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Article 

Casimir-Lifshitz Frictional Heating in a System of 

Parallel Metallic Plates 

George V. Dedkov 

Kabardino-Balkarian State University, Chernysheskogo 174, Nalchik, 360004 Russia; gv_dedkov@e-mail.ru 

Abstract: The Casimir–Lifshitz force of friction between neutral bodies in relative motion, along 

with the drag effect, causes their heating. This paper considers this frictional heating in a system of 

two metal plates within the framework of fluctuation electromagnetic theory. Analytical 

expressions for the friction force in the limiting cases of low (zero) temperature, low and high 

speeds, as well as general expressions describing the kinetics of heating, have been obtained. It is 

shown that the combination of low temperatures ( 𝑇 < 10 K ) and velocities of 10 ÷ 10ଷ  m/s 

provides most favourable conditions when measuring Casimir-Lifshitz friction force from heat 

measurements. In particular, the friction force of two coaxial discs of gold of 10 cm in diameter, one 

of which rotates at a frequency of 10 ÷ 10ଷ rps, can be measured using the heating effect by 1-2 K 

in less than 1 min. A possible experimental layout is discussed.  

Keywords: Casimir-Lifshitz friction force; quantum friction; radiative heating 

 

1. Introduction 

Over the past two decades, much effort has been spent on investigating the static [1,2] and 

dynamic [3,4] Casimir effect in various geometric configurations, including a system of two parallel 

metal (dielectric) plates separated by a narrow vacuum gap. The main objective of these studies is the 

properties of a fluctuating electromagnetic field and its interaction with matter on the nanoscale. The 

measurement of these effects paves the way to the core of nonequilibrium quantum field theory [6–

8]. 

In addition to the attractive (in most cases) Casimir forces between electrically neutral bodies at 

rest, a dissipative tangential force arises when one or both bodies move relative to each other. In this 

case, the corresponding fluctuation electromagnetic forces are called “van der Waals” [9], “Casimir” 

[10] or “quantum” [11] forces of friction. In our opinion, it is convenient to use the general name 

“Casimir-Lifshitz” (CL) friction force, which incorporates all the features of these dissipative forces 

regarding their distance, temperature and material properties. 

It is worth noting that, despite many intense efforts, no convincing experimental measurements 

of the CL friction forces have been carried out to date. This is due not only to the small magnitude of 

these forces relative to the “ordinary” Casimir forces (forces of attraction), but also to the 

imperfections of the measurement layout. In particular, the effective interaction area and the relative 

velocity are significantly limited in the “pendulum” measurement scheme used in [12]. Other 

experimental scenarios [9,13–17] seem to be more exotic. Recently, in [15–17], in order to measure 

traces of quantum friction, the authors suggested a scenario, in which the nitrogen vacancy center in 

diamond acquires the geometric phase during rotation at a frequency of 103–104 rps near the Si- or 

Au-coated surface. The nitrogen vacancy centers have been proposed for use as the main components 

of quantum computer processors [18].  

Nearly all experiments to measure Casimir-Lifshitz forces (both conservative and dissipative) 

have been performed with well conducting materials (metals like gold) under near-normal 

temperature conditions. Regarding Casimir-Lifshitz friction forces, it has usually been assumed that 

they decrease with decreasing temperature, as the resistivity of metals and ohmic losses fall. 
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contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 September 2023                   doi:10.20944/preprints202309.0794.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202309.0794.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

Therefore, at first glance, the friction force also does. The conclusion that for metals the temperature 

behavior of the CL friction is not so simple, was first made in [19] and later discussed in [20,21]. In 

has been shown that at temperatures T << θD ( θD is the Debye temperature) the force of friction can 

increase by several orders of magnitude compared to normal conditions. However, several issues 

have not been elucidated there, in particular, the relation between friction and heating effects at 

thermal nonequilibrium, relation between quantum friction and friction at close to zero temperature, 

kinetics of radiation heating, etc. The effects of thermal nonequilibrium on the CL forces and 

nonequilibrium thermodynamics of quantum friction have recently been considered in [22–25]. 

The main objective of this paper, in addition to studying CL friction and heating in a system of 

parallel metallic plates of nonmagnetic metals like gold, is to substantiate the possibility of 

determining the friction force from thermal measurements. In the calculations, the general results of 

fluctuation electrodynamics [26,27] are used, without a linear expansion in velocity in the basic 

expressions. It is shown that identical metal plates with different initial temperatures, moving with a 

constant nonrelativistic velocity 𝑉  relative to each other, rapidly reach the state of quasithermal 

equilibrium, continuing to heat up further. The heating rate is then determined by the power of the 

friction force. 

The outline of this paper is as follows. In the next section, general relations between radiative 

heating and friction force for parallel plates in relative nonrelativistic motion are given. In Secs. 2.2–

2.5, I consider the simplest case of identical plates of Drude metals having the same material 

parameters and temperature 𝑇. Analytical expressions are obtained for the friction force of metal 

plates in the limiting cases of low (zero) temperature, low and high speeds, as well as general 

expressions describing the kinetics of heating. In Sec. 3, the results of numerical calculations (heating 

rates of plate 1 and friction parameters 𝜂 = 𝐹௫ 𝑉⁄ ) are given for different thermal configurations and 

velocities. The analytical results of Sec. 2 are compared with the results of numerical integration 

according to the general formulas. Section 4 is devoted to a brief discussion of a possible layout of an 

experiment for determining the CL friction force by measuring the rates of heating of gold plates. 

Concluding remarks follow in Sec. 5. Appendixes A–C contain the details of analytical calculations. 

All formulas are written in the Gassian units, ℏ, 𝑐 are the Planck constant and the speed of light in 

vacuum, 𝑇 is the absolute temperature in units of the energy.  

2. General Results 

2.1. Radiative Heating and Friction Force for Parallel Plates in Relative Motion 

Here, we use the standard formulation of the problem, in which the plates are assumed to be 

made of homogeneous and isotropic materials with permittivities 𝜀ଵ, 𝜀ଶ and permeabilities 𝜇ଵ,  𝜇ଶ, 

depending on the frequency 𝜔 and local temperatures 𝑇ଵ and 𝑇ଶ (Figure 1).  

 

Figure 1. Configuration of parallel plates in relative motion. 

In line with [26,27], the power 𝐹௫𝑉 of the friction force 𝐹௫ per unit surface area applied to plate 

2 in the laboratory coordinate system associated with plate 1, is given by  
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𝐹௫𝑉 = 𝑃ଵ + 𝑃ଶ 𝛾⁄ . (1)

Here 𝑃ଵ and 𝑃ଶ are the heat fluxes of the plates from a unit surface area per unit time, and 𝛾 =(1 − 𝑉ଶ 𝑐ଶ⁄ )ିଵ ଶ⁄ . For all quantities, indices 1 and 2 here and in what follows correspond to numbering 

in Figure 1. Moreover, 𝑃ଵ and 𝑃ଶ are calculated in the rest frames of the plates. General relativistic 

expressions for 𝑃ଵ and 𝑃ଶ were obtained in [26]. In the nonrelativistic case 𝑉 𝑐 ≪ 1⁄ , but taking 

retardation into account, a more compact form of 𝑃ଵ and 𝑃ଶ reads [27] 

𝑃ଵ = ℏ4𝜋ଷ න 𝑑𝜔𝜔 න 𝑑ଶ𝑘 |𝑞|ଶ|𝑄௠|ଶ Im ൬𝑞ଵ𝜇ଵ൰ Im ൬𝑞෤ଶ𝜇ଶ൰ ൤coth ൬ℏ𝜔2𝑇ଵ൰ − coth ൬ℏ𝜔ି2𝑇ଶ ൰൨ + ൫𝜇ଵ,ଶ ↔ 𝜀ଵ,ଶ൯,ஶ
଴  (2)

𝑃ଶ = − ℏ4𝜋ଷ න 𝑑𝜔 න 𝑑ଶ𝑘𝜔ି |𝑞|ଶ|𝑄௠|ଶ Im ൬𝑞ଵ𝜇ଵ൰ Im ൬𝑞෤ଶ𝜇ଶ൰ ൤coth ൬ℏ𝜔2𝑇ଵ൰ − coth ൬ℏ𝜔ି2𝑇ଶ ൰൨ + ൫𝜇ଵ,ଶ ↔ 𝜀ଵ,ଶ൯,ஶ
଴  (3)

𝑄௠ = (𝑞 + 𝑞ଵ 𝜇ଵ)(𝑞 + 𝑞෤ଶ 𝜇෤ଶ)exp (⁄⁄ 𝑞𝑎) − (𝑞 − 𝑞ଵ 𝜇ଵ)(𝑞 − 𝑞෤ଶ 𝜇෤ଶ)(−𝑞𝑎⁄⁄ ). (4)

Here 𝜔ି = 𝜔 − 𝑘௫𝑉, 𝑞 = ඥ𝑘ଶ − 𝜔ଶ сଶ⁄ , 𝑞ଵ,ଶ = ඥ𝑘ଶ − 𝜀ଵ,ଶ𝜇ଵ,ଶ 𝜔ଶ сଶ⁄ , and 𝑎 is the gap width in 

Figure 1. Variables with a tilde, such as 𝑞෤ଶ,  should be used replacing 𝜔 → 𝜔ି  . The terms ൫𝜇ଵ,ଶ ↔ 𝜀ଵ,ଶ൯ are defined by the same expressions with appropriate replacements.  In the general 

case, the expressions depending on 𝜀ଵ,ଶ and 𝜇ଵ,ଶ correspond to the contributions of electromagnetic 

modes with P and S polarizations. The quantities 𝑃ଵ  and 𝑃ଶ are directly related to the heating 

(cooling) rates of the plates: 𝑑𝑄ଵ 𝑑𝑡 = −𝑃ଵ⁄  and 𝑑𝑄ଶ 𝑑𝑡 = −𝑃ଶ⁄ . 

Using (1)–(4), the power of the friction force 𝐹௫𝑉 = 𝑃ଵ + 𝑃ଶ takes the form 

𝐹௫𝑉 = ℏ4𝜋ଷ න 𝑑𝜔 න 𝑑ଶ𝑘(𝑘௫𝑉) |𝑞|ଶ|𝑄௠|ଶ Im ൬𝑞ଵ𝜇ଵ൰ Im ൬𝑞෤ଶ𝜇ଶ൰ ൤coth ൬ℏ𝜔2𝑇ଵ൰ − coth ൬ℏ𝜔ି2𝑇ଶ ൰൨ + ൫𝜇ଵ,ଶ ↔ 𝜀ଵ,ଶ൯.ஶ
଴  (5)

Formula (5) can also be recast into a more familiar form in terms of the Fresnel reflection 

coefficients [9,23].  

At 𝑇ଵ = 𝑇ଶ = 𝑇, due to the symmetry of the system, the heating rates of identical plates are equal. 

We then have 𝐹௫𝑉 = 2𝑃ଵ,ଶ, and the friction force can be determined using the heating rate of any 

plate. For 𝑇ଵ ≠ 𝑇ଶ, it follows 𝑃ଵ ≠ 𝑃ଶ, but 𝑃ଵ(𝑇ଵ, 𝑇ଶ) = 𝑃ଶ(𝑇ଶ, 𝑇ଵ) and, correspondingly, 𝑃ଵ(𝑇ଵ, 𝑇ଶ) +𝑃ଶ(𝑇ଵ, 𝑇ଶ) = 𝑃ଵ(𝑇ଵ, 𝑇ଶ) + 𝑃ଵ(𝑇ଶ, 𝑇ଵ) = 𝑃ଶ(𝑇ଵ, 𝑇ଶ) + 𝑃ଶ(𝑇ଶ, 𝑇ଵ). This means that, when measuring the CL 

friction force, it is sufficient to control the temperature of only one plate.   

2.2. Metal Plates in the Drude Model 

In order to treat the problem of temperature-dependent CL friction force between ordinary 

metals, we model them by the Drude model in terms of plasma frequency 𝜔௣ and damping 

parameter 𝜈(𝑇) = 𝜔௣ଶ𝜌(𝑇) 4𝜋⁄ , with 𝜌(𝑇) being the resistivity: 𝜀(𝜔) = 1 − 𝜔௣ଶ𝜔൫𝜔 + i · 𝜈(𝑇)൯ . (6)

Figure 2 plots the dependences 𝜌(𝑇) corresponding to the Bloch–Grüneisen (BG) model [28] 

and the modified Bloch–Grüneisen (MBG) model [29]. In the former case, the residual resistance is 

zero or can be specified by indicating the effective temperature, below which it is constant. In the 

MBG model, the residual resistivity is 𝜌଴ = 2.3 · 10ିଵ଴Ω ∙ m (see Figure 2).  

Hereinafter, for simplicity, we assume that the plates are made of the similar nonmagnetic metal 

(𝜇ଵ = 𝜇ଶ = 1) with the same plasma frequency 𝜔௣, but different dependence 𝜈(𝑇). 
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Figure 2. Resistivity of gold [26]. To obtain resistivity in the Gaussian units, one should use the 

relation Ω ∙ m = (1 9⁄ )10ିଽs. 

Because 𝜀(𝜔) ≫ 1 for good conductors, and the inequality gets stronger as 𝑇 → 0, the terms 

with 𝜀ଵ,ଶ in (2) , (3), (5), corresponding to 𝑃 modes are negligible compared to the terms with 𝜇ଵ,ଶ, 

corresponding to 𝑆 modes. So, in what follows, the contributions of P modes are omitted. 

When calculating the integrals in (2), (3), (5), it is convenient to introduce a new frequency 

variable 𝜔 = 𝜈௠(𝑇ଵ, 𝑇ଶ)𝑡 , with 𝜈௠(𝑇ଵ, 𝑇ଶ) = max (𝜈ଵ(𝑇ଵ), 𝜈ଶ(𝑇ଶ))  and 𝜈௜(𝑇௜)  being the damping 

parameters of plates 1 and 2 depending on their temperatures 𝑇ଵ  and 𝑇ଶ. The absolute value 𝑘 of 

the two-dimensional wave-vector (using the polar coordinates 𝑘, 𝜙  in the plane (𝑘௫, 𝑘௬))  is 

expressed as  𝑘 = (𝜔௣ 𝑐⁄ )ඥ𝑦ଶ + 𝛽௠ଶ 𝑡ଶ  in the evanescent sector 𝑘 > 𝜔/𝑐   (0 ≤ 𝑦 < ∞)  and 𝑘 =൫𝜔௣ 𝑐⁄ ൯ඥ𝛽௠ଶ 𝑡ଶ − 𝑦ଶ  in the radiation sector 𝑘 < 𝜔/𝑐  ( 0 ≤ 𝑦 ≤ 𝛽௠𝑡) ). Moreover, we introduce 

additional parameters 𝛽௠ = 𝜈௠ 𝜔௣⁄  , 𝛼௜ = ℏ 𝜈௜ 𝑇௜⁄  , 𝛾௜ = 𝜈௜ 𝜈௠⁄ , 𝜆 = 𝜔௣𝑎 𝑐⁄  , 𝜁 = (𝑉 𝑐)𝛽௠ିଵ⁄ , and 𝐾 =  ћ𝜈௠ଶ ൫𝜔௣ 𝑐⁄ ൯ଶ/2𝜋ଷ. With these definitions, for 𝑘 > 𝜔/𝑐, Eqs. (2), (3) and (5) take the form 

𝑃ଵ = 𝐾 න 𝑑𝑡 න 𝑑𝑦𝑦ଷ𝑓ଵஶ
଴

ஶ
଴ (𝑡, 𝑦), (7)

𝑃ଶ = −𝐾 න 𝑑𝑡 න 𝑑𝑦𝑦ଷ𝑓ଶஶ
଴

ஶ
଴ (𝑡, 𝑦), (8)

𝐹௫𝑉 = 𝐾 න 𝑑𝑡 න 𝑑𝑦𝑦ଷඥ𝑦ଶ + 𝛽௠ଶ 𝑡ଶ𝑓ଷஶ
଴

ஶ
଴ (𝑡, 𝑦), (9)

𝑓ଵ(𝑡, 𝑦) = 𝑡 න 𝑑𝜙 Im𝑤ଵIm𝑤ଶ|𝐷|ଶ 𝑍(𝑡, 𝑦, 𝜙),గ
଴  (10)

𝑓ଶ(𝑡, 𝑦) = න 𝑑𝜙𝑡ି Im𝑤ଵIm𝑤ଶ|𝐷|ଶ 𝑍(𝑡, 𝑦, 𝜙),గ
଴  (11)

𝑓ଷ(𝑡, 𝑦) = 𝜁 න 𝑑𝜙cos𝜙 Im𝑤ଵIm𝑤ଶ|𝐷|ଶ 𝑍(𝑡, 𝑦, 𝜙),గ
଴  (12)

𝑍(𝑡, 𝑦, 𝜙) = coth ቀఈభ௧ଶ ቁ − coth ቀఈమ௧షଶ ቁ, (13)

𝑤ଵ = ට𝑦ଶ + ௧௧ା୧·ఊభ  , 𝑤ଶ = ට𝑦ଶ + ௧ష௧షା୧·ఊమ  ,   𝑡ି = 𝑡 − 𝜁cos𝜙ඥ𝑦ଶ + 𝛽௠ଶ 𝑡ଶ, (14)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 September 2023                   doi:10.20944/preprints202309.0794.v1

https://doi.org/10.20944/preprints202309.0794.v1


 5 

 

𝐷 = (𝑦 + 𝑤ଵ)(𝑦 + 𝑤ଶ) exp(𝜆𝑦) − (𝑦 − 𝑤ଵ)(𝑦 − 𝑤ଶ)exp (−𝜆𝑦). (15)

In the sector 𝑘 < 𝜔/𝑐 , formulas (14), (15) should be modified by replacing 𝑦 → i𝑦  and 

substituting 𝛽௠𝑡  for ∞  in (7)–(9) in the integrals over 𝑦 . The expressions for Im𝑤ଵ,ଶ  can be 

additionally simplified. For example, it follows 

Im𝑤ଵ = ቀඥሼ𝛾ଵଶ𝑦ଶ + (1 + 𝑦ଶ)𝑡ଶሽଶ + 𝛾ଵଶ𝑡ଶ − 𝛾ଵଶ𝑦ଶ − (1 + 𝑦ଶ)𝑡ଶቁଵ ଶ⁄ sgn(−𝑡)ඥ2(𝛾ଵଶ + 𝑡ଶ) . (16)

The Im𝑤ଶ is defined by the same expression (16), substituting 𝛾ଶ for 𝛾ଵ and 𝑡ି for 𝑡. For two 

identical plates at quasithermal equilibrium, it follows 𝛾ଵ = 𝛾ଶ = 1, and a simpler useful expression 

is obtained by expanding the square root in (16) and leaving the expansion terms up to the second 

order: Im𝑤ଵ ≈ |𝑡| ∙ sgn(−𝑡)2ඥ(1 + 𝑡ଶ)(𝑦ଶ + (1 + 𝑦ଶ)𝑡ଶ) . (17)

In this case, an approximate analytical consideration can be carried out.  

2.3. Quantum Friction 

In the case 𝑇ଵ = 𝑇ଶ = 0, corresponding to the conditions of quantum friction, the main role is 

played by the evanescent modes 𝑘 > 𝜔 𝑐⁄ . At finite temperatures, the evanescent modes make the 

dominant contribution at 𝑎 < 1 µm. This range of distances is very promising experimentally. For 

this reason, I consider hereinafter only evanescent modes, omitting the small term 𝛽௠ଶ 𝑡ଶ in (9), (14) 

and other formulas. So, at zero temperature, substituting the identity 𝑍(𝑡, 𝑦, 𝜙) = sgn(𝑡) −sgn൫𝑡 − 𝜁𝑦cos(𝜙)൯ into Eq. (9) yields 

𝐹௫𝑉 = 2𝐾𝜁 න 𝑑𝑦𝑦ସ න 𝑑𝜙cos𝜙 න 𝑑𝑡 Im𝑤ଵIm𝑤ଶ|𝐷|ଶ
఍௬ୡ୭ୱథ

଴
గଶ

଴
ஶ

଴ . (18)

The simplest asymptotics of (18) can be worked out for two identical plates in the limit of low 

velocities, 𝜁 ≪ 1. Using (15) and (17), we get Im𝑤ଵIm𝑤ଶ → − 𝑡(𝜁𝑦cos𝜙 − 𝑡)4𝑦ଶ , |𝐷|ଶ → 116 𝑦ିସ exp(−2𝜆𝑦).  (19)

Inserting (19) into (18) yields 𝐹௫𝑉 = − 𝜋𝐾2ଵଶ 𝜁ସ𝜆ଶ = − ℏ𝜔௣ଶ2ଵଷ𝜋ଶ ቀ𝜔௣𝑐 ቁଶ ൬𝑉𝑐 ൰ଶ ൬ 𝑉𝑎𝜈଴൰ଶ = − 12ଽ ℏ𝜌଴ଶ𝑎ଶ ൬𝑉𝑐 ൰ସ, (20)

where 𝜌଴ is the residual resistivity corresponding to the zero-temperature damping factor 𝜈଴ = 𝜈(0).  

The limit of large velocities, 𝜁 ≫ 1 is more laborious. A reasonable representation of the triple 

integral in (9) can be worked out using an approximate expression for Im𝑤ଵIm𝑤ଶ, based on (17): Im𝑤ଵIm𝑤ଶ = |𝑡(𝑏 − 𝑡)|sgn(𝑡)sgn(𝑏 − 𝑡)4ሾ(1 + 𝑡ଶ)(1 + (𝑡 − 𝑏)ଶ)(𝑦ଶ + 𝑡ଶ(1 + 𝑦ଶ))(𝑦ଶ + (𝑡 − 𝑏)ଶ(1 + 𝑦ଶ))ሿଵ ଶ⁄  (21)

where 𝑏 = 𝜁𝑦cos𝜙. The product Im𝑤ଵIm𝑤ଶ , as a function of 𝑡 in the range 0 ≤ 𝑡 ≤ 𝑏, reaches its 

maximum close to the point 𝑡 = 𝑏/2, with zeroing at the end points 𝑡 = 0, 𝑡 = 𝑏 of the integration 

domain of the inner integral in (9). At the same time, the dependence on 𝑡 in |𝐷|ଶ is much weaker. 

By virtue of this, we insert 𝑡 = 𝑏/2 into the denominator of (21) and into |𝐷|ଶ(in the latter case, we 

also put cos𝜙 ≈ 1). Expression (21) then takes the form Im𝑤ଵIm𝑤ଶ ≈ − 𝑡(𝑏 − 𝑡)4ሾ(1 + 𝑏ଶ/4)(𝑦ଶ + 𝑏ଶ(1 + 𝑦ଶ)/4)ሿ . (22)

With these transformations, it follows (see Appendix A) 
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𝐹௫𝑉 = − 𝐾𝜁2 න 𝑑𝑦 𝑦ସ|𝐷|ଶ
ஶ

଴ න 𝑑𝜙గ ଶ⁄
଴

cos𝜙𝜓(𝑦, 𝜙) න 𝑑𝑡𝑡(𝜁𝑦cos𝜙 − 𝑡)఍௬ୡ୭ୱథ
଴ , (23)

where |𝐷|ଶ  and 𝜓(𝑦, 𝜙) are given by (A2) and (A3). The integrals over 𝑡  and 𝜙  are calculated 

explicitly, and finally we get (see (A4) and (A6)) 

𝐹௫𝑉 = − ℏ𝜈଴ଶ3𝜋ଶ ቀ𝜔௣𝑐 ቁଶ න 𝑑𝑦 𝑦ହ exp(−2𝜆𝑦)൫𝑦 + ඥ1 + 𝑦ଶ൯ସஶ
଴ ቆ 1𝑦ଶ(1 + 𝑦ଶ) − 2𝑦ଶඥ𝑦ଶ𝜁ଶ + 4+ 2(1 + 𝑦ଶ)ඥ(1 + 𝑦ଶ)𝜁ଶ + 4ቇ 

(24)

As follows from (24), in this approximation, the power of the friction force does not depend on 

the velocity at 𝜁 ≫ 1. However, for 𝜁 ≪ 1, this formula also agrees rather well with numerical 

calculations and approximation (20) (see Sec. 3.2). 

2.4. Low Temperatures, Linear in Velocity Approximation 

In the quasiequilibrium thermal regime, 𝑇ଵ = 𝑇ଵ = 𝑇, for two identical metal plates in the linear 

in velocity approximation, Eqs. (5) and (9) can be recast into the form [19,20] 𝐹௫𝑉 = − ℏ𝑉ଶ8𝜋ଶ ቀ𝜔௣𝑐 ቁସ 𝛼ିଵ𝑌ଵ(𝜆, 𝛼) (25)

𝑌ଵ(𝜆, 𝛼) = 𝛼ଶ න 𝑑𝑡sinhଶ(𝛼𝑡 2)⁄ஶ
଴ න 𝑑𝑦𝑦ହஶ

଴
(Im𝑤ଵ)ଶ|𝐷|ଶ . (26)

In this limit, the friction parameter 𝜂 = 𝐹௫ 𝑉⁄  does not depend on 𝑉. It is the dependence 𝐹௫ ∝𝛼ିଵ in (25) that leads to a large enhancement of friction at low temperatures, when 𝛼 = ℏ𝜈(𝑇) 𝑇⁄ →0, because the function 𝑌ଵ(𝜆, 𝛼) weakly depends on 𝛼. The main contribution to 𝑌ଵ(𝜆, 𝛼) in this case 

make the values 𝑡 < 1 , 𝑦~ 1 2𝜆~1⁄ , and we can again use (17) for Im𝑤ଵ . At the same time, 𝛼ଶsinhିଶ(𝛼𝑡 2)⁄ ≈ 4 𝑡ଶ⁄  (this is a good approximation at 𝛼 < 0.3)  and |𝐷|ଶ ≈ 16𝑦ସ exp(2𝜆𝑦). 
Making use of these simplifications in (26), we arrive at (see Appendix B)  𝑌ଵ(𝜆, 𝛼)) ≈ 𝜒(𝜆) = 𝜋32 ൜ 𝜋4𝜆 ሾΗଵ(2𝜆) − 𝑁ଵ(2𝜆)ሿ − 14𝜆ଶൠ, (27)

where Ηଵ(𝑥)  and 𝑁ଵ(𝑥)  are the Struve and Neumann functions [30]. Using their series 

representations yields 

𝜒(𝜆) = ⎩⎪⎨
⎪⎧ 𝜋64 ൬1𝜆 − 12𝜆ଶ + 14𝜆ଷ + ⋯ ൰ , 𝜆 ≫ 1𝜋32 ൭14 + 2𝜆3 − 2𝜆(ln𝜆 + 0.577)൱ , 𝜆 ≪ 1 (28)

An even simpler and physically clearer low-temperature representation of (25) is obtained by 

using the relation 𝜈(𝑇) = 𝜔௣ଶ𝜌(𝑇) 4𝜋⁄  between the damping factor and resistivity, yielding 𝐹௫𝑉 = − 12𝜋 ൬𝑉𝑐 ൰ଶ ቀ𝜔௣𝑐 ቁଶ 𝑇𝜌(𝑇) 𝜒(𝜆).   (29)

Combining the relation 𝛼 ≪ 1, which implies ℏ𝜈(𝑇) ≪ 𝑇, and 𝜁 ≪ 1, which implies the limit of 

low-velocities  𝑉 𝑐⁄ ≪ 𝜈(𝑇) 𝜔௣⁄ , we conclude that formula (29) holds at 𝜔௣𝑉/𝑐 ≪ 𝜈(𝑇) ≪ 𝑇 ℏ⁄ . (30)

As a result, the conditions of low-temperature increase in friction and the applicability of the 

low-speed approximation are met at  𝑉 𝑐⁄ ≪ 𝑇/𝜔௣ℏ . For gold, at 𝑇 = 1 𝐾 , this implies 𝑉 𝑐⁄ ≪1.5 ∙ 10ିହ. 
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According to [19,20], dependence (29) is associated with a growing penetration depth of S-

polarized electromagnetic modes and an increase in their density at low temperatures. A significant 

low-temperature increase in the friction parameter was also noted in the case of movement of a metal 

particle above the metal surface [21].    

2.5. Low Temperatures, Large-Velocity Limit 

The limit 𝜁 ≫ 1 at finite but low temperatures (𝛼 ≪ 1) can be analyzed similarly to the case of 

zero temperatures using the properties of function (21). When substituting (21) into (9) with 

allowance for (13), the first exponential term in (13) makes the dominant contribution at 𝑡~1 ≪ 𝑏 =𝜁𝑦cos𝜙. Because of this, we can take advantage of the substitution |𝑡 − 𝑏| → 𝑏 in the denominator of 

(21). For the second term in (13), we introduce a new variable 𝑡ᇱ = 𝑡 − 𝑏, and make the substitution |𝑡ᇱ + 𝑏| → 𝑏  in the denominator of (21), while the integral (9) is then determined by the large 

exponential factor (exp(𝛼𝑡ᇱ) − 1)ିଵat 𝑡ᇱ~1 ≪ 𝑏. Then, taking into account these transformations in 

(9), and summing both contributions, the triple integral in (9) finally takes the form (see Appendix C)  

𝐼 ≈ 𝜁ଶ2 න 𝑑𝑦𝑦ସ|𝐷|ିଶ න 𝑑𝜙గଶ
଴

ஶ
଴ 𝜓ଵ(𝑦, 𝜙) න 𝑑𝑡 𝑡(𝑒ఈ௧ − 1)ஶ

଴ 𝜓ଶ(𝑦, 𝜙), (31)

where  |𝐷|ିଶ ≈ ቀ𝑦 + ඥ1 + 𝑦ଶቁିସ exp(−2𝜆𝑦), (32)

𝜓ଵ(𝑦, 𝜙) = cosଶ𝜙(1 + 𝜁ଶ𝑦ଶcosଶ𝜙)ିଵ/ଶ(1 + 𝜁ଶ(1 + 𝑦ଶ)cosଶ𝜙)ିଵ/ଶ (33)

and  𝜓ଶ(𝑦, 𝑡) = 1ሾ(1 + 𝑡ଶ)(𝑦ଶ + 𝑡ଶ(1 + 𝑦ଶ)ሿଵ ଶ⁄  (34)

To proceed further, we replace the function  𝑡/(𝑒ఈ௧ − 1) by 1 𝛼⁄  in the inner integral (31), 

which is again a good approximation for 𝛼 < 0.3. The remaining integral yields 

න 𝑑𝑡 𝑡(𝑒ఈ௧ − 1)ஶ
଴ 𝜓ଶ(𝑦, 𝑡) ≈ 1𝛼 K(𝑞)ඥ1 + 𝑦ଶ , 𝑞 = (1 + 𝑦ଶ)ିଵ ଶ⁄ , (34)

where K(𝑞) is the complete elliptic integral [24]. Taking this into account, the 𝜙-integral in (31) can 

be evaluated as the arithmetic mean between the integrals calculated with the limit functions on the 

left and right sides of the inequality (see Appendix C)  cosଶ𝜙(1 + 𝜁ଶ(1 + 𝑦ଶ)cosଶ𝜙)ିଵ < 𝜓ଵ(𝑦, 𝜙) < cosଶ𝜙(1 + 𝜁ଶ𝑦ଶcosଶ𝜙)ିଵ. (35)

Substituting (C9) into (31) and (9) finally yields 𝐹௫𝑉 = − 𝑇8𝜋ଶ 𝑉 ቀ𝜔௣𝑐 ቁଷ 𝑌ଶ(𝜆, 𝜁) (36)

where 𝑌ଶ(𝜆, 𝜁) is given by 

𝑌ଶ(𝜆, 𝜁) = න 𝑑𝑦 𝑦ସ𝑒ିଶఒ௬൫𝑦 + ඥ𝑦ଶ + 1൯ସ(1 + 𝑦ଶ)ଵ/ଶ K ቆ 1ඥ1 + 𝑦ଶቇ ൥ඥ1 + 𝜁ଶ𝑦ଶ − 1𝑦ଶඥ1 + 𝜁ଶ𝑦ଶ
ஶ

଴ + ඥ1 + 𝜁ଶ(1 + 𝑦ଶ) − 1(1 + 𝑦ଶ)ඥ1 + 𝜁ଶ(1 + 𝑦ଶ)൩ 

(37)

2.6. Kinetics of Heating of Plates 

The heat transfer of plates is described by the equations 
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𝑃ଵ(𝑇ଵ, 𝑇ଶ)∆𝑡 = −ℎଵ𝜌ଵсଵ(𝑇ଵ)∆𝑇ଵ,  𝑃ଶ(𝑇ଵ, 𝑇ଶ)∆𝑡 = −ℎଶ𝜌ଶсଶ(𝑇ଶ)∆𝑇ଶ, (38)

with с௜(𝑇௜) being the specific heat capacities, ℎ௜ and 𝜌௜ are the thicknesses and densities of materials, 𝑃ଵ(𝑇ଵ, 𝑇ଶ) and  𝑃ଶ(𝑇ଵ, 𝑇ଶ) are defined by Eqs. (2) and (3), and the temperature gains ∆𝑇௜ correspond 

to the interval of time ∆𝑡. The dependences 𝑇ଶ(𝑇ଵ) and 𝑇ଵ(𝑇ଶ) can be determined from the equation 𝑑𝑇ଶ𝑑𝑇ଵ = 𝑃ଵ(𝑇ଵ, 𝑇ଶ)𝑐ଵ(𝑇ଵ)ℎଵ𝜌ଵ𝑃ଶ(𝑇ଵ, 𝑇ଶ)𝑐ଶ(𝑇ଶ)ℎଶ𝜌ଶ . (39)

For identical plates, in (39), one can use the replacements 𝑃ଶ(𝑇ଵ, 𝑇ଶ) → 𝑃ଵ(𝑇ଶ, 𝑇ଵ), 𝑃ଵ(𝑇ଵ, 𝑇ଶ) →𝑃ଶ(𝑇ଶ, 𝑇ଵ). Further on, we will consider only this case.  

When writing Eqs. (38), (39), it is also assumed that the heat exchange due to radiative heat 

transfer occurs much slower than under thermal diffusion, and the plates acquire equal temperature 

at all points because of high thermal conductivity.  Really, using the thermal diffusion equation 

along the normal to the plates, 𝜕𝑇 𝜕𝑡 = 𝑎ଶ 𝜕ଶ𝑇 𝜕𝑧ଶ⁄⁄ , the characteristic time of the heat diffusion 

necessary to reach thermal quasiequilibrium, is 𝜏 = ℎଶ 𝑎ଶ⁄ (where 𝑎ଶ = 𝜅 𝑐𝜌⁄ , and 𝜅 is the thermal 

conductivity). Then it follows 𝜏 = ℎଶ𝑐𝜌 𝜅⁄  and in the case of gold at 𝑇 = 10 K  and ℎଵ,ଶ = ℎ =500 µ𝑚 𝑐 = 2.2 J/(kg·K), 𝜅 = 3200 W/(m·K), 𝜌 = 19.8 · 10ଷkg/m3 [31]) we obtain 𝜏 ≃ 3 μs. In turn, 

the kinetics of heating induced by friction takes dozens of seconds or minutes (see Sec. 3.3), 

depending on the velocity and other parameters. Assuming that 𝑃௜(𝑇, 𝑇) = −0.5𝜂(𝑇, 𝑉)𝑉ଶ, from Eq. 

(38) we obtain 

𝑡 = 2ℎ𝜌𝑉ଶ න 𝑐(𝑇)𝜂(𝑇, 𝑉)்
బ் 𝑑𝑇, (40)

where 𝑡  is the heating time from the initial temperature 𝑇଴  to the final temperature 𝑇 . In the 

simplest case 𝜂 = const and с(𝑇) = 𝑎ଵ𝑇 + 𝑎ଶ𝑇ଷ (this is a typical low-temperature dependence for 

metals) it follows from Eq. (40) that  

𝑇(𝑡) = ቆ−𝛽 + ට𝛽ଶ + 𝑇଴ସ + 2𝛽𝑇଴ଶ + 2𝜂𝑉ଶ𝑡 ℎ𝜌𝑎ଶ⁄ ቇଵ ଶ⁄ , (41)

where 𝛽 = 𝑎ଵ 𝑎ଶ⁄ . At 𝑇ଵ ≠ 𝑇ଶ  and relatively low velocities of plate 2, as follows from numerical 

calculations (see Sec. 3.1), the heating/cooling rates of metal plates differ only in sign, i.e. 𝑃ଵ(𝑇ଵ, 𝑇ଶ) =−𝑃ଶ(𝑇ଵ, 𝑇ଶ). This is the normal mode of heat transfer, when a hotter body cools down, and a colder 

one heats up. Then the left sides of equations (38) can be equated, and the corresponding 

quasistationary temperature of the plates is given by 

𝑇 = ቆ−𝛽 + ට𝛽ଶ + 𝛽(𝑇ଵଶ + 𝑇ଶଶ) + 𝑇ଵସ + 𝑇ଶସቇଵ ଶ⁄ , (42)

where 𝑇ଵ  and 𝑇ଶ  are their initial temperatures. After establishing quasithermal equilibrium, the 

temperature of the plates will increase according to Eqs. (40), (41). 

3. Numerical Results 

For an ideal metal without impurities and defects, within the Bloch–Grüneisen (BG) model, the 

damping frequency 𝜈(𝑇) in (6) is defined by the formula [28] 

𝜈(𝑇) = 0.0212(Θ 𝑇⁄ )ହ න 𝑑𝑥𝑥ହ஀ ்⁄
଴ sinhିଶ(𝑥 2) ⁄ (eV). (43)

The numerical calculations were carried out using (43) and the MBG approximation shown in 

Figure 2 (Bloch–Grüneisen scaled). The used plasma frequency of gold is 𝜔௣ = 9.03 eV. All 

calculations were performed with a gap width 𝑎 = 10 nm (Figure 1) unless another value is not 

indicated. Note that at separations 𝑎 > 10 nm, barely any processes of extreme heat transfer and 
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friction due to tunneling of electrons and phonons [32,33] and other unwanted processes do not occur 

[34–36]. 

3.1. Quantum Friction 

Figure 3 shows the velocity-dependent quantum friction force between the plates of gold, 

calculated using formulas (20) (green line), (9) (red line), and (24) (blue line).  

  

(a) (b) 

Figure 3. Quantum friction force of the plates of gold as a function of the velocity of a moving plate 

2. Panel (a): residual resistance of gold corresponds to BG model at 𝑇 = 5 K. Panel (b): residual 

resistance corresponds to MBG model at 𝑇 = 0 (Figure 2). Green, red and blue lines were calculated 

using Eqs. (20), (9) and (24), respectively. 

The curves on panels (a) and (b) were calculated at residual resistances of 2.13 ∙ 10ିଵଷ Ω·m and 2.3 ∙ 10ିଵ଴ Ω·m, which correspond to BG model (43) at 𝑇 = 5 K and MBG model at 𝑇 = 0 K. Note 

that in the latter case, the residual resistance coincides with that defined by formula (43) at T = 20.9 

K. 

3.2. Temperature-Dependent Friction at Thermal Quasiequlibrium 

Figure 4 shows the plots of the friction parameters 𝜂 = 𝐹௫ 𝑉⁄  depending on the temperature 𝑇 

of gold plates, corresponding to the BG and MBG models. The curves with symbols were calculated 

using Eq. (9) for 𝑉 = 1 m/s. Solid curves were plotted using approximation (25) along with (26) 

(green lines) or with (28) at 𝜆 ≫ 1 (blue lines). On panel (a), both the solid lines merge. The presence 

of maxima and their positions on the curves agree with (29) and (30). These results show that the 

linear in velocity approximation is valid only to the right of the maxima of the dependences 𝜂(𝑇). 

  

(a) (b) 

Figure 4. Friction parameter of gold plates as a function of their quasiequilibrium temperature: (a) 

model BG; (b) model MBG. The curves with symbols were calculated using Eq. (9) with 𝑉 = 1 m/s. 

Solid lines correspond to (25) with (26) (green lines) and (25) with (28) (blue lines in both (a) and (b)). 

In panel (a), both solid lines (blue and green) merge.     
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Figure 5 demonstrates the velocity dependences of 𝜂 in the BG model (a) and MBG model (b)). 

Red, blue and green lines correspond to quasiequilibrium temperatures of 5, 10, and 77 K. The 

different order of lines 1–3 in panels (a) and (b) is explained by the high residual resistance of gold in 

the MBG model: the condition ℏ𝜈(𝑇) < 𝑇, which is necessary for the law-temperature increase in 

friction, is violated at 𝑇 = 5 and 10 K.  

  
(a) (b) 

Figure 5. Friction parameter of gold plates as a function of the velocity of plate 2. (a) model BG; (b) 

model MBG. Solid lines were calculated using Eq. (9), dashed lines – Eqs. (36), (37). Red, blue and 

green lines 1–3 correspond to quasistationary temperatures of 5, 10, and 77 K for both plates. 

Table 1 shows the calculated friction parameters 𝜂 of gold plates at 𝑉 = 1 m/s, depending on 

the temperature 𝑇 and separation distance a. As in Figure 4, one can note the effect of increasing 

friction (up to a maximum) with decreasing temperature at 𝑇 < 𝜃஽, which is more expressed in the 

BG model. The height of this maximum depends on the velocity-to-resistivity ratio. When the 

temperature becomes sufficiently low, the condition (30) is violated and the coefficient of friction 

decreases.  

Table 1. Friction parameter 𝜂 (kg·m2/s) of gold plates for 𝑉 = 1 m/s at thermal quasiequilibrium, Eq. 

(9) 

Temperature of plates, K 
a = 10 nm   a = 20 nm 

    Model BG 

a = 10 nm    a = 20 nm 

   Model MBG 

        1 4.81E-6     2.77E-6 5.60E-8      2.80E-8 

        2 

        3                

        5 

        10 

        15 

        20 

        50 

        100 

        200 

        300                   

2.63E-4     1.47E-4 

1.10E-3     5.73E-4 

3.44E-4     1.67E-4 

2.15E-5     1.04E-5 

4.30E-5     2.09E-6           

1.52E-6     7.35E-7 

2.04E-7     9.90E-8 

1.30E-7     6.30E-8         

1.14E-7     5.54E-8 

1.11E-7     5.41E-8           

1.22E-7      5.98E-8 

1.87E-7      9.13E-8 

3.08E-7      1.50E-7 

5.63E-7      2.73E-7 

7.77E-7      3.76E-7 

7.19E-7      3.33E-7 

2.56E-7      1.25E-7 

1.77E-7      8.63E-8 

1.42E-7      6.81E-8 

1.39E-7      6.81E-8 

The dependence of 𝜂 on the separation distance a in all the cases is close to inverse 

proportionality (𝜂 ∝ 𝑎ିଵ). This is clearly seen from the data of the table and agrees with our previous 

results [19,20,27]. 
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3.3. Friction and Heating under Different Conditions 

Figures 6 and 7 show the calculated heating rates of plate 1 (panels (a)) and friction parameters 

(panels (b)) depending on the velocity 𝑉 of plate 2 for various thermal configurations. 

 
 

(a) (b) 

Figure 6. Heating rate of plate 1 (a) and friction parameter 𝜂 = 𝐹௫/𝑉 (b) in the BG model. Thermal 

configurations 𝑇ଵ = 6 K, 𝑇ଶ = 4 K and 𝑇ଵ = 4 K, 𝑇ଶ = 6 K have the same friction parameters, and the 

configurations 𝑇 = 4 and 6 K correspond to the quasiequilibrium thermal mode. The data shown 

with symbols ∆ (panel (a)) and ◊ (panel (b)) were increased by 3 times (see also [37]). 

  
(a) (b) 

Figure 7. Same as in Figure 6 in the MBG model. No additional numerical factors for the data were 

used. 

One can see that at at 𝑉 < 10 m/s (Figure 6, panel (a)) and 𝑉 < 10ଷ  m/s (Figure 7, panel (a)), 

the heating rates of plates 1, 2 are equal in absolute value, differing in the sign. According to their 

temperatures, 𝑇ଵ = 4K and 𝑇ଶ = 6K, plate 1 heats up and plate 2 cools down, realizing the “normal” 

heat exchange regime. At the same time, the friction parameters weakly depend on the temperature 

(panels (b)). When the speed of plate 2 becomes higher, both plates heat up faster. Then we can see 

the effect of “anomalous” heating of plate 2 for some time, when it continues to heat up despite the 

higher temperature. This is similar to the case of heating a hotter metal particle moving above a cold 

surface [21]. However, due to different magnitudes of the heating rate (cf. the upper and lower lines 

with □ on panels (a)), the temperature of plate 1 “catches up” the temperature of plate 2, and further 

on, both plates heat up with the same rate. 

Drop in friction parameters for high velocities of plate 2 (panels (b) in Figures 6,7) is explained 

by the change in sign of the Doppler-shifted frequency 𝜔ି = 𝜔 − 𝑘௫𝑉 = 𝜔 − 𝑘𝑉cos𝜙 in Eq. (5). This 

occurs at 𝑉 > 𝜈(𝑇)𝑎 , because the characteristic absorption frequency is 𝜔~𝜈(𝑇)  and the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 September 2023                   doi:10.20944/preprints202309.0794.v1

https://doi.org/10.20944/preprints202309.0794.v1


 12 

 

characteristic wave-vector is 𝑘~ 1 𝑎⁄ . The positions of the "kinks" on the curves 𝜂(𝑉) in Figures 6, 7 

correlate with resistivity, since 𝜈(𝑇)~𝜌(𝑇). Indeed, it follows from Figure 2 that 𝜌ெ஻ீ 𝜌஻ீ⁄ = 10ଶ ÷10ଷ at 𝑇 = 4 ÷ 6 K. At the same time, the ratio 𝜂ெ஻ீ 𝜂஻ீ⁄  in this case is in the inverse proportion to 

resistivities (see (29) and Table 1).  

In general, as follows from the calculations for all considered temperatures and velocities 

(Figures 5–7, Table 1), the maximum friction parameter in the BG and MBG models (at 𝑎 = 10 nm) 

is 10ି଺ − 10ିଷ kg/(m2· s). 

Figure 8 shows the heating time of plates vs. velocity of plate 2, calculated by numerical 

integration of (39) from 4 to 5 K and from 4 to 8 K. In these calculations, the fitting parameters 𝑎ଵ =0.0035 J (kg ∙ Kଶ)⁄ , 𝑎ଶ = 0.0023 J (kg ∙ Kସ)⁄  of the dependence с(𝑇) = 𝑎ଵ𝑇 + 𝑎ଶ𝑇ଷ were determined 

using the data [31] for gold at 𝑇 < 20 K.     

  
(a) (b) 

Figure 8. Heating time of gold plates as a function of the velocity of plate 2 at h = 500 µm according 

to BG (a) and MBG (b) models. Two upper lines correspond to heating from 4 to 8 K at a = 20 nm 

(crimpson) and a = 10 nm (blue), two lower lines correspond to heating from 4 to 5 K at a = 20 nm 

(green) and a = 10 nm (red). 

As follows from Figure 8, quite comfortable (from the experimental point of view) values of the 

plate heating times (1–100 s) can be obtained in the velocity range 1– 10ଷm/s. On the contrary, heating 

by 1 K at 𝑇଴ = 300K, 𝑎 = 10 nm, and 𝑉 = 10ଷ  m/s will take about 2 h. Thus, low-temperature 

thermal measurements have great advantages over measurements under normal conditions due to a 

significant reduction in measurement time, elimination of noise and other undesirable effects. 

4. Experimental Proposal 

Initiated by the advantage of the experimental design [15–17] to measure the quantum friction 

force, in [37], I suggest to use another experimental layout shown schematically in Figure 9. Unlike 

paper [17], in which the setup includes a disc of 10 cm in diameter rotating with an angular frequency 

of up to 7 · 10ଷ rps, it is proposed to use two identical discs placed in one thermostat, one of which 

rotates at a controlled speed. In the peripheral region, the discs have an annular metal coating with 

an effective area 𝜋𝐷𝑤. The non-inertiality of the reference system of disk 2 does not appear in this 

case, since the rotation frequency is small compared to the characteristic frequencies of the fluctuation 

electromagnetic field. Accordingly, the original expressions (2), (3) for heating rates remain valid.   
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Figure 9. A possible setup for measuring Casimir-Lifshitz friction force (side view). The thermal 

protection layer is shown in blue, the metal coating is shown in red. When the upper disk rotates, the 

circular sections of discs locating at a distance a move at a linear velocity of 0.5Ω𝐷 relative to each 

other. At rotation frequencies 𝑛 = 1 ÷ 10ସ rps and disk diameter 𝐷 = 0.1  m, the velocity range will 

be 0.3÷3000 m/s. 

A possible measurement scenario in this case is the quasiequilibrium thermal mode, when the 

temperatures of plates increase from the initial temperature 𝑇଴ at the same rate.  

5. Concluding Remarks 

The Casimir-Lifshitz friction force mediated by fluctuating electromagnetic field between metal 

plates moving with constant velocity relative to each other, causes their heating. In the state out of 

thermal equilibrium, “anomalous” heating of the moving plate can be observed, when it is heated for 

some time despite the higher temperature. However, the system rapidly reaches a state of thermal 

quasiequilibrium. At low temperatures 𝑇 ≪  𝜃஽, the Casimir-Lifshitz friction and heating of metal 

plates increase significantly (see (29), (30)), while the heat capacity decreases. In combination with a 

fairly high speed of movement, this provides a fairly short heating time, convenient for experiments 

(see (40)).   
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Appendix A. Evaluation of the Integral (24) 

Substituting 𝑡 = 𝑏 2 = 𝜁𝑦cos𝜙/2⁄  into (22), we take into account that, typically,  𝜁𝑦cos𝜙 2⁄ ≫1 (since 𝜁 ≫ 1, 𝑦~ 1 2𝜆~1⁄ ) and ห𝑤ଵ,ଶห ≈ ඥ𝑦ଶ + 1. Then |𝐷|ଶ takes the form  |𝐷|ଶ ≈ ቀ𝑦 + ඥ𝑦ଶ + 1ቁସ exp(−2𝜆𝑦). (A1)

With these simplifications, formula (18) reads 

𝐹௫𝑉 = − 𝐾𝜁2 න 𝑑𝑦 𝑦ଶ൫𝑦 + ඥ𝑦ଶ + 1൯ସஶ
଴ 𝑒ିଶఒ௬ න 𝑑𝜙గ ଶ⁄

଴
cos𝜙𝜓(𝑦, 𝜙) න 𝑑𝑡𝑡(𝜁𝑦cos𝜙 − 𝑡)఍௬ୡ୭ୱథ

଴ , (A2)

𝜓(𝑦, 𝜙) = (1 + 𝜁ଶ𝑦ଶcosଶ𝜙 4⁄ )(1 + 𝜁ଶ(1 + 𝑦ଶ)cosଶ𝜙 4⁄ ) (A3)

The 𝑡 integral in (A2) is simply 𝜁ଷ𝑦ଷcosଷ𝜙/6, while the integral over 𝜙 is  
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𝐼థ = 𝜁ଷ𝑦ଷ6 න 𝑑గ ଶ⁄
଴ 𝜙 cosସ𝜙𝜓(𝑦, 𝜙) = 8𝑦ଷ3𝜁 න 𝑑గ ଶ⁄

଴ 𝜙 cosସ𝜙(𝑢ଶ + 𝑦ଶcosଶ𝜙)(𝑢ଶ + (1 + 𝑦ଶ)cosଶ𝜙) , (A4)

where 𝑢 = 2 𝜁⁄ . The integral in (A4) is calculated explicitly using the table integral [30]  

න 𝑑𝜙𝑎ଶ + 𝑏ଶcosଶ𝜙గ ଶ⁄
଴ = 𝜋2 1𝑎√𝑎ଶ + 𝑏ଶ . (A5)

Using (A5) yields 𝐼థ = 4𝜋𝑦ଷ3𝜁 ቆ 1𝑦ଶ(1 + 𝑦ଶ) − 2𝑦ଶඥ𝑦ଶ𝜁ଶ + 4 + 2(1 + 𝑦ଶ)ඥ(1 + 𝑦ଶ)𝜁ଶ + 4ቇ . (A6)

Substituting (A6) into (A2), yields (24).  

Appendix B. Evaluation of the Integral (26) 

In the case 𝛼 ≪ 1, the main contribution to (26) make the values 𝑡 < 1, 𝑦~ 1 2𝜆~1⁄ . Then from 

(14) it follows ห𝑤ଵ,ଶห = ห(𝑦ଶ + 𝑡 (𝑡 + 𝑖)⁄ )ଵ ଶ⁄ ห ≈ 𝑦. Using this, we find |𝐷|ିଶ ≈ 16𝑦ସexp(−2𝜆𝑦) (B1)

At the same time, from (21), ൫Im𝑤ଵ,ଶ൯ଶ = 𝑡ଶ4(1 + 𝑡ଶ)൫𝑦ଶ + 𝑡ଶ(1 + 𝑦ଶ)൯ . (B2)

Substituting (B1) and (B2) into (26) yields 

𝑌(𝜆, 𝛼) = 𝛼ଶ64 න 𝑑𝑦𝑦𝑒ିଶఒ௬ஶ
଴ න 𝑑𝑡 𝑡ଶsinh (𝛼𝑡 2⁄ )ଶ 1(1 + 𝑡ଶ)(𝑦ଶ + 𝑡ଶ(1 + 𝑦ଶ))ஶ

଴  (B3)

Using the approximation 
௧మୱ୧୬୦ (ఈ௧ ଶ⁄ )మ → 4 𝛼ଶ⁄  and the table integral [30]  

න 𝑑𝑥 1(𝑎ଶ + 𝑥ଶ)ஶ
଴

1(𝑏ଶ + 𝑥ଶ) = 𝜋2𝑎𝑏(𝑎 + 𝑏) , (B4)

we get  

𝑌ଵ(𝜆, 𝛼) ≈ 𝜒(𝜆) = 𝜋32 න 𝑑𝑦 𝑒ିଶఒ௬൫𝑦 + ඥ1 + 𝑦ଶ൯ஶ
଴ = 𝜋32 ൜ 𝜋4𝜆 ሾHଵ(2𝜆) − 𝑁ଵ(2𝜆)ሿ − 14𝜆ଶൠ, (B5)

where Hଵ(𝑥) and 𝑁ଵ(𝑥) are the Struve and Neumann functions [30].  

Appendix C. Evaluation of the Integral (31) 

We rewrite Eq. (13) in the form  𝑍(𝑡, 𝑦, 𝜙) = 2exp(𝛼𝑡) − 1 − 2exp(𝛼|𝑡ି|) − 1  , 𝑡ି = 𝑡 − 𝜁𝑦cos𝜙 . (C1)

The integral in (9) includes two exponential factors, defined by (C1). By changing the order of 

integration in the first term we get 

𝐼 = 2𝜁 න 𝑑𝑦𝑦ସ න 𝑑𝜙cos𝜙గ
଴ න 𝑑𝑡 Im𝑤ଵIm𝑤ଶ|𝐷|ଶ 1exp(𝛼𝑡) − 1ஶ

଴
ஶ

଴  (C2)
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Similar to Appendix B, we can again take advantage of the behavior of the 𝑡- integral in (C2) for 𝛼 ≪ 1, and  𝜁 ≫ 1, substituting 
ଵୣ୶୮(ఈ௧)ିଵ ≈ 1 𝛼𝑡⁄  and using (A1) for |𝐷|ଶ. For Im𝑤ଵIm𝑤ଶ, we use (21) 

with the replacement |𝑡 − 𝑏| → 𝜁𝑦|𝑐𝑜𝑠𝜙|. Then (21) takes the form Im𝑤ଵIm𝑤ଶ = − 𝑡 ∙ 𝜁|cos𝜙| ∙ sign(𝑡 − 𝜁𝑦𝑐𝑜𝑠𝜙)4ൣ(1 + 𝜁ଶ𝑦ଶcosଶ𝜙)(1 + 𝜁ଶ(1 + 𝑦ଶ)cosଶ𝜙)(1 + 𝑡ଶ)൫𝑦ଶ + 𝑡ଶ(1 + 𝑦ଶ)൯൧ଵ ଶ⁄  . (C3)

Inserting (C3) into (C2) yields 

𝐼 = 𝜁ଶ𝛼 න 𝑑𝑦 𝑦ସ𝑒ିଶఒ௬൫𝑦 + ඥ𝑦ଶ + 1൯ସ(1 + 𝑦ଶ)ଵ/ଶ න 𝑑𝜙𝜓ଵ(𝑦, 𝜙)గ/ଶ
଴ න 𝑑𝑡ஶ

଴
ஶ

଴ 𝜓ଶ(𝑡, 𝑦), (C4)

where 𝜓ଵ(𝜙, 𝑦) = cosଶ𝜙ሾ(1 + 𝜁ଶ𝑦ଶcosଶ𝜙)(1 + 𝜁ଶ(1 + 𝑦ଶ)cosଶ𝜙)ሿିଵ/ଶ, (C5)

𝜓ଶ(𝑡, 𝑦) = 1൤(1 + 𝑡ଶ) ൬ 𝑦ଶ(1 + 𝑦ଶ) + 𝑡ଶ൰൨ଵ ଶ⁄  . 
(C6)

Substituting (C5) and (C6) into (C4) and taking into account (B4), the inner integrals are 

calculated yielding (see (35) and three lines upper)  

𝐼థ(𝑦) = න 𝑑𝜙ஶ
଴

cosଶ𝜙𝜓ଵ(𝜙, 𝑦) ≈ 𝜋2𝜁ଶ ൥ඥ1 + 𝜁ଶ𝑦ଶ − 1𝑦ଶඥ1 + 𝜁ଶ𝑦ଶ + ඥ1 + 𝜁ଶ(1 + 𝑦ଶ) − 1(1 + 𝑦ଶ)ඥ1 + 𝜁ଶ(1 + 𝑦ଶ)൩ , (C7)

𝐼௧(𝑦) = න 𝑑𝑡ஶ
଴ 𝜓ଶ(𝑡, 𝑦) = 1ඥ1 + 𝑦ଶ K ቆ 1ඥ1 + 𝑦ଶቇ , (C8)

where K(𝑥) is the elliptic integral. Finally, substituting (C7) and ((C8) into (C4) yields 

𝐼 = 𝜋4𝛼 න 𝑑𝑦 𝑦ସ𝑒ିଶఒ௬൫𝑦 + ඥ𝑦ଶ + 1൯ସ(1 + 𝑦ଶ)ଵ/ଶ K ቆ 1ඥ1 + 𝑦ଶቇ ൥ඥ1 + 𝜁ଶ𝑦ଶ − 1𝑦ଶඥ1 + 𝜁ଶ𝑦ଶ
ஶ

଴ + ඥ1 + 𝜁ଶ(1 + 𝑦ଶ) − 1(1 + 𝑦ଶ)ඥ1 + 𝜁ଶ(1 + 𝑦ଶ)൩. (C9)

The second integral in (9) including 𝑡ି in (C1) is evaluated with the same result (but ultimately 

having the opposite sign), by introducing a new variable 𝑡ᇱ = 𝑡 − 𝑏 , and using the substitution |𝑡′ + 𝑏| → 𝜁𝑦|cos𝜙| in (21).  
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