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Abstract: incipient fault diagnosis is particularly important in process industrial systems, as its early
detection helps to prevent major accidents. Against this background, this study proposes a combined
method of Mixed Kernel Principal Components Analysis and Dynamic Canonical Correlation
Analysis (MK-DCCA). The robust generalization performance of this approach is demonstrated
through experimental validation on a randomly generated dataset. Furthermore, Comparative
experiments were conducted on a CSTR Simulink model, comparing the MK-DCCA method with
DCCA and DCVA methods, demonstrating its excellent detection performance for incipient fault
in nonlinear and dynamic system. Meanwhile, fault identification experiments were conducted,
validating the high accuracy of fault identification method based on contribution. The experimental
findings demonstrate that the method possesses a certain industrial significance and academic
relevance.
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1. Introduction

As modern process industry systems evolve to become more complex, scaled, integrated, and
intelligent, they often consist of numerous devices operating collaboratively, forming complex dynamic
systems with multiple variables and significant time delays. The dynamic characteristics of these
systems are progressively intricate, making the occurrence of faults inevitable. When a fault in any
component of a system device goes unnoticed, the consequences encompass not only equipment
damage but also the potential for degraded system performance, abnormal shutdowns, and even
catastrophic consequences. Consequently, to uphold the reliability and safety of systems, and to
guarantee the high-quality and efficient functioning of process industry systems, there is an urgent
requirement to monitor, evaluate, and diagnose the real-time performance and operational state of all
devices within the system. This is essential for implementing effective measures to ensure the stable
operation of both the system and its components.

Existing research on fault diagnosis in process industries has been predominantly focused on
the detection of abrupt faults. However, in recent times, both the industrial sector and the academic
community have shown growing interest in detecting incipient faults. In fact, early detection of
incipient faults is deemed even more significant than detecting abrupt faults. Hence, within process
industry systems, the detection and localization of minor faults and the early stages of incipient fault
development carry essential academic value and engineering significance. These efforts play a vital
role in enabling effective fault remediation and ensuring the secure operation of the system.

To address the issue of diagnosing incipient faults in process industry systems, the existing
approaches mainly fall into two categories: model-based methods and data-driven methods. Given
that precise physical models are often unattainable for large-scale industrial processes [1], model-based
methods encounter considerable constraints in their real-world implementation. Data-driven methods
do not demand precise mechanistic models and are less dependent on process experiential knowledge,
making them more suitable for extensive industrial processes. Common data-driven approaches are
grounded in multivariate statistical analysis techniques, such as Principal Component Analysis (PCA),
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Partial Least Squares (PLS), Canonical Variable Analysis (CVA), Canonical Variable Discriminative
Analysis (CVDA), and Canonical Correlation Analysis (CCA). These methods have all proven their
efficacy in industrial contexts [2]. The application of PCA-based methods has yielded favorable
outcomes in the semiconductor manufacturing and aluminum smelting sectors [3-5]. Ding et al.
utilized an enhanced PLS approach for forecasting and diagnosing key performance indicators in
industrial hot-rolled strip steel mills [6], and similarly, a series of investigations have been conducted
on PLS-based methods in [7]. In-depth research on the CVA method was undertaken by Ruiz-Cércel
et al. [8], while Pilario et al. proposed the CVDA method and its expanded iterations based on
CVA [9-11]. [12] first employed data-driven CCA techniques to achieve residual generation based on
canonical correlation, yielding favorable fault detection results. Subsequently, CCA-based methods
have been extensively researched and improved by numerous scholars [13-17].

Nevertheless, the presence of dynamic behavior, nonlinearity, and other complex characteristics in
industrial processes, coupled with the existence of closed-loop control strategies, renders the analysis
and fault diagnosis of industrial processes even more challenging. Particularly when confronted with
incipient faults, these characteristics significantly constrain the applicability of traditional multivariate
statistical analysis methods. Despite the extensive efforts by researchers to investigate the diverse
characteristics in industrial processes, the majority of research methods tend to concentrate on isolated
characteristics rather than composite traits, avoiding the difficulties in the field of incipient fault
diagnosis. For instance, [8,12] extended the CVA and CCA methods to dynamic versions, addressing
the issue of process dynamics. However, they did not explore other characteristics, especially in
the case of incipient faults, which could potentially impact their accuracy and applicability. [9]
introduced an extended version of the CVA method called CVDA, along with the incorporation of
Kernel Density Estimation (KDE) for calculating statistical indicator thresholds, which effectively
addressing dynamic and non-Gaussian issues. Nevertheless, the problem of nonlinearity remained
unresolved, and in practical industrial processes, incipient faults are often closely linked to the
nonlinear behavior of systems. Although [10] proposed a combination of kernel methods and CVDA
to tackle all characteristic issues, research on the relationship between nonlinear dynamic system
inputs and outputs remains relatively limited. In the context of incipient faults, the consideration
of the nonlinear relationships becomes especially crucial, as incipient faults can manifest as gradual
changes in system behavior, where nonlinear characteristics may play a key role.

Building upon the aforementioned research foundation, in the face of the complex characteristics
of high-dimensionality, nonlinearity, and dynamics associated with incipient faults in industrial
processes, there is an urgent need for a novel multivariate statistical analysis approach to enhance
the accuracy and reliability of diagnostics. This paper introduces a fault diagnosis method, called
MK-DCCA and applies it to incipient fault diagnosis, aiming to achieve effective identification and
accurate determination of incipient faults in industrial processes by considering multiple complex
characteristics. Through this study, our intention is to offer novel perspectives and approaches to
contribute to the ongoing development and real-world application of incipient fault diagnosis. The
proposed method utilizes mixed kernel principal components analysis(MK-PCA) to map data into
high-dimensional or even infinite-dimensional space to address nonlinear issues. The processed data is
then employed as input for dynamic canonical correlation analysis (DCCA) to handle system dynamics
in process monitoring. Lastly, a contribution-based approach is used for fault identification.

The subsequent sections of the paper are structured as follows: Section 2 provides an introduction
to the fundamental theories of KPCA, DCCA, and the contribution-based fault recognition method;
In Section 3, the MK-DCCA method used in this paper is proposed and thoroughly explicated;
Section 4 employs two case studies to validate the effectiveness of the MK-DCCA method and the
contribution-based fault recognition approach. In Case I, the proposed method is first applied to a
randomly generated dataset to demonstrate its robust generalization performance. Subsequently, Case
IT utilizes the method on a simulated model of a continuous stirred tank reactor (CSTR). Comparative
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experiments are conducted against various versions of CVA and CCA methods, demonstrating the
favorable performance of the method in process monitoring and fault diagnosis.

2. Methodological Theory

2.1. Kernel Principal Component Analysis

KPCA employs kernel techniques to map data into a high-dimensional feature space, enabling
original data to be linearly separable or approximately linearly separable in the new space. In detail,
for nonlinear data matrix X, a nonlinear mapping is first employed to map all samples in X to
a high-dimensional or even infinite-dimensional space (i.e., feature space), making them linearly
separable. Subsequently, PCA dimensionality reduction is performed in this high-dimensional space.

Based on the method proposed by Schoolkopf et al. [18], the initial step consists of applying a
kernel function to calculate the kernel matrix K using the following formula:

K (x,x)) = Kij = (@ (x:), @ (x;) ) @

Wherex; and xj(i, j=1,2,...,N) represent the ith and jth samples,®(-) denotes the kernel function.
The commonly employed kernel functions consist of polynomial kernel functions and Gaussian kernel
functions (RBF), with their expressions presented as follows:

Kpopy (x,x") = ({x,x) +1)"
B |x—x/|2> &)

Kgrpr (x,x") = exp < -

Where K, represents the polynomial kernel function, d is the parameter indicating the polynomial
degree. This kernel satisfies the Mercer condition for d € N [19], ¢ denotes the kernel width, which
satisfies the Mercer condition for ¢ > 0 [20].

After obtaining a N x N symmetric kernel matrix K, it is necessary to perform centering on it.
The specific calculation formula is as follows:

K=K—-1yK—Kly+1yKly 3)

Where 1y € RN*N and (1 N)ij = 1/N. Subsequently, PCA dimensionality reduction is performed on
the centered kernel matrix K. According to the equation below, perform an eigenvalue decomposition
on K.

Kv = NAv (4)

Where v represents an eigenvector, and A denotes an eigenvalue. Subsequently, K is diagonalized as
K/N = SAS" ®)

Here, S = [v1,03,...,0n] € RN*N represents N eigenvectors, and A = diag (Aq,...,Ay) € RN*N
denotes eigenvalues, where A; > Ay > --- > Ap. To preserve relevant information, the first » principal
components are selected to explain 85% of the total variance. Subsequently, the kernel principal
components t; are calculated through the following projection:

T = [ty] = STK e RN (6)

Where S, denotes the first » columns of the eigenvector matrix S.
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After processing the training set, any test data x{**! at the kth sampling time is standardized using

the mean and standard deviation of the training set to obtain £{**!. Afterward, the constructed kernel
mapping from earlier is used to project it into the feature space accordlng to the following formula:

k}t{est ()ﬁi“t, o ) RlxN (7)
Where £; represents all training samples, j = 1,..., N, Then kiest is centered by subtracting as
ktest ktest I?E}StK o k;CESth 4 15\e}stK1N (8)

Here 14" € RN and (1) jj = 1/N. Ultimately, the kernel principal components of the test data at
the kth sampling time are computed using the following formula:

n T
t]t(est — SrT (k]t(eSt> c R’ (9)

2.2. Dynamic Canonical Correlation Analysis

Given the limitations of methods such as CVA and CVDA, which are unable to adequately and
effectively exploring the relationship between system input and output variables, this research opts for
CCA as the cornerstone of the process monitoring approach, further extending its capabilities. Given
the premise that the considered dynamic process is linear time-invariant, we assume that the process
has process white noise and measurement white noise, and can be represented by a standard model
described by a state space. Its mathematical expression is as follows:

x (k+1) = Ax (k) + Bu (k) + w (k) (10)
y (k) = Cx (k) + Du (k) + v (k)

Where x € R" is the state vector, u € R' and y € R are input and output vectors, and w € R" and
v € R™ denote process and measurement noises, respectively.Matrix A, B, C, and D are unknown
constant matrices with appropriate dimensions. In this study, it is further assumed that the process
is stable. Under steady-state conditions, it holds that: limy o px (k) = py and limy_,o, Xy (k) = Ly,
where j1y and Xy are constants. Therefore, the cross-covariance between input and output remains
constant.

In [12], the concept of DCCA was first introduced as an extension of the CCA-based methodology,
employed for detecting faults in such dynamic systems under steady-state conditions. Leveraging
the stochastic system model (10), an investigation is conducted into the dependency of the future
output yr on past input, past output z,, and future input u. To achieve this, firstly, data structures
and sets are defined, assuming p and f to be lag and lead parameters. The lagged variables and their
corresponding data matrices are defined as follows.

[y (k—p)]
5 v () e (K)
="V = s Lwym=]| 1)
u(k—p)
: (k+f) (k+f)
ulk—1)
Zy = [zp(l),- .. 'ZP(N)] (s(m+1)xN)
Yy = [ys(1), - ,yf<N>] € R(U+mxN) (12)

Up = [up(1), - up(N)| € RSN

doi:10.20944/preprints202309.0950.v1
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Qin et al. demonstrated that equation (10) can be reformulated as:

x (k+1) = Akx (k) + Bxu (k) + Ky (k)

y (k) = Cx (k) + Du (k) +e (k) (13)

Where Ax = A — KC, Bx = B — KD, with K serving as the Kalman filter gain matrix, ensuring that the
eigenvalues of Ak are situated within the unit circle to guarantee system stability, and e(k) represents
the innovation sequence. It is evident from equation (13) that the following equations hold:

s .
_ AS _ i—1 Y (k - l)
x (k) = Asx (k s)—i—l;AK [K BK] [u (k_l,)] (14)
Ak is stable, and simultaneously, selecting a sufficiently large value for s results in A} =~ 0,
subsequently,
x (k) ~ PTz, (k) (15)
Where PT = [P, PJ, P, = [A{'K ... AkK K|, P = [Ay'Bx ... AxBx K|. The past

measured value z, (k) encompasses process input and output data within the time interval [k — s,k — 1],
as shown in equation (12). Additionally, according to equations (13), the follow equation is also valid:

yr (k) =T r (k) + Hyu g (k) + Hi sy 5 (k) + e (k) (16)
Here, )
c D 0 -~ 0
CAk CBk D :
Trp=1 . Hyguf = i
: . . . 0
CAY CAL "By --- CBx D
= (17)
e(k+1) CK 0 .o
Ef (k) = . HK,y,f = 0
e(k+f) cAl 'K .- CK 0

According to equation(15),

(1= Hiyr) vy (&) ~ TPz, (K) + Hic iy (k) + ef ()

k) (18)
= g PTH A [
|: K,f K,u,f:| [uf (k) f( )
Formula (18) can be further written as:
zy (k
LTys (k) =M" l”j‘ Ek; +eg (k) (19)

T T T
Here,L = (I — HK,y,sf) M = |:FK,sfP HK,u,sf}
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Subsequently, by employing CCA technique in residual generation, the issue of fault detection in
dynamic processes is resolved. Process input and output data are structured based on time intervals,

Z
p
denoted as Yf and [U

. Centralize Yf and [5’1 ] , and then

f f
T
ZP ZP ZP T
[ z:z Zz,yf ~ L uf ufJ uf f (20)
Ty: Ty | N1 g, T
f uf fr

Through the utilization of CCA, the weighting matrices J; and L; can be obtained from the subsequent

equations.
22y B VP = TAAT [y =2 VPT (1 in) Ly = 220 (510 m)
Ao |0 (21)
0 0

Where A, = diag (A,...,Ay). The Cumulative Percentage Value (CPV) method can be utilized to
determine the system order n [21]. It is important to highlight that

T
Z Z
T P P —71.7T Ty _
K U uy Ja=LL; Yfo Li=1 (22)

The following equations can be derived from formula (21):
Jr Zp | YT, = A (23)
d Uf f d = {\n
It is reasonable to define the residual vector as presented below based on formula (23),

(k) = LTy (k) — M} [flj E’g] 1)

Where Mg = Ay ]dT. Furthermore, the covariance matrix of 7(k) can be estimated as:

T
Z zZ
T T p T T 14
(LdeMd " ) (LdeMd u, )
T
7,1 [z i (25)
_ 7T T 21T p p o T 14 T
= LIYpYT Ly + A2]] | | 20,7 u, Y7Ly
=1-A2

Residuals of canonical variables follow a multivariate normal distribution with zero mean, and the
covariance matrix is given by equation (25). Therefore, it is reasonable to utilize the following statistical
data for detection purposes:

12(k) = (N-1)r (0 (1-42) 7 (k) 26)
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The threshold J;;, 12 can be defined as:

n(Nz—n

]th,Tz = mflfa (Tl,N — Tl) (27)

2.3. Contribution based Fault Identification

Building upon the research by Li et al., this research conducted a comparison of fault identification
capabilities among the traditional Q contribution method, the T? contribution method, and the
contribution method based on residuals of canonical variables [22]. In this section, the samples are
consolidated into a dataset Y, rather than being partitioned into input and output categories. Initially,
lag parameter p and lead parameter f are introduced, followed by a redefinition of data structure and
sets to derive past observation vectors and future observation vectors.

Yk-1
Yk-2 Ik

ypk=| . | ERMypr=| Yen1 | eRY (28)
Ve p Y+ f-1

Here, y; represents the k-th sample, and n denotes the number of variables included in each sample.
To prevent variables with large values from dominating, normalization of y, x and yx is required.
Subsequently, the rearranged normalized past and future observation vectors, 7, and sy, are
presented as follows:

?P = [ﬁp,k—&-l/ﬁp,k—i-Z/' o /ﬁp,k—&-M] € RP>M 29)

Yf = |:}2f,k+1/]2f,k+2/' © /]?f,k+M:| € RanM

Here, M = N — p — f + 1, where N denotes the number of samples. Then the covariance matrices of
Jp and J¢ can be computed using the following formulas:

1 o
Zpp = w1 p Yy
1 o
pr = ner VY] (30)
—_ 1 v vyT
Xfp = N-1YrYp
Subsequently, performing singular value decomposition on the Hankel matrix H yields the following
results:
_y—1/2 -1/2 _ T
H =315, 1/ = Usv (31)
Z; 0 L
Where U = (uy,...,u;), V= (v1,...,0m), L = 0 ol ¥ and v; are the corresponding singular

vectors, Xy = diag (Al,. .y /\q) JA = Ay, ..., > Ay 2> 0, are the singular values. The value of k can be
determined using the CPV method.

2.3.1. Q-based Contribution

The canonical residual variable ¢, employed for contribution calculation, can be obtained from
the subsequent formula:

ek = Gl = Vi, )00 20,k (32)
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Following the definition of variable contributions based on CVA proposed by Jiang et al.[23], the
calculation of variable contributions using the Q statistical metric is presented as follows:

n np— n
Co=Q= eTe — eTcgp,k — 2 Z Gjillp,i = 2 Cig (33)
i=1 j=1 i=1

Where C; g is the contribution of variable §; to the monitoring statistic Q, and ¢;G; 7, signifies
the contribution of variable j; to the j-th canonical residual variable ¢;. Ultimately, by dividing
each variable’s contribution of §; to Q by the cumulative contribution Cg, the percentage of each
contribution can be determined, thus identifying the variables associated with faults.

CZ,Q
Co

Pio= (34)

2.3.2. T?-based Contribution
Also following the CVA method, the calculation formula for the canonical state variable zj, used
in contribution assessment, is provided below:

Zk = K?p,k = Vq prl/ngk (35)

Additionally, in accordance with [22], the computation of variable contribution based on the T?
statistical indicator can be expressed as:

n q n
Cp=T"=z2"z=2"Kf,, =Y Y 2K, = Y Cip> (36)
i=1j=1 i=1

Where C; 12 signifies the contribution of variable j; to the monitoring statistic T2, and ziK; ilp,i denotes
the contribution of variable 7; to the j-th typical state variable z;. Ultimately, the percentages of each
contribution can be computed by dividing the contribution of each variable #; to T? by the cumulative
contribution Cr, facilitating the identification of variables correlated with faults.

Ci,T2
CTZ

P‘/TZ -

1

(37)

2.3.3. T4-based Contribution

Apart from the two contribution calculation methods mentioned above, [22] also introduced a
contribution calculation approach based on Canonical Variable Residuals (CVR). The central idea is to
detect minor changes by examining the deviations between future and past canonical variables. The
definition of canonical variable residuals is provided below:

o= Lifpx—Zqld pk (38)

Where LT denotes the first g rows of the matrix LT, and LT = U,JT z f fl/ 2, Similarly, J, qT represents the

first g rows of the matrix 7, and JT = VTZ 1/ 2 . X represents a diagonal matrix composed of the first
g singular values. The calculation of Var1ab1e contributions using the Tj statistical metric based on

CVR is presented below:
-1 -1
Cr, =Ty (1 - 22) =1l (1-22)  (Lodrs — Zlodpi)
noq . n (39)
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Where C; 7, denotes the contribution of variable 7j; to the monitoring statistic Ty, %, represents the

-1
j-th singular value, and Z’;‘% is the j-th diagonal element of the matrix (I - Z%) . Ultimately, the

percentages of each contribution can be computed by dividing the contribution of each variable ; to
T4 by the cumulative contribution Cr,, aiding in identifying variables correlated with faults.

Cit,
CTd

P, = (40)

3. MK-DCCA Method

In this section, building upon the aforementioned theoretical foundation, the MK-DCCA method
utilized in this study is introduced. To endow the kernel function with both strong interpolation and
extrapolation capability, ensuring a robust generalization performance, a combination scheme of local
and global kernels is chosen based on the research foundation of KPCA. This involves combining the
RBF kernel and polynomial kernel to form a mixture kernel. The detailed formulas are as follows:

Kiix = wKpory + (1 — w) Krpr (41)

Here, w € [0, 1] represents the mixing weight, and the mixture kernel reverts to the polynomial kernel
and RBF kernel when w = 1 and w = 0 respectively. [24] proposes utilizing a weighted sum of linear
(d = 1) and RBF kernels to balance favorable interpolation and extrapolation capabilities. Accordingly,
this study employs a combination of a polynomial kernel with d = 1 and an RBF kernel.

Subsequently, the data processed by the MKPCA method is employed for performing the DCCA
method. Firstly, the input vector u# and output vector y are standardized to obtain i and §j. Subsequently,
the data structure and sets are established, assuming p and f as lag and lead parameters, and the past
and future observation vectors of # and y are defined as

(u (k—p)] [y (k—p)]
up (k) = : ;oyp (k) = :

Lu(k—1)] Ly (k—1)]

Cuk) ] k) ] 42
us (k) = : ;oyp (k)= :

Lu (k+ f)] Ly (k+ f).

Furthermore, the new past and future observation matrices are defined as

(43)

doi:10.20944/preprints202309.0950.v1
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Next, Z will be used as the input matrix and Y as the output matrix to perform a CCA-based process
monitoring method . Initially, compute the self-covariance and cross-covariance matrices Xz, Xy .y,
and Xy for Z and Yy using equation (45).

N

Ze = oy £ 2020 ()

nyyf = ﬁ ;1 T?f (i) y? (1) (44)
N

Zzyf = ﬁ ’212 (1) ;‘?} (1)
i=

Where N is the number of samples, 7 (i) and 7 (i) denote the normalized input and output samples
at the i-th time instance, respectively. Subsequently, the Hankel matrix H is constructed using the
subsequent formula:

_y—1/2 —-1/2
H =325, v 1) (45)

Through singular value decomposition, the matrix H can be decomposed into
H=TAAT (46)

Ak
0
vectors, Ay = diag (Ay,...,Ax), A > Ay > -+ > Ay > 0 represents the singular values. Based on
equation (24), obtaining the unknown constant matrices L and M is all that is required to derive the

residual signal. Let

Where I' = (y1,...,71), A = (61,...,0m), A = l 8] 7; and J; are the corresponding singular

Ly =%, 2A (5,1 :n)

Yy f
Jo =322 (1) (47)
My = Auliy

Moreover, the covariance matrix of the residual signal 7(k) can be estimated as
Ty =1-A3 (48)

Where I denotes the identity matrix. Finally, the statistical metric T? utilized for dynamic system
process monitoring can be calculated through the subsequent equation:

T (k) = (N =1)r" (k) ., r (k) (49)
The calculation of the corresponding threshold is as follows:

n (N2 —n)

2
Tth: N(N—T’l) -/__.170( (I’I,N—Tl) (50)
Here, n represents the chosen number of singular values, and N is the number of samples. After
obtaining the threshold, process monitoring is conducted according to the subsequent logic:

T2 > thh, it indicates a fault; otherwise, there is no fault.
Ultimately, if a fault is detected, the contribution-based fault identification method from Section 2.3

is utilized to identify the fault variables and achieve accurate fault localization.

4. Case Study

In this section, the experimental validation of the proposed method is conducted through two
case studies. Firstly, experimental analysis is conducted on a randomly generated dataset to verify the
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generalization performance of the proposed method. Subsequently, experimental analysis is conducted
on a CSTR simulation model, with a comparison made against CVA and CCA methods, along with
their improved versions, to demonstrate the superiority of the proposed approach.

4.1. Case I: Case study using randomly generated data

4.1.1. Model Introduction

In this subsection, the process model utilized for data generation is defined as follows:

u(k) = Wx(k) + e(k)

y(k) = Du(k) + b+ v(k) (51)

Where u(k) and y(k) represent the input and output, respectively, and W, b, and @ are constants.
Initially, the model is employed to generate a training dataset containing 2000 samples with 6 features
each. Subsequently, test datasets are created for actuator faults, sensor faults, and process faults, and
the details of dataset are provided in Table 1.

Table 1. The imformation of datasets.

Fautl Fault Fault Fault Sample Feature Introduction
Index Location Category Variables Count Count Time(s)
Fault-Free / / / 2000 6 /
Fault 1 Sensor Incipient 9th 2000 6 1000
Fault 2 Actuator Abrupt 1st 2000 6 1000

4.1.2. Process Monitoring

In this subsection, the fault-free dataset generated in Section 4.1.1 is employed as the training set
to train the model. The fault datasets are then used as the test set for process monitoring to demonstrate
the performance of the proposed method. The monitoring results for Fault 1 and Fault 2 are shown in
Figure 1, separately.

- fault Detectlon result of MK- DCCA fault Detection result of MK-DCCA
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Figure 1. Monitoring Results of the Randomly Generated Dataset by MK-DCCA :(a)Monitoring Results
for Fault 1.(b)Monitoring Results for Fault 2.

The monitoring graphs reveal that the proposed approach effectively identifies the abnormal
states of the system and provides early warnings. For Fault 1 (incipient fault), the monitoring model
can provide an alert at the 54th sample after fault occurs and effectively forecast evolving trend of
faults. Moreover, for another prevalent fault, namely Fault 2 (abrupt fault), the monitoring model
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can promptly alert about abnormal operating state of system as soon as fault occurs. Simultaneously,
the proposed approach exhibits satisfactory performance during the monitoring processes of both
aforementioned fault types. To comprehensively evaluate performance of the method, this study
quantifies it using four metrics: Fault Detection Rate (FDR), False Alarm Rate (FAR), Miss Detection
Rate (MDR), and Fault Detection Time (FDT). FDT indicates the time when monitoring model initiates
the first alert after a fault occurs. The definitions for the other three metrics are provided below:

_ _ TP

FDR = P+FN
_ __FP

FAR = rprry (52)
— _FN

MDR = 7p7ry

Where TP is the number of faults correctly detected, TN represents the number of normals correctly
detected, FP denotes the number of normal samples incorrectly reported as faults, and FN signifies
the number of faults incorrectly reported as normals. Ultimately, utilizing the aforementioned metrics,
the quantified results of monitoring performance are displayed in Table 2.

Table 2. Monitoring Performance Indicators of Fault 1 and Fault 2.

Fault Index Statistical FDR(%) FAR(%) MDR(%) FDT(s)
Metrics
T2 91.9 0 8.1 1054
11
Fault 1 T, 925 0 75 1054
T2 99.9 0 0.1 1000
Fault2 el 99.9 0.1 0.1 1000

out

It is evident that proposed approach achieves a fault detection rate of 92.5% for the incipient fault
(Fault 1) and attains a higher 99.9% detection rate for the comparatively easily detectable abrupt fault
(Fault 2). As for the false alarm rate, MK-DCCA method maintains an excellent performance of zero
false alarms for both fault types. Meanwhile, proposed method successfully manages to maintain the
miss detection rate at an acceptable level of 7.5% for Fault 1, whereas for the more readily detectable
Fault 2, the miss detection rate decreases to 0.1%. Ultimately, the fault detection time for Fault 1 occurs
at the 1054th sample (54 samples following the fault occurrence), while for Fault 2, it is the 1000th
sample (immediately following the fault occurrence). The reason behind this phenomenon is that
incipient faults exhibit a relatively minor impact on monitoring indicators during the early stages of
fault occurrence, necessitating a certain degree of fault development to trigger model warnings.

4.1.3. Fault Identification

This section of the experiment primarily aims to evaluate the fault identification capability of
proposed method. It involves identify the fault variables by evaluating the contribution of each
variable to the fault detection indicators, with the goal of achieving accurate fault localization. The
variable contribution plots of Fault 1 and Fault 2 are illustrated in Figure 2:
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Figure 2. Contribution Plot of Process Variables under Fault Scenarios:(a)Contribution Plot of Fault
1.(b)Contribution Plot of Fault 2.

Table 1 indicates that the fault variable for Fault 1 is the 9th variable, while for Fault 2, it is the
1st variable. This conclusion is also apparent from Figure 2. It is evident that in both types of fault
identification experiments, the T2 indicator contribution performed the best. For Fault 1, variable 9
contributed 96.7% to the fault statistic indicator, while for Fault 2, variable 1 contributed 98.6%. Hence,
the fault identification method employed in this research demonstrates a satisfactory level of accuracy.

In conclusion, the process monitoring and fault identification experiments conducted on a
randomly generated dataset from a standard process model have demonstrated strong generalization
performance of proposed method. Simultaneously, it has exhibited satisfactory monitoring
performance and fault identification accuracy.

4.2. Case II: Case Analysis of CSTR Simulation Model

4.2.1. Model Introduction

The dataset employed in this case study is generated by a CSTR Simulink simulation model
tailored for simulating incipient faults. A detailed description of the model can be found in [9]. The
schematic diagram of the CSTR model is shown in Figure 3, and Table 3 summarizes all the process
variables of the system. The system inputs are C;, T;, and T;, while the system outputs are C, T, T,
and Q.. The dynamic model of CSTR process is described as follows:

% = %(Ci—c) —a1kC + vq
AH,)kC
dT:%(Ti—T)—alﬁ(T—Tc)-FUZ (53)

dt

Pc

Where Q is the inlet flow rate, AH, is the heat of reaction, UA is the heat transfer coefficient, p and p¢
are the fluid density, C;, and C) are the heat capacity of the fluid, and V and V, are the volumes of the
tank and jacket, respectively.

C, (mol/L)
I (K)

Ty (K)
Q. (Limin)

€ (mol/L)
| TiK)

Figure 3. Schematic Diagram of the CSTR Model.
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Table 3. Process Variables Involved in the CSTR System.
Variable 1 2 3 4 5 6 7 8 9 10
Index
Variable C; T; T.; C; T; C T T. T.; Qc!
Name

! Variables 1 to 3 represent measurements without noise, this study utilizes variables 4 to 10.

The training and testing sets were collected from the CSTR simulation model during a 1200-second
run, with a sampling rate of one sample per second. Each testing set initiates from a fault-free state
and introduces faults after running for 200 seconds. Four fault scenarios were employed to evaluate
the effectiveness of proposed method, including two input subspace faults and two output subspace
faults, with detailed fault information provided in Table 4.

Table 4. Fault detailed information.

Fault index Simulated Fault Fault Introduction Associated

fault scenario variables Category Time(s) Subspace

Fault1 Feed valve Ci Incipient 200 Input
malfunction

Fault 2 High Coolant T, Abrupt 200 Input
Temperature

Fault 3 Coolant Qc Incipient 200 Output

leakage

Fault 4 High Reactor T Abrupt 200 Output
Temperature

Fault 5 Both 1 and 3 Ci, Q¢ Incipient 200 /

4.2.2. Process Monitoring

In this section, we initiate comparative experiments for the relatively easily detectable abrupt
faults, Fault 2 and 4. Subsequently, experiments are conducted on Fault 1 and 3 (incipient faults),
followed by the simultaneous introduction of both incipient faults of Fault 5 for detection. The methods
employed include MK-DCCA, DCCA, and DCVA.

The process monitoring experimental results for Fault 2 and 4 are illustrated in Figure 4.
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Figure 4. Monitoring results for Fault 2 and 4 by three methods:(a)Monitoring results of MK-DCCA
approach for Fault 2.(b)Monitoring results of MK-DCCA approach for Fault 4.(c)Monitoring results of
DCCA approach for Fault 2.(d)Monitoring results of DCCA approach for Fault 4.(e)Monitoring results
of DCVA approach for Fault 2.(e)Monitoring results of DCVA approach for Fault 4.

From the graphs, it’s evident that all three methods can provide early warnings for both Fault 2 and
Fault 4 as they occur. However, in terms of false alarm rate, MK-DCCA exhibits the lowest, followed by
DCCA, and DCVA performs the poorest. To facilitate better comparison of the three methods, Table 5
presents the detailed information of their monitoring performance indicators. The results demonstrate
that both MK-DCCA and DCCA methods achieve a fault detection rate of 100% for both faults 2 and 4,
surpassing DCVA method. Meanwhile, both MK-DCCA and DCCA methods exhibit no false alarms in
the monitoring of fault 2, whereas DCVA method achieves the best performance with a false alarm rate
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of 1.05% based on the Q criterion. In experiments for fault 4, MK-DCCA method similarly achieves
the lowest false alarm rate of 1.05%, followed by DCCA method at 2.62%, and the DCVA method
performs the least favorably with a rate of 3.66%. Furthermore, in terms of missed detection rate, both
CCA-based methods maintained the lowest 0 missed detection rate in experiments for faults 2 and 4,
while the DCVA method had a rate of 0.5%. Lastly, in comparison to the CVA-based method, the fault
detection time of the CCA-based method is slightly reduced in both fault scenarios.

Table 5. Performance indicators for monitoring of Fault 2 and 4 using different methods.

Fault Method  Statistical ~ FDR(%) FAR(%) MDR(%) FDT(s)
Index Metrics
2
MK-DCCA T? 99.8 0 0.2 202
T2, 100 0 0 200
Fault 2 DCCA T2, 99.9 0 0.1 201
T2, 100 3.14 0 200
BCVA Q 99.5 1.05 0.5 205
T2 99.5 2.1 0.5 205
2
MK-DCCA T2 100 1.05 0 200
T2, 100 2.62 0 200
2
Fault 4 DCCA T2 100 2.62 0 200
T2, 100 6.81 0 200
DCVA Q 99.5 3.66 0.5 205
T2 99.5 5.24 0.5 205

To conclude, in terms of abrupt fault detection, the proposed MK-DCCA method performs the
best, followed by the DCCA method, and finally the CVDA method. Therefore, applying the proposed
method for detecting abrupt faults in industrial process systems is justified in this study.

Furthermore, the study further compared and analyzed the monitoring performance of the
proposed method and the comparative methods in the incipient fault scenarios of Fault 1 and 3. The
process monitoring experimental results for Fault 1 and 3 are depicted in Figure 5.
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Figure 5. Monitoring results for Fault 1 and 3 by three methods: (a) Monitoring results of MK-DCCA
approach for Fault 1. (b) Monitoring results of MK-DCCA approach for Fault 3. (c) Monitoring results
of DCCA approach for Fault 1. (d) Monitoring results of DCCA approach for Fault 3. (e) Monitoring
results of DCVA approach for Fault 1. (f) Monitoring results of DCVA approach for Fault 3.

The figures clearly illustrate that the MK-DCCA, DCCA, and DCVA methods all exhibit the ability
to provide alerts after a certain time period following the occurrence of faults, and simultaneously,
they are capable of predicting the trend of fault progression. However, in comparison, the MK-DCCA
method still performs better and more comprehensively, and detailed analysis of performance
indicators can be found in Table 6. It is evident that the MK-DCCA method attains fault detection
rates of 96.304% and 93.007% for the monitoring of fault 1 and fault 3, respectively, surpassing the
FDR values of the DCCA and DCVA methods. Concurrently, in the fault scenarios of fault 1 and 3, the
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CCA-based approach can attain lower false alarm rates than the CVA-based approach. Additionally, in
terms of missed detection rates, the MK-DCCA method maintains the lowest rates in the monitoring
of both faults, at 3.7% and 7.0%, respectively. As for fault detection time, the CCA-based method
significantly reduces detection time compared to the CVA-based method, although the DCCA method
also exhibits shorter detection time than the MK-DCCA method, it comes at the cost of slightly higher
false alarm rates, making the performance of MK-DCCA more satisfactory in comparison.

Table 6. Performance indicators for monitoring of Fault 2 and 4 using different methods.

Fault Method  Statistical ~ FDR(%) FAR(%) MDR(%) FDT(s)
Index Metrics
2
MK-DCCA T? 96.204 5.24 3.80 223
T2, 96.304 1.57 3.70 225
2
Fault 1 DCCA T2 96.004 0 4.0 231
T2, 96.004 3.14 4.0 231
DCVA Q 92.607 0 7.40 237
T2 93.506 3.14 6.50 236
2
MK-DCCA T2 93.007 0 7.0 246
T2, 92.408 3.14 7.60 259
2
Fault 3 DCCA T? 92.907 0 7.10 238
T2, 92.907 2.62 7.10 260
DCVA Q 87.013 1.57 12.99 297
T2 91.009 2.09 8.99 271

In summary, in experiments for detecting incipient faults, MK-DCCA method proposed in this
paper continues to exhibit the best performance, followed by DCCA method, and finally CVDA method.
Accordingly, the performance of proposed method has been demonstrated to be satisfactory in both
abrupt fault and incipient fault detection scenarios. Additionally, in order to align the research more
closely with complex real-world application scenarios, faults 1 and 3 were simultaneously introduced
into the CSTR system, referred to as fault 5. The detailed results of the fault detection experiment
for fault 5 are shown in Figure 6, and the specific values of the related performance indicators are
presented in Table 7.
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Figure 6. Monitoring results for Fault 5 by three methods:(a)Monitoring results of
MK-DCCA.(b)Monitoring results of DCCA.(c)Monitoring results of DCVA.
Table 7. Performance indicators for monitoring of Fault 5 using different methods.
Method Statistical FDR(%) FAR(%) MDR (%) FDT(s)
Metrics
2
MK-DCCA Tin 97.203 1.04 2.80 215
T2, 97.403 0 2.60 216
2

DCCA Tin 97.103 1.05 2.90 215

Tozut 97.303 0 2.70 216

DCVA Q 94.805 0 5.19 243

T2 95.105 0 490 237

It is evident that the CCA-based method holds a notable advantage over the CVA-based method,
exhibiting a higher detection rate by around 2%, a lower miss detection rate by approximately %,
and a reduction in detection time by about 20 seconds. Simultaneously, in the comparison between
MK-DCCA and DCCA methods, the former prevails with a slight advantage in detection rate and
miss detection rate. This reasserts the excellence of proposed MK-DCCA method and its feasibility in
intricate application environments.

4.2.3. Fault Identification

In the previous section, the fault detection performance of the proposed method has been
validated. In this section, the main emphasis lies in the analysis fault indentification capability of the
method. Since it has been demonstrated in Section 4.1.3 that the T?-based contribution identification
accuracy is the highest, in experiments of this section, only the T?-based contribution is used for fault
identification. The contribution plots for Fault 1 to 5 are shown in Figure 7.
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Figure 7. Monitoring results for Fault 5 by three methods:(a) Contribution plot of variables for faultl. (b)
Contribution plot of variables for fault2. (¢) Contribution plot of variables for fault3. (d) Contribution
plot of variables for fault4. (e) Contribution plot of variables for fault5.

It can be observed that in Fault 1, the variable Ci contributes 98.66% to the statistical indicator,
with the fact that C; is the actual fault variable; in Faults 2, 3 and 4, the contributions of the fault
variables T;i, Q., and T are 97.52%, 86.32%, and 99.32%, respectively, far exceeding other variables;
in Fault 5, which involves the fault variables C; and Q,, their contributions are 64.3% and 34.84%,
respectively, also significantly higher than other variables. The above findings demonstrate that
the fault identification approach adopted in this study exhibits a satisfactory identification accuracy,
effectively identifying and locating faults with precision.

5. Conclusions

This paper emphasizes the importance of detecting incipient faults in process industrial systems
and extends the widely recognized process monitoring method, CCA, to make it more suitable for
early detection of incipient faults. By incorporating time parameters, the method gains the ability to
handle system dynamics. The inclusion of kernel methods endows the method with the capability
to handle nonlinear data. In the selection of kernel functions, a weighted combination of RBF and
polynomial kernels is chosen, allowing the kernel function to possess both good interpolation and
extrapolation capabilities. Based on the aforementioned work, this paper proposes an MK-DCCA fault
diagnosis method, and its generalization performance is validated on a randomly generated dataset,


https://doi.org/10.20944/preprints202309.0950.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 September 2023 doi:10.20944/preprints202309.0950.v1

21 of 22

then comparative experiments are conducted on the CSTR Simulink model. The results demonstrate
the superiority of the proposed method in fault detection, especially in the case of incipient faults over
the DCCA and DCVA methods.

Nevertheless, this study has certain limitations. The method requires a considerable number of
parameters, and its performance is somewhat dependent on the selection of these parameters. The
calculation of thresholds is relatively inflexible, leading to limited adaptability to different monitoring
objects. Future research will aim to address these issues by exploring adaptive parameter selection
and threshold computation.
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