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Casimir-Lifshitz Frictional Heating in a System of

Parallel Metallic Plates

George V. Dedkov
Kabardino-Balkarian State University, Chernysheskogo 174, Nalchik, 360004 Russia; gv_dedkov@e-mail.ru

Abstract: The Casimir-Lifshitz force of friction between neutral bodies in relative motion, along
with the drag effect, causes their heating. This paper considers this frictional heating in a system of
two metal plates within the framework of fluctuation electromagnetic theory. Analytical
expressions for the friction force in the limiting cases of low (zero) temperature, low and high
speeds, as well as general expressions describing the kinetics of heating, have been obtained. It is
shown that the combination of low temperatures (T < 10K) and velocities of 10 + 10° m/s
provides most favourable conditions when measuring Casimir-Lifshitz friction force from heat
measurements. In particular, the friction force of two coaxial discs of gold of 10 cm in diameter, one
of which rotates at a frequency of 10 + 103 rps, can be measured using the heating effect by 1-2 K
in less than 1 min. A possible experimental layout is discussed.

Keywords: Casimir-Lifshitz friction force; quantum friction; radiative heating

1. Introduction

Over the past two decades, much effort has been spent on investigating the static [1,2] and
dynamic [3,4] Casimir effect in various geometric configurations, including a system of two parallel
metal (dielectric) plates separated by a narrow vacuum gap. The main objective of these studies is the
properties of a fluctuating electromagnetic field and its interaction with matter on the nanoscale. The
measurement of these effects paves the way to the core of nonequilibrium quantum field theory [6-
8].

In addition to the attractive (in most cases) Casimir forces between electrically neutral bodies at
rest, a dissipative tangential force arises when one or both bodies move relative to each other. In this
case, the corresponding fluctuation electromagnetic forces are called “van der Waals” [9], “Casimir”
[10] or “quantum” [11] forces of friction. In our opinion, it is convenient to use the general name
“Casimir-Lifshitz” (CL) friction force, which incorporates all the features of these dissipative forces
regarding their distance, temperature and material properties.

It is worth noting that, despite many intense efforts, no convincing experimental measurements
of the CL friction forces have been carried out to date. This is due not only to the small magnitude of
these forces relative to the “ordinary” Casimir forces (forces of attraction), but also to the
imperfections of the measurement layout. In particular, the effective interaction area and the relative
velocity are significantly limited in the “pendulum” measurement scheme used in [12]. Other
experimental scenarios [9,13-17] seem to be more exotic. Recently, in [15-17], in order to measure
traces of quantum friction, the authors suggested a scenario, in which the nitrogen vacancy center in
diamond acquires the geometric phase during rotation at a frequency of 10°-~10* rps near the Si- or
Au-coated surface. The nitrogen vacancy centers have been proposed for use as the main components
of quantum computer processors [18].

Nearly all experiments to measure Casimir-Lifshitz forces (both conservative and dissipative)
have been performed with well conducting materials (metals like gold) under near-normal
temperature conditions. Regarding Casimir-Lifshitz friction forces, it has usually been assumed that
they decrease with decreasing temperature, as the resistivity of metals and ohmic losses fall.
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Therefore, at first glance, the friction force also does. The conclusion that for metals the temperature
behavior of the CL friction is not so simple, was first made in [19] and later discussed in [20,21]. In
has been shown that at temperatures T << Ob ( O is the Debye temperature) the force of friction can
increase by several orders of magnitude compared to normal conditions. However, several issues
have not been elucidated there, in particular, the relation between friction and heating effects at
thermal nonequilibrium, relation between quantum friction and friction at close to zero temperature,
kinetics of radiation heating, etc. The effects of thermal nonequilibrium on the CL forces and
nonequilibrium thermodynamics of quantum friction have recently been considered in [22-25].

The main objective of this paper, in addition to studying CL friction and heating in a system of
parallel metallic plates of nonmagnetic metals like gold, is to substantiate the possibility of
determining the friction force from thermal measurements. In the calculations, the general results of
fluctuation electrodynamics [26,27] are used, without a linear expansion in velocity in the basic
expressions. It is shown that identical metal plates with different initial temperatures, moving with a
constant nonrelativistic velocity V relative to each other, rapidly reach the state of quasithermal
equilibrium, continuing to heat up further. The heating rate is then determined by the power of the
friction force.

The outline of this paper is as follows. In the next section, general relations between radiative
heating and friction force for parallel plates in relative nonrelativistic motion are given. In Secs. 2.2—-
2.5, I consider the simplest case of identical plates of Drude metals having the same material
parameters and temperature T. Analytical expressions are obtained for the friction force of metal
plates in the limiting cases of low (zero) temperature, low and high speeds, as well as general
expressions describing the kinetics of heating. In Sec. 3, the results of numerical calculations (heating
rates of plate 1 and friction parameters n = F,/V) are given for different thermal configurations and
velocities. The analytical results of Sec. 2 are compared with the results of numerical integration
according to the general formulas. Section 4 is devoted to a brief discussion of a possible layout of an
experiment for determining the CL friction force by measuring the rates of heating of gold plates.
Concluding remarks follow in Sec. 5. Appendixes A—C contain the details of analytical calculations.
All formulas are written in the Gassian units, #,c are the Planck constant and the speed of light in
vacuum, T is the absolute temperature in units of the energy.

2. General Results

2.1. Radiative Heating and Friction Force for Parallel Plates in Relative Motion

Here, we use the standard formulation of the problem, in which the plates are assumed to be
made of homogeneous and isotropic materials with permittivities &, &, and permeabilities u;, p,,
depending on the frequency w and local temperatures T; and T, (Figure 1).

Z\
: 2
o F\ Tz*’:“z %4
o lF’
0 .
/ /
Tie ) *

Figure 1. Configuration of parallel plates in relative motion.

In line with [26,27], the power E.V of the friction force F, per unit surface area applied to plate
2 in the laboratory coordinate system associated with plate 1, is given by
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FxV=P1+ Pz/y. (1)

Here P, and P, are the heat fluxes of the plates from a unit surface area per unit time, and y =
(1 —V?2/c?)~'/2 For all quantities, indices 1 and 2 here and in what follows correspond to numbering
in Figure 1. Moreover, P; and P, are calculated in the rest frames of the plates. General relativistic
expressions for P; and P, were obtained in [26]. In the nonrelativistic case V/c << 1, but taking
retardation into account, a more compact form of P, and P, reads [27]

J o [ @ ol (2 m (%) [oorn (32) - comn (5 )| + (a2 0 02). - @

o (i B () - ()

m = (@ + q1/u1)(q + §2/fz)exp (qa) — (q — q1/m1)(q — G2/ ) (—qa). 4)

Here w™ =w—k,V, q = k? —w?/c? q, = \/kz — &M, w?/c?, and a is the gap width in
Figure 1. Variables with a tilde, such as §,, should be used replacing w — w~ . The terms
(u12 © €12) are defined by the same expressions with appropriate replacements. In the general
case, the expressions depending on &;, and p,, correspond to the contributions of electromagnetic
modes with P and S polarizations. The quantities P; and P, are directly related to the heating
(cooling) rates of the plates: dQ,/dt = —P; and dQ,/dt = —P,

Using (1)—(4), the power of the friction force F,V = P, + P, takes the form

EV = 4h3f dw f d?k(k,V) |(|2qn|12;2 (Zi) Im <Zz) [ oth (;l;i) — coth (Z(;z )] + (2 © &2) (B)

0

Formula (5) can also be recast into a more familiar form in terms of the Fresnel reflection
coefficients [9,23].

At T, = T, = T, due to the symmetry of the system, the heating rates of identical plates are equal.
We then have F,V = 2P, ,, and the friction force can be determined using the heating rate of any
plate. For T; # T,, it follows P, # P,, but P,(T;,T,) = P,(T,,T;) and, correspondingly, P, (T;,T,) +
Py (T, Ty) = Pi(Ty, Ty) + Py (T, Ty) = Py(Ty, T,) + P,(T,, Ty). This means that, when measuring the CL
friction force, it is sufficient to control the temperature of only one plate.

2.2. Metal Plates in the Drude Model

In order to treat the problem of temperature-dependent CL friction force between ordinary
metals, we model them by the Drude model in terms of plasma frequency w, and damping
parameter v(T) = w;p(T)/4m, with p(T) being the resistivity:

_ w5
e(w)=1 w(w +i- v(T))' ©

Figure 2 plots the dependences p(T) corresponding to the Bloch—-Griineisen (BG) model [28]
and the modified Bloch-Griineisen (MBG) model [29]. In the former case, the residual resistance is
zero or can be specified by indicating the effective temperature, below which it is constant. In the
MBG model, the residual resistivity is p, = 2.3 - 1072°Q - m (see Figure 2).

Hereinafter, for simplicity, we assume that the plates are made of the similar nonmagnetic metal
(11 = pp = 1) with the same plasma frequency w,, but different dependence v(T).
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Figure 2. Resistivity of gold [26]. To obtain resistivity in the Gaussian units, one should use the
relation Q-m = (1/9)107°%s.

Because £(w) > 1 for good conductors, and the inequality gets stronger as T — 0, the terms
with &, in (2), (3), (5), corresponding to P modes are negligible compared to the terms with p; ,,
corresponding to S modes. So, in what follows, the contributions of P modes are omitted.

When calculating the integrals in (2), (3), (5), it is convenient to introduce a new frequency
variable w = v, (Ty, To)t , with v, (Ty, T;) = max (v;(Ty),v,(T;)) and v;(T;) being the damping
parameters of plates 1 and 2 depending on their temperatures T; and T,. The absolute value k of
the two-dimensional wave-vector (using the polar coordinates k,¢ in the plane (k,,k,)) is
expressed as = (wp/c)\Jy* + B4t? in the evanescent sector k > w/c (0<y <o) and k=
(w,/c)y/Bat? —y? in the radiation sector k < w/c (0 <y < Bp,t)). Moreover, we introduce
additional parameters Bm = Vm/w, . a;=hv/T; |, ¥vi =Vi/Vy, A=wpa/c , {= (V/)By ", and
K= ﬁv,zn(wp / c)2 /2m3. With these definitions, for k > w/c, Egs. (2), (3) and (5) take the form

- K dt dyy3f1 (t! 3’): (7)
J«]
=K [ dt | dyy*f, (t,y), (8)
J«]
RV =K f dt f dyy* Y2 T BB, (6, y), ©)
0 0
f Imwil
Aty =t f de —mvlvg lTWZZ(t, . $), (10)
0
£t y) = f d¢t-m|;—|TWZZ(t .0, (11)

wylmw,

AR f dpeosp

Z(t,y, ¢), (12)

Z(t,y,$) = coth (“Tlt) — coth (azzt_), (13)

t - _
v+ iy, W2 T y:+ tm+Hy, t™ =t —{cospyy* + Bit?, (14)
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D= (y+w)y+wy)exp(ly) — (v —wy)(y — wp)exp (=1y). (15)

In the sector k < w/c, formulas (14), (15) should be modified by replacing y — iy and
substituting f,t for o in (7)~(9) in the integrals over y. The expressions for Imw;, can be
additionally simplified. For example, it follows

1/2
(VOZy ¥ T+ D + 772 —yiy* - (1 +y2)e2)  sgn(-t)
V207 +13) '
The Imw, is defined by the same expression (16), substituting y, for y; and t~ for t. For two

identical plates at quasithermal equilibrium, it follows y; =y, = 1, and a simpler useful expression
is obtained by expanding the square root in (16) and leaving the expansion terms up to the second

(16)

Imw,; =

order:
. l¢] - sgn(=0)
2JA+ D2+ (A +y)t?)

In this case, an approximate analytical consideration can be carried out.

[mw, (17)

2.3. Quantum Friction

In the case T; =T, = 0, corresponding to the conditions of quantum friction, the main role is
played by the evanescent modes k > w/c. At finite temperatures, the evanescent modes make the
dominant contribution at a <1 pm. This range of distances is very promising experimentally. For
this reason, I consider hereinafter only evanescent modes, omitting the small term BZt? in (9), (14)
and other formulas. So, at zero temperature, substituting the identity Z(t,y,¢) = sgn(t) —
sgn(t — (ycos(d))) into Eq. (9) yields

i

{ycos¢

oo 2
I [
EV = ZKZJ dyy‘*_[dd)cosd) f dt%. (18)
0 0 0

The simplest asymptotics of (18) can be worked out for two identical plates in the limit of low
velocities, { « 1. Using (15) and (17), we get

t({ycos¢ —t) 1 _
Imw, Imw, — BT E— D|? - T4 *exp(—221y). (19)
Inserting (19) into (18) yields
K ¢* hawp? jwpn\2 (VN2 [ V2 1 h (V\*
BV =t == (2) (2) (o) =g (s) (20)
212 )2 28372\ ¢ ¢/ \av, 29 po2a® \c

where p, is the residual resistivity corresponding to the zero-temperature damping factor v, = v(0).
The limit of large velocities, { > 1 is more laborious. A reasonable representation of the triple
integral in (9) can be worked out using an approximate expression for Imw;Imw,, based on (17):

[t(b — t)|sgn(t)sgn(b —t)
A+ A+ (¢t —D)HG?2 + 21 +y2) (2 + (¢t — b)? (1 + y2)]V/?

Imw,; Imw, = (21)
where b = {ycos¢. The product Imw;Imw,, as a function of t in the range 0 <t < b, reaches its
maximum close to the point t = b/2, with zeroing at the end points t = 0,t = b of the integration
domain of the inner integral in (9). At the same time, the dependence on t in |D|? is much weaker.
By virtue of this, we insert t = b/2 into the denominator of (21) and into |D|%(in the latter case, we
also put cos¢ = 1). Expression (21) then takes the form

t(b—1t)
4[(1 +b2/H)(y? + b2(1 +y2) /D]

Imw;Imw, =~ — (22)

With these transformations, it follows (see Appendix A)
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o . /2 {ycos¢p

y cos
EV=——1|d —Jd dtt({ycosgp — t), (23)
YT YE) ya.g | At

where |D|? and ¥ (y, ) are given by (A2) and (A3). The integrals over ¢t and ¢ are calculated
explicitly, and finally we get (see (A4) and (A6))

Fvg? w2 [ y5 exp(—221y) 1 2
RV = -3 (7) de N \W2A+yD) 2 [y2z 1 4
5 (3’+2\/1+3’) YNy (24)

+
A+y5)yA+y3)i2+4

As follows from (24), in this approximation, the power of the friction force does not depend on
the velocity at { » 1. However, for { < 1, this formula also agrees rather well with numerical
calculations and approximation (20) (see Sec. 3.2).

2.4. Low Temperatures, Linear in Velocity Approximation

In the quasiequilibrium thermal regime, T; = T; = T, for two identical metal plates in the linear
in velocity approximation, Egs. (5) and (9) can be recast into the form [19,20]

AVZ o\t
EV = _W(T) a (4, ) (25)
Codt [ _(Imw)?
hda)=a J-sinhz(at/Z)fdyy DIz - (26)
0 0

In this limit, the friction parameter n = F,/V does not depend on V. It is the dependence F, «
a~! in (25) that leads to a large enhancement of friction at low temperatures, when a = Av(T)/T -
0, because the function Y; (4, a) weakly depends on a. The main contribution to Y; (4, &) in this case
make the values t <1, y~1/2A~1, and we can again use (17) for Imw;. At the same time,
a’sinh™?(at/2) ~ 4/t? (this is a good approximation at a < 0.3) and |D|* = 16y*exp(21y).
Making use of these simplifications in (26), we arrive at (see Appendix B)

-1

K@) = 20D = 5o 1,22 - M @D — @)

3242 W}’
where H;(x) and N;(x) are the Struve and Neumann functions [30]. Using their series
representations yields

n<1 ! + ! + ) A>1

ZAVERE YRy e K

x(A) = a1 22 (28)
3—2 Z+?—2/1(ln/1+0577) , 1K1

An even simpler and physically clearer low-temperature representation of (25) is obtained by
using the relation v(T) = wjp(T)/4m between the damping factor and resistivity, yielding

1 (V\2 wn2 T

EV=——(=]) (&) —=xW. 29

<V 2n(c) (c) p(T)X(A) (29)

Combining the relation @ « 1, which implies Av(T) < T, and { < 1, which implies the limit of
low-velocities V/c « v(T)/wy, we conclude that formula (29) holds at

wpV/c Kv(T) LK T/h. (30)

As a result, the conditions of low-temperature increase in friction and the applicability of the
low-speed approximation are met at V/c K T/w,h. For gold, at T =1K, this implies V/c «
1.5-1075.

doi:10.20944/preprints202309.0794.v1
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According to [19,20], dependence (29) is associated with a growing penetration depth of S-
polarized electromagnetic modes and an increase in their density at low temperatures. A significant
low-temperature increase in the friction parameter was also noted in the case of movement of a metal
particle above the metal surface [21].

2.5. Low Temperatures, Large-Velocity Limit

The limit ¢ > 1 at finite but low temperatures (@ <« 1) can be analyzed similarly to the case of
zero temperatures using the properties of function (21). When substituting (21) into (9) with
allowance for (13), the first exponential term in (13) makes the dominant contribution at t~1 < b =
{ycos¢. Because of this, we can take advantage of the substitution [t — b| — b in the denominator of
(21). For the second term in (13), we introduce a new variable t' = t — b, and make the substitution
|t + b| = b in the denominator of (21), while the integral (9) is then determined by the large
exponential factor (exp(at’) — 1)~tat t'~1 « b. Then, taking into account these transformations in
(9), and summing both contributions, the triple integral in (9) finally takes the form (see Appendix C)

71'

2 -2 (31)
f dyy*IDI- f dp i, ¢>)j dt g 120 9),
where
|ID|7% ~ (y +J1+y ) exp(—21y), (32)
Y1y, ¢) = cos*p(1 + (2y*cos?) /2 (1 + {*(1 + y?)cos?p) /2 (33)
and
1
Yoy, t) = (34)

[(1+t)(y* + 21+ yD)]/?

To proceed further, we replace the function t/(e® —1) by 1/a in the inner integral (31),
which is again a good approximation for a < 0.3. The remaining integral yields

1 K
f dt a0 = @ q=1+yH72 (34)
a1+ y?
where K(q) is the complete elliptic integral [24]. Taking this into account, the ¢-integral in (31) can
be evaluated as the arithmetic mean between the integrals calculated with the limit functions on the
left and right sides of the inequality (see Appendix C)

cos?p(1+ 72(1 + yHcos?¢p) ™ < P, (y, ¢) < cos?¢p(1 + {?y?cos?¢p)~L. (35)
Substituting (C9) into (31) and (9) finally yields
T wp\3
RV =V (7”) Y,(4,0) (36)

where Y,(4,() is given by

J1+37 -1
y3H1+3%y? -

y*e2A 1
L) =|d
Yz( {) j y(y+\/T) (1+y2)1/2 (/1+y2>
N J1+3A+y2) -1
1+ y)y1+ 321 +y?)

2.6. Kinetics of Heating of Plates

The heat transfer of plates is described by the equations

doi:10.20944/preprints202309.0794.v1
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Py (Ty, T)At = —hypici (T1)ATy, Pp(Ty, T,)At = —hyp,cy (To)AT,, (38)

with ¢;(T;) being the specific heat capacities, h; and p; are the thicknesses and densities of materials,
P, (T, T,) and P,(Ty,T,) are defined by Egs. (2) and (3), and the temperature gains AT; correspond
to the interval of time At. The dependences T,(T;) and T;(T,) can be determined from the equation

ﬂ _ Py (Ty, T2)c1 (T)hipy
dTy  Py(Ty, T2)cy(T2) hap,

(39)

For identical plates, in (39), one can use the replacements P,(Ty,T,) = P1(T,, Ty), Pi(Ty, T2) =
P,(T,, Ty). Further on, we will consider only this case.

When writing Eqgs. (38), (39), it is also assumed that the heat exchange due to radiative heat
transfer occurs much slower than under thermal diffusion, and the plates acquire equal temperature
at all points because of high thermal conductivity. Really, using the thermal diffusion equation
along the normal to the plates, dT/dt = a® 0T /dz?, the characteristic time of the heat diffusion
necessary to reach thermal quasiequilibrium, is 7 = h?/a?(where a? = k/cp, and k is the thermal
conductivity). Then it follows 7= h*cp/k and in the case of gold at T =10K and h;, =h =
500 pm ¢ = 2.2 J/(kg'K), k = 3200 W/(m'K), p = 19.8 - 103kg/m? [31]) we obtain 7 = 3 ps. In turn,
the kinetics of heating induced by friction takes dozens of seconds or minutes (see Sec. 3.3),
depending on the velocity and other parameters. Assuming that P;(T,T) = —0.5n(T,V)V?, from Eq.
(38) we obtain

T
_ 2hp c(T)
vz ) prv)
To

(40)

where t is the heating time from the initial temperature T, to the final temperature T. In the
simplest case n = const and c(T) = a;T + a,T? (this is a typical low-temperature dependence for
metals) it follows from Eq. (40) that

1/2
T(t) = <—ﬁ + \/,82 + T+ 2pTE + 2nV2t/hpa2> , (41)

where f =a;/a,. At T; # T, and relatively low velocities of plate 2, as follows from numerical
calculations (see Sec. 3.1), the heating/cooling rates of metal plates differ only in sign, i.e. P;(T;,T,) =
—P,(Ty, T,). This is the normal mode of heat transfer, when a hotter body cools down, and a colder
one heats up. Then the left sides of equations (38) can be equated, and the corresponding
quasistationary temperature of the plates is given by

1/2

T= (—ﬂ + Jﬁz +B(TE+TH) + T+ TZ‘*) , (42)

where T; and T, are their initial temperatures. After establishing quasithermal equilibrium, the
temperature of the plates will increase according to Egs. (40), (41).

3. Numerical Results

For an ideal metal without impurities and defects, within the Bloch-Griineisen (BG) model, the
damping frequency v(T) in (6) is defined by the formula [28]
o/T
v(T) = 0.0212(@/T)5f dxx® sinh™?(x/2) (eV). (43)
0

The numerical calculations were carried out using (43) and the MBG approximation shown in
Figure 2 (Bloch-Griineisen scaled). The used plasma frequency of gold is w, =9.03 eV. All
calculations were performed with a gap width a = 10 nm (Figure 1) unless another value is not
indicated. Note that at separations a > 10 nm, barely any processes of extreme heat transfer and

doi:10.20944/preprints202309.0794.v1
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friction due to tunneling of electrons and phonons [32,33] and other unwanted processes do not occur
[34-36].
3.1. Quantum Friction

Figure 3 shows the velocity-dependent quantum friction force between the plates of gold,
calculated using formulas (20) (green line), (9) (red line), and (24) (blue line).

10—13 ! | 1 —-16 1 1 1

0.1 10 10° 10’ 1 100 100 10°
V (m/s) V (m/s)

(@) (b)

Figure 3. Quantum friction force of the plates of gold as a function of the velocity of a moving plate
2. Panel (a): residual resistance of gold corresponds to BG model at T = 5K. Panel (b): residual
resistance corresponds to MBG model at T = 0 (Figure 2). Green, red and blue lines were calculated
using Egs. (20), (9) and (24), respectively.

The curves on panels (a) and (b) were calculated at residual resistances of 2.13-107*® Q-m and
2.3:107'% Q'm, which correspond to BG model (43) atT = 5K and MBG model at T = 0 K. Note
that in the latter case, the residual resistance coincides with that defined by formula (43) at T =20.9
K.

3.2. Temperature-Dependent Friction at Thermal Quasiequlibrium

Figure 4 shows the plots of the friction parameters n = F,/V depending on the temperature T
of gold plates, corresponding to the BG and MBG models. The curves with symbols were calculated
using Eq. (9) for V =1 m/s. Solid curves were plotted using approximation (25) along with (26)
(green lines) or with (28) at 4 » 1 (blue lines). On panel (a), both the solid lines merge. The presence
of maxima and their positions on the curves agree with (29) and (30). These results show that the
linear in velocity approximation is valid only to the right of the maxima of the dependences n(T).

T T 10—4 . .
0.1 -1
= w 7]
0 _3 :
N. 10 I~ 1 NE
= = 1
g X
» 5 =
2 10 - = =
o
10—7 5 10—8 ] 1 ,
1 10 100 10 1 10 100 10
Temperature, K Temperature, K
(a) (b)

Figure 4. Friction parameter of gold plates as a function of their quasiequilibrium temperature: (a)
model BG; (b) model MBG. The curves with symbols were calculated using Eq. (9) with V =1 m/s.
Solid lines correspond to (25) with (26) (green lines) and (25) with (28) (blue lines in both (a) and (b)).
In panel (a), both solid lines (blue and green) merge.
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Figure 5 demonstrates the velocity dependences of 7 in the BG model (a) and MBG model (b)).
Red, blue and green lines correspond to quasiequilibrium temperatures of 5, 10, and 77 K. The
different order of lines 1-3 in panels (a) and (b) is explained by the high residual resistance of gold in
the MBG model: the condition Av(T) < T, which is necessary for the law-temperature increase in
friction, is violated at T = 5 and 10 K.

n (kg/m?.s)
|
(1077 kg/m?.s)

10~ -
10
01 100 10° 10° B 10° 10°
Velocity (m/s) Velocity (m/s)
(a) (b)

Figure 5. Friction parameter of gold plates as a function of the velocity of plate 2. (a) model BG; (b)
model MBG. Solid lines were calculated using Eq. (9), dashed lines — Egs. (36), (37). Red, blue and
green lines 1-3 correspond to quasistationary temperatures of 5, 10, and 77 K for both plates.

Table 1 shows the calculated friction parameters n of gold plates at V = 1 m/s, depending on
the temperature T and separation distance a. As in Figure 4, one can note the effect of increasing
friction (up to a maximum) with decreasing temperature at T < 85, which is more expressed in the
BG model. The height of this maximum depends on the velocity-to-resistivity ratio. When the
temperature becomes sufficiently low, the condition (30) is violated and the coefficient of friction
decreases.

Table 1. Friction parameter 1 (kg:m?/s) of gold plates for V = 1 m/s at thermal quasiequilibrium, Eq.
©)

Temperature of plates, K a=10nm a=20nm a=10 nm a=20nm
Model BG Model MBG
1 4.81E-6 2.77E-6 5.60E-8 2.80E-8
2 2.63E-4 1.47E-4 1.22E-7 5.98E-8
3 1.10E-3 5.73E-4 1.87E-7 9.13E-8
5 3.44E-4 1.67E-4 3.08E-7 1.50E-7
10 2.15E-5 1.04E-5 5.63E-7 2.73E-7
15 4.30E-5 2.09E-6 7.77E-7 3.76E-7
20 1.52E-6 7.35E-7 7.19E-7 3.33E-7
50 2.04E-7 9.90E-8 2.56E-7 1.25E-7
100 1.30E-7 6.30E-8 1.77E-7 8.63E-8
200 1.14E-7 5.54E-8 1.42E-7 6.81E-8
300 1.11E-7 5.41E-8 1.39E-7 6.81E-8

The dependence of n on the separation distance a in all the cases is close to inverse
proportionality ( o a™*). This is clearly seen from the data of the table and agrees with our previous
results [19,20,27].
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3.3. Friction and Heating under Different Conditions

Figures 6 and 7 show the calculated heating rates of plate 1 (panels (a)) and friction parameters
(panels (b)) depending on the velocity V' of plate 2 for various thermal configurations.

T | I
E‘ET1:4,T2=6
AANT=4

I
E’ET1:4',T2=6
88T = 6T,=4

—~ /(,a)\
N - Q]
E 0.1 £
= 2°
~ 005 - v
o L4
[ R
) ==: -] = 2
0 3 1171
—0.05 1 L 0.1 10 10
0.1 10 10° V, m/s
V, m/s
(a) (b)

Figure 6. Heating rate of plate 1 (a) and friction parameter n = F,/V (b) in the BG model. Thermal
configurations T; = 6 K,T, = 4K and T; = 4K, T, = 6 K have the same friction parameters, and the
configurations T = 4 and 6 K correspond to the quasiequilibrium thermal mode. The data shown
with symbols A (panel (a)) and ¢ (panel (b)) were increased by 3 times (see also [37]).

40, T T 4 T T
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! SESiisz \:1,7 5
- =
[0}
~10 i L, 2
0.1 10 10 -
V, m/s V, m/s
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Figure 7. Same as in Figure 6 in the MBG model. No additional numerical factors for the data were

used.

One can see that at at V < 10 m/s (Figure 6, panel (a)) and V < 10° m/s (Figure 7, panel (a)),
the heating rates of plates 1, 2 are equal in absolute value, differing in the sign. According to their
temperatures, T; = 4K and T, = 6K, plate 1 heats up and plate 2 cools down, realizing the “normal”
heat exchange regime. At the same time, the friction parameters weakly depend on the temperature
(panels (b)). When the speed of plate 2 becomes higher, both plates heat up faster. Then we can see
the effect of “anomalous” heating of plate 2 for some time, when it continues to heat up despite the
higher temperature. This is similar to the case of heating a hotter metal particle moving above a cold
surface [21]. However, due to different magnitudes of the heating rate (cf. the upper and lower lines
with o on panels (a)), the temperature of plate 1 “catches up” the temperature of plate 2, and further
on, both plates heat up with the same rate.

Drop in friction parameters for high velocities of plate 2 (panels (b) in Figures 6,7) is explained
by the change in sign of the Doppler-shifted frequency w™ = w — k,V = w — kVcos¢ in Eq. (5). This
occurs at V >v(T)a, because the characteristic absorption frequency is w~v(T) and the
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characteristic wave-vector is k~ 1/a. The positions of the "kinks" on the curves (V) in Figures 6, 7
correlate with resistivity, since v(T)~p(T). Indeed, it follows from Figure 2 that pyps/ppc = 10% +
10% at T = 4 + 6 K. At the same time, the ratio nyps/Np¢ in this case is in the inverse proportion to
resistivities (see (29) and Table 1).

In general, as follows from the calculations for all considered temperatures and velocities
(Figures 5-7, Table 1), the maximum friction parameter in the BG and MBG models (at a = 10 nm)
is 1076 — 1073 kg/(m?> s).

Figure 8 shows the heating time of plates vs. velocity of plate 2, calculated by numerical
integration of (39) from 4 to 5 K and from 4 to 8 K. In these calculations, the fitting parameters a; =
0.0035 J/(kg-K?), a, = 0.0023 J/(kg-K*) of the dependence c¢(T) = a;T + a,T* were determined
using the data [31] for gold at T < 20 K.

10 T T 10 T T
4
) -
EIO © 10 -
~1n3 €
< 10 . -
S g 100[ .
& 100 . =
= 2 r .
=10 - =]
o b
T - - T 0.01F .
0.1 1 10—4 ] ]
0.1 10 10° 1 100 10* 10°
Velocity, m/s Velocity, m/s
(a) (b)

Figure 8. Heating time of gold plates as a function of the velocity of plate 2 at & = 500 pm according
to BG (a) and MBG (b) models. Two upper lines correspond to heating from 4 to 8 K at 2 = 20 nm
(crimpson) and a = 10 nm (blue), two lower lines correspond to heating from 4 to 5 K at 4 = 20 nm

(green) and 4 =10 nm (red).

As follows from Figure 8, quite comfortable (from the experimental point of view) values of the
plate heating times (1-100 s) can be obtained in the velocity range 1-10°m/s. On the contrary, heating
by 1 K at Ty = 300K, a =10 nm, and V = 10°> m/s will take about 2 h. Thus, low-temperature
thermal measurements have great advantages over measurements under normal conditions due to a
significant reduction in measurement time, elimination of noise and other undesirable effects.

4. Experimental Proposal

Initiated by the advantage of the experimental design [15-17] to measure the quantum friction
force, in [37], I suggest to use another experimental layout shown schematically in Figure 9. Unlike
paper [17], in which the setup includes a disc of 10 cm in diameter rotating with an angular frequency
of up to 7 - 103 rps, it is proposed to use two identical discs placed in one thermostat, one of which
rotates at a controlled speed. In the peripheral region, the discs have an annular metal coating with
an effective area mDw. The non-inertiality of the reference system of disk 2 does not appear in this
case, since the rotation frequency is small compared to the characteristic frequencies of the fluctuation
electromagnetic field. Accordingly, the original expressions (2), (3) for heating rates remain valid.
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Figure 9. A possible setup for measuring Casimir-Lifshitz friction force (side view). The thermal
protection layer is shown in blue, the metal coating is shown in red. When the upper disk rotates, the
circular sections of discs locating at a distance a move at a linear velocity of 0.5Q0D relative to each
other. At rotation frequencies n =1 + 10* rpsand disk diameter D = 0.1 m, the velocity range will
be 0.3+3000 m/s.

A possible measurement scenario in this case is the quasiequilibrium thermal mode, when the
temperatures of plates increase from the initial temperature T, at the same rate.

5. Concluding Remarks

The Casimir-Lifshitz friction force mediated by fluctuating electromagnetic field between metal
plates moving with constant velocity relative to each other, causes their heating. In the state out of
thermal equilibrium, “anomalous” heating of the moving plate can be observed, when it is heated for
some time despite the higher temperature. However, the system rapidly reaches a state of thermal
quasiequilibrium. At low temperatures T < 6, the Casimir-Lifshitz friction and heating of metal
plates increase significantly (see (29), (30)), while the heat capacity decreases. In combination with a
fairly high speed of movement, this provides a fairly short heating time, convenient for experiments
(see (40)).
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Appendix A. Evaluation of the Integral (24)

Substituting t = b/2 = {ycos¢/2 into (22), we take into account that, typically, {ycos¢/2 >
1 (since { »> 1, y~1/2A~1)and |w,,| ~ \/y? + 1. Then |D|? takes the form

|D|? ~ (y +.y%+ 1)4 exp(—21y). (A1)

With these simplifications, formula (18) reads

o /2 Jycosg
K¢ y? _ cos¢g
EV=—-=|dy————e™ 7| d¢ dtt({ycosp —t), (A2)
2 of (y+y2+1) f ACA) Of
Y, ¢) = (1 + %y?cos?p/4)(1 + {*(1 + y*)cos?p/4) (A3)

The t integral in (A2) is simply ¢3y3cos3¢/6, while the integral over ¢ is
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/2 /2
3y3 cos* 8y? cos*
1¢:(yjd ¢:Lfd¢2 (A
6 ) “P90e) T30 CCw e g + (T +ycos’d)
where u = 2/{. The integral in (A4) is calculated explicitly using the table integral [30]
/2
f S (A5)
a’+ b%cos?¢p 2 g\/a? + b2
0
Using (A5) yields
4my3 1 2 2
Iy = 2 2y + : (A6)
3¢ \*(A1+y») y2/y2i2 44 (14y2) /A +y)2+4

Substituting (A6) into (A2), yields (24).

Appendix B. Evaluation of the Integral (26)

In the case a « 1, the main contribution to (26) make the values t < 1, y~1/2A~1. Then from
(14) it follows |wy,| = |(¥? + t/(t + i))*/?| = y. Using this, we find

|[D|7% = 16y*exp(—21y) (B1)
At the same time, from (21),
£2
1A+ e2)(y2+ 21 +y2)
Substituting (B1) and (B2) into (26) yields

(Imw, ,)° = (B2)

[oe]

2 ¢ t? 1
YA, @) =Z—4 f dyye~21y j de (B3)
0 0

sinh (at/2)2 (1 + t2)(y? + t2(1 + y2))

Using the approximation - 4/a* and the table integral [30]

sinh (at/2)?2

[ee)

1 1 4
f dx (a? + x2) (b2 +x2) 2ab(a+b)’ B4
0
we get
Y,(ha) ~ y(A) = — f by i { T H, (22) — Ny (22)] — — (B5)
1 )= X =25 y— =501 1 — IV ETX(
32 3241 412}
] (y +y1+y?)
where H;(x) and N;(x) are the Struve and Neumann functions [30].
Appendix C. Evaluation of the Integral (31)
We rewrite Eq. (13) in the form
2 2
Z(t,y,¢) = t”™ =t—{ycos¢p. (C1

exp(at) — 1 B exp(alt-])—1"'

The integral in (9) includes two exponential factors, defined by (C1). By changing the order of
integration in the first term we get

1=2 fwd 4fnd fmdtlmwllmWZ ! C2
- ( vy ¢COS¢ |DI2 exp(at) -1 ( )
0 0 0
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Similar to Appendix B, we can again take advantage of the behavior of the t- integral in (C2) for

a &K 1,and { > 1,substituting ~ 1/at and using (A1) for |D|%. For Imw, Imw,, we use (21)

1
exp(at)—-1
with the replacement |t — b| = {y|cos¢|. Then (21) takes the form

t - {|cos¢p| - sign(t — {ycos¢)

mwatmuz == 4[(1 + {?y2cos?¢p)(1 + ¢2(1 + y?)cos?¢p)(1 + tz)(y2 +t2(1 + yz))]l/2 - (©)
Inserting (C3) into (C2) yields
B /2
=4 j s \/ZL:)ZA; ) [ a9 j dt s (t,), ()
where
¥1(9,¥) = cos?¢[(1 + {Zy?cos?)(1 + {*(1 + y*)cos?$)] /2, (&)
Pa(t,y) = : <

[(1 +t )(ﬁ + tz)]l/z .

Substituting (C5) and (C6) into (C4) and taking into account (B4), the inner integrals are
calculated yielding (see (35) and three lines upper)

I,(y) = jd(l’ cos?¢ I ,/1+(2y2—1+ 1+32(1+y?) -1 )
i Di($y) 202 y2 1+ 2y (1+y)J1+ 20+
L) fwdup(t ) ==k (©8)
tW) = 2\LY) = )
. Ji+y2 \J1+y2
where K(x) is the elliptic integral. Finally, substituting (C7) and ((C8) into (C4) yields
1_7'[ ye2 ( 1 ) 1+%y2-1
(y+,/ 741) (@ +y2z \WI+y2 | y2 T+ )

4 J1I+3A+y3) -1
A +yDYT+3A+yD)|
The second integral in (9) including t~ in (C1) is evaluated with the same result (but ultimately

having the opposite sign), by introducing a new variable t' =t — b, and using the substitution
[t' + b| - {y|cos¢| in (21).
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