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Article
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Abstract: incipient fault diagnosis is particularly important in process industrial systems, as its early

detection helps to prevent major accidents. Against this background, this study proposes a combined

method of Mixed Kernel Principal Components Analysis and Dynamic Canonical Correlation

Analysis (MK-DCCA). The robust generalization performance of this approach is demonstrated

through experimental validation on a randomly generated dataset. Furthermore, Comparative

experiments were conducted on a CSTR Simulink model, comparing the MK-DCCA method with

DCCA and DCVA methods, demonstrating its excellent detection performance for incipient fault

in nonlinear and dynamic system. Meanwhile, fault identification experiments were conducted,

validating the high accuracy of fault identification method based on contribution. The experimental

findings demonstrate that the method possesses a certain industrial significance and academic

relevance.

Keywords: dynamic system; incipient fault; process monitoring; fault detection; MKPCA; DCCA

1. Introduction

As modern process industry systems evolve to become more complex, scaled, integrated, and

intelligent, they often consist of numerous devices operating collaboratively, forming complex dynamic

systems with multiple variables and significant time delays. The dynamic characteristics of these

systems are progressively intricate, making the occurrence of faults inevitable. When a fault in any

component of a system device goes unnoticed, the consequences encompass not only equipment

damage but also the potential for degraded system performance, abnormal shutdowns, and even

catastrophic consequences. Consequently, to uphold the reliability and safety of systems, and to

guarantee the high-quality and efficient functioning of process industry systems, there is an urgent

requirement to monitor, evaluate, and diagnose the real-time performance and operational state of all

devices within the system. This is essential for implementing effective measures to ensure the stable

operation of both the system and its components.

Existing research on fault diagnosis in process industries has been predominantly focused on

the detection of abrupt faults. However, in recent times, both the industrial sector and the academic

community have shown growing interest in detecting incipient faults. In fact, early detection of

incipient faults is deemed even more significant than detecting abrupt faults. Hence, within process

industry systems, the detection and localization of minor faults and the early stages of incipient fault

development carry essential academic value and engineering significance. These efforts play a vital

role in enabling effective fault remediation and ensuring the secure operation of the system.

To address the issue of diagnosing incipient faults in process industry systems, the existing

approaches mainly fall into two categories: model-based methods and data-driven methods. Given

that precise physical models are often unattainable for large-scale industrial processes [1], model-based

methods encounter considerable constraints in their real-world implementation. Data-driven methods

do not demand precise mechanistic models and are less dependent on process experiential knowledge,

making them more suitable for extensive industrial processes. Common data-driven approaches are

grounded in multivariate statistical analysis techniques, such as Principal Component Analysis (PCA),
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Partial Least Squares (PLS), Canonical Variable Analysis (CVA), Canonical Variable Discriminative

Analysis (CVDA), and Canonical Correlation Analysis (CCA). These methods have all proven their

efficacy in industrial contexts [2]. The application of PCA-based methods has yielded favorable

outcomes in the semiconductor manufacturing and aluminum smelting sectors [3–5]. Ding et al.

utilized an enhanced PLS approach for forecasting and diagnosing key performance indicators in

industrial hot-rolled strip steel mills [6], and similarly, a series of investigations have been conducted

on PLS-based methods in [7]. In-depth research on the CVA method was undertaken by Ruiz-Cárcel

et al. [8], while Pilario et al. proposed the CVDA method and its expanded iterations based on

CVA [9–11]. [12] first employed data-driven CCA techniques to achieve residual generation based on

canonical correlation, yielding favorable fault detection results. Subsequently, CCA-based methods

have been extensively researched and improved by numerous scholars [13–17].

Nevertheless, the presence of dynamic behavior, nonlinearity, and other complex characteristics in

industrial processes, coupled with the existence of closed-loop control strategies, renders the analysis

and fault diagnosis of industrial processes even more challenging. Particularly when confronted with

incipient faults, these characteristics significantly constrain the applicability of traditional multivariate

statistical analysis methods. Despite the extensive efforts by researchers to investigate the diverse

characteristics in industrial processes, the majority of research methods tend to concentrate on isolated

characteristics rather than composite traits, avoiding the difficulties in the field of incipient fault

diagnosis. For instance, [8,12] extended the CVA and CCA methods to dynamic versions, addressing

the issue of process dynamics. However, they did not explore other characteristics, especially in

the case of incipient faults, which could potentially impact their accuracy and applicability. [9]

introduced an extended version of the CVA method called CVDA, along with the incorporation of

Kernel Density Estimation (KDE) for calculating statistical indicator thresholds, which effectively

addressing dynamic and non-Gaussian issues. Nevertheless, the problem of nonlinearity remained

unresolved, and in practical industrial processes, incipient faults are often closely linked to the

nonlinear behavior of systems. Although [10] proposed a combination of kernel methods and CVDA

to tackle all characteristic issues, research on the relationship between nonlinear dynamic system

inputs and outputs remains relatively limited. In the context of incipient faults, the consideration

of the nonlinear relationships becomes especially crucial, as incipient faults can manifest as gradual

changes in system behavior, where nonlinear characteristics may play a key role.

Building upon the aforementioned research foundation, in the face of the complex characteristics

of high-dimensionality, nonlinearity, and dynamics associated with incipient faults in industrial

processes, there is an urgent need for a novel multivariate statistical analysis approach to enhance

the accuracy and reliability of diagnostics. This paper introduces a fault diagnosis method, called

MK-DCCA and applies it to incipient fault diagnosis, aiming to achieve effective identification and

accurate determination of incipient faults in industrial processes by considering multiple complex

characteristics. Through this study, our intention is to offer novel perspectives and approaches to

contribute to the ongoing development and real-world application of incipient fault diagnosis. The

proposed method utilizes mixed kernel principal components analysis(MK-PCA) to map data into

high-dimensional or even infinite-dimensional space to address nonlinear issues. The processed data is

then employed as input for dynamic canonical correlation analysis (DCCA) to handle system dynamics

in process monitoring. Lastly, a contribution-based approach is used for fault identification.

The subsequent sections of the paper are structured as follows: Section 2 provides an introduction

to the fundamental theories of KPCA, DCCA, and the contribution-based fault recognition method;

In Section 3, the MK-DCCA method used in this paper is proposed and thoroughly explicated;

Section 4 employs two case studies to validate the effectiveness of the MK-DCCA method and the

contribution-based fault recognition approach. In Case I, the proposed method is first applied to a

randomly generated dataset to demonstrate its robust generalization performance. Subsequently, Case

II utilizes the method on a simulated model of a continuous stirred tank reactor (CSTR). Comparative
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experiments are conducted against various versions of CVA and CCA methods, demonstrating the

favorable performance of the method in process monitoring and fault diagnosis.

2. Methodological Theory

2.1. Kernel Principal Component Analysis

KPCA employs kernel techniques to map data into a high-dimensional feature space, enabling

original data to be linearly separable or approximately linearly separable in the new space. In detail,

for nonlinear data matrix X, a nonlinear mapping is first employed to map all samples in X to

a high-dimensional or even infinite-dimensional space (i.e., feature space), making them linearly

separable. Subsequently, PCA dimensionality reduction is performed in this high-dimensional space.

Based on the method proposed by Schoölkopf et al. [18], the initial step consists of applying a

kernel function to calculate the kernel matrix K using the following formula:

K
(

xi, xj

)

, Kij =
〈

Φ (xi) , Φ
(

xj

)〉

(1)

Wherexi and xj(i, j = 1, 2, . . . , N) represent the ith and jth samples,Φ(·) denotes the kernel function.

The commonly employed kernel functions consist of polynomial kernel functions and Gaussian kernel

functions (RBF), with their expressions presented as follows:

Kpoby (x, x′) = (〈x, x′〉+ 1)d

KRBF (x, x′) = exp

(

− ‖x−x′‖
2

c

)

(2)

Where Kpoly represents the polynomial kernel function, d is the parameter indicating the polynomial

degree. This kernel satisfies the Mercer condition for d ∈ N [19], c denotes the kernel width, which

satisfies the Mercer condition for c > 0 [20].

After obtaining a N × N symmetric kernel matrix K, it is necessary to perform centering on it.

The specific calculation formula is as follows:

K̂ = K − 1NK − K1N + 1NK1N (3)

Where 1N ∈ RN×N and (1N)ij = 1/N. Subsequently, PCA dimensionality reduction is performed on

the centered kernel matrix K̂. According to the equation below, perform an eigenvalue decomposition

on K̂.

K̂v = Nλv (4)

Where v represents an eigenvector, and λ denotes an eigenvalue. Subsequently, K̂ is diagonalized as

K̂/N = SΛST (5)

Here, S = [v1, v2, . . . , vN ] ∈ RN×N represents N eigenvectors, and Λ = diag (λ1, . . . , λN) ∈ RN×N

denotes eigenvalues, where λ1 ≥ λ2 ≥ · · · ≥ λN . To preserve relevant information, the first r principal

components are selected to explain 85% of the total variance. Subsequently, the kernel principal

components tk are calculated through the following projection:

T = [tk] = ST
r K̂ ∈ R

r×N (6)

Where Sr denotes the first r columns of the eigenvector matrix S.
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After processing the training set, any test data xtest
k at the kth sampling time is standardized using

the mean and standard deviation of the training set to obtain x̂test
k . Afterward, the constructed kernel

mapping from earlier is used to project it into the feature space according to the following formula:

ktest
k =

(

x̂test
k , x̂j

)

∈ R
1×N (7)

Where x̂j represents all training samples, j = 1, . . . , N, Then ktest
k is centered by subtracting as

k̂test
k = ktest

k − 1test
N K − ktest

k 1N + 1test
N K1N (8)

Here 1test
N ∈ R1×N and

(

1test
N

)

ij
= 1/N. Ultimately, the kernel principal components of the test data at

the kth sampling time are computed using the following formula:

ttest
k = ST

r

(

k̂test
k

)T
∈ R

r (9)

2.2. Dynamic Canonical Correlation Analysis

Given the limitations of methods such as CVA and CVDA, which are unable to adequately and

effectively exploring the relationship between system input and output variables, this research opts for

CCA as the cornerstone of the process monitoring approach, further extending its capabilities. Given

the premise that the considered dynamic process is linear time-invariant, we assume that the process

has process white noise and measurement white noise, and can be represented by a standard model

described by a state space. Its mathematical expression is as follows:

x (k + 1) = Ax (k) + Bu (k) + w (k)

y (k) = Cx (k) + Du (k) + v (k)
(10)

Where x ∈ Rn is the state vector, u ∈ Rl and y ∈ Rm are input and output vectors, and w ∈ Rn and

v ∈ Rm denote process and measurement noises, respectively.Matrix A, B, C, and D are unknown

constant matrices with appropriate dimensions. In this study, it is further assumed that the process

is stable. Under steady-state conditions, it holds that: limk→∞ µx (k) = µx and limk→∞ Σx (k) = Σx,

where µx and Σx are constants. Therefore, the cross-covariance between input and output remains

constant.

In [12], the concept of DCCA was first introduced as an extension of the CCA-based methodology,

employed for detecting faults in such dynamic systems under steady-state conditions. Leveraging

the stochastic system model (10), an investigation is conducted into the dependency of the future

output y f on past input, past output zp, and future input u f . To achieve this, firstly, data structures

and sets are defined, assuming p and f to be lag and lead parameters. The lagged variables and their

corresponding data matrices are defined as follows.

zp (k) =























y (k − p)
...

y (k − 1)

u (k − p)
...

u (k − 1)























; y f (k) =







y (k)
...

y (k + f )






; u f (k) =







u (k)
...

u (k + f )






(11)

Zp =
[

zp(1), · · · , zp(N)
]

∈ R(s(m+l)×N)

Yf =
[

y f (1), · · · , y f (N)
]

∈ R(( f+1)m×N)

U f =
[

u f (1), · · · , u f (N)
]

∈ R(( f+1)l×N)

(12)
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Qin et al. demonstrated that equation (10) can be reformulated as:

x (k + 1) = AKx (k) + BKu (k) + Ky (k)

y (k) = Cx (k) + Du (k) + e (k)
(13)

Where AK = A − KC, BK = B − KD, with K serving as the Kalman filter gain matrix, ensuring that the

eigenvalues of AK are situated within the unit circle to guarantee system stability, and e(k) represents

the innovation sequence. It is evident from equation (13) that the following equations hold:

x (k) = As
Kx (k − s) +

s

∑
i=1

Ai−1
K

[

K BK

]

[

y (k − i)

u (k − i)

]

(14)

AK is stable, and simultaneously, selecting a sufficiently large value for s results in As
K ≈ 0,

subsequently,

x (k) ≈ PTzp (k) (15)

Where PT =
[

Py Pu

]

, Py =
[

As−1
K K . . . AKK K

]

, Pu =
[

As−1
K BK . . . AKBK K

]

. The past

measured value zp (k) encompasses process input and output data within the time interval [k − s, k − 1],

as shown in equation (12). Additionally, according to equations (13), the follow equation is also valid:

y f (k) = ΓK, f (k) + HK,u, f u f (k) + HK,y, f y f (k) + e f (k) (16)

Here,

ΓK, f =













C

CAK
...

CA
f
K













HK,u, f =















D 0 · · · 0

CBK D
. . .

...
...

. . .
. . . 0

CA
f−1
K BK · · · CBK D















e f (k) =













e (k)

e (k + 1)
...

e (k + f )













HK,y, f =















0 0 · · · 0

CK 0
. . .

...
...

. . .
. . . 0

CA
f−1
K K · · · CK 0















(17)

According to equation(15),

(

I − HK,y, f

)

y f (k) ≈ ΓK, f PTzp (k) + HK,u, f u f (k) + e f (k)

=
[

ΓK, f PT HK,u, f

]

[

zp (k)

u f (k)

]

+ e f (k)
(18)

Formula (18) can be further written as:

LTy f (k) = MT

[

zp (k)

u f (k)

]

+ e f (k) (19)

Here,L =
(

I − HK,y,s f

)T
,M =

[

ΓK,s f
PT HK,u,s f

]T
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Subsequently, by employing CCA technique in residual generation, the issue of fault detection in

dynamic processes is resolved. Process input and output data are structured based on time intervals,

denoted as Yf and

[

Zp

U f

]

. Centralize Yf and

[

Zp

U f

]

, and then

[

Σz Σz,y f

Σy f ,z Σy f

]

≈
1

N − 1













[

Zp

U f

] [

Zp

U f

]T [

Zp

U f

]

YT
f

Yf

[

Zp

U f

]T

Yf YT
f













(20)

Through the utilization of CCA, the weighting matrices Jd and Ld can be obtained from the subsequent

equations.

Σ−1/2
z Σz,y f

Σ−1/2
y f

= ΓΛ∆T ; Jd = Σ−1/2
z Γ (: .1 : n) ; Ld = Σ−1/2

y f
∆ (:, 1 : n)

Λ =

[

Λl 0

0 0

]

(21)

Where Λn = diag (λ1, . . . , λn). The Cumulative Percentage Value (CPV) method can be utilized to

determine the system order n [21]. It is important to highlight that

JT
d

[

Zp

U f

] [

Zp

U f

]T

Jd = I; LT
d Yf YT

f Ld = I (22)

The following equations can be derived from formula (21):

JT
d

[

Zp

U f

]

YT
f Ld = Λn (23)

It is reasonable to define the residual vector as presented below based on formula (23),

r(k) = LT
d y f (k)− MT

d

[

zp (k)

u f (k)

]

(24)

Where MT
d = Λn JT

d . Furthermore, the covariance matrix of r(k) can be estimated as:

(

LT
d Yf − MT

d

[

Zp

U f

])(

LT
d Yf − MT

d

[

Zp

U f

])T

= LT
d Yf YT

f Ld + Λ2
n JT

d

[

Zp

U f

] [

Zp

U f

]T

− 2Λn JT
d

[

Zp

U f

]

YT
f Ld

= I − Λ2
n

(25)

Residuals of canonical variables follow a multivariate normal distribution with zero mean, and the

covariance matrix is given by equation (25). Therefore, it is reasonable to utilize the following statistical

data for detection purposes:

T2
r (k) = (N − 1) rT (k)

(

I − Λ2
n

)−1
r (k) (26)
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The threshold Jth,T2 can be defined as:

Jth,T2 =
n
(

N2 − n
)

N (N − n)
F1−α (n, N − n) (27)

2.3. Contribution based Fault Identification

Building upon the research by Li et al., this research conducted a comparison of fault identification

capabilities among the traditional Q contribution method, the T2 contribution method, and the

contribution method based on residuals of canonical variables [22]. In this section, the samples are

consolidated into a dataset Y, rather than being partitioned into input and output categories. Initially,

lag parameter p and lead parameter f are introduced, followed by a redefinition of data structure and

sets to derive past observation vectors and future observation vectors.

yp,k =













yk−1

yk−2
...

yk−p













∈ R
np; y f ,k =







yk

yk+1
...yk+ f−1






∈ R

n f (28)

Here, yk represents the k-th sample, and n denotes the number of variables included in each sample.

To prevent variables with large values from dominating, normalization of yp,k and y f ,k is required.

Subsequently, the rearranged normalized past and future observation vectors, ŷp,k and ŷ f ,k, are

presented as follows:

Ŷp =
[

ŷp,k+1, ŷp,k+2, · · · , ŷp,k+M

]

∈ Rnp×M

Ŷf =
[

ŷ f ,k+1, ŷ f ,k+2, · · · , ŷ f ,k+M

]

∈ Rn f×M
(29)

Here, M = N − p − f + 1, where N denotes the number of samples. Then the covariance matrices of

ŷp and ŷ f can be computed using the following formulas:

Σpp = 1
N−1 ŶpŶT

p

Σ f f =
1

N−1 Ŷf ŶT
f

Σ f p = 1
N−1 Ŷf ŶT

p

(30)

Subsequently, performing singular value decomposition on the Hankel matrix H yields the following

results:

H = Σ−1/2
f f Σ f pΣ−1/2

pp = UΣVT (31)

Where U = (u1, . . . , ul), V = (v1, . . . , vm), Σ =

[

Σq 0

0 0

]

, ui and vj are the corresponding singular

vectors, Σq = diag
(

λ1, . . . , λq

)

, λ1 ≥ λ2, . . . ,≥ λq ≥ 0, are the singular values. The value of k can be

determined using the CPV method.

2.3.1. Q-based Contribution

The canonical residual variable ek, employed for contribution calculation, can be obtained from

the subsequent formula:

ek = Gŷp,k = VT
np−pΣ−1/2

pp ŷp,k (32)
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Following the definition of variable contributions based on CVA proposed by Jiang et al.[23], the

calculation of variable contributions using the Q statistical metric is presented as follows:

CQ = Q = eTe = eTGŷp,k =
n

∑
i=1

np−q

∑
j=1

ejGj,i ŷp,i =
n

∑
i=1

Ci,Q (33)

Where Ci,Q is the contribution of variable ŷi to the monitoring statistic Q, and ejGj,i ŷp,i signifies

the contribution of variable ŷi to the j-th canonical residual variable ej. Ultimately, by dividing

each variable’s contribution of ŷi to Q by the cumulative contribution CQ, the percentage of each

contribution can be determined, thus identifying the variables associated with faults.

Pi,Q =
Ci,Q

CQ
(34)

2.3.2. T2-based Contribution

Also following the CVA method, the calculation formula for the canonical state variable zk, used

in contribution assessment, is provided below:

zk = Kŷp,k = VT
q Σ−1/2

pp ŷp,k (35)

Additionally, in accordance with [22], the computation of variable contribution based on the T2

statistical indicator can be expressed as:

CT2 = T2 = zTz = zTKŷp,k =
n

∑
i=1

q

∑
j=1

zjKj,i ŷp,i =
n

∑
i=1

Ci,T2 (36)

Where Ci,T2 signifies the contribution of variable ŷi to the monitoring statistic T2, and zjKj,i ŷp,i denotes

the contribution of variable ŷi to the j-th typical state variable zj. Ultimately, the percentages of each

contribution can be computed by dividing the contribution of each variable ŷi to T2 by the cumulative

contribution CT2 , facilitating the identification of variables correlated with faults.

Pi,T2 =
Ci,T2

CT2
(37)

2.3.3. Td-based Contribution

Apart from the two contribution calculation methods mentioned above, [22] also introduced a

contribution calculation approach based on Canonical Variable Residuals (CVR). The central idea is to

detect minor changes by examining the deviations between future and past canonical variables. The

definition of canonical variable residuals is provided below:

rk = LT
q ŷ f ,k − Σq JT

q ŷp,k (38)

Where LT
q denotes the first q rows of the matrix LT , and LT = UT

q Σ−1/2
f f . Similarly, JT

q represents the

first q rows of the matrix JT , and JT = VT
q Σ−1/2

pp . Σq represents a diagonal matrix composed of the first

q singular values. The calculation of variable contributions using the Td statistical metric based on

CVR is presented below:

CTd
= Td = rT

k

(

I − Σ2
q

)−1
rk = rT

k

(

I − Σ2
q

)−1 (

Lqŷ f ,k − Σq Jqŷp,k

)

=
n

∑
i=1

q

∑
j=1

rjΣ
−1
ddj

(

Lj,i ŷ f ,i − Σj Jj,i ŷp,i

)

=
n

∑
j=1

Ci,Td

(39)
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Where Ci,Td
denotes the contribution of variable ŷi to the monitoring statistic Td, Σj represents the

j-th singular value, and Σ−1
ddj

is the j-th diagonal element of the matrix
(

I − Σ2
q

)−1
. Ultimately, the

percentages of each contribution can be computed by dividing the contribution of each variable ŷi to

Td by the cumulative contribution CTd
, aiding in identifying variables correlated with faults.

Pi,Td
=

Ci,Td

CTd

(40)

3. MK-DCCA Method

In this section, building upon the aforementioned theoretical foundation, the MK-DCCA method

utilized in this study is introduced. To endow the kernel function with both strong interpolation and

extrapolation capability, ensuring a robust generalization performance, a combination scheme of local

and global kernels is chosen based on the research foundation of KPCA. This involves combining the

RBF kernel and polynomial kernel to form a mixture kernel. The detailed formulas are as follows:

Kmix = ωKpoly + (1 − ω)KRBF (41)

Here, ω ∈ [0, 1] represents the mixing weight, and the mixture kernel reverts to the polynomial kernel

and RBF kernel when ω = 1 and ω = 0 respectively. [24] proposes utilizing a weighted sum of linear

(d = 1) and RBF kernels to balance favorable interpolation and extrapolation capabilities. Accordingly,

this study employs a combination of a polynomial kernel with d = 1 and an RBF kernel.

Subsequently, the data processed by the MKPCA method is employed for performing the DCCA

method. Firstly, the input vector u and output vector y are standardized to obtain û and ŷ. Subsequently,

the data structure and sets are established, assuming p and f as lag and lead parameters, and the past

and future observation vectors of u and y are defined as

up (k) =







u (k − p)
...

u (k − 1)






; yp (k) =







y (k − p)
...

y (k − 1)







u f (k) =







u (k)
...

u (k + f )






; y f (k) =







y (k)
...

y (k + f )







(42)

Furthermore, the new past and future observation matrices are defined as

Zp =
[

zp (1) , . . . , zp (N)
]

∈ Rp(m+l)×N

Yf =
[

y f (1) , . . . , y f (N)
]

∈ R( f+1)l×N

zp (k) =

[

yp (k)

up (k)

]

; Z =

[

Zp

U f

]

(43)
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Next, Z will be used as the input matrix and Yf as the output matrix to perform a CCA-based process

monitoring method . Initially, compute the self-covariance and cross-covariance matrices Σzz, Σy f y f
,

and Σzy f
for Z and Yf using equation (45).

Σzz =
1

N−1

N

∑
i=1

ẑ (i) ẑT (i)

Σy f y f
= 1

N−1

N

∑
i=1

ŷ f (i) ŷT
f (i)

Σzy f
= 1

N−1

N

∑
i=1

ẑ (i) ŷT
f (i)

(44)

Where N is the number of samples, û (i) and ŷ (i) denote the normalized input and output samples

at the i-th time instance, respectively. Subsequently, the Hankel matrix H is constructed using the

subsequent formula:

H = Σ−1/2
zz Σzy f

Σ−1/2
y f y f

(45)

Through singular value decomposition, the matrix H can be decomposed into

H = ΓΛ∆T (46)

Where Γ = (γ1, . . . , γl), ∆ = (δ1, . . . , δm), Λ =

[

Λk 0

0 0

]

γi and δj are the corresponding singular

vectors, Λk = diag (λ1, . . . , λk) , λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 represents the singular values. Based on

equation (24), obtaining the unknown constant matrices L and M is all that is required to derive the

residual signal. Let

Ln = Σ−1/2
y f y f

∆ (:, 1 : n)

Jn = Σ−1/2
zz Γ (:, 1 : n)

MT
n = Λn JT

n

(47)

Moreover, the covariance matrix of the residual signal r(k) can be estimated as

Σrr = I − Λ2
n (48)

Where I denotes the identity matrix. Finally, the statistical metric T2 utilized for dynamic system

process monitoring can be calculated through the subsequent equation:

T2 (k) = (N − 1) rT (k)Σ−1
rr r (k) (49)

The calculation of the corresponding threshold is as follows:

T2
th =

n
(

N2 − n
)

N (N − n)
F1−α (n, N − n) (50)

Here, n represents the chosen number of singular values, and N is the number of samples. After

obtaining the threshold, process monitoring is conducted according to the subsequent logic:

If T2
> T2

th, it indicates a fault; otherwise, there is no fault.

Ultimately, if a fault is detected, the contribution-based fault identification method from Section 2.3

is utilized to identify the fault variables and achieve accurate fault localization.

4. Case Study

In this section, the experimental validation of the proposed method is conducted through two

case studies. Firstly, experimental analysis is conducted on a randomly generated dataset to verify the
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generalization performance of the proposed method. Subsequently, experimental analysis is conducted

on a CSTR simulation model, with a comparison made against CVA and CCA methods, along with

their improved versions, to demonstrate the superiority of the proposed approach.

4.1. Case I: Case study using randomly generated data

4.1.1. Model Introduction

In this subsection, the process model utilized for data generation is defined as follows:

u(k) = Wx(k) + e(k)

y(k) = Φu(k) + b + v(k)
(51)

Where u(k) and y(k) represent the input and output, respectively, and W, b, and Φ are constants.

Initially, the model is employed to generate a training dataset containing 2000 samples with 6 features

each. Subsequently, test datasets are created for actuator faults, sensor faults, and process faults, and

the details of dataset are provided in Table 1.

Table 1. The imformation of datasets.

Fautl
Index

Fault
Location

Fault
Category

Fault
Variables

Sample
Count

Feature
Count

Introduction
Time(s)

Fault-Free / / / 2000 6 /
Fault 1 Sensor Incipient 9th 2000 6 1000
Fault 2 Actuator Abrupt 1st 2000 6 1000

4.1.2. Process Monitoring

In this subsection, the fault-free dataset generated in Section 4.1.1 is employed as the training set

to train the model. The fault datasets are then used as the test set for process monitoring to demonstrate

the performance of the proposed method. The monitoring results for Fault 1 and Fault 2 are shown in

Figure 1, separately.
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Figure 1. Monitoring Results of the Randomly Generated Dataset by MK-DCCA :(a)Monitoring Results

for Fault 1.(b)Monitoring Results for Fault 2.

The monitoring graphs reveal that the proposed approach effectively identifies the abnormal

states of the system and provides early warnings. For Fault 1 (incipient fault), the monitoring model

can provide an alert at the 54th sample after fault occurs and effectively forecast evolving trend of

faults. Moreover, for another prevalent fault, namely Fault 2 (abrupt fault), the monitoring model
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can promptly alert about abnormal operating state of system as soon as fault occurs. Simultaneously,

the proposed approach exhibits satisfactory performance during the monitoring processes of both

aforementioned fault types. To comprehensively evaluate performance of the method, this study

quantifies it using four metrics: Fault Detection Rate (FDR), False Alarm Rate (FAR), Miss Detection

Rate (MDR), and Fault Detection Time (FDT). FDT indicates the time when monitoring model initiates

the first alert after a fault occurs. The definitions for the other three metrics are provided below:

FDR = TP
TP+FN

FAR = FP
FP+TN

MDR = FN
TP+FN

(52)

Where TP is the number of faults correctly detected, TN represents the number of normals correctly

detected, FP denotes the number of normal samples incorrectly reported as faults, and FN signifies

the number of faults incorrectly reported as normals. Ultimately, utilizing the aforementioned metrics,

the quantified results of monitoring performance are displayed in Table 2.

Table 2. Monitoring Performance Indicators of Fault 1 and Fault 2.

Fault Index Statistical
Metrics

FDR(%) FAR(%) MDR(%) FDT(s)

Fault 1
T2

in 91.9 0 8.1 1054
T2

out 92.5 0 7.5 1054

Fault 2
T2

in 99.9 0 0.1 1000
T2

out 99.9 0.1 0.1 1000

It is evident that proposed approach achieves a fault detection rate of 92.5% for the incipient fault

(Fault 1) and attains a higher 99.9% detection rate for the comparatively easily detectable abrupt fault

(Fault 2). As for the false alarm rate, MK-DCCA method maintains an excellent performance of zero

false alarms for both fault types. Meanwhile, proposed method successfully manages to maintain the

miss detection rate at an acceptable level of 7.5% for Fault 1, whereas for the more readily detectable

Fault 2, the miss detection rate decreases to 0.1%. Ultimately, the fault detection time for Fault 1 occurs

at the 1054th sample (54 samples following the fault occurrence), while for Fault 2, it is the 1000th

sample (immediately following the fault occurrence). The reason behind this phenomenon is that

incipient faults exhibit a relatively minor impact on monitoring indicators during the early stages of

fault occurrence, necessitating a certain degree of fault development to trigger model warnings.

4.1.3. Fault Identification

This section of the experiment primarily aims to evaluate the fault identification capability of

proposed method. It involves identify the fault variables by evaluating the contribution of each

variable to the fault detection indicators, with the goal of achieving accurate fault localization. The

variable contribution plots of Fault 1 and Fault 2 are illustrated in Figure 2:
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Contribution of Fault Variables to Statistical Indicators
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Figure 2. Contribution Plot of Process Variables under Fault Scenarios:(a)Contribution Plot of Fault

1.(b)Contribution Plot of Fault 2.

Table 1 indicates that the fault variable for Fault 1 is the 9th variable, while for Fault 2, it is the

1st variable. This conclusion is also apparent from Figure 2. It is evident that in both types of fault

identification experiments, the T2 indicator contribution performed the best. For Fault 1, variable 9

contributed 96.7% to the fault statistic indicator, while for Fault 2, variable 1 contributed 98.6%. Hence,

the fault identification method employed in this research demonstrates a satisfactory level of accuracy.

In conclusion, the process monitoring and fault identification experiments conducted on a

randomly generated dataset from a standard process model have demonstrated strong generalization

performance of proposed method. Simultaneously, it has exhibited satisfactory monitoring

performance and fault identification accuracy.

4.2. Case II: Case Analysis of CSTR Simulation Model

4.2.1. Model Introduction

The dataset employed in this case study is generated by a CSTR Simulink simulation model

tailored for simulating incipient faults. A detailed description of the model can be found in [9]. The

schematic diagram of the CSTR model is shown in Figure 3, and Table 3 summarizes all the process

variables of the system. The system inputs are Ci, Ti, and Tci, while the system outputs are C, T, Tc,

and Qc. The dynamic model of CSTR process is described as follows:

dC
dt = Q

V (Ci − c)− a1kC + v1

dT
dt = Q

V (Ti − T)− a1
(∆Hr)kC

ρCpV (T − Tc) + v2

dTc
dt = Qc

Vc
(Tci − Tc) + b1

UA
ρCCpcVc

(T − Tc) + v3

(53)

Where Q is the inlet flow rate, ∆Hr is the heat of reaction, UA is the heat transfer coefficient, ρ and ρC

are the fluid density, Cp and Cpc are the heat capacity of the fluid, and V and Vc are the volumes of the

tank and jacket, respectively.

Figure 3. Schematic Diagram of the CSTR Model.
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Table 3. Process Variables Involved in the CSTR System.

Variable
Index

1 2 3 4 5 6 7 8 9 10

Variable
Name

Ci Ti Tci Ci Ti C T Tc Tci Qc
1

1 Variables 1 to 3 represent measurements without noise, this study utilizes variables 4 to 10.

The training and testing sets were collected from the CSTR simulation model during a 1200-second

run, with a sampling rate of one sample per second. Each testing set initiates from a fault-free state

and introduces faults after running for 200 seconds. Four fault scenarios were employed to evaluate

the effectiveness of proposed method, including two input subspace faults and two output subspace

faults, with detailed fault information provided in Table 4.

Table 4. Fault detailed information.

Fault index Simulated
fault scenario

Fault
variables

Fault
Category

Introduction
Time(s)

Associated
Subspace

Fault 1 Feed valve
malfunction

Ci Incipient 200 Input

Fault 2 High Coolant
Temperature

Tci Abrupt 200 Input

Fault 3 Coolant
leakage

Qc Incipient 200 Output

Fault 4 High Reactor
Temperature

T Abrupt 200 Output

Fault 5 Both 1 and 3 Ci, Qc Incipient 200 /

4.2.2. Process Monitoring

In this section, we initiate comparative experiments for the relatively easily detectable abrupt

faults, Fault 2 and 4. Subsequently, experiments are conducted on Fault 1 and 3 (incipient faults),

followed by the simultaneous introduction of both incipient faults of Fault 5 for detection. The methods

employed include MK-DCCA, DCCA, and DCVA.

The process monitoring experimental results for Fault 2 and 4 are illustrated in Figure 4.
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Figure 4. Monitoring results for Fault 2 and 4 by three methods:(a)Monitoring results of MK-DCCA

approach for Fault 2.(b)Monitoring results of MK-DCCA approach for Fault 4.(c)Monitoring results of

DCCA approach for Fault 2.(d)Monitoring results of DCCA approach for Fault 4.(e)Monitoring results

of DCVA approach for Fault 2.(e)Monitoring results of DCVA approach for Fault 4.

From the graphs, it’s evident that all three methods can provide early warnings for both Fault 2 and

Fault 4 as they occur. However, in terms of false alarm rate, MK-DCCA exhibits the lowest, followed by

DCCA, and DCVA performs the poorest. To facilitate better comparison of the three methods, Table 5

presents the detailed information of their monitoring performance indicators. The results demonstrate

that both MK-DCCA and DCCA methods achieve a fault detection rate of 100% for both faults 2 and 4,

surpassing DCVA method. Meanwhile, both MK-DCCA and DCCA methods exhibit no false alarms in

the monitoring of fault 2, whereas DCVA method achieves the best performance with a false alarm rate
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of 1.05% based on the Q criterion. In experiments for fault 4, MK-DCCA method similarly achieves

the lowest false alarm rate of 1.05%, followed by DCCA method at 2.62%, and the DCVA method

performs the least favorably with a rate of 3.66%. Furthermore, in terms of missed detection rate, both

CCA-based methods maintained the lowest 0 missed detection rate in experiments for faults 2 and 4,

while the DCVA method had a rate of 0.5%. Lastly, in comparison to the CVA-based method, the fault

detection time of the CCA-based method is slightly reduced in both fault scenarios.

Table 5. Performance indicators for monitoring of Fault 2 and 4 using different methods.

Fault
Index

Method Statistical
Metrics

FDR(%) FAR(%) MDR(%) FDT(s)

Fault 2

MK-DCCA
T2

in 99.8 0 0.2 202

T2
out 100 0 0 200

DCCA
T2

in 99.9 0 0.1 201

T2
out 100 3.14 0 200

DCVA
Q 99.5 1.05 0.5 205

T2 99.5 2.1 0.5 205

Fault 4

MK-DCCA
T2

in 100 1.05 0 200

T2
out 100 2.62 0 200

DCCA
T2

in 100 2.62 0 200

T2
out 100 6.81 0 200

DCVA
Q 99.5 3.66 0.5 205

T2 99.5 5.24 0.5 205

To conclude, in terms of abrupt fault detection, the proposed MK-DCCA method performs the

best, followed by the DCCA method, and finally the CVDA method. Therefore, applying the proposed

method for detecting abrupt faults in industrial process systems is justified in this study.

Furthermore, the study further compared and analyzed the monitoring performance of the

proposed method and the comparative methods in the incipient fault scenarios of Fault 1 and 3. The

process monitoring experimental results for Fault 1 and 3 are depicted in Figure 5.
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Figure 5. Monitoring results for Fault 1 and 3 by three methods: (a) Monitoring results of MK-DCCA

approach for Fault 1. (b) Monitoring results of MK-DCCA approach for Fault 3. (c) Monitoring results

of DCCA approach for Fault 1. (d) Monitoring results of DCCA approach for Fault 3. (e) Monitoring

results of DCVA approach for Fault 1. (f) Monitoring results of DCVA approach for Fault 3.

The figures clearly illustrate that the MK-DCCA, DCCA, and DCVA methods all exhibit the ability

to provide alerts after a certain time period following the occurrence of faults, and simultaneously,

they are capable of predicting the trend of fault progression. However, in comparison, the MK-DCCA

method still performs better and more comprehensively, and detailed analysis of performance

indicators can be found in Table 6. It is evident that the MK-DCCA method attains fault detection

rates of 96.304% and 93.007% for the monitoring of fault 1 and fault 3, respectively, surpassing the

FDR values of the DCCA and DCVA methods. Concurrently, in the fault scenarios of fault 1 and 3, the
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CCA-based approach can attain lower false alarm rates than the CVA-based approach. Additionally, in

terms of missed detection rates, the MK-DCCA method maintains the lowest rates in the monitoring

of both faults, at 3.7% and 7.0%, respectively. As for fault detection time, the CCA-based method

significantly reduces detection time compared to the CVA-based method, although the DCCA method

also exhibits shorter detection time than the MK-DCCA method, it comes at the cost of slightly higher

false alarm rates, making the performance of MK-DCCA more satisfactory in comparison.

Table 6. Performance indicators for monitoring of Fault 2 and 4 using different methods.

Fault
Index

Method Statistical
Metrics

FDR(%) FAR(%) MDR(%) FDT(s)

Fault 1

MK-DCCA
T2

in 96.204 5.24 3.80 223

T2
out 96.304 1.57 3.70 225

DCCA
T2

in 96.004 0 4.0 231

T2
out 96.004 3.14 4.0 231

DCVA
Q 92.607 0 7.40 237

T2 93.506 3.14 6.50 236

Fault 3

MK-DCCA
T2

in 93.007 0 7.0 246

T2
out 92.408 3.14 7.60 259

DCCA
T2

in 92.907 0 7.10 238

T2
out 92.907 2.62 7.10 260

DCVA
Q 87.013 1.57 12.99 297

T2 91.009 2.09 8.99 271

In summary, in experiments for detecting incipient faults, MK-DCCA method proposed in this

paper continues to exhibit the best performance, followed by DCCA method, and finally CVDA method.

Accordingly, the performance of proposed method has been demonstrated to be satisfactory in both

abrupt fault and incipient fault detection scenarios. Additionally, in order to align the research more

closely with complex real-world application scenarios, faults 1 and 3 were simultaneously introduced

into the CSTR system, referred to as fault 5. The detailed results of the fault detection experiment

for fault 5 are shown in Figure 6, and the specific values of the related performance indicators are

presented in Table 7.
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Figure 6. Monitoring results for Fault 5 by three methods:(a)Monitoring results of

MK-DCCA.(b)Monitoring results of DCCA.(c)Monitoring results of DCVA.

Table 7. Performance indicators for monitoring of Fault 5 using different methods.

Method Statistical
Metrics

FDR(%) FAR(%) MDR(%) FDT(s)

MK-DCCA
T2

in 97.203 1.04 2.80 215

T2
out 97.403 0 2.60 216

DCCA
T2

in 97.103 1.05 2.90 215

T2
out 97.303 0 2.70 216

DCVA
Q 94.805 0 5.19 243

T2 95.105 0 4.90 237

It is evident that the CCA-based method holds a notable advantage over the CVA-based method,

exhibiting a higher detection rate by around 2%, a lower miss detection rate by approximately %,

and a reduction in detection time by about 20 seconds. Simultaneously, in the comparison between

MK-DCCA and DCCA methods, the former prevails with a slight advantage in detection rate and

miss detection rate. This reasserts the excellence of proposed MK-DCCA method and its feasibility in

intricate application environments.

4.2.3. Fault Identification

In the previous section, the fault detection performance of the proposed method has been

validated. In this section, the main emphasis lies in the analysis fault indentification capability of the

method. Since it has been demonstrated in Section 4.1.3 that the T2-based contribution identification

accuracy is the highest, in experiments of this section, only the T2-based contribution is used for fault

identification. The contribution plots for Fault 1 to 5 are shown in Figure 7.
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Figure 7. Monitoring results for Fault 5 by three methods:(a) Contribution plot of variables for fault1. (b)

Contribution plot of variables for fault2. (c) Contribution plot of variables for fault3. (d) Contribution

plot of variables for fault4. (e) Contribution plot of variables for fault5.

It can be observed that in Fault 1, the variable Ci contributes 98.66% to the statistical indicator,

with the fact that Ci is the actual fault variable; in Faults 2, 3 and 4, the contributions of the fault

variables Tci, Qc, and T are 97.52%, 86.32%, and 99.32%, respectively, far exceeding other variables;

in Fault 5, which involves the fault variables Ci and Qc, their contributions are 64.3% and 34.84%,

respectively, also significantly higher than other variables. The above findings demonstrate that

the fault identification approach adopted in this study exhibits a satisfactory identification accuracy,

effectively identifying and locating faults with precision.

5. Conclusions

This paper emphasizes the importance of detecting incipient faults in process industrial systems

and extends the widely recognized process monitoring method, CCA, to make it more suitable for

early detection of incipient faults. By incorporating time parameters, the method gains the ability to

handle system dynamics. The inclusion of kernel methods endows the method with the capability

to handle nonlinear data. In the selection of kernel functions, a weighted combination of RBF and

polynomial kernels is chosen, allowing the kernel function to possess both good interpolation and

extrapolation capabilities. Based on the aforementioned work, this paper proposes an MK-DCCA fault

diagnosis method, and its generalization performance is validated on a randomly generated dataset,
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then comparative experiments are conducted on the CSTR Simulink model. The results demonstrate

the superiority of the proposed method in fault detection, especially in the case of incipient faults over

the DCCA and DCVA methods.

Nevertheless, this study has certain limitations. The method requires a considerable number of

parameters, and its performance is somewhat dependent on the selection of these parameters. The

calculation of thresholds is relatively inflexible, leading to limited adaptability to different monitoring

objects. Future research will aim to address these issues by exploring adaptive parameter selection

and threshold computation.
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