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Abstract: The Opuntia ficus-indica (OFI) prickly pear peel, is a residue product and was used as a substrate in 
solid-state fermentation (SSF) to obtain bioactive compounds of interest due to its antimicrobial and antioxidant 
activity. A Box Hunter & Hunter design to evaluate the independent factors was used. These factors were 
temperature (°C), inoculum (spores/g), humidity (%), pH, NaNO3 (g/L), MgSO4 (g/L), KCl (g/L) and KH2PO4 
(g/L). The response factors were hydrolyzable and condensed tannins amount. In addition, the fermentation 
extracts the antioxidant and antimicrobial activity were evaluated. The results showed that the humidity (%), 
inoculum (spores/g) and temperature (°C) affect the release of hydrolyzable and condensed tannins. The 
treatments 13 and 16 were the best to accumulate condensed (43 mg/g) and hydrolyzable tannins (3.8 mg/g) 
respectively. Besides, the fermented extracts showed a higher antioxidant activity compared than the 
unfermented peel extracts, as well as a high inhibition versus E. coli, Alternaria sp. and Botrytis spp. The use of 
the fermentation process is a good alternative for the recovery of waste and the accumulation of bioactive 
molecules with potential industrial application. 

Keywords: hydrolyzable tannins; condensed tannins; Aspergillus sp.; Box Hunter & Hunter design; biological 
activities 
 

1. Introduction 

Plants of the Cactaceae family are xerophytes, mostly distributed in desert areas [1]. This family 
has a great socioeconomic importance. Their members are used as ornamental plants, food, and 
fodder [2]. Prickly pear (OFI) a Cactaceae native to the American continent, is cultivated in Mexico 
because of its gastronomic use and can be found in 29 of 32 states of Mexico [3], and because of its 
cultural use, Mexico has the largest cactus cultivation (50 000 - 70 000 ha), however, it is also cultivated 
in other continents [4]. 

Prickly pear cladodes are used to prepare various foods. The fruit, which is a berry of thick shell 
and full of seeds with a mild and sweet flavor, known as tuna, has little acidity and is commonly used 
to prepare beverages (liquors) and sweets. Tunas are divided according to their color (green, red, 
yellow, and purple), which depends on the species and maturation [5]. Due to their production and 
easy propagation in arid zones and its application in areas other than food, studies have been 
conducted on tuna’s composition (85 % water, 15 % sugars and less than 1 % protein). The chemical 
composition of OFI varies depending on the species, age of the cladodes, the type of soil where it is 
grown, and the season of the year [6,8]. 

OFI’s peel is acidic and contains polysaccharides, sterols, lipids, fat-soluble vitamins, and 
pigments such as chlorophylls, betalains, coumarins and carotenoids [9]. These compounds are 
secondary metabolites and have been previously determined using different methodologies, 
demonstrating the presence of polyphenols and compounds of interest, such as acids and tannins 
[10,13]. Tannins are phenolic compounds that are distributed in the plant kingdom [14], they are by-
products of plant metabolism that are synthesized in response to external stimuli (stress) [15,16]. They 
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participate in the response or defense of plants against the attack of microorganisms such as bacteria 
and fungi. They also take part in the plant’s survival under drought and are classified as hydrolyzable 
and condensed [17].  

Tannins have biological properties with different industrial applications as antitumor, 
antimicrobial, antioxidant, and anti-hyperglycemic activities [18]. Different methods have been used 
to obtain these compounds; solid-liquid extraction. This method prefers the use of water as a solvent 
for environmental reasons, but even so, NaOH, Na2CO3 and NaHSO3 are used, having drawbacks, 
such as long extraction times, large amounts of solvents, the use of expensive ionic liquids, making 
difficult the solute recovery, so solvents such as ethanol, methanol, acetone, N,N-
dimethylammonium-Nʹ,Nʹ-dimethylcarbamate and 1-butyl-3-methylimidazole bromide 
(DIMCARB) are also used, nevertheless, these solvents are not environmentally friendly and long 
times and high temperatures are still needed for the extraction [19]. These examples are the reason to 
investigate alternative ways to obtain and extract these compounds. An alternative is SSF. 
Fermentation has been practiced for centuries to produce different foods such as sufu, tapai, koji and 
kimchi. In the case of SSF, a microorganism is cultivated in a solid organic material, where moist (in 
the absence or near absence of free water) and a non-soluble material, act as a support and nutrient 
source for the growth of the microorganism, and it has been considered in the last 20 years as an 
important and viable food processing for the bioconversion of agro-industrial waste [20,21]. 

This process promotes the bioavailability of the compounds present in the material used, since 
the microorganisms used can synthesize enzymes that break the cell wall, propitiating the 
mobilization of compounds of interest towards the extraction solvent [22]. The fermentation process 
performs the conversion of complex organic substances into simpler ones, modifying the product 
physiochemically, improving its quality and the bioavailability of the nutrients present in the 
substrate [23]. Among the most used microorganisms in SSF are filamentous fungi, such as 
Aspergillus, Fusarium, Penicillium, Rhizopus and Trichoderma [24,25], although the use of yeasts and 
some species of actinobacteria is also reported [26]. SSF is an advantageous method for filamentous 
fungi, since it is very similar to their natural habitat, which can lead to higher enzymatic productivity 
compared to submerged fermentation [27]. SSF shows as advantages the low production of 
wastewater, it does not produce foam, the substrates are low cost (product waste), low substrate 
volumes, low moisture content (thus avoiding contamination), but it also shows disadvantages as 
heterogeneous media, preventing adequate mixing, moisture levels that are difficult to control, and 
variables with little precise control (pH, temperature, and dissolved oxygen) [28]. SSF has different 
applications, such as biodetoxification of agroindustrial waste, obtaining enzymes, unicellular 
proteins, production of biofuels, biofertilizers and obtaining organic acids such as gallic acid [21,25]. 
Therefore, the valorization of agroindustrial waste such as prickly pear peel is viable for obtaining 
compounds of interest for their biological activities through SSF [29,30] even previously SSF has been 
performed on OFI to improve its protein content and be used as fodder, using yeasts such as 
Saccharomyces cerevisiae [31] and Kluyveromyces marxianus [32] so it is feasible to ferment OFI peels but 
also to obtain bioactive compounds such as tannins. Therefore, the objective of the present work is to 
evaluate the conditions of the SSF process from prickly pear (OFI) peel and a strain of Aspergillus sp., 
for the accumulation of tannins with antioxidant and antimicrobial activities. 

2. Materials and Methods 

2.1. Sample Conditioning (Raw Material) 

The Prickly pear cactus peel was obtained from a local stand (sale of prickly pear cactus), whose 
raw material comes from Zacatecas, Mexico. Only prickly pear peel was obtained as residue from this 
local stand. The peel was washed with a commercial disinfectant solution of sodium hypochlorite for 
subsequent freezing at -19 °C until use. After storage, the material was reduced in size by cutting and 
dehydrated following the Ali et al., (2022) [33] method with modifications (oven at 65 °C for 72 h). 
Once the sample was dehydrated, it was pulverized in a blender to obtain a more homogeneous raw 
material. After this processing, the material was stored in an airtight plastic container at room 
temperature and kept in a place protected from light. 
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2.2. Physicochemical Analysis of the Raw Material 

Critical moisture point and water absorption index were determined following the method of 
Cerda-Cejudo et al., (2022) [29]. For the critical moisture point, a thermobalance OHAUS® model 
MB23 was used, and total ash was also determined. For the determination of total sugars, the method 
by Kejla et al., (2023) [34] was used with some modifications, 500 mg of sample were homogenized 
with 10 mL of distilled water for 12 h, then 250 µL were placed in a test tube and 250 µL of 5% phenol 
were added for subsequent refrigeration for 10 minutes. Next, 1 mL of concentrated H2SO4 was 
added. The mixture was shaken gently in a vortex and placed in a boiling water bath for 5 min, for 
its later cooling. Finally, the solution’s absorbance was read in a UV-Visible spectrophotometer 
Multiskan FC at 480 nm. To determine total reducing sugars, the DNS method described previously 
by Prasertsung et al., (2017) [35] was followed and as for the determination of lipids, the method of 
Gu et al., (2019) [36] was followed. For the determination of crude fiber, an acid digestion and a basic 
digestion were performed, while for the determination of protein, the Lowry method was used as 
Deepachandi et al. (2020) [37] described in their method. 

2.3. Growth Kinetics for A. niger. sp., Strains 

Growth kinetics were performed with a humidity of 60% at 30 °C in Petri dishes OFI prickly pear 
cactus husk dried and ground as a substrate. The strains used were Aspergillus niger HT3, Aspergillus 

niger GH1, Aspergillus niger Aa20, Aspergillus niger Aa210, and Aspergillus oryzae sp, which belong to 
the collection of the Food Research Department from the Autonomous University of Coahuila. To 
measure the growth of the fungi, the radial growth of the mycelium on the raw material was 
measured with a Vernier. Once the fungi grew enough to touch one of the ends of the petri dish, the 
growth was plotted and the µmáx calculation was performed following the methods of Mitchell et al., 
(2004) and Ruiz et al., (2012) [38,39] where X is the radial growth (cm), µ is the maximum specific 
growth rate constant (1/h) and t is time (h) to determine which strain grows faster on the raw material.  

2.4. Experimental Design Box Hunter & Hunter (Fermentation Process and Tratments) 

The SSF process was conducted in Petri dishes together with dried and ground prickly pear peels 
with Aspergillus niger GH1. The fermentation conditions were defined according to a two-level Box 
Hunter & Hunter experimental design, that is, a total of 16 treatments, which are shown in Table 1 
with the independent factors and the levels used. All treatments were performed in triplicate, 
establishing as response factors the accumulation of condensed and hydrolyzable tannins which were 
extracted by a solution of absolute ethanol (20 mL). The fermentation extract was recovered with a 
Whatman filter using a manual pressing system. The results were analyzed with the statistical 
package STATISTICA ver. 7.0. 

Table 1. Box Hunter & Hunter design for the evaluation of fermentation process conditions, levels, 
and factors. 

Treatment 
Temperature  

(°C) 

Inoculum 

(spores/g) 

Humidit

y (%) 
pH 

NaNO3 

(g/L) 

MgSO4 

(g/L) 

KCl 

(g/L) 

KH2PO4 

(g/L) 

1 -1 -1 -1 -1 -1 -1 -1 -1 
2 1 -1 -1 -1 -1 1 1 1 
3 -1 1 -1 -1 1 -1 1 1 
4 1 1 -1 -1 1 1 -1 -1 
5 -1 -1 1 -1 1 1 1 -1 
6 1 -1 1 -1 1 -1 -1 1 
7 -1 1 1 -1 -1 1 -1 1 
8 1 1 1 -1 -1 -1 1 -1 
9 -1 -1 -1 1 1 1 -1 1 
10 1 -1 -1 1 1 -1 1 -1 
11 -1 1 -1 1 -1 1 1 -1 
12 1 1 -1 1 -1 -1 -1 1 
13 -1 -1 1 1 -1 -1 1 1 
14 1 -1 1 1 -1 1 -1 -1 
15 -1 1 1 1 1 -1 -1 -1 
16 1 1 1 1 1 1 1 1 

Factors 
Levels 

+1 -1 

Temperature (°C) 30 25 
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Inoculum (spores/g) 1x107 1x106 
Humidity (%) 70 60 

pH 7 6 
NaNO3 (g/L) 6 3 
MgSO4 (g/L) 0.52 0.26 

KCl (g/L) 0.52 0.26 
KH2PO4 (g/L) 1.52 0.52 

2.5. Condensed and Hydrolyzable Tannins Determination 

To determine hydrolyzable and condensed tannins, the method described by Palacios et al., 

(2021) [40] was followed with modifications, using Folin-Ciocalteu, NaCO3 with the different 
fermentation extracts and gallic acid (3,4,5-Trihydroxybenzoic acid) (Sigma-Aldrich, CAS: 149-91-7) 
as standard. The absorbance was measured at 750 nm in a Multiskan FC 1.01.16 spectrophotometer 
(TermoFisher), then calculations were made to express the content of hydrolyzable tannins in each 
fermentation extract in mg/g dry weight of prickly pear peel. Condensed tannins were also 
determined by the HCl-Butanol method with slight modifications, using a UV-Visible 
spectrophotometer at 450 nm and catechin (Sigma-Aldrich, CAS: 225937-10-0) as standard. The 
tannin content of each extract was expressed in mg/g dry weight of prickly pear peel. 

2.6. Antioxidant Activity 

The antioxidant activity performed on the different extracts was conducted following three 
different methods. For the first determination of antioxidant activity, the method by Sawczuk et al., 

(2022) [41] with slight modifications was used. A methanolic solution of DPPH� (1,1-diphenyl-1-
picrylhydrazyl) radical was prepared at 60 µM, only methanol was used as blank and the prepared 
DPPH- solution was used as a control. A TROLOX (6-hydroxy-2,5,7, 8-tetramethylchroman-2-
carboxylic acid) calibration curve was performed from 0 to 250 ppm, adding 96% DPPH� solution 
and 4% TROLOX solution in each well of the microplate. Samples and the curve absorbance were 
read in a Multiskan FC spectrophotometer at 492 nm and the results are expressed in TROLOX 
equivalents. Likewise, antioxidant activity was quantified using the free radical ABTS (2,2-azino bis-
(-3-ethylbenzothiazolin-6-sulfonate) with some modifications. The reading was performed at 750 nm 
up to an absorbance of 0.7 ± 0.02. The TROLOX reagent was used for the curve, as in the previously 
described method [42]. Finally, the FRAP (Ferric Reducing Antioxidant Power) assay was performed, 
as in the method described by Sik et al., (2022) [43] with some modifications, the readings were 
performed at 595 nm in a microplate reader, using TROLOX as standard in the calibration curve in 
concentrations from 15 to 1000 ppm, adding a ratio of 3% sample and 97% FRAP reagent in each well 
of the microplate. 

2.7. Antimicrobial and Antifungal Activity 

Biological tests were performed with the extract with the highest tannin concentration following 
the method of Wang et al., (2020) [44] with different microbial strains (E. coli, Salmonella). The crude 
concentrated extract was evaluated against the strains, using ethanol as a control. The antifungal 
activity was analyzed using the agar diffusion assay based on the method of Aqueveque et al., (2017) 
[45] reporting the results in percentage inhibition of mycelial growth against Botrytis sp. and 
Alternaria sp. 

2.8. HPLC-MS Analysis of Extracts Fermentation 

Analyzes of fermentation extracts were performed using a Varian HPLC, including autosampler 
(Varian ProStar 410, USA), ternary pump (Varian ProStar 230I) and PDA detector (Varian ProStar 
330), coupled to a liquid chromatography ion trap mass spectrometer (Varian 500-MSIT Mass 
Spectrometer, USA) equipped with an electrospray ion source, following the method described by 
Cerda-Cejudo et al., (2022) [29] using 0.2 (%, v/v) formic acid and acetonitrile as mobile phase at 
different gradients. 

3. Results 

3.1. Physicochemical Analysis of the Raw Material 

The results of the proximate analysis were as follows: 37% of total sugars, 22% of reducing 
sugars, 6% of total proteins, 2% of total lipids, 22% of total ashes, 14% of total fibers, 3% of moisture 
and a water absorption index of 4.87 g-gel/g dry weight. The results are similar to those already 
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reported in the literature [8,10,46,48], emphasizing that this is an analysis of the prickly pear peel 
only. The reports found in the literature are analyzes of the whole fruit or the cactus cladium, so it 
was compared with these results. According to these results, it was decided to continue with SSF 
using the raw material as support and medium. 

3.2. Growth Kinetics of A. niger. sp. Strains 

For the different strains, µmax (cm/h) values were obtained by measuring only the growth on our 
raw material, obtaining for A. niger Aa20 a value of 0.15, 0.21 for A. niger GH1, 0.22 for A. niger HT3, 
0.18 for A. oryzae, and 0.20 for A. niger Aa210. Considering the highest values, the two strains with the 
highest growth were selected (A. niger GH1 and HT3) for a second kinetic, measuring the release of 
condensed and hydrolyzable tannins. Figure 1 shows that the accumulation of condensed tannins 
was better for the GH1 strain, with a maximum value of 39.7 mg/g at 60 h, while for hydrolyzable 
tannins, the best was strain was HT3 after 12 h with a maximum value of 1.58 mg/g. Due to these 
results, A. niger GH1 was chosen for the experimental design, since the yields were higher in 
condensed tannins, as well as one of the highest µmax values. The fermentation time was 54 h, since 
between 48 and 60 h of the kinetic, the highest values for condensed tannins were obtained. This 
growth on the raw material used was achieved because this fungus has been used previously in 
samples with compounds very similar to condensed tannins [49]. 

 
Figure 1. Kinetics of tannin accumulation. a) Hydrolyzable tannins, b) Condensed tannins. ● 
Represents the accumulation performed by A. niger GH1, ▼ Represents the accumulation by A. niger 
HT3. 

3.3. Evaluation of Box Hunter & Hunter Design and Response Factors 

For the experimental design, the condensed and hydrolyzable tannins accumulation were 
evaluated. The 16 treatments were analyzed separately for each response factor, whose results are 
shown in Figure 2. The treatment 13 obtained the highest value for condensed tannins (43 mg/g). The 
results for the accumulation of hydrolyzable tannins are shown in Figure 3, being treatment 16, the 
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one that exhibited the highest value (3.80 mg/g). All data were analyzed in the statistical package 
STATISTICA ver. 7.0. and Infostat software ver.2020, with a p < 0.5. 

 

Figure 2. Condensed tannins accumulation of treatments of the experimental design. 

 

Figure 3. Hydrolyzable tannins accumulation of treatments of the experimental design. 

The factors that showed a significant effect on the tannins accumulation in fermentation process 
for both cases were temperature, humidity, and inoculum as are shown in Figure 4. In the Figure 4a 
are shown the estimated effect on hydrolyzable tannins, the factors of humidity (%), inoculum 
(spores/g) and temperature (°C) shown a positive effect in the fermentation process. The rest of factors 
no affect the hydrolyzable tannins accumulation in fermentation process. In the Figure 4b are shown 
the estimated effect on condensed tannins accumulation, the factors of temperature (°C) and 
inoculum (spores/g) and shown a negative effect and the humidity (%) shown a positive effect in the 
fermentation process. The rest of factors no affect the condensed tannins accumulation in 
fermentation process. For both response factors, no significant effect was observed in the salts of the 
Czapek-Dox medium; this may be due to the nutritional value of the raw material, since its use has 
been reported to increase the nutritional value and to be rich in beneficial compounds [50,51]. 
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Figure 4. Pareto charts of factors that more influenced accumulation of bioactive compounds. a) 
Hydrolyzable tannins. b) Condensed tannins. 

3.4. Antioxidant Activity of the Fermentation Extracts 

The results of the antioxidant activity performed by three different methods are shown in Figure 
5, where we observed a similar behavior, since the sample of unfermented extract showed the lowest 
values of antioxidant activity, while the activity in samples of fermentation extracts increased 
considerably. For ABTS free radical scavenging percentage (FRS %), the results were values higher 
than 80 %, and in the case of the DPPH assay, this value was increasing until reaching values of 
approximately 50%. The results are similar to what was obtained by Ali et al., (2022) [52], who 
obtained values higher than 50% using a known concentration of tannins obtained from prickly pear 
peel by conventional means, while it is emphasized that the values found in this work are given by 
the crude fermentation extract. 

For the FRAP test, the results were expressed in mgEq/L of Fe+2 and, as in the case of the two 
previous tests, this antioxidant activity increased in all the tests. Treatment 16 showed the highest 
antioxidant activity. The antioxidant activity of OFI flowers has also been reported previously, which 
in comparison with the present work, it showed in some cases a similar behavior to those obtained 
in this work, being the results expressed in µmol Trolox equivalent (µmol TEq)/g dry sample. For the 
case of the DPPH test, the results were 246.4 ± 7.0 and 251.0 ± 9. 3 µmolTE/gDW for treatment 13 and 
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16 respectively. The results reported by Brahmi et al., (2022) [12] who performed ultrasound-assisted 
extraction obtained 4078 µmolTE/gDW for DPPH, and 80.8 ± 4.1 µmolTE/gDW in ABTS, while for 
the ABTS assay of the present work 345.8 ± 2.5 and 373. 6 ± 4.0 µmolTE/gDW for treatment 13 and 16. 
The results may be due to the differences in the extracts and molecules obtained in both works, since 
in the present work the extracts were fermented, while in the compared work, compounds were 
extracted following another method. 

 

Figure 5. Antioxidant activity of the best fermentation extracts. 

3.5. Antimicrobial and Antifungal Activity of the Fermentation Extracts 

For the pathogenic activity against E. coli, the inhibition halo formed on filter paper discs soaked 
with 10 µL of fermentation extract was observed, being analyzed against a blank (without extract) 
and a control (absolute ethanol), to rule out that the inhibition was given by agents other than the 
fermentation extracts. In the tests of the blank and the control, no inhibition halo was observed, while 
for the fermentation extract belonging to treatment 13, a halo of 9.8 mm was observed. Treatment 16 
formed an inhibition halo of 13.2 mm, furthermore, the treatment with the highest inhibition was 
treatment 13, this may be due to the compounds present in it. Aruwa et al., 2019 [53] reports an 
inhibition halo using OFI extracts against E. coli of 12.2 mm using known concentrations, while in the 
present work, the crude extract from fermentation was used, they also report that their extracts, as in 
the present work, are in ethanolic medium, showing the highest inhibition halo. This behavior can be 
attributed to the compounds present, since they also report compounds such as caffeic acid 4-O-
glucoside, Isorhamnetin, Isorhamnetin 3-O-glucoside, p-Coumaric acid 4-O-glucoside, which were 
also identified in the present work in the different fermentation treatments. Also, a significant amount 
of work on catechin obtained from different sources, mostly residues [54], have shown pathogenic 
activity against E. coli. 

The inhibition test against phytopathogenic fungi was also carried out successfully, performing 
the simple diffusion test, an inhibition halo of 30 % was obtained for Alternaria sp. for treatment 13, 
while for treatment 16 a 49 % inhibition in the growth of this fungus was obtained, these results, 
compared with the control without extract, that did not present any inhibition halo, likewise it was 
compared with the control with ethanol to discard that the inhibition is given by the solvent of our 
extracts, which also did not present an inhibition halo. Also, the test against Botrytis sp. gave favorable 
results for the extracts, since in the case of treatment 13, an inhibition halo of 22 % was determined, 
and for treatment 16, an inhibition halo of 32 %, all of this compared against the control without 
extract and the ethanol control, which did not present an inhibition halo. 

OFI extracts have already been evaluated for their effect against fungi. Alqurashi et al., (2022) 
[55] reported that OFI seed extracts show activity against the growth of Saccharomyces cerevisiae sp. 
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but no effect on Aspergillus niger sp. growth, this corresponds to that reported also by Brahmi et al., 

(2020) [56] who tested oily extracts of OFI against Aspergillus niger 939 N, Aspergillus flavus NRRL 
3251, Mucor sp NRRL 1829, Aspergillus ochraceus NRRL 3174, Aspergillus parasiticus CB 5 and Candida 

albicans ATCC 10, with unsatisfactory results. Brahmi mentions in that work that the antifungal 
activity is affected by the presence of polyphenols such as tannins and flavonoids, which in our 
extracts are present, being the reason why our extracts inhibited the growth of phytopathogenic 
fungi. Amel et al., (2013) [57] also reports activity against Candida albicans sp. using OFI fruit extracts, 
again attributing this activity to the polyphenolic compounds present in the extracts. 

3.6. HPLC-MS Analysis 

The results of the HPLC-RF-MS test are shown in Table 2, where it is possible to appreciate the 
differences in the compounds found in the unfermented sample and the different treatments, 
likewise, an increase in the number of compounds found in the treatments can be observed in 
comparison with the sample without the fermenter. The compounds found in the unfermented 
sample have been reported previously in works with OFI, such is the case for rhamnetin and 
isorhamnetin, which have been reported in the works of El-Hawary et al., (2020) and Mena et al., 
(2018) [58,59], as well as molecules that in their structure contain these compounds, i.e., condensed 
tannins. Also, these authors have reported molecules such as quercetin, but they are not the only 
ones, in works such as Aruwa et al., (2019); Benayad et al., (2014); di Bella et al (2022) [4,53,60,61], 
extracted compounds from different methods such as solvent extraction and temperature from 
different parts of OFI such as cladodes, prickly pear and flowers so our unfermented sample also 
presents these compounds. As for the fermented sample, more compounds are found, of which have 
already been reported as catechin in OFI [62,63]. Molecules have also been reported that can give as 
a by-product the molecules reported here. On the other hand, molecules such as 3,4-DHPEA-AC, 
pinocembrin, pterostilbene, scopoletin, sinensetin, which have been reported in other plants but not 
in OFI previously, were found, these molecules report varied uses, such as antioxidant, anticancer, 
antiviral, and antimicrobial activity, since being phenolic compounds they present these properties. 
So, the results show that this type of fermentation produces molecules that can be derived from other 
molecules of larger size and molecular weight, and these derived molecules present biological 
activities, being so that fermentation extracts present these same properties [64,68].  

Table 2. HPLC-MS results for best treatments against unfermented sample. 

Putative compound Unfermented sample Treatment 13 Treatment 16 

(+)-Catechin - - + 
3,4-DHPEA-AC - + + 

Apigenin 7-O-diglucuronide - + + 
Caffeic acid 4-O-glucoside + - - 

Cyanidin + - - 
Dihydroquercetin - + - 
Feruloyl glucose - - + 

Isorhamnetin + + + 
Isorhamnetin 3-O-glucoside - + - 

p-Coumaric acid 4-O-glucoside - + + 
p-Coumaroyl glycolic acid - - + 

Pinocembrin - + + 
Pterostilbene - + + 

Quercetin + - - 
Rhamnetin + + + 
Scopoletin - + + 
Sinensetin - + + 

4. Conclusion 

The humidity (%), inoculum (spores/g) and temperature (°C) affect the release of hydrolyzable 
and condensed tannins. The treatments 13 and 16 were the best to accumulate condensed (43 mg/g) 
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and hydrolyzable tannins (3.8 mg/g) respectively. Besides, the fermented extracts showed a higher 
antioxidant activity compared than the unfermented peel extracts, as well as a high inhibition versus 
E. coli, Alternaria sp. and Botrytis spp. In the fermentation extracts, up to 14 compounds of phenolic 
origin were identified. The use of solid-state fermentation processes facilitates the accumulation of 
bioactive molecules such as tannins that can be applied in different industrial sectors. 
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