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Abstract: With a high proportion of distributed photovoltaic and lower fossil energy integrated into the
distribution network, it is very difficult to ensure the reliability of power supply. The distributed photovoltaic
planning model based on big data is proposed. According to the impact stochastic photovoltaics and loads on
reliability planning, the static and dynamic capacity-load ratios are proposed. The big data analysis model of
distributed photovoltaic planning is established. The big data multi-scenario generation and reduction
algorithm of stochastic distributed photovoltaic and load planning is studied, and a source-load big data
scenario matching model is proposed. According to the source load big data scenario, the dynamic capacity-
load ratio of the distribution network is obtained. The static capacity-load ratio calculation method in
distribution network planning is studied to ensure the reliability of power supply. Finally, the IEEE 33-bus
system is used as an example. The results show that distributed photovoltaic planning based on big data and
multi-scenario methods can improve photovoltaic utilization and power supply reliability.

Keywords: distributed photovoltaic; big data; planning; reliability; multi-scenario

0. Introduction

With the development of carbon neutrality, various types of renewable new energy have grown
rapidly, and the proportion of clean energy in the power grid has continued to increase. The
renewable energy installed capacity has accounted for 47.3% of the total installed power generation
capacity in China. In 2022, photovoltaic installed capacity continues to maintain rapid growth, and
reaches 59.3% in new installed capacity, where distributed photovoltaics accounted for 58.5% of
newly installed capacity. In 2024, distributed photovoltaics will account for nearly half of the global
photovoltaic market. However, it is very difficult to consume distributed photovoltaic, for the
existing power grid structure, power supply types, and market mechanisms. Distributed
photovoltaic power generation is growing rapidly and costs are declining, blindness in the
development of new energy will inevitably lead to waste and other problems without a scientific
plan. It needs to be carried out at the source of planning to ensure the sustainability develop of
distributed photovoltaic.

At present, there has been some research on the problems of photovoltaic power generation
integration into the distribution network. Aiming at the problem of the gradual increase in the
penetration rate of photovoltaic power generation in the distribution network, the comprehensive
coordination and optimization configuration method of photovoltaic power generation and the
capacitors is studied which provides active and reactive power in the distribution network. The
planning principle of merit and demerit under the circumstances!?l. The opportunity constrained
programming model for the limit capacity calculation of grid-connected photovoltaic power stations
is studied, and solar radiation stochastic time series models and photovoltaic system models with
different tracking forms are introduced by maximizing the capacity of grid-connected photovoltaic
power stations as the planning goal*5. The allowable access capacity range of distributed
photovoltaic power that meets voltage requirements under the same distribution of load and
distributed photovoltaic power capacity along the feeder is studied’®sl. A large number of
photovoltaic connections are also studied. Post-entry permeability issues. A method for optimizing
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the capacity allocation of photovoltaic power swap stations is proposed considering the cascade
utilization of power batteries®. A comprehensive microgrid planning method that considers the
efficient utilization of photovoltaics under complex envisioned scenarios is presented, which studied
the dynamic planning of multiple distributed energy sources connected to the power grid based on
Monte Carlo simulation methods, and the dynamic planning of multiple distributed energy sources
taking into account distributed Multi-stage planning for energy access!'0-131.

The above literature has some research on the determination and analysis methods of
photovoltaic access capacity, but there is still little focus on the issue of reliable power supply after
high proportion of distributed photovoltaic integration into distribution network. Small-scale
distributed photovoltaics are connected to the distribution network and are generally consumed
locally. The random fluctuations faced by the distribution network are more complex due to dually
random of the distribution network terminal load and power source, and the fuzzy boundaries.
According to these characteristics, the new planning method needs to consider the coordination of
the source-network-load in a wide range, especially the interaction between the source and the load.

The idea of "big data + distributed photovoltaic planning" is proposed in this paper, which can
overcome the double-blind situation between source and load in traditional planning based on big
data interact between source and load. The planning framework for distributed photovoltaic
integration into the power grid based on big data is built and its advantages are studied. An analysis
model for distributed photovoltaic planning based on big data mode is established and its
probabilistic nature is analyzed. The big data multi-scene algorithm of source and load is studied,
and the scene matching between source and load is discussed. Finally, simulation calculations are
performed to verify the feasibility and effectiveness of proposed method.

1. Big Data+Planning

1.1. Planning architecture based on big data

Conventional power grid planning is a deterministic plan, in which the capacity-load ratio is
deterministic between the power supply and the load capacity. There is no information interaction
between the power supply and the load. This kind of planning is relatively conservative, so the
capacity-load ratio is very big in distribution network with the high proportion of distributed
photovoltaic. Big data technology has been widely used in power systems. In the planning stage, big
data of distributed photovoltaics and loads can be obtained, which can achieve accurate matching
relation and interactive sensing between power source and load.

"Big data + distribution network planning" is not simply adding various types of energy and
loads to the power grid, but deeply integrating the Internet into power grid planning based on big
data technology and Internet platforms. Big data can optimize the configuration of distributed
photovoltaics in the distribution network. Deeply integrating big data methods into distribution
network planning may form a broad new planning platform.

Based on big data means, a large amount of source and load data can be obtained, which get the
accurate spatiotemporal distribution and mutual relationships of source and load by interactively
sensing. On the planning platform, the prior experience of power generation and user electricity
consumption may be realized. According to the spatial and temporal distribution of photovoltaics
and loads, the corresponding relationship between sources and loads, and the appropriate capacity-
load ratio can be obtained, which can ensure the reliability of power supply. With the high proportion
of distributed photovoltaic integrating into power grid, some new loads such as electric vehicles are
also growing rapidly, which brings the randomness of source and loads in the distribution network.
How to deal with this randomness, traditional deterministic planning methods may lead to waste of
new energy or imbalance of power grid. Based on the big data interaction of source and load on the
Internet planning platform, the source determines the load, and the load determines the source. The
interaction between source and load can realize an intuitive and specific planning model.
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1.2. Source-network-load big data correlation

In view of the randomness of source and load, the online dynamic interactive experience of
source and load data is realized and mutual perception is achieved. Based on reciprocal interaction
between source and load, the spatiotemporal distribution of load can be viewed from the perspective
of the power supply, or the spatiotemporal distribution of the power supply can also be viewed from
the load perspective. The dynamic capacity-load ratio can be determine during operation. In order to
improve photovoltaic utilization, controllable loads such as electric vehicles have good flexibility in
time and space. The spatiotemporal translation of the load can be obtained through big data analysis,
which can better realize the dynamic connection of source and load in the planning stage.

Based on the big data planning platform, prior experience of source-load interaction can be
achieved. This planning model is derived from actual source-load big data, which may guide power
grid planning and obtain more practice results. It can overcome the limitations of previous statistical
experience-based and theoretical planning, such as passivity, blindness and disorder, and can achieve
sustainable dynamic planning. Big data planning can achieve the following advantages.

1)Accuracy, various massive data from the Internet across regions, borders, and industries are
made full use, the characteristics of photovoltaics and user are explored, and these promote source-
load complementarity.

2)Interactivity, the big data model realizes deep interaction between sources and loads during
planning, and source-load simulation operation, which can avoid the blindness of energy planning
due to information asymmetry.

3)Orderliness, the power generation and consumption behavior is intuitively evaluated by the
source and load interaction. In a certain area, the source is determined by the load, and the load is
determined by the source. These achieve orderliness in distributed photovoltaic planning.

4)Economical, through source-load interaction, the operation distribution information of source-
load can be obtained in time, and the precise correspondence relation between source-load capacity
can be determined with less waste and more high power supply reliability.

2. Analytical models for big data planning

The Materials and Methods should be described with sufficient details to allow others to
replicate and build on the published results. Please note that the publication of your manuscript
implicates that you must make all materials, data, computer code, and protocols associated with the
publication available to readers. Please disclose at the submission stage any restrictions on the
availability of materials or information. New methods and protocols should be described in detail
while well-established methods can be briefly described and appropriately cited.

Based on the existing distribution network, random big data of multi-point distributed
photovoltaic access is obtained, and big data of flexible controllable loads are mined, which form a
"big data + photovoltaic + controllable load + distribution network" planning model. The goal of
distributed photovoltaic planning is to maximize utilization while ensuring reliable power supply.
The objective function is as follows:

maxZ:‘PSOJ. (i=12,---n) (1)

where PSO,i is the capacity value of each photovoltaic access point, and n is the number of access
points.
In the distribution network the power flow constraints need to be met:

F(X,Y)=0 @)

where X is the variable in the existing distribution network, Y=(P,V) is the photovoltaic and
controllable load power and voltage variables connected to the distribution network, photovoltaic

power and load power P=Fso1:Fs020 Fon P broseeo i) .
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where P, is the total available photovoltaic capacity of the n initial access points, and P is the
total capacity of m controllable loads.

n
0 _ 0
RSO - Z PSO,i
i=1

m
0 _ 0
B'=2F),
J=l

In addition, due to their natural characteristics, photovoltaic output and load also need to meet
the upper and lower bound inequality constraints:

{a?f: <Py, <P .

min max
P <P, <P

The planning goal is to maximize the use of photovoltaics in the long term. Since photovoltaic
output is uncontrollable, some loads are controllable. The load can be controlled according to the
photovoltaic change curve to be consistent with the photovoltaic changes, that is, maximizing the use
of photovoltaics. In the short term, large differences between PV and load may occur, which can be
balanced by energy storage or other power sources.

The ratio of photovoltaic dynamic power generation capacity to controllable load dynamic
capacity is called dynamic capacity-load ratio Kp:

> P, (0)
Kp=t 4)

X2,

According to the random changes of photovoltaic and load, the dynamic capacity-to-load ratio
is optimized. The photovoltaic planning capacity is determined according to the practical situation
of the distribution network and planning supporting measures. The static capacity-to-load ratio
during planning can be obtained Kis:

2 Po,
KS =a= (5)
P

>J

NGB

1

~.
Il

(1) Probabilistic analysis of photovoltaic output
The light intensity changes randomly, and its output power also fluctuates randomly. According
to statistics, the light intensity within a certain period of time shows a Beta distribution[17], and its
probability density is as follows:
Io+p)  E

a-lc1__ E p-1
T()T(B) (Emax) 4 E ) ©)

max

f(E)=

where I'is the Gamma function, E and Emax are the actual light intensity and maximum value
during this period, a and p are the shape parameters of the Beta distribution.
The corresponding probability density function of photovoltaic output power is as follows:

_ F(OH',H) Pso a-1¢1 PSO p-1
f(PSO) - F(a)r(ﬁ) (R90,max ) (1 })SO,max ) (7)

(2) Probabilistic analysis of controllable loads
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In order to make full use of randomly fluctuating photovoltaic power generation, controllable
flexible loads are required. Distributed photovoltaics mainly come from homes or buildings.
Controllable loads PCL include electric vehicles PEV, home loads Phome, and other loads PLO.

PCL = PEV + Phome +PLO (8)

Electric vehicles are mobile energy storage devices that can be used as loads for charging or
power sources for discharging. The proportions of these three types of loads are as follows:

_ Lo

k., = ©)
PCL

kh — home (10)

P
ky=-% an

CL

Conventional load fluctuations have certain regularity and can be simulated by existing
probability distributions. The random changing characteristics of controllable loads, especially the
random spatio-temporal changes of electric vehicles, are difficult to simulate with an analytical
probability distribution, where article the empirical probability distribution of big data is used to
simulate.

3. Multi-scenario algorithm based on big data

This section may be divided by subheadings. It should provide a concise and precise description
of the experimental results, their interpretation, as well as the experimental conclusions that can be
drawn.

Probabilistic models of distributed photovoltaic and load stochastic fluctuations are generally
difficult to use directly. Multiple scenarios can be generated based on the probability model, and each
scenario is a possible planning solution. A large number of scenarios are generated through the
probabilistic model. However, the huge number of scenarios results in a huge amount of optimization
calculations, which need to be reduced to a few most likely scenarios, that is, "scenario reduction"1819]

The "forecast bin" to count the prediction error distribution of point predictions is applied!?’. By
sorting the predicted values from large to small, and dividing the predicted values into some
"numeric intervals", the corresponding data group [predicted value, measured value] are put into the
corresponding numerical interval according to the size of the predicted value. The length of the
numerical interval is 0.02 p.u., in 50 obtained numerical intervals in total, and all data groups within
each numerical interval are "prediction boxes". The photovoltaic power output generates scenarios
according to the probability distribution of equation (7), and the load probability generates scenarios
according to the empirical distribution probability.

3.1. Scenario generation

The 50 dynamic scenarios of photovoltaics and loads were generated according to the following
steps:

(1)By using historical data and calling the ecdf function in MATLAB statistical toolbox, the
empirical probability distribution of the 50 prediction boxes are estimated.

(2)Based on the source and load power point prediction data, the range parameter ¢ is estimated,
which is used to control the correlation strength of random variables with different ahead timesl'>16l.
The search range of parameter ¢ is [0, 400], and the scene scale of parameter estimation is 200.
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(3)By Calculating the 48th-order covariance matrix of the multivariate standard normal random
variable Z, and calling the mvnmd function of the MATLAB statistical toolbox, 50 random vector
samples obeying Z~N(uo,L) are generated.

(4) For each lead time t (t=1, 2, ... 48), determine which prediction box the power point prediction
pt of the lead time belongs to. In this way, 50 multivariate normal random vectors are transformed
into 50 dynamic scenes.

3.2. Scenario reduction

Kantorovich distancel?l can be used to measure the approximation degree between the initial
scene set So and the reduced scene set S:. For dynamic scenario problems of photovoltaics or loads,
the Kantorovich distance form is as follows:

l5,8,) = L@ Y @) - o - o] (12)
0ES, , €S,
where w represents a certain dynamic scene, p(w) is the probability of w occurring, | . | 2represents

the Euclidean norm distance.
After generating multiple source-load dynamic scenarios, Ns source and Nt load scenarios with

the highest probability are obtained through reduction, Sort by scene “(0”2 value size.

3.3. Scene matching of source-load

After scene generation and reduction, the source and load scenes can be obtained respectively.
The matching between the source and load scenes is further analyzed, which can obtain NsxNi
combination. The largest and smallest source and load scenes are taken respectively to form four
combinations: large source and large load, large source and small load, small source and large load,
and small source and small load. These form boundary scenes, which can include all NsxNw scenarios.
If the planning can meet these four boundary scenarios, all situations can be satisfied. But it can result
in conservative conclusion, which ensures power supply reliability.

Figure 1 shows the source-load scene, with 48 points in 12 hours of daylight, one point every 15
minutes. When the source-load dynamic scene interacts, the source-charge Kp at this time is
calculated for the points on the source and load scene curves at the same time. The output of
photovoltaic power generation is related to natural conditions, and its output power can reduce.
However, the load can be controlled and be shifted.

Source scenario
Load scenario

=y,
. HHW |J||||I|:

Figure 1. Scenario matching between generation and load.

The Kb at different time points in the source-load scenario has the following situations:
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(1) Kb >1, at this time, the photovoltaic power capacity is greater than the load capacity. If there
is excess photovoltaic power, the photovoltaic power may be abandoned. The power supply planning
can be appropriately reduced, or the load can be controlled to shift the subsequent electricity load to
the present.

(2)Kp<1, at this time, the photovoltaic capacity is less than the load capacity, and the photovoltaic
capacity planning can be increased, or the current electricity load can be shifted, or other power
sources and energy storage can support it.

(3)Kp=1, the photovoltaic supply capacity is equal to the load capacity, which is the most ideal
situation, but it rarely occurs in practice.

4. Planning capacity and capacity-to-load ratio calculation

The planning platform based on big data guides each source and load to actively participate.
Through scenario matching analysis, the source and load can interact each other. By optimizing their
Kp in a variety of scenarios, and the final planned Ks is determined. Through dynamic source-load
interaction scene analysis, the power supply can guide the planning of the load, and the load can also
determine the power supply planning.

On the problem of solar abandonment, it is assumed that in general, the photovoltaic capacity is
greater than the load capacity. The capacity-load ratio corresponding to the ordinates minimum
difference between the power supply and load scenario is Kpumin. If the source curve can be fully
covered by shifting the source curve up and down, then this most conservative planning capacity is

obtained.
p°
RS'O max - (13)
, K D,min
The static capacity ratio is as follows:
K I)SO,max
s PO
L
The average planning capacity is as follows:
— P
Pso ==% (14)
0 K»p
Kbis the average of Kb.
The static capacity ratio is as follows:
Pso
K= I
L
The weighted average planning capacity is as follows:
_ g 2P0
D = (15)
Po=>"
Ky

At this time the static capacity ratio is as follows:

_ Pso

K. =
S PLO

Random dynamic matching analysis of source-load scenarios can determine the planning size
of photovoltaic capacity based on the above three methods. In addition, four boundary scenarios can
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be considered to further quantify photovoltaic planning capacity and supporting measures. While
determining other supporting measures in the plan, firstly support by load shifting is considered,
secondly energy storage or other power supply support, and finally abandon light.

5. Case analysis

This section is not mandatory but can be added to the manuscript if the discussion is unusually
long or complex.

6. Patents

5.1. Case

As shown in Figure 2, the IEEE 33-node distribution network system/®!is taken as an example,
which includes 33 nodes, 32 branches and 5 tie-lines. It is assumed that the switches of 5 tie-lines are
normally open to facilitate photovoltaic power transmission. The node 0 is the power supply node,
which ensures the power supply of the base load. The rated voltage level is 12.66kV. The base annual
load of each node is expanded to 15252.78+7641.96kVA. Distributed photovoltaic power generation
is connected to nodes 2, 5, 11, 14, 20, 28, and 32. The available planning capacity of photovoltaics is
shown in Table 1.

22 23 24

Figure 2. IEEE 33-bus radial distribution system.

Table 1. Solar capacity of node (kW) .
Node 2 5 11 14 20 28 32
Capacity 400 400 500 500 400 1200 1200

Based on source-load big data interaction analysis, the survey statistics of photovoltaic and
controllable loads in a certain area is applied. The scenarios can be generated based on these data.
Since photovoltaics can only generate electricity during the day, the scenario period is 48 points in 12
hours, with one point every 15 minutes.

5.2. Simulation results

The new controllable load is join to each load node, and the proportion is 20% of the base load
capacity. The loads nodes 1, 3, 6, 7, 13, 23, 24, 28, 29, 30, and 31 include charging piles. where k=0.7,
kn=0.2,k0=0.1, k=0, kn=0.6,k0=0.4 in other nodes.

(1) Source load scene generation and reduction

For photovoltaics, 50 dynamic scenarios are generated based on the prediction data and
probability density function. After the scenarios reduction, 5 high probability scenarios are obtained,
as shown in Fig.3.

doi:10.20944/preprints202309.0922.v1
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For load, 50 dynamic scenarios are generated based on the empirical distribution probability,
and 5 high probability scenarios are obtained, as shown in Fig.4.

4500
4000
3500
3000
2500
2000
1500
1000
500

PV Power (kW)

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
Time

(a) scenario generation

4500
4000
3500
3000
2500
2000
1500

PV power (kW)

1000
500

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
Time

(b) scenario reduction

Figure 3. Photovoltaic generation scenario.
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(a) scenario generation
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3000

2500

2000

1500

1000

load power (kW)

500

0 3 6 9 121518212427 30333639424548

Time

(b) scenario reduction

Figure 4. Load scenario.

(2) Border scenes

Based on the five scenarios with higher source charge probability, four boundary scenarios are
obtained by combining them, as shown in Figure 5-8.

4500
4000
3500
3000
2500
2000
1500
1000
500
0

source-load power (kW)

0 3 6 912151821242730333639424548

Time
Figure 5. Scenario with big generation and big load.

4500
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—
3500 T —
3000
2500
2000 | ,
1500 [ /T S :
1000 | 1
500 | //

0 =/

source-load power (kW)

0 3 6 9 121518212427 30 333639424548

Time

Figure 6. Scenario with big generation and small load.
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Figure 7. Scenario with small generation and big load.
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Figure 8. Scenario with small generation and small load.
Based on the analysis of four boundary scenarios, the calculation results are shown in Table 2.

Table 2. Planning Result.

Ks Power Control (kW)
Stored
Max Min Weighted averageShifting solar abandon

energy

1 1.632 1.527 1.523 1153 0 1723

2 1.892 1.835 1.829 783 0 2437

3 0.931 0.912 0.903 1034 754 0

4 1.212 1.186 1.179 1321 452 783

1) As shown in Fig.5 and 6, in the two boundary scenarios of large source and large load and
large source and small load, the load capacity ratio is high. Through load shifting, photovoltaic power
generation can meet the power supply requirements. This is a conservative planning. However, the
amount of solar abandon is also large, which is as high as 2437kW. The capacity-load ratio can be
decreased and the planned photovoltaic capacity can be reduced. However, energy storage may be

required to meet power supply, and it can also guide the more controllable loads.
2) As shown in Fig.7 and 8, for the latter two boundary scenarios, the amount of abandoned light
is small and the capacity-load ratio is lower, but the photovoltaic capacity cannot meet the load


https://doi.org/10.20944/preprints202309.0922.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 September 2023 doi:10.20944/preprints202309.0922.v1

12

demand. When the photovoltaic power is less than the load power, the load is first shifted. Then
energy storage or other power sources may be required to support it. Based on big data analysis, it
can guide the more photovoltaics to join the planning.

3) Based on and source-load big data analysis, source-load scenarios interaction can guide the
planning sequence. For the scenarios in Fig.5 and 6, the available photovoltaic capacity in nodes 28
and 32 is relatively large. According to the node and the surrounding load, node 32 can currently
reduce the maximum planned photovoltaic capacity, followed by node 28. For nodes 32 and 28, it can
guide the more electric vehicle loads planning. For the scenarios in Fig.7 and 8, the photovoltaic
capacity is insufficient, and energy storage can be installed at 5, 11, and 28. According to the source-
load scenario interaction, the planning sequence and the scalability of current and future source-load
can be determined or guided.

4) From the overall planning economics, if the probability of high-power photovoltaic scenarios
is high, such as high light intensity time exceeding 80% in a year, planning can be carried out
according to the high-power scenario mode. For low light intensity times with a high probability,
planning can be carried out according to low-power scenarios. As for the low-probability low-power
photovoltaic scenario, it may occur for a few days in a year. At this time, it can be supported by other
power sources in the distribution network, or the load shedding, no large energy storage required.

Regarding the power supply reliability problem caused by the current rapid development of
high-proportion distributed photovoltaic power generation, a planning idea is proposed based on
big data to solve this problem from the initial planning source.

The idea of distributed photovoltaic planning based on big data is proposed, which can realize
peer-to-peer data deep interaction between source and load, and guide controllable loads to consume
photovoltaics. A planning analysis model based on big data is established, and multi-scenario
generation and reduction algorithms are studied. Based on the maximum probability scenarios
matching between source and load, the planning indicators of static and dynamic capacity-load ratio
are proposed. Based on the source-load scenario matching analysis, the load shifting capacity,
required energy storage capacity and solar abandonment capacity are obtained, and the load is
determined by the source vice versa. the orderliness of distributed photovoltaic planning is guided,
and the power supply reliability is improved. In the future work, the coordination of photovoltaic
planning capacity, energy storage, and other power sources will be further studied.
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