7)

Given a positive integer r, we denote with  2
r
L ([xh−1,xh+1]) a linear subspace of the Hilbert space 

L2([xh−1,xh+1]) having as orthogonal basis the polynomials {
0
h
P , 

1
h
P ,…,

r

h
P } constructed applying the 

Gram-Schmidt ortho-normalization defined as:  

൞P୦଴ = 1P୦ୱାଵ = xୱାଵ − ෍ ൻxୱାଵ, P୦୨ൿൻP୦୨ , P୦୨ൿୱ
୨ୀଵ      s=1,...,r-1 (8)

The following Lemma holds (Cfr. 7, Lemma 1): 

Lemma 1. Let 𝐹௞௥ be the orthogonal projection of the function f on 2
r
L ([xh−1,xh+1]). Then: 
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𝐹௛௥(𝑥) = ෍ 𝑐௛,௜𝑃௛௦(𝑥)௥
௦ୀଵ  (9)

where 

c୦,ୱ = ⟨f, P୩୦ୱ ⟩୩ൻP୦ୱ, P୦ୱൿ୦ = ׬ 𝑓(x) P୦ୱ( x)A୦(x)dx୶ౡశభ୶ౡషభ׬ (P୦ୱ( x))ଶA୦(x)dx୶ౡశభ୶ౡషభ  (10)

F୦୰  it is the hth component of the direct Fr-transform of f . The inverse Fr-transform of f in a point x ∊ [a,b] is: 

𝑓୊,୬୰ (x) = ෍ F୦୰ A୩(x)୬
୩ୀଵ     (11)

For r = 0, we have 
0
h
P  = 1 and the F0-transform is given by the F-transform in one variable (

0
h
F (x) 

= ch,0). 

For r = 1, we have 
1
h
F (x) = (x − xh) and the hth component of the F1-transform is given by the 

formula: 

1
h
F (x) = ch,0 + ch,1 (x − xh) = 

0
h
F (x)+ ch,1 (x − xh) (12)

If the function f is known in a set of N points P ={p1,…pN}, ch,0 and ch,1 can be discretized in the form: c୦,଴ = ∑ 𝑓(p୧)A୦(p୧)୬୧ୀଵ∑ A୦(p୧)୬୧ୀଵ  (13)

c୦,ଵ = ∑ 𝑓(p୧)(p୧ − x୦)A୦(p୧)୬୧ୀଵ∑ A୦(p୧)୬୧ୀଵ (p୧ − x୦)ଶ  (14)

The F1-tranform can be extended in a bi-dimensional space. Let L2 ([xh−1, xh+1] × [yk−1, yk+1]) be the 

Hilbert space of square- integrable functions f: [xh−1, xh+1] × [yk−1,yk+1]→ R with the weighted inner 

product: 

⟨𝑓, 𝑔⟩௛௞ = න න 𝑓(𝑥, 𝑦)𝑔(x, y)A୦(x)B୩(y)dx … dy୷ౡశభ
୷ౡషభ

୶౞శభ
୶೓షభ  (15)

Two functions 𝑓, 𝑔 ∈ L2 ([xh−1, xh+1] × [yk−1, yk+1]) are orthogonal if ⟨𝑓, 𝑔⟩௛௞ = 0.  

Let f: X ⊆ R2 → Y⊆ R be a continuous bi-dimensional function defined in a closed set [a,b] × [c,d]. 

Let {A1, A2,…, An} be a fuzzy partition of [a,b], and let {B1, B2,…, Bm} be a fuzzy partition of [c,d]. 

Moreover, let {(p1,q1),…, (pN,qjN)}  a set of N points in which is known the function f, where 

(pj,qj)∈ [a,b]×[c,d]. Let the set P={p1, … , pN} be sufficiently dense with respect to the fuzzy partition 

{A1,…, An} and let the set Q={q1, … ,qM} be sufficiently dense with respect to the fuzzy partition 

{B1,…,Bm}. 

We can define the bi-dimensional direct F1-transform of f, with components: F୦୩ଵ (x, y) = c୦୩଴଴ + chk10(x − x୦) + chk01(y − y୩)  (16)

where c௛௞଴଴ is the component F௛௞ of the bi-dimensional discrete direct F transform of f, given by (5). The 

three coefficients in (17) are given by: 

c୦୩଴଴ = F୦୩ = ∑ 𝑓(p୨, q୨) ⋅ A୦(p୨) ⋅ B୩(q୨)୒୨ୀଵ ∑ A୦(p୨) ⋅ B୩(q୨)ே௝ୀଵ    (17)

c୦୩ଵ଴ = ∑ 𝑓(p୨, q୨) ⋅ ൫p୨ − x୦൯ ⋅ A୦(p୨) ⋅ B୩(q୨)୒୨ୀଵ∑ ൫p୨ − x୦൯ଶ ⋅  A୦(p୨) ⋅ B୩(q୨)୒୨ୀଵ    (18)
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c୦୩଴ଵ = ∑ 𝑓(p୨, q୨) ⋅ ൫q୨ − y୩൯ ⋅ A୦(p୨) ⋅ B୩(q୨)୒୨ୀଵ∑ ൫q୨ − y୩൯ଶ ⋅  A୦(p୨) ⋅ B୩(q୨)୒୨ୀଵ    (19)

The inverse F1-transform of f in a point (x,y) ∊ [a,b] × [c,d] is: 

𝑓୊,୬ଵ (x, y) = ෍ ෍ F୦,୩ଵ A୦(x)B୩(y)௠
௞ୀଵ

௡
௛ୀଵ    (20)

where F୦,୩ଵ (x, y)  is the (h,k)th component of the bi-dimensional direct F1-transform, given by the 

formula (16). 

2.3. Coding/decoding images using the bi-dimensional F and F1-Transforms 

Let I be a grey N × M image. A pixel can be considered a data point with coordinates (i,j), where i 

= 1,2,…,N and j = 1,2,…M; the value of this data point is given by the pixel value I(i,j). In [8] the image 

is normalized in [0,1] according with the formula R(i,j) = I(i,j)/(L-1) where L is the number of grey levels, 

partitioned in blocks of equal sizes N(B)×M(B), coded to a block FB of sizes n(B) × m(B) with n(B) << 

N(B) and m(B) << M(B), using the bi-dimensional direct F-transform.  

Let {A1,…,An(B)} be a fuzzy partition of [1,N(B)] and let {B1,…,Bm(B)} be a fuzzy partition of 

[1,M(B))], each block is compressed by the bi-dimensional direct F-transform: 

F୦୩୆ = ∑ ∑ R(i, j)A୦(i)B୩(j)୒(୆)୧ୀଵ୑(୆)୨ୀଵ∑ ∑ A୦(i)B୩(j)୒(୆)୧ୀଵ୑(୆)୨ୀଵ    (21)

The coded image is reconstructed by merging all compressed blocks. 

Each block is decompressed by using the bi-dimensional inverse F-transform. The pixel value 

I(i,j) in the block is approximated by the value: 

𝑓௡ಳ௠ಳிಳ (i, j) = ෍ ෍ F୦୩୆୫(୆)
୩ୀଵ A୦(i)୬(୆)

୦ୀଵ B୩(j)   (22)

The decoded image is reconstructed by merging the decompressed blocks. 

The F-transform compression and decompression algorithms are shown in pseudocode in 

Algorithms 1a and 1b. 

Algorithm 1a. F1-transform image compression 

       Input:    N×M Image I with L grey levels 

                  Size of the blocks of the source image N(B)×M(B) 

                  Size of the compressed blocks n(B)× m(B) 

       Output:  n×m compressed image IC 

1. Normalize the source image I in [0,1] 

2. Partition the source image in blocks of size N(B)×M(B) 

3. For each block 

4.    For h = 1 to n(B) 

5.        For k = 1 to m(B) 

6.            Compute the (hk)th component of the bidimensional direct F-transform by (21) 

7.        Next k 

8.    Next h 

9. Next block 

10. Merge the compressed blocks 

11. De-normalize the image 

12. Return the compressed n×m image IC 
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Algorithm 1b. F-transform image decompression 

       Input:    n×m compressed image Ic 

       Output:  N×M decoded image ID 

1. Normalize the compressed image in [0,1] 

2. Partition the compressed image Ic in blocks of size n(B)×m(B) 

3. For each compressed block 

4.    For i = 1 to N(B) 

5.        For j = 1 to M(B) 

6.          Compute the (i,j)th pixel of the decoded block by the bidimensional inverse F-transform (22) 

7.        Next j 

8.    Next i 

9. Next compressed block 

10. Merge the decompressed blocks 

11. De-normalize the decompressed image 

12. Return the decompressed N×M image ID 

In [17] an improvement of the quality of the decompressed image is accomplished using the bi-

dimensional F1-transform. 

The blocks are compressed by using the bi-dimensional direct F1-transform: F୦୩ଵ୆ = c୦୩଴଴ + chk10(i − h) + chk01(j − k)    (23)

where: 

c୦୩଴଴ = F୦୩୆ = ∑ ∑ R(i, j)A୦(i)B୩(j)୒(୆)୧ୀଵ୑(୆)୨ୀଵ∑ ∑ A୦(i)B୩(j)୒(୆)୧ୀଵ୑(୆)୨ୀଵ    (24)

c୦୩ଵ଴ == ∑ ∑ 𝐼(i, j)|𝑖 − ℎ|A୦(i)B୩(j)୒(୆)୧ୀଵ୑(୆)୨ୀଵ∑ A୦(i)(i − h)ଶ୒(୆)୧ୀଵ  ∑ B୩(j)୑(୆)୨ୀଵ    (25)

c୦୩଴ଵ == ∑ ∑ 𝐼(i, j)|𝑗 − 𝑘|A୦(i)B୩(j)୒(୆)୧ୀଵ୑(୆)୨ୀଵ∑ B୩(j)(j − k)ଶ୑(୆)୨ୀଵ  ∑ A୦(i)୒(୆)୧ୀଵ    (26)

The above three coefficients are constructed merging the coefficients of each block and finally 

stored, forming the output of coding process.  

In the inverse process the image is reconstructed by decompressing the block with the bi-

dimensional inverse F1-transform: 

𝑓௡ಳ௠ಳଵிಳ (i, j) = ෍ ෍ F୦୩୆୫(୆)
୩ୀଵ A୦(i)୬(୆)

୦ୀଵ B୩(j)   (27)

where the bi-dimensional direct F1-transform of the block F୦୩୆  is calculated by (23). 

The decompressed blocks are merged to form the decompressed image. 

The F1-transform compression and decompression algorithms are shown in pseudocode in 

Algorithms 2a and 2b. 

Algorithm 2a. F1-transform image compression 

       Input:    N×M Image I with L grey levels 

                  Size of the blocks of the source image N(B)×M(B) 

                  Size of the compressed blocks n(B)× m(B) 

       Output:  n×m matrices of the direct F1-transform coefficients c଴଴, cଵ଴ and c଴ଵ  

1. Normalize the source image I in [0,1] 

2. Partition the source image in blocks of size N(B)×M(B) 

3. For each block 

4.    For h = 1 to n(B) 

5.        For k = 1 to m(B) 
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6.            Compute the component c୦୩଴଴  by (24) 

7.            Compute the component c୦୩ଵ଴  by (25) 

8.            Compute the component c୦୩଴ଵ  by (26) 

9.            Compute the (hk)th component of the bidimensional direct F1-transform by (26) 

10.        Next k 

11.    Next h 

12. Next block 

13. Merge the compressed blocks to obtain the n×m matrices of the coefficients c଴଴, cଵ଴ and c଴ଵ 

14. Return the compressed n×m matrices of the coefficients c଴଴, cଵ଴ and c଴ଵ 

 

Algorithm 2b. F1-transform image decompression 

       Input:   n×m matrices of the direct F1-transform coefficients coefficients c଴଴, cଵ଴ and c଴ଵ 

                 Size of the blocks of the decoded image N(B)×M(B) 

                Size of the blocks of the coded image n(B)×m(B) 

       Output:  N×M decoded image ID 

1. Partition the F1-transform coefficients c଴଴, cଵ଴ and c଴ଵin blocks of size n(B)×m(B) 

2. For each compressed block 

3.    For i = 1 to N(B) 

4.        For j = 1 to M(B) 

5.          Compute the (i,j)th pixel of the decoded block by the bidimensional inverse F1-transform (27) 

6.        Next j 

7.    Next i 

8. Next compressed block 

9. Merge the decompressed blocks 

10. De-normalize the decompressed image 

11. Return the decompressed N×M image ID 

3. The YUV-based F1-transform color image compression method 

Let I be a N×M color image in L grey levels. All pixel values in the three bands R, G and B are 

normalized in [0,1].   

Considering a 256 grey levels color image and the scaled and offset version of the YUV color 

space, the source image is transformed in the YUV space via the formula [20]: 

൥YUV൩ = ൥ 0.299 0.587 0.114−0.169 −0.332 0.5000.500 −0.419 −0.813൩ ൥RGB൩ + ൥16128128൩   (28)

Then, the F1-transform image compression algorithm is executed separately to the three 

normalized images Y, U and V, using a strong compression for the chroma images U and V.  

If N(B) and M(B) are the sizes of each block in the three channels, the blocks in the brightness 

channel are compressed with rate ϱଢ଼ = ௡ೊ(୆)×௠ೊ(୆)୒(୆)×୑(୆)  and the blocks in the two chroma channels are compressed with rate ϱ୙୚ = ௡ೆೇ(୆)×௠ೆೇ(୆)୒(୆)×୑(୆)  , where nUV(B) << nY(B)  and  mUV(B) << mY(B), so that ρUV 

<< ρY . 

The F1-transform image compression algorithm will store, in output for each channel, the three 

matrixes of the coefficients of the bi-dimensional direct F1-transform: c଴଴, cଵ଴ and c଴ଵ.  The size of 

the three matrices in the brightness channel is ρY(N×M) and the size of the three matrices in each of 

the two chroma channels is ρUV(N×M). 

By suitably choosing the brightness and chroma compression rates, it is possible to reduce the 

memory capacity needed to store the direct F1-transform coefficients in the RGB space. 

For example, suppose we execute the F1-transform image compression algorithm in the RGB 

space to compress a 256×256 color image, by partitioning the image into 16x16 blocks compressed 

into 4×4 blocks. The compression rate will be ρRGB = 0.0625 and the size of the matrix of each coefficient 

is 64×64. Executing the F1-transform algorithm in the YUV space and compressing the 16×16 blocks 

in the two chroma channels in 2×2 blocks (ρUV = 0.016) and the 16×16 blocks in the brightness channel 
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in 8×8 blocks (ρUV = 0.25), the size of the matrix of each coefficient in the U and V channels will be 

32×32, and the size of the matrix of each coefficient in the Y channel will be 128×128. So, by carrying 

out the compression of the source image in the YUV space in this way, an advantage is obtained both 

in terms of visual quality of the reconstructed image and in terms of available memory necessary to 

archive the coefficients of the direct F1-transforms in the three channels.    

Below we show in pseudocode the YUV F1-transform color image compression algorithm 

(Algorithm 3a). 

Algorithm 3a. YUV F1-transform color image compression 

       Input:    N×M color image I with L grey levels 

                  Size of the blocks of the source image N(B)×M(B) 

                  Size of the compressed blocks in the Y channel nY(B)× mY(B) 

                  Size of the compressed blocks in the U and V channels nUV(B)×mUV(B) 

       Output:  n×m  matrices of thedirect F1-transform coefficients c଴଴ , cଵ଴ and c଴ଵ  in the Y, U and 

channels 

1. Extract the single band images IR, IG and IB 

2. Transform the RGB images IR, IG and IB in the YUV images IY, IU and IV  by (28) 

3. Execute F1-transform image compression (IY, N(B), M(B), nY(B), mY(B) )        //compress IY   

4. Execute F1-transform image compression (IU, N(B), M(B), nUV(B), mUV(B) )     //compress IU         

5. Execute F1-transform image compression (IV, N(B), M(B), nUV(B), mUV(B) )     //compress IV         

6. Return the compressed matrices of the coefficients c଴଴, cଵ଴ and c଴ଵ in the bands Y, U and V 

The decompression process is performed by executing the F1-transform image decompression 

algorithm in the brightness and chroma channels. The F1-transform image decompression algorithm is 

executed separately for each of the channels Y, U and V, by assigning as input both the three coefficient 

matrices of the direct F1-transform and the dimensions of the original and compressed blocks.  

Then the three decoded images IDY, IDU, and IDV are transformed in the RGB space, by the formula 

[20]: 

൥𝑅𝐺𝐵൩ = ൥1.164 0 1.5961.164 −0.813 −0.3921.164 2.017 0 ൩ ൥𝑌 − 16𝑈 − 128𝑉 − 128൩   (29)

Finally, the decoded image in the RGB band (IDR, IDG, IDB) is returned. 

Below is shown in pseudocode the YUV F1-transform color image decompression algorithm 

(Algorithm 3b). 

Algorithm 3b. YUV F1-transform image decompression 

  Input:    n×m matrices of the direct F1-transform coefficients coefficients c଴଴, cଵ଴ and  c଴ଵ in the Y, 

U and V channels 

             Size of the blocks of the decoded image N(B)×M(B) 

                  Size of the compressed blocks in the Y channel nY(B)× mY(B) 

             Size of the compressed blocks in the U and V channels nUV(B)×mUV(B) 

       Output:  N×M decoded image ID 

1. c଴଴, cଵ଴ and c଴ଵin blocks of size nY(B)×mY(B) 

2. IDY = F1-transform image decompression (c௒଴଴, c௒ଵ଴, c௒଴ଵ, N(B), M(B), nY(B), mY(B) )   //Y ch. decomp.  

3. IDU = F1-transform image decompression (c୙଴଴, c୙ଵ଴, c୙଴ଵ, N(B), M(B), nUV(B), mUV(B) ) //U ch. decomp. 

4. IDV = F1-transform image decompression (c௏଴଴, c୚ଵ଴, c୚଴ଵ, N(B), M(B), nUV(B), mUV(B) ) //V ch. decomp. 

5. Transform the YUV images IDY, IDU and IDV in the RGB images IDR, IDG and IDB  by (29) 

6. Return the decompressed N×M color image in the RGB space (IDR, IDG and IDB)  

We compare our lossy color image compression report with the JPEG algorithms and the color 

image compression methods based on F-transform in the RGB space [8], and F-transform on the YUV 

space [6] and F1-transform on the RGB space [17]. 

The Peak Signal to Noise index (PSNR) used to measure the quality of the decoded images. To 

measure the gain obtained executing the YUV F1-transform algorithm with respect to another color 
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image compression method, we measure the PSNR gain, expressed in percentage and given by the 

formula     Gain(YUV 𝐹ଵ − transform)  = [(PSNR YUV 𝐹ଵ − transform) - (PSNR other method)] ⋅ 100(PSNR other method)  (30)

In next Section the results applied to color image dataset are shown and discussed. 

4. Results 

We test the YUV F1-transform lossy color image compression algorithm on the color image 

dataset provided by the University of Southern California Signal and Image Processing Institute (USC 

SIPI) and published on the website http://sipi.usc.edu/database. 

The dataset is made up of over 50 color images of different sizes. For brevity, we show in detail 

the results obtained for the 256x256 source images 4.1.04 and the 412x512 source image 4.2.07; they 

are shown in Figure 1. 

Each image was compressed and decompressed by performing JPEG, YUV F-transform, F1-

transform and YUV F1-transform lossy image compression algorithms. 

(a) (b) 

Figure 1. Source images: (a) 256x256 image 4.1.04; (b): 512x512 image 4.2.07. 

We compare the four image compression methods measuring the quality of the reconstructed 

image as the compression rate change. The compression rate used by executing YUV F-transform and 

YUV F1-transform is the mean compression rate set for each channel Y, U and V. 

In Figure 2 we show, for the original image 4.1.04, the decoded images obtained by executing 

the four algorithms with a compression rate ρ ≈ 0.10. 

  
(a) (b) 
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(c) (d) 

Figure 2. Decoded image 4.1.04, ρ ≈ 0.10, obtained via: (a) JPEG; (b) F1-transform; (c):YUV F-transform; 

(d) YUV F1-transform. 

Figure 3 shows, for the original image 4.1.04, the decoded images obtained by executing the four 

algorithms setting a compression rate ρ ≈ 0.25. 

  
(a) (b) 

  
(c) (d) 

Figure 3. Decoded image 4.1.04, ρ ≈ 0.25, obtained via: (a) JPEG; (b) F1-transform; (c):YUV F-transform; 

(d) YUV F1-transform. 

Figure 4 shows the trend of the PSNR index obtained varying the compression rate. The trends 

obtained by executing JPEG and F1-transform are similar. However, for strong compressions (ρ < 0.1), 

the PSNR value calculated by executing JPEG decreases exponentially as the compression increases: 

this result shows that the quality of the decoded image obtained by JPEG drops quickly for very high 

compressions. The highest PSNR values are obtained by performing YUV F-transform and YUV F1-

transform. In particular, the PSNR values obtained with the two methods are similar for ρ < 0.2, while, 

for lower compressions, YUV F1-transform provides decompressed images of better quality than 

those obtained with YUV F-transform. 
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Figure 4. PSNR trend for the color image 4.1.04 obtained by executing the four color image 

compressions algorithms. 

Now we show the results obtained for the color image 4.2.07. In Figure 5 we give the decoded 

images obtained by executing the four algorithms with compression rate ρ ≈ 0.10. 

  
(a) (b) 

  
(c) (d) 

Figure 5. Decoded image 4.2.07, ρ ≈ 0.10, obtained via: (a) JPEG; (b) F1-transform; (c):YUV F-transform; 

(d) YUV F1-transform. 

Figure 6 shows the decoded images of 4.2.07 obtained by executing the four algorithms with a 

compression rate ρ ≈ 0.25. 
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(a) (b) 

  
(c) (d) 

Figure 6. Decoded image 4.2.07, ρ ≈ 0.25, obtained via: (a) JPEG; (b) F1-transform; (c):YUV F-transform; 

(d) YUV F1-transform. 

Figure 7 shows the trend of the PSNR index obtained by varying the compression rate. The best 

values of PSNR are obtained by executing YUV F1-transform. The trend of the PSNR obtained by 

executing YUV F-transform is better than the one obtained by executing F-transform and JPEG. As 

the results obtained for the color image 4.1.04 show, the trend of   PSNR obtained by executing JPEG 

for the image 4.2.07 decays rapidly as compression increases (ρ < 0.1). 

 

Figure 7. PSNR trend for the color image 4.2.07 obtained by executing the four color image 

compressions algorithms. 

In Figure 8 we show the trends of the gain of the YUV F1-transform algorithm with respect to 

the other three color image compression algorithms, where the gain index is calculated by (30) and is 

averaged for all the images of the dataset used in the comparative tests. The gain of the proposed 

method with respect to YUV F-transform is approximately equal to 2% regardless of the compression 

rate. The gain of YUV F1-transform with respect to F1-transform varies from 3%, for small 
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compressions, to 4% for high compressions (ρ < 0.2). The gain of YUV F1-transform with respect to 

JPEG varies from 3%, for small compressions, to 5% for medium-high compressions (0.1 < ρ < 0.2); 

for compression rates lower than 0.1 the gain index increases quickly as the compression increases 

until it reaches 7%. 

 

Figure 8. Trend of the Gain of YUV-F1transform with respect to the other three color image 

compression methods. 

These results shown that the quality of the images coded/decoded by YUV-F1transform is higher 

than that obtained using YUV-Ftransform, F1transform and JPEG, regardless of the compression 

level.  

Finally, in Table 1 we show the mean coding and decoding CPU time obtained by executing the 

four color image compression algorithms: the average values refer to the CPU times measured for all 

images of the same size and for all compression rates: we   see that both the coding and decoding 

CPU times measured by executing YUV F1-transform are comparable with those obtainedwith the 

other four image compression methods. Therefore, YUV-F1-transform improves the quality of the 

reconstructed images obtained by executing JPEG, F1-transform and YUV F-transform and provides 

CPU times similar to those obtained by executing the other image compression three methods at same 

time. 

Table 1. Mean coding and decoding CPU time obtained for the 256x256 and 512x512 images by 

executing the four image compression algorithms. 

CPU time JPEG F1trRGB FtrYUV F1trYUV 

Coding 
256x256 2.76 2.78 2.41 3.09 

512x512 5.75 5.88 5.66 6.01 

Decoding 
256x256 5.82 5.86 5.04 5.73 

512x512 9.52 9.85 9.12 9.56 

5. Conclusions 

A lossy color image compression process employing the bi-dimensional F1-transform in YUV 

space is proposed. The benefit of this approach is to improve the quality of the reconstructed image, 

with acceptable CPU coding/decoding times. In fact, the F1-transform method manages to retain 

more information of the original image than other image compression methods, but with memory to 

be allocated and execution times. The proposed method on the YUV space allows to obtain a high 

quality of the decompressed image, without increasing the allocated memory and the CPU times. 

The results show that this method improves the quality of the decompressed image compared to that 

obtained with the use of JPEG, F-transform applied in YUV space and F1-transform applied in RGB 

space. Moreover the execution times are compatible with those obtained by executing the other three 

color image compression methods. 
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In the future we intend to adapt the YUV F1-transform algorithm to the compression of large 

color images 
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