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Abstract: Switched model predictive control (5S-MPC) and recurrent neural network with long
short-term memory (RNN-LSTM) are powerful control methods that have been extensively studied
for energy management in microgrids (MGs). These methods complement constraint satisfaction,
computational demand, adaptability, and comprehensibility, but typically, one method is chosen
over the other. The S-MPC method dynamically selects optimal models and control strategies based
on the system’s operating mode and performance objectives. On the other hand, integration of
auto-regressive (AR) with these powerful control methods improves prediction accuracy and system
conditions” adaptability. This paper compares the two approaches to control and proposes a novel
algorithm called Switched Auto-regressive Neural Control (S-ANC) that combines their respective
strengths. Using a control formulation equivalent to S-MPC and the same controller model for
learning, the results indicate that pure RNN-LSTM cannot provide constraint satisfaction. The novel
S-ANC algorithm can satisfy constraints and deliver comparable performance to MPC while enabling
continuous learning. Results indicate that S-MPC optimization increases power flows within the
MG, resulting in efficient utilization of energy resources. By merging the AR and LSTM, the model’s
computational time decreased by nearly 47.2%. Also, this study evaluated our predictive model’s
accuracy: (i) R-squared error is 0.951, indicating the strong predictive ability, and (ii) mean absolute
error (MAE) and mean square error (MSE) values of 0.571 indicate accurate predictions with minimal
deviations from actual values.

Keywords: auto-regressive; control and optimization; energy management; recurrent neural network;
long short-term memory; microgrid; switched model predictive control

1. Introduction

Model predictive control (MPC) is a control approach widely utilized in many industries,
including chemical, electrical, and mechanical engineering. It is well-suited for microgrids (MGs)
because it deals with restrictions and optimizes performance over time [1-3]. MPC entails formulating
and solving an optimization problem at each time step to determine the optimal control inputs for
the next step. A MPC is described in [4] for effective MG optimization, and mixed integer linear
programming (MILP) is employed to solve the problem posed. MPC-inspired energy management
(EM) system employed a neuro-fuzzy method that accounts for renewable energy sources (RESs)’
intermittent nature in grid-connected MG with loads and photovoltaic (PV) reported in [5]. [6]
presents scenario-based stochastic programming with a rolling horizon strategy for minimizing the
operating expenses of MGs when wind speed is unknown. The rolling horizon or MPC techniques
are reactive-based methodologies that modify or update data from deterministic approaches. A
scenario-based MPC was developed in [7] to reduce operating expenses and overall emissions.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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To achieve inexpensive and flexible operation, [8] provides MPC-based optimum management for
renewable energy MGs with hybrid energy storage systems (ESSs), such as hydrogen, batteries, and
capacitors. A hierarchical MPC-based technique for islanded AC MG addressed power quality and
unbalanced power-sharing difficulties [9]. Despite this, traditional MPC cannot control the MG in
various operational modes.

In contrast, Switched Model Predictive Control (S-MPC) is a variant of MPC that employs
multiple models, each representing a unique mode of operation or scenario of the system. S-MPC
selects the optimal model and associated control strategy based on the current system state and
desired performance goals. This makes it possible for SSMPC to handle systems with mode-dependent
dynamics. MPC is distinguished from S-MPC by using a single model to predict the system’s future
behaviour [10]. S-MPC employs multiple models and switches between them based on the system’s
current state. S-MPC can provide greater performance and robustness than MPC, especially for
complex systems with multiple modes or operating conditions [11,12]. In another study, a novel study
presents a hybrid MG model that incorporates two switched receding horizon control laws. This
strategy mitigates overall energy expenses and maximizes the efficient utilization of RESs for expansive
business establishments while accommodating fluctuations in grid connectivity circumstances [13].
Also, [14] outlines the process of designing and applying a S-MPC to wind turbine systems, intending
to manage the intricate nature and nonlinearity inherent in wind turbine systems. The system employs
qpOASES as an integrated solver for online optimum control. It incorporates a cyber-physical real-time
emulator for utility-scale wind turbines with variable-speed and variable-pitch capabilities. This study
showcases the viability and efficacy of S-MPC in attaining control objectives for Wind turbine systems
in real-time, utilizing brief control periods. In addition, in [15] study presents a novel technique to
enhance wind turbine control by introducing a S-MPC framework. The proposed approach aims to
solve the limitations of the conventional continuous control-based MPC algorithm. The results of the
comparative analysis indicate that the proposed algorithm exhibits superior performance compared to
the existing MPC in various aspects, including computational efficiency, load mitigation, and dynamic
response. [16] presents a novel S-MPC method specifically tailored for discrete-time nonlinear systems.
The simulation outcomes emphasize its superiority over a conventional MPC technique regarding
computational efficacy and control effectiveness. Another study presents a novel S-MPC methodology
for power converters. During transient periods, the system utilizes horizon-one nonlinear finite control
set MPC to steer the system towards the intended reference [17].

On the other hand, S-MPC’s performance is highly vulnerable to model mismatch. In other
words, it must select a suitable system model. Furthermore, the rising complexity of S-MPC impacts
the stability and maintainability of MG control [18,19]. These challenges lead to the accuracy issue
in S-MPC methods. In addition, the computational time of S-MPC is much higher because of the
prediction horizon and several steps. Many authors have studied machine learning (ML) techniques to
increase the accuracy of the MG system.

To improve scheduling effectiveness in networked microgrids (NMGs), with the main goal of
minimizing the effects of electricity outages. The paper presents a framework consisting of three
stages to evaluate power transactions, manage renewable energy and market price risks, and tackle
uncertainties. This framework is formulated as a mixed-integer linear programming problem [20]. On
the other hand, [21] introduces a novel approach utilizing the Internet of Things (IoT) to optimize and
regulate power loads in citizen energy communities dynamically. This technique is compared to the
conventional Direct Load Control (DLC) method. This technique aims to enhance power use efficiency
through programmable appliances and dynamic demand response. Simulations have demonstrated
potential reductions in energy bills, lower reliance on flexible energy sources, reduced interruptions,
and increased peak-to-average ratio (PAR). In order to model the behaviour of RESs, such as wind and
solar, an auto-regressive moving-average (ARMA)-based scenario generation has been implemented.
Large industries will receive direct assistance from storage and demand-side management systems to
reduce energy costs [22]. The other work employs an ARMA model to forecast solar PV, wind power
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generation, and electricity demand. Second, an optimal generation scheduling procedure is intended to
reduce system operating expenses. The simulation results indicate that optimal generation scheduling
can minimize operating expenses under the worst-case scenario [23]. In [24] study, combining two
models, the ARMA and the Nonlinear Auto Regressive with exogenous input (NARX), a novel method
was presented for predicting solar radiation. This decision was made to utilize the benefits of both
models to produce more accurate prediction results. Simulation results have validated this hybrid
model’s ability to predict weekly solar radiation averages. Although these previous solar radiation
forecasting techniques, particularly ARMA models, are effective for particular uses, they are unsuitable
for others requiring high forecasting precision. Several researchers have proposed hybrid models to
improve the precision of solar radiation forecasting. Moreover, there is still a proper plant model and
prediction horizon, so the computational time of the model is still so high [24].

There are numerous studies on ML methods rather than AR models. For instance, [25] thoroughly
investigated the predicting performance of several recurrent neural network (RNNs) designs, such
as a long short-term memory (LSTM), gated recurrent unit (GRU), and bidirectional LSTM. Using
local weather forecasts and historical weather data, [26] proposed a LSTM-based next-day forecasting
model of hourly global horizontal irradiance (GHI). [27] and [28] suggested LSTM-based models
with only the next day’s weather forecasts as input. Studies by [29] and [30] use similar LSTM-based
techniques. [31,32] validated the performance of hybrid deep learning models built on convolutional
neural networks (CNNs) and LSTM for day-ahead GHI forecasting. In addition to RNN-based
approaches, there are studies evaluating the performance of other statistical and ML models for solar
irradiance forecasting, such as coupled AR and dynamic system by [33], Markov switch model [34],
and support vector machine (SVM) by [35]. [36] reported an LSTM-based model for hour-ahead solar
irradiance forecasting. The input, which included historical GHI and meteorological data from the
preceding 24 hours, was utilized to forecast the GHI for the next hour [36]. The results reveal that the
LSTM-based model outperforms other models, such as auto-regressive integrated moving average
(ARIMA) and CNN [36]. [37] investigated the performance of LSTM and GRU. [38] and [39] published
hybrid CNN-LSTM models for hour-ahead GHI forecasting. This study showed that incorporating
external weather information considerably increases prediction accuracy. Unlike day-ahead irradiance
forecasting methods, hour-ahead forecasting algorithms create projections for the following hour using
only historical data.

On the other hand, RNNs are a form of ML technology widely employed for time series prediction
and modelling dynamic systems [40,41]. RNNs are an artificial neural network (ANN) that is
particularly useful for modelling time-series data and may be used to anticipate future MG behaviour
[42,43]. RNNs may learn and adapt to system dynamics by learning the temporal dependencies in
the data. RNNs have been used to solve various MG control challenges, including load forecasting,
renewable energy integration, and demand response management [44—46]. RNNs have been applied to
various systems, including power systems [47,48], with promising prediction accuracy and flexibility
results.

In summary, both control families have benefits and drawbacks, and their complementarity is
evident. On the one hand, S-MPC struggles with system complexity and long-term prediction horizons,
whereas the combination of AR and LSTM (AR-LSTM) can deal with complex systems and infinite
prediction horizons naturally. AR-LSTM, conversely, is challenging to satisfy constraints and lacks
interpretability, whereas S-MPC can provide safety guarantees and understandability.

Although there is a clear potential for synergy between the two families of methods, there have
been few attempts to combine their relative advantages. This research deficiency is not limited to
applying EM for MG. Control and ML communities evolve independently, adopting radically different
notations to formulate the same problem. In spite of the parallel developments, several authors [49-51]
have suggested that a collaboration between the two groups could result in potential advantages.
Combining these methodologies is a powerful method of integrating robust control theory methods
with ML approaches to exploit additional information from real-time data [52,53].
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As shown in Table 1, each control method has strengths and limitations. MPC and S-MPC
offer robust optimality and constraint handling but may have computational challenges. AR and
RNN-LSTM are efficient in computation but may not manage complex constraints effectively. S-ANC
combines AR models with neural control, balancing optimality and computational efficiency. The
choice of control method depends on the specific application and trade-offs between these criteria.

Table 1. Comparison of Control Methods.

Control Method Optimality Computational Time [s] Multiple Models Adaptability Constraints

MPC [54,55] v > 10* [High] X Good v
S-MPC [10,11,15,56] v ~ 10% [Moderate] v Outstanding v
DLC [21] v/ ~ 10% [Moderate] X Good v/
AR [24] x ~ 10% [Moderate] X Poor x
CNN [57,58] X < 10% [Low] X Poor X
RNN-LSTM [59,60] v < 10% [Low] X Poor x
S-ANC v < 10% [Low] v Outstanding v

1.1. Contributions and Research Questions

This paper is motivated by how AR-LSTM and S-MPC can collaborate in applying EM of MG.
While there is a consensus that combining the two algorithms may yield benefits, little has been done to
develop methods that involve the two algorithms working together. In addition, the works investigate
how these controllers can collaborate with the algorithms working at different control designs and
modes. No previous research has compared and combined S-MPC and AR-LSTM for the same optimal
control problem formulation in EM for MG.

The second objective of this paper is to propose a novel method known as Switched
Auto-regressive Neural Control (S-ANC), which merges S-MPC and AR-LSTM synergistically. The
development and formulation of this new S-ANC algorithm are motivated by the conceptual and
practical comparison of S-MPC and AR-LSTM. In contrast to comparable approaches, our method
combines the S-MPC objective function and constraints and the AR-LSTM optimization and prediction
function. This practice ensures interoperability between the two methods and enables the truncation
of the S-MPC optimization problem, which can become highly complex even for relatively simple MG
structures. Finally, the flexible hybrid MG case describes and evaluates this new algorithm.

Consequently, the primary contribution of this paper is the introduction of S-ANC, a control
algorithm that combines techniques from the communities of control theory and ML. This algorithm
is evaluated, and a new standard framework is generated for EM of hybrid MG. In addition, the
proposed S-ANC algorithm applies to various applications and domains, such as complex industrial
processes and energy markets. This study also combines control theory and ML by comparing and
disentangling the key distinctions between S-MPC and AR-LSTM.

2. Identifying the distinctions between S-MPC and AR-RNN-LSTM

Optimal control determines the actions that optimize a performance objective by solving a
sequential decision-making problem. The preceding section highlighted the need for comparing
S-MPC and AR-LSTM, the two primary approaches for optimal control applied to EM for hybrid MG
control, and the possibility of combining them. Both methods utilize some components, while others
are more controller-specific. These formulation differences make it difficult to compare and combine
the two approaches, necessitating a conceptual analysis. It assists in identifying the primary methods
for optimal control and establishes a common ground for a comprehensive classification. The sections
that follow detail the most important aspects of these control methods.

2.1. Strategy

There are typically two ways to approach an optimal control problem: by employing the
S-MPC-inherent receding horizon principle or formalizing the problem as an AR-LSTM.
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S-MPC is a control strategy that involves using a mathematical model of the system being
controlled to predict the system’s future behaviour and optimize a control signal over a finite time
horizon. At each time step, the control signal is updated based on the current state of the system
and the predictions made by the model. It is widely used in industrial control applications, such
as process control, automotive control, and robotics, where it is important to consider the system’s
dynamics being controlled and optimize performance over a prediction horizon. At each time step k in
S-MPC, switching logic controls multi-mode for the accumulators that fully describe the controller
model at the current time. Then, the trajectories of the future state x and input u are optimized for a
prediction horizon Np based on the explicit representation of an objective function | and a controller
model F. | is the minimization of the imported energy and maximization of the exported energy. The
constraints H are also introduced explicitly in the optimization problem. Objective function, model,
and constraints may also depend on model outputs y and time-invariant parameters p. In addition,
r(k) is the reference variable representing the PV, load data, and zero along the prediction horizon Np.
wy (k) and w, (k) are weighting coefficient reflecting the relative significance of x(k) and penalizing
relatively large variation in u(k), respectively. Implemented is only the initial control input from the
optimized trajectory [11]. Figure 1a depicts the full S-MPC procedure.

Np Np Np
J(k) = Y wx(k)(r(k) + x(k))* + Y wu(k)Au(k)® + Y wy (k)y(k)* + p €]
k=0 k=0 k=0
Controller
Optimizer
Np Np Np
2 2
JGk) = ;wx(k)(ruo +x(0)" + ; w () Bu(k)? + I;wyoc)(y(k)) 3
[ Pl
0 = F(x(k),r(k), u(k), y(k), p)
0 < H(x(k), (k) u(k), y(k), p) v
k+1
Np Np yk) |:+:|
Switching logic ‘ ‘ Reference ‘ ‘ Predictor }- y(k+1)
(a) S-MPC
Objective function
_ 8k Auto-regressive model
IOEDWIGRIG) woee
k=1
IIH Predictor
Xk+1 N
( ) y)
R(k)| X(k ~
()| x(k) - 900
y(k—1) 4 | y(k)
P —1
B3
x(k — 1) Oc x(k)
u(k)
(b) AR-LSTM

Figure 1. Block diagram of (a) S-MPC and (b) AR-LSTM.
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In the application of S-MPC to EM for MGs, the state vector x represents the state of charge of
the accumulators (SOAcc), such as the battery, fuel tank, and water tank, and the model output y
illustrates the imported and exported energy, such as a grid to the load GRyp and PV to the grid, and
the battery (PVgr + PVpar). Depending on whether or not the controller model employs physical
insights, the set of time-invariant parameters p may or may not represent the physical properties of
the MG.

In contrast to RNN-LSTM, AR models are not neural network architectures. On the contrary, they
are statistical models that identify dependencies and patterns within a time series based on its own
lagged values. The AR model predicts the future values of a variable based on its historical values
and the estimated coefficients during model training. In other words, AR models are a statistical
modelling technique that assumes a variable’s current value is a function of its previous values. They
are utilized frequently for time series analysis and forecasting. Therefore, AR models can be viewed
as linear regression in which the predictors are the values of the same variable at a prior time [24].
AR models can be used to model the system’s dynamics within the context of control systems or
reinforcement learning. The model can predict future states or observations by estimating the AR
coefficients. These predictions can then be fed into control algorithms or reinforcement learning agents
in order to optimize control signals or decision-making. Unlike neural network architectures, AR
models are not adaptive by nature. The estimation of AR coefficients requires training on historical
data, and their performance may degrade if the underlying dynamics of the system change significantly
over time.

The following equation can mathematically represent an AR model of order q [24]:

X(k) =c+o)X(k=1)+@(2)X(k—=2) +--- + ¢(q) X (k — q) +e(k) @

where X (k) represents the value of the time series at time k in this equation. ¢ is a constant term or an
intercept. ¢ terms represent AR model coefficients. The coefficients or weights associated with the
previous values of the time series are denoted by 1,2, ...,¢q. X(k—1), X(k—2), ..., X(k — q) represent
the lagged values of the time series at time points k — 1,k — 2, ..., k — g, respectively. ¢(k) is the error
term or random noise at time k, representing the data portion the model cannot explain.

RNN-LSTM is a neural network type ideally suited for processing sequential data. Unlike
feed-forward neural networks, it has loops that allow information to be passed from one sequence
step to the next. The approach for employing RNN-LSTM includes selecting an appropriate
network architecture, an optimization algorithm for training the network, and an appropriate set
of hyper-parameters. RNN-LSTM is an extension of a feed-forward neural network with internal
memory. RNN-LSTM is recurrent because it performs the same function for each data input, while
the output of the current input is dependent on the previous computation. After the output has been
generated, it is duplicated and sent back into the recurrent network [61]. For decision-making, it
considers both the current input and the output from the previous input it learned. As shown in Figure
1b, the input vector of an LSTM network is #(k — 1) at time step k. y(k) represents the output vectors
passed through the network between time steps k and k + 1. Three gates update and control the cell
states in an LSTM network: the forget gate, input gate, and output gate. The gates are activated by
hyperbolic tangent and sigmoid functions. Given new information that has entered the network, the
forget gate determines which cell state information to forget. Given new input information, the input
gate determines what new information will be encoded into the cell state. Using the output vector
y(k), the output gate controls what information encoded in the cell state is sent to the network as input
in the subsequent time step.
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In the mathematical modelling of RNN-LSTM, the current state can be expressed mathematically
as:

x(k) = f(x(k=1),u(k)) ®)

where x(k) represents the current state, x(k — 1) represents the previous state, and u(k) is the current
input. Because the input neuron would have applied the transformations to the previous input, we
now have a state of the previous input rather than the input itself. Each successive input is, therefore,
referred to as a time step.

Considering the simplest form of a RNN-LSTM, where the activation function is tanx, the weight
at the recurrent neuron is Wyy, and the weight at the input neuron is Wy, we can write the equation
for the state at time k as follows [61]:

x(k) = tanx(Wyyx(k — 1) + Wyeu(k)) 4)

In this instance, the recurrent neuron only considers the previous state. The equation may involve
multiple such states for longer sequences. After calculating the final state, the output can be generated.
Once the current state has been computed, we can then calculate the output state as follows [61]:

y(k) = Wayx(k) ®)
where y(k) is the output state and Wy, is the weight at the output state. This process is represented by
Figure 2.

Y y(k—1) y(k) y(k+1)
Wey Wy
f
Waix Wi
u u(k — 1) u(k) u(k +1)

Figure 2. Structure of the RNN.

First, it extracts #(0) from the input sequence and then outputs y(0), which, along with u(1), is
the input for the subsequent step. Therefore, y(0) and u(1) are the inputs for the subsequent step.
Similarly, y(1) from the subsequent step is the input for u(2) for the subsequent step, and so on.
Consequently, it remembers the context throughout training.

A cost function quantifies "how well" a neural network performs with respect to the training
sample and the expected output. It may also depend on factors like weights and biases. This is a single
value, not a vector because it evaluates the overall performance of the neural network. The objective of
the cost function is to evaluate the network’s performance to minimize its value during training. The
cost function for a typical RNN-LSTM is the sum of losses at each time step [62].

T
J(6) = k; L(g(k), y(k)) (6)

where 6 represents the parameters of the RNN, T represents the length of the input sequence, 7;
represents the predicted output and y; represents the actual output at time step k. L is the loss function
quantifying the difference between the predicted and actual output. The RNN’s training parameters are
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adjusted to minimize the cost function using gradient descent or a comparable optimisation algorithm.
The objective is to identify the parameters that minimize the loss over all time steps, resulting in an
RNN that can accurately predict the output for a given input sequence.

2.2. Problem-solving method

By analyzing the control processes illustrated in Figure 1a,b, it is possible to identify a number of
expressions with total or partial equivalence between the two methods.

S-MPC can be solved implicitly by performing switching logic, forecasting, and resolving a
dynamic optimization problem at each time step or explicitly by learning a control policy from
data generated by a S-MPC with any function approximation. Consequently, S-MPC has a higher
online computational cost because every control step requires estimation of the states and dynamic
optimization. Typically, the optimization problem in S-MPC is solved using numerical optimization
techniques, such as nonlinear programming or quadratic programming (QP) (in this paper, QP has
been used), to solve the optimization problem. The solution to the optimization problem over the
prediction horizon provides the optimal control signal. At each time step, the first component of the
optimal control signal is applied to the system, and the process is repeated with updated state and
prediction horizon values. S-MPC necessitates the solution of an optimization problem at each time
step, which can be computationally expensive for large systems.

The training process for AR-LSTM involves back-propagation through time (BPTT), a variation of
the back-propagation algorithm that considers temporal dependencies in the data. The RNN is unrolled
throughout the training for a predetermined number of time steps, and gradients are calculated at each
step. The RNN’s weights are then updated based on the gradients accumulated across all time steps.
The most prevalent optimization algorithm for training RNNs is gradient descent, which involves
updating the weights iteratively in the direction of the loss function’s negative gradient [61]. However,
the standard gradient descent algorithm is susceptible to issues such as vanishing gradients, in which
the gradients become extremely small and the weights do not update. Several variants of gradient
descent, such as the adaptive gradient descent algorithms AdaGrad, RMSProp, and Adam, have been
developed to address this issue [63].

2.3. Peak Performance

In S-MPC, the quality of the optimization solution depends on the controller model’s precision,
which is frequently simplified for computational purposes. Stability and practicability are intrinsically
assured for S-MPC, whereas there is only an immature theory for these issues in AR-LSTM [64]. The
absence of safety guarantees in AR-LSTM results from the constraints not being imposed directly in
the formulation of the solution method. The optimality of the SSMPC solution depends on the accuracy
of the model used to predict the system’s behaviour and the optimization algorithm’s ability to find
the optimization problem’s global optimum. If the model is inaccurate or the optimization algorithm
fails to find the global optimum, the performance of the S-MPC controller may not be optimal.

The optimality of AR-LSTM relies on several factors, including the network’s architecture, the
training optimization algorithm, and the complexity of the task being performed. AR-LSTM is capable
of achieving high levels of performance on a wide variety of sequential data processing tasks, such
as language modelling, machine translation, and speech recognition. AR-LSTM is able to model
complex temporal dependencies in sequential data, which is one of its main advantages. The ability of
AR-LSTM to incorporate feedback loops enables them to capture long-term dependencies that would
be challenging to represent using other models, such as Gated Recurrent Unit (GRU). In addition,
the ability to incorporate memory into the network via mechanisms improves the performance of
RNNSs on tasks requiring long-term memory. Nonetheless, several factors can restrict the optimality
of AR-LSTM. One difficulty is the issue of vanishing and exploding gradients, which can hinder the
network’s ability to discover long-term dependencies. This issue can be mitigated by employing
specialized units, such as LSTM and GRU, and optimization algorithms designed to deal with these
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issues. Another issue is over-fitting, which can occur when the model becomes excessively complex
and begins to fit the noise in the data rather than the underlying patterns. This can be remedied by
employing regularisation techniques such as early stopping and dropout [65].

2.4. Calculational effort

S-MPC can require significant computational effort, especially for large-scale systems. S-MPC
necessitates the solution of an optimization problem at each time step, which can be computationally
costly. Moreover, a significant disadvantage of S-MPC is the need to solve an optimization problem
online, which can be complex and involve many optimization variables. Consequently, controller
models for S-MPC are commonly simplified at the expense of optimality, and gains in optimization
solver efficiency are highly desired. Moreover, switching logic and prediction must be performed at
each control step. Nonetheless, several techniques have been developed to reduce the computational
effort required for SSMPC, such as online optimization and ML techniques that update the optimization
problem as the system evolves.

The computational effort required for training and utilizing AR-LSTM can be substantial,
especially for large-scale problems with many time steps and/or parameters. BPTT is the primary
computational bottleneck because it is required to compute the gradients of the loss function with
respect to the network parameters. Considering that the computational complexity of BPTT scales
linearly with the number of time steps, training AR-LSTM on lengthy sequences can be computationally
expensive. In addition, the number of network parameters can contribute to computational complexity,
as larger networks require more computation to update weights during training and make predictions
during inference. Several techniques have been developed to mitigate these computational challenges,
including mini-batch training, which involves updating the weights based on a subset of the training
data at each iteration, and gradient clipping, which involves capping the magnitude of gradients to
prevent gradients from exploding during training [61].

3. Switched Auto-regressive Neural Control (S-ANC)

This section introduces the specifics of the novel S-SANC algorithm proposed. The objective is
to learn from the architecture of RNN-LSTM while satisfying constraints. Switching logic, dynamic
optimization, and learning are elements from the control and ML communities that are effectively
combined to achieve this objective. First, Section 3.1 introduces the hybrid MG structure. Section 3.2
provides an overview of how S-MPC and AR-LSTM are merged logically. Then, Section 3.3 describes
the S-ANC algorithm formally.

3.1. Hybrid MG description

This is a case study of a system constructed in Xanthi, Greece [66]. As depicted in Figure 3, the
hybrid MG is comprised of a 15 kW PV array, a battery (BAT), a water tank (WT), and a fuel tank (FT)
serving as energy storage systems (ESSs), an electrolyzer (EL), and a fuel cell (FC), as well as the utility
grid (GR). The PV can be utilized on the hybrid MG as the primary energy source. If the PV cannot
provide sufficient power, the BAT or the FC will meet the load. The GR will provide energy if the
battery is depleted and no hydrogen is available. Alternatively, when the BAT is full and there is an
excess, the EL will be utilized if there is space in the WT and the FT. The energy will then be sent to the
GR.
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Figure 3. Hybrid MG Structure.

3.2. Simple definition of the proposed method

To comprehend the intuition underlying S-ANC, one must first comprehend the distinctions
between MPC and S-MPC to solve the QP and the two main learning methods of RNN: AR and LSTM.
The S-MPC controller must be capable of selecting the appropriate model and control strategy based
on the system’s current state, which necessitates additional computational resources and algorithmic
complexity. In this paper, for instance, the system dynamics change significantly as the state of each
accumulator in the hybrid MG changes; consequently, S-MPC can use different models for various
states. This requires creating and validating multiple models, and the S-MPC controller must be able
to switch between these models based on the current state.

The construction of S-MPC is challenging and intricate, particularly for the hybrid MG, which
must accommodate many operating modes and complex switching conditions. The complexity is
caused by a number of factors, including:

* Model development: The S-MPC necessitates the creation of multiple models that represent the
system’s behavior in different operating modes. This requires an efficient system architecture
and behavior.

¢ Mode detection: The S-MPC controller must be able to detect the current mode of operation of
the system, which can be difficult in certain circumstances.

¢ Switching logic: The S-MPC controller must select the appropriate model and control strategy
based on the current operating mode and desired performance objectives. This necessitates the
design of switching logic that maps the system’s current state to the appropriate model and
control strategy (a mode’s objective function and an operational mode’s objective function may
differ).

The S-MPC solution method takes information from the hybrid MG, such as PV and load data
and accumulator parameters, including their charging and discharging efficiencies. Then, the input u,
state x, and output vectors y are defined. Based on the controller model, the objective function J is
inferred at each control step using this method. After that, the state vector is converted to AR model
X (k) in order to predict the value at the subsequent time step. It is a straightforward concept that can
produce accurate forecasts for various time series problems. Nevertheless, the AR model needs the
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plant model and a prediction horizon, so the computational time of the model is still high. Therefore,
the current state x, input #, and output vectors y are updated through the AR-LSTM method.

5-ANC employs time series values-based AR-LSTM to estimate the value of being in a particular
output vector 7, as determined by S-MPC, with a prediction horizon of only one control step. By doing
that, in S-ANC, the S-MPC method is truncated with the predicted output vector i and optimized
of the hybrid MG system during k steps ahead by employing the AR-LSTM method. Consequently,
the principal components of the S-MPC, namely the reference, predictor, and switching logic, remain
active in S-ANC; however, the time series value function is utilized to shorten the nonlinear program
and enable learning. The interaction of S~ANC’s primary components is depicted in a diagram in
Figure 4. The merging of SSMPC and AR-LSTM in the S-ANC algorithm is intuitively depicted in
Figure 4.

S-ANC

Auto-regressive
S-MPC + + X(k)
RNN-LSTM U(k) Plant/Auto-
regressive model

Ny N 9 R(K) [k+1 ]

k [
Reference | | Predictor I Y@ k

Switching
logic

Figure 4. Block diagram showing the introduction of S-ANC.

3.3. Formal definition

Initially, the system state, control, and output vectors are defined for the hybrid MG system in the
S-MPC:
The system-state vector of the MG is as follows:

x(k) = [SOAcc! (k)] @)

where! € {BAT,FT,WT}. SOAccBAT (k), SOAcctT (k), and SOAcc™T (k) are the state of accumulators
for the battery, hydrogen tank, and water tank, respectively.
The system-control (input) vector of the MG is defined as follows:

u(k) = [P3(k); Py(k); ... Py (k)] 8)
The system-output vector of the MG is defined as follows:
y(k) = [Py (k); P2 (k)] ©)
Consider the discrete-time linear state-space system:
X(k+1) = Ayx(k) + Byu(k) (10)

where k = 0,1,2, ..., Np — 1 symbolizes the discrete-time instant.
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By defining the following matrices:
I [0 0 e 0]
A B 0 - 0
A= | A% |B,=| 4B B ... (11)
: : : .0
ANr; | ANP—1B ANe—2B ... B|
where
[0 0 0 i
0 0 0
Heh 0 0
1 0 0 _Wdis 0 O
0 Neh/Hy 0
0 —Wais/H, 0
0 0 HehrHyO
L 0 0 —1dis/Hy0]

The linear state-space equation can be stated depending on the battery, fuel tank, and water tank
equations as follows [67]:

Pl (k) =Pl (k)

SOAcc! (k+1) = SOAcc! (k) + 2=t G (13)

where j is energy flows, so j € {Power, Hydrogen, Water}. a — b represents energy flows between
accumulators and converters; for example, P, is the power from the PV to the battery.

Define the constraints for the hybrid MG: Energy flows from the PV, GR, BAT, FT, EL, FC, and WT
are positive and subject to their maximum values.

0 < Py(k) = Pp(k) — ya(k) < P} (14)
0<Pj(k) <Py

where PZZ v (m=1,2,...,11) imply the maximum values of energy/matter flows.
The sum of PV energy supplied directly for the load (P;(k)) and the battery for the charging
(P4(k)) should be smaller than the energy flow from the PV array, (Ppy (k)).

Py(k) + Py4(k) < Ppy (k) (15)

The SOAcc! is restricted between their minimum and maximum values [11].

i jmax

SOAcc™" < SOAcc! < SOAce (16)

Define the reference matrix (R) for the hybrid MG system:

R(k) = [wxx(Prp(k); Ppy (k);0);...; Prp(k+ Np — 1); Ppy (k+ Np — 1);0)] (17)
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Design and control the multiple models (converting MPC to S-MPC) depending on several
parameters as follows:

lmax

if P, <0; SOAcc' >SOAcc™" and SOAcc' < SOAcc (18)

if P/ >0, SOAcc' >SOAc™ and SOAcc! < SOAcc™" (19)

a

wherei=1,2,... 11.
Regarding the AR-LSTM formulation, if Equation (2) and Equation (4) are merged, the new state
vector will be:

X(k) = c+ @(1)tanx Wyxx(k — 1) + Wyxu(k)) + ¢(2)tanx(Wyxx(k — 2)

+Wyu(k — 1)) + - - - + @(q)tanx(Wyxx(k — Np) + Wyyu(k — Np + 1)) + e(k) @0)

The objective function of the hybrid MG system through the S-ANC (the combination Equation (1)
and Equation (6)):

Np Np
J(k) = 3 Wax (k) (R(k) +X(k))? + ) Wax (k) Au (k)
k=0 k=0

N N 1)
+ k;) Wyy (k)y (k)* + p* + l;()ﬁ(k),y(k)
= F(X(k), y(k), u(k), j(k),R(k), p) )

0< (k), 9(k), R(k), p)

A\
ay
—
X
—
=
—
=
=
=

The main advantage of employing the formulation presented by Equation (21) and Equation (22) is
that it imposes short-term safety constraints while allowing for continuous empirical experience-based
learning. In addition, reducing the prediction horizon of the dynamic optimization problem
significantly simplifies the resulting nonlinear program. Notably, both optimization functions from
Equation (21) must be jointly merged, such that state X must be related to the expected optimization
variables in k + 1. This results in less overhead than optimizing with longer prediction horizons that
must be discretized over time.

Notably, domain knowledge is encoded in controller model F for optimization and control vectors,
providing the algorithm with understandability. Then, the constraints are implied for the hybrid MG
system. The next step is to the conversion traditional MPC into S-MPC automatically. The last steps
in the S-MPC are to solve the cost function and obtain "optimal decision variables", as shown in
Algorithm 1. After that, the hybrid AR-LSTM method is initiated by configuring the controller model
F. The current state X is found using Equation (20) before training the "optimal control decisions".
Finally, the control variable U and i/ are solved by utilizing updated reference R and Equations (21)
and (22).
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Algorithm 1: Switched Auto-regressive Neural Control (S-ANC)
Identify: F(x(k),r(k), u(k),y(k),p) =0
mply: H(x(k), r(K), u(k), y(k), p) = 0
Switching logic: Conversion MPC into S-MPC
Solve: Objective function for S-MPC using Eq. (1)
Obtain: "Optimal decision variables"
Configure: F(X(k),y(k),u(k),7(k),R(k),p) =0
while true do

X(k) < current state using Eq. (13) - AR-LSTM

Pretrain "optimal decision variables" using F

U(k) < control (input) variable

R(k) « estimate from measurements

7(k) < Solve Egs. (14-15)

R(k+1),U(k+1) < Apply (k) to F

end

To begin, design a model of the MG system. The system reads some MG specifications, such as
PV and load data, accumulator data, and maximum values of power flows among the components
of hybrid MG. Following that, the MPC controller is implemented, which will state the optimization
problem and solve it at each time step to obtain the optimal control inputs for the next time step.
However, the MPC is converted into the S-MPC before it is applied. The optimization problem should
consider the objectives and constraints in the paper’s methodology section. Implement an AR-LSTM
model and train it on past data to increase the accuracy of the predictive model utilized by the S-MPC
controller. Based on present and previous system conditions, the AR-LSTM should be able to anticipate
future MG behaviour. The prediction should be input for the S-MPC controller’s optimization problem.
Finally, as indicated in the methodology section of this paper, the S-S MPC and AR-LSTM controllers in
a closed-loop control system are combined. The proposed method can test the control strategy under
various operating situations and evaluate its performance using the provided performance criteria
(cost functions).

More specifically, to implement our proposed method into operation, initially, model the MG
system and the S-MPC and AR-LSTM controllers and then combine these models into a closed-loop
control system. Here are some detailed steps that need to be taken, as illustrated in Figure 5:

¢ Initiate the system specifications and operational conditions from the MG operator.

® Solve the systematic generation of the control problem employing the MPC with the QP.

¢ Using switching logic, convert the MPC into the S-MPC automatically.

¢ The optimal control decisions are obtained.

¢ The optimal control decisions are employed as input data for the AR method.

* The data preparation is initiated. The step has several parameters, such as data cleaning,
extracting features, and merging the input data and PV constraints.

e The AR model is implemented to increase the accuracy of our proposed method.

e After that, the multivariate time series are employed.

¢ Then, the train and test data are selected and evaluated.

¢ To move the LSTM layer after the RNN, a sequential network of an input LSTM layer is produced.

¢ In this step (implementation of LSTM), several parameters are defined, including batch size,
epoch number, and type of optimizer.

* Before moving the calculation to the model accuracy, the scaling for the forecast and actual data
are inverted.

¢ The model accuracy is calculated using some methods, along with mean directional accuracy, R?
method, and so on.
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¢ Integrate the S-MPC and AR-LSTM controllers into a closed-loop control system by connecting
the RNN output to the MPC controller’s input and the MPC controller’s output to the MG
system’s input.

* Then, the optimal control decisions and references are updated. In other words, X, U, and R are

re-evaluated depending on the model accuracy.
¢ If this accuracy is unreasonable, the S-MPC is re-applied with the updated control decisions.

Read system specifications and operational conditions from MG operator

Some parameters are defined,
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Figure 5. Flow chart of the proposed method.
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4. Results and Discussions

4.1. Case 1: The implementation of S-MPC

The non-optimal and optimal control (S-MPC) are compared for 96 hours (four days) in this case.
In other words, in case 1, the emphasis is on the optimization of S-MPC and its effect on the power
flows of the system (Figure 6a) and SOC of the battery (Figure 6b). Non-control methods employ
simplistic control strategies or heuristic rules, disregarding the system’s dynamic nature. In addition,
they do not have any constraints, so there are disadvantages associated with this strategy, such as poor
SOC management, potential deviations from desired SOC levels, and inability to adapt to changing
system conditions. As shown in Figure 6b, the SOC of the battery goes below the critical value (20%)
since the non-optimal method has no constraints. In contrast, the S-MPC method is an alternative to
the non-optimal control method. S-MPC’s ability to dynamically select the appropriate model and
control strategy based on the system’s current state is one of its key advantages. S-MPC optimizes
control actions to achieve desired performance objectives, particularly in effectively managing the SOC

of the battery.
3.57 Exported Power (Before) 1007
Exported Power (After)
3t Imported Power (Before) Non-optimal SOC wesesseeess maximum of SOC
Imported Power (After) 80 Optimal SOC  wreeesseems inimum of SOC
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(a) (b)
Figure 6. The comparison of (a) power flows and (b) SOC of the battery using optimal method (S-MPC)
and non-optimal method.

The S-MPC controller has been designed to select the optimal model and control strategy based on
the current operating mode and performance objectives. S-MPC enables enhanced power flow control
and EM by effectively adapting to the changing dynamics of the hybrid MG, utilizing distinct models
for each state. Case 1’s implementation of the S-MPC controller successfully optimizes the hybrid
MG system’s power flows. It substantially reduces energy imports and increases energy exports,
resulting in more efficient use of resources and enhanced energy flow management. The improved
control strategy enables MG to operate closer to its optimal performance, enhancing its dependability
and reducing operational costs. However, it is important to note that developing and implementing
the S-MPC controller for the hybrid MG system presented obstacles due to the complex switching
conditions and multiple operating modes. To guarantee the selection of the optimal model and control
strategy, the switching logic had to be meticulously designed. The controller’s increased complexity
required more computational resources than traditional MPC methods. The model’s computational
time is almost 405 seconds.

4.2. Case 2: The implementation of the merged S-MPC and AR

Case 2 investigates the integration of the AR model with S-MPC. The AR models accurately
predict future time steps by capturing the time series behaviour of the system. Various analyses,
including variations, cross-validation (CV) iteration-Time Series Behaviour for training and validation,
CV iteration-Training data on each CV iteration, and Predictions ordered by test prediction number,
are used to evaluate the performance of the AR models.
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Figure 7a that visualization is designed to provide insight into the behaviour of the lagged target
feature over time. We can identify patterns, trends, or correlations within the lagged target data by
examining the plot. Understanding the characteristics of the lagged target can aid in developing and
optimizing an AR linear regression model that uses this characteristic for prediction. By displaying
the lagging feature of the target, we can observe its values across multiple time steps. This lets us
determine whether the lagged target exhibits specific patterns, trends, or variations over time.
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Figure 7. The visualization of (a) the behaviour of the lagged target feature over time, (b) the
adaptability of the AR models to various patterns and tendencies

As illustrated in Figure 7b, variations in AR models illustrate their capacity to capture and model
the system’s complex dynamics. By analyzing the CV iteration-Time Series Behaviour, the adaptability
of the AR models to various patterns and tendencies in the training and validation data sets is assessed.
This analysis sheds light on how models learn and generalize from available data, enabling accurate
predictions for various time series problems.

Case 2’s successful integration of AR models with S-MPC illustrates the importance of
incorporating time series behaviour and forecasting capabilities into the control system. Combining
S-MPC and AR models permits enhanced adaptation to system dynamics and improves prediction
accuracy, thereby enhancing the MG’s overall control performance.

4.3. Case 3: The implementation of the S-ANC

Case 3 examines the combination of S-MPC and AR-LSTM models. Integrating these advanced
models aims to enhance the predictive capabilities of the control system. The S-ANC predicts
the last month of the year using the first eleven months as training data. Using metrics such as
train-test (Figure 8a) and grid consumption prediction with AR regression and S-ANC (Figure 8b), the
performance of this merged approach is evaluated. This integration (5-MPC and AR-LSTM) increases
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the precision of forecasting and the precision of power flow optimization. The enhanced prediction
capabilities of AR-LSTM models allow the control system to anticipate future energy requirements
and adjust the operation of the MG accordingly. In Case 3, the S-MPC controller was improved by
combining it with AR and RNN-LSTM models. The integration aimed to improve the precision of
predictions and the overall performance of the control system. Two primary figures were generated
for analysis: a comparison between the train and the test and a prediction of grid consumption using
AR regression and S-ANC.
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Figure 8. The illustration of (a) train-test data and (b) prediction of grid consumption using AR
regression and S-ANC.

The train-test comparison diagram visually represents the AR-LSTM models’ capacity to
generalize effectively to unobserved data. It compares the predicted grid consumption values during
the testing phase with the actual values, indicating the AR-LSTM models’ ability to capture the hybrid
MG'’s complex patterns and dynamics (Figure 8b). The diagram depicted the performance of the
combined S-MPC, AR, and RNN-LSTM models on the training and testing data sets (Figure 8a).
According to our simulation, the model can generalize well to new data and the integration strategy’s
effectiveness. Moreover, the prediction of grid consumption using AR regression and S-ANC illustrates
the ability of the combined method to optimize power flows while accurately predicting future power
demands. By leveraging the predictive capabilities of AR-LSTM models within the S-MPC framework,
the control system can more precisely estimate grid consumption, allowing for more effective EM and
enhancing the MG’s adaptability to load demands and renewable energy generation fluctuations. The
grid consumption forecast graph (Figure 8b) depicted projections generated by the AR and S-ANC
models. It enabled a comparison of the two methods and highlighted the advantages of the S-ANC
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method, which employs the AR-LSTM model for accurate predictions while reducing computational
time. The computational time of the model was reduced by nearly 214 seconds.

4.4. Calculation of model accuracy

To comprehensively evaluate the performance of the S-SANC prediction model, three unified
evaluation indices, including R-squared Score, mean absolute error (MAE), and mean square error
(MSE) [68,69], are selected in the paper. Each evaluation index has the following mathematical
definition:

R-squared Score:

n PRY
R2 =1— ln:1 (yl y_l)z (23)
i1(vi—7)
Mean Absolute Error: , .
MAE — Yilq |‘;/li_yi| (24)
Mean Squared Error:
(i —9:)?
MSE = =122 —= (25)

where y; is the output vector using the S-MPC; fj; represents the predicted value of the output vector by
employing the S-ANC; j represents the average value of output vector; n represents the total number
of samples.

In this study, we assessed the performance of our predictive model using various metrics of
accuracy. The R-squared error, which measures the proportion of the variance in the dependent
variable that can be predicted from the independent variables, was 0.951. This suggests that our model
can account for approximately 95.1% of the data’s variance, indicating a strong predictive ability. In
addition, we determined that the MAE was 0.571. The MAE is the mean absolute difference between
observed (from the MPC) and predicted values. A smaller MAE indicates that the predicted and
observed values correspond more closely. In our case, the relatively low MAE indicates that our
model’s predictions deviate from the true values, on average, by approximately 0.571%. Likewise, we
determined the MSE to be 0.571. The MSE measures the average squared deviation between predicted
and observed values. Similar to the MAE, a lower MSE indicates greater precision. The MSE value of
our model indicates that the squared differences between the predicted and observed values are, on
average, 0.571 units. Overall, the results show that our predictive model is effective. The relatively low
MAE and MSE values of 0.571 indicate precise predictions with minimal deviations from the actual
values.

5. Conclusions

Our findings show the efficacy and advantages of the S-SANC method for the intelligent control
and management of hybrid MGs. The optimization of S-MPC improves energy management and
power flow control, resulting in more efficient use of resources. The integration of AR and RNN-LSTM
models improves the accuracy of predictions, allowing the control system to adapt to dynamic
system conditions and optimize the operation of the MG. The successful implementation of S-ANC
significantly affects the dependability, sustainability, and cost-effectiveness of hybrid MG systems.
We can achieve efficient control and management of complex energy systems by leveraging the
capabilities of advanced modelling techniques within the S-MPC framework. These findings support
the incorporation of hybrid MGs into future energy systems and contribute to developing intelligent
control strategies. By combining the AR-LSTM, the computational time of the model was reduced
by approximately 47.2%. In addition, this study assessed the accuracy of our predictive model. The
R-squared error, which quantifies the amount of variance in the dependent variable that can be
predicted from the independent variables, was 0.951. Our model predicts 95.1% of the variance in
the data, indicating a high level of predictive ability. The MAE and MSE values of 0.571 indicate
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precise forecasts with minimal deviations from actual values. The focus of future research and
development should be validating larger-scale systems and incorporating additional advanced models.
These developments will enhance the performance and applicability of the SSANC methodology and
contribute to the efficient operation and integration of hybrid MGs in future energy systems.
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Abbreviations

Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial Neural Network

AR Auto-regressive

AR-LSTM  Auto-regressive Long Short-Term Memory
ARIMA Auto-regressive Integrated Moving Average
ARMA Auto-regressive Moving Average

BAT Battery

BPTT Back-Propagation Through Time
CNN Convolutional Neural Network

Ccv Cross-validation

DLC Direct Load Control

EL Electrolyzer

EM Energy Management

ESS Energy Storage System

FC Fuel Cell

FT Fuel Tank

GHI Global Horizontal Irradiance

GR Grid

GRU Gated Recurrent Unit

IoT Internet of Things

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MG Microgrid

MSE Mean Squared Error

MILP Mixed Integer Linear Programming
ML Machine Learning

MPC Model Predictive Control

NARX Nonlinear Auto-regressive with exogenous input
NMG Networked Microgrid

PAR Peak-to-average Ratio

RNN Recurrent Neural Network

RES Renewable Energy Source

S-ANC Switched Auto-regressive Neural Control

S-MPC Switched Model Predictive Control
SVM Support Vector Machine
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Qpr Quadratic Programming

WT Water Tank

1 éh Charging efficiency of accumulator [

7 ii s Discharging efficiency of accumulator [
F controller model

H constraint

J objective function

pyax Maximum values of power flows, 5 kW
PV Photovoltaic

PVgg or P; Power flow from PV to grid

PVipor P, Power flow from PV to load

GRyp or P; Power flow from grid to load

PVgaror Py Power flow from PV to battery

BATip or Ps  Power flow from battery to load

FCpar or P, Power flow from fuel cell to battery
BATgp or P;  Power flow from battery to electrolyzer
ELpr or Py Hydrogen flow from electrolyzer to fuel tank
FTrc or Py Hydrogen flow from fuel tank to fuel cell
FCwr or Pig  Water flow from fuel cell to water tank
WTgr or Pj; Water flow from water tank to electrolyzer

Fgﬁb(k) Flow of j from node a to node b

G Capacities of accumulator I/, [kWh]

Pi b Power of j from node a to node b

@ Auto-regressive model coefficient

Ny Prediction horizon, 24h

SOAcc! State of accumulator /

SOAcch,y Maximum value state of accumulator [
SOAccin in Minimum value state of accumulator [
e(k) error term or random noise at time k
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