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Abstract: In many industrial, automotive, and aerospace applications, electro-mechanical systems are subjected
to random vibration excitations, and the most critical components are required to undergo qualification tests to
verify their suitability. Measured field data are commonly considered as reference for the synthesis of random
stationary signals used as shaker input excitations in laboratory tests. For the most popular procedures of ran-
dom-control testing, the user sets the input profiles in terms of power spectral density (PSD) associated with
randomized phases generated by the shaker controller to finally provide the physical motion. As a result, the
overall probability distribution of the test signal tends toward Gaussian, whereas many real-life random exci-
tations prove non-Gaussian due to distinctive bursts and peaks. The quantitative estimate of the number and
amplitudes of peaks present in a certain signal is usually made through the statistical parameter known as
kurtosis. The so-called kurtosis control methods presented in the literature are conceived to perform qualifica-
tion tests with random and non-Gaussian vibration excitations. In this paper, two novel algorithms able to
synthesize shaker input signals for random-control testing with prescribed PSD and kurtosis value are pro-
posed, and the results of their application are comparatively discussed to assess their effectiveness and poten-
tialities in different kinds of qualification testing, including accelerated fatigue-life tests.

Keywords: vibration qualification testing; random vibration; non-gaussian signals; kurtosis control; test tai-
loring; mission synthesis

1. Introduction

In the operating lifetime of mechanical systems working at high dynamics, vibrations are a
common source of fatigue damage that could lead components to premature failure. To test whether
the components could withstand the elastodynamic loads occurring for a particular application, just
the latter is used to tailor qualification tests performed by means of shakers/slip tables. The so
-<called Test Tailoring procedure aims at a proper definition of the vibratory profiles (Mission Syn-
thesis) to be used as the excitation for the device under test (DUT), based on the processing of ref-
erence environmental data — measured in those working conditions that are particularly significant
to represent real-life excitations expected for the DUT - in order to reproduce their most important
characteristics in laboratory tests.

Instead of replicating the recorded environmental data as shaker input signals, which would
result in the major drawback of losing stochasticity and limiting the qualification tests to represent a
given working condition only [1], the conventional Mission Synthesis procedures implemented so
far [2] provide the synthesis of a test profile in terms of a Power Spectral Density (PSD). In Random
Control tests, the shaker controller then generates the actual vibration after applying the Inverse Fast
Fourier Transform (IFFT) to the spectral domain. Amplitudes and phases characterize this domain,
with the former being obtained from the PSD and the latter being randomly generated as uniformly
distributed random variables.

Owing to their random generation, the probability distribution of the values of the obtained
time-series is Gaussian. This could compromise the reliability of tests since most excitation signals
encountered in real applications feature non-Gaussian distributions. A parameter that accounts for
deviations from Gaussianity is kurtosis [3]: for Gaussian signals, its theoretical value amounts to 3.0,

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202309.0792.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 September 2023 doi:10.20944/preprints202309.0792.v1

2

whereas if peaks and bursts or deterministic components are preponderant, it becomes higher or
lower than 3.0, respectively. Signals with kurtosis value greater than 3.0 are named Leptokurtic, and
so is their distribution.

Over the last decades, the so-called kurtosis control methods have gained increasing interest: the
aim is to generate shaker input signals by controlling both the PSD and the kurtosis parameter, in
order to carry out more realistic tests by preserving the nature of real-life random excitations (i.e. the
values probability distribution due to peaks and bursts). Several kurtosis-control algorithms can be
found in the literature [1, 4-17], which are essentially based on three different main approaches (or
their possible combinations): Phase Manipulation [5, 8, 12, 16, 17], Amplitude Modulation [10, 11],
and Polynomial Transformation [13-15]. The methods proposed feature different characteristics and
performance depending on the corresponding targeted goals (not limited to durability testing ap-
plications, which is instead the general framework of the present work). Overall, however, one
common critical issue exists that needs to be addressed by any procedure of kurtosis-control, as it
significantly affects the effectiveness of transferring peaks and bursts from the excited base to the
DUT. In fact, it is known that the response of a lightly damped system to a generic excitation may
tend to a Gaussian probability distribution due to a filtering effect [18]. Thus, if this occurs, the tests
would be no different from the standard procedure that generates directly Gaussian signals. Here-
inafter, this filtering effect will be referred to as Papoulis” Rule, which stems from the mathematician
who proved it based on the Central Limit Theorem [18, 19].

In this work, two novel algorithms are proposed for the synthesis of random excitation signals
with prescribed PSD and kurtosis value, able to robustly circumvent the Papoulis’ Rule and to excite
a generic DUT effectively irrespective of the signal features of the reference environmental data.
Indeed, most kurtosis control algorithms prove to be effective only if certain conditions are met (e.g.:
the DUT natural frequencies must be known; the reference environmental data to be processed need
to be narrowband signals...). The main difference between the two algorithms regards the predicted
kurtosis value of the DUT response: constant and equal to the excitation one for the first algorithm,
variable and significantly larger for the second one. Moreover, it will also be shown that the pro-
posed methods can be used for accelerated fatigue-life tests with the help of the filter proposed by
Kihm et al. [20]. These tests seek to preserve the damage potential of a signal measured from an ap-
plication and replicate it in a shorter time. The damage potential associated with a vibratory excita-
tion is estimated via a spectral function called Fatigue Damage Spectrum (FDS) [21] and current
procedures already available in some commercial software permit the synthesis of a PSD from pre-
scribed FDS and duration of the test [2]. Since the output is the only PSD, the standard procedure
leads to accelerated tests featuring Gaussian excitation signals, hence the same problems with not
preserving the nature of reference signals — possibly non-Gaussian — may occur in this case as well.
The two kurtosis-control algorithms do not directly control the FDS, but by convolving the synthe-
sized signal with the filter mentioned above, it is possible to match a prescribed FDS for accelerated
fatigue-life tests while preserving the non-Gaussian features of the environmental data.

The paper structure is as follows: Section 2 reports the theoretical background on the popular
procedures of kurtosis-control and the analytical formulations of the two original algorithms pro-
posed in this work; the results of the application of the algorithms for a case study are reported and
discussed in Sections 3 and 4, respectively; finally, Section 5 is devoted to some concluding remarks.
In addition, details about some computational issues related to the algorithms implementation are
reported in the Appendices: in particular, computationally efficient procedures for the implementa-
tion of kurtosis-control algorithms based on Phase Modulation and for the kurtosis value computa-
tion of multiple/concatenated time-series are proposed in Appendices A and B, respectively,
whereas the effectiveness of the special filter proposed by Kihm et al. in [20] is analytically proven in
Appendix C.

2. Materials and Methods

2.1. Theoretical background

In the field of random vibration testing, the shaker controller typically generates a stationary
vibratory signal in the time domain from a prescribed PSD input by applying the IFFT to the spec-
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tral domain. Amplitudes and phases characterize the spectral domain; the former are related to the

PSD via the equation:
A, =42G, Af @

where the amplitude Ax of the n" harmonic is related to the n"* PSD element G. and frequency reso-
lution Af. The randomness required for the generation of the time-series is guaranteed by the phas-
es, which are defined as uniformly distributed random variables in the interval [0, 2xn[. The time
histories generated in such a way are always characterized by a probability distribution of their
values close to Gaussian. The statistical parameter known as kurtosis is the 4t statistical central
moment of a signal, normalized by the 4% power of its standard deviation. For Gaussian signals, the
theoretical value of kurtosis is 3.0, whereas Leptokurtic signals feature greater values (e.g. due to
high peaks caused by micro-collisions). In practical applications, discretized formulations of the

signal statistical quantities are typically used:
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where ¥, 0, 02, k are the mean value, the standard deviation, the variance, and the kurtosis of the
signal, respectively, xxits nth sample, and N its total number of samples. Current kurtosis control
algorithms are generally based on three approaches: Phase Manipulation (PM), Polynomial Trans-
formation (PT), and Amplitude Modulation (AM).

PM methods [5, 8, 12, 16, 17] employ the formulation of kurtosis written in terms of the amplitudes
and phases of a time-series. Steinwolf et al. [4-9, 17] described some analytical methods that control
kurtosis by changing only the phases while keeping the amplitudes constant. This would imply
preserving the PSD as well since it only depends on amplitudes. In Appendix A, computational
cost issues are discussed and an original procedure is proposed to efficiently implement the PM al-
gorithms based on Steinwolf’s studies.

PT methods consist of generating a Gaussian signal x(t) with the prescribed PSD first and then ap-
plying an analytical transformation of the form:

y(t) = ayx(t) + azx(t)? (6)

with the coefficients ou and o being functions of the target kurtosis value [13-15]. The transfor-
mation in Eq. (6) presents two disadvantages: (i) the PSD of the signal is affected by an unwanted
disturbance and (i7) Papoulis’ Rule is very likely to occur, thus causing the peaks present in the in-
put signal to be filtered out and leading the response to approaching a Gaussian probability distri-
bution.

The second problem is similar to the case of PM methods. In fact, the effectiveness of kurto-
sis-control methods lies in the fact that the bursts of the signal must have either of two characteris-
tics: (i) a long enough duration in order to appear also in the unavoidably time-delayed response of
the system, (ii) a narrow-band frequency content containing the natural frequency of the system.
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Typically, the bursts generated by both PM and PT methods do not have a long enough duration
and this is the reason why they are likely to be filtered out by the system.

Methods that generate bursts of desired duration employ the AM approach, which consists in
modulating a Gaussian signal x(t) having the desired PSD with an appropriate function w(t) in or-
der to obtain a signal with a desired kurtosis value [10, 11]:

y(t) = w()x(t) )

This method is effective in transferring the kurtosis value to the response of the DUT if the
signal bursts of the modulating signal have greater duration than the inverse of the bandwidth of
the lightly-damped system [11]. The carrier waveform w(t) introduces low frequency components
in the spectrum of y(t) compared to that of x(t), albeit negligible if w(t) is appropriately designed.

Both the algorithms presented in this paper, which aim to synthesize vibratory profiles whose
kurtosis and PSD match the reference input ones, are based on two different approaches that can
hardly be classified into the above-mentioned categories. The following Sections are devoted to the
detailed description of their implementation.

2.2. Multi-Level Variance (MLV) algorithm

The algorithm named Multi-Level Variance (MLV) attains the synthesis of a signal by dividing
the signal duration Tw: into m» blocks of the same size and duration Tv (T» = Twt/n). The generated
blocks are not overlapped and have different variance, which is closely related to a modulation
procedure, although no modulating function is explicitly used. As shown in the following, the dif-
ferent levels of variance o2 (i = 1,..., my) are produced in such a way that the synthesized signal
complies with the kurtosis and PSD constraints. In general, the PSD of a signal is computed by cal-
culating the Fast Fourier Transforms (FFT) over small-sized blocks and squaring their magnitude to
obtain the so-called periodograms. More specifically, the periodogram could be thought of as some
sort of PSD computed only for the generic block of the signal. After obtaining the periodograms, the
last step is to average them in order to calculate the PSD of the signal. In the algorithm, the PSD of
the ith block of the signal, Gi, is defined to be proportional to the PSD of the reference signal, G, as in
the following expression:

2
O

—G, i= 1, - (8)

2
Otot

Gi=

In Eq. (8) ow? and ¢ are the variance values of the overall signal and the i block, respectively.
It is to be highlighted that the 0 parameters are the unknowns, whereas o« can be calculated from
either the reference signal, Eq. (4), or directly from the reference PSD:

oot? = [y G(P)AS ©)

where G(f) is the PSD amplitude at the generic frequency fof a continuous signal. However, since the
processed signal is discrete in practice, the PSD is also discrete and the theoretical computation of
Eq. (9) must be discretized. The unknown parameters o2 are also related to the overall variance ot
through the following equation (cf. Appendix B for proof):

1
Otor” = 1-Li2y 0 (10)
From Egs. (8, 10) the following relation must hold:
1 «on
G= n—bziﬁl G,‘ (11)

Since the PSD G is computed by averaging the PSDs of the blocks, Eq. (11) is automatically
satisfied. Hence, the constraint on the PSD spectrum is fulfilled if n» values o# that comply with Eq.
(10) are found. In addition to Egs. (10, 11), there is also a relation between the kurtosis values of the
overall signal, kwt, and of the single blocks, ki (cf. Appendix B):
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The first step of the algorithm is to randomly generate the o# values such that 02 € [omin?, Omas?]
and gmin? < ot < gma?. The ratio ro? = omin?/ow? € ]0, 1] must be selected by the user as an input for the
algorithm: the closer to 0, the more the variance of the synthesized signal will vary in time, whereas
the opposite is true if closer to 1. The parameter om? is not selectable directly by the user because it is
adjusted throughout the algorithm iterations in order to converge to the target kurtosis value. The
user can also choose the number of bursts with high amplitude excursion of the synthesized signal
(parameter np = 0,..., m); this is typically done by referring to the number of bursts that can be ob-
served in the reference measured data. The algorithm generates 1, blocks with a variance equal to
om?, which is greater than the variance of the other blocks. The kurtosis ki and variance o of the
blocks are calculated via Egs. (4, 5) only on the first iteration, whereas the discrete signal x« is ob-
tained by the IFFT of the PSD of the single blocks with randomly generated phases and then by
concatenating the blocks. A random integer s, representing a single block, is then automatically
generated in the interval [1, m]. After the 02 levels are generated (i =1,..., my, i # 5), the variance and
the kurtosis of the randomly selected s block are calculated via the following relations, which stem
from Egs. (9, 12):

2

2 2 np
Og = NpOtot™ — Lij=19i (13)
i#s
np
NpKeorOror =22, kio* (14)
— i£Ss
kg =

agt

Egs. (13, 14) are used in order to verify if the prescribed PSD and target kurtosis can be
achieved: indeed, o0s* is required to be not null and ks greater than a lower threshold, ks_m, and
smaller than an upper threshold, ks_mx. The upper threshold should not be set excessively high be-
cause it would lead to generating unrealistic peaks in the s block exceeding by far the amplitude of
those of the other blocks. Afterward, in order to obtain the ks given by Eq. (14), the harmonics phases
of the s block are adjusted using a phase manipulation procedure (cf. Section 2). With very few it-
erations, where the parameter oms? is changed in order to converge towards the target kurtosis val-
ue, Egs. (13, 14) are usually satisfied. The final step of the algorithm is to concatenate the generated
blocks by smoothing them through proper interpolation of the values close to the edges of the ad-
joining blocks, in order to avoid unrealistic discontinuities among them.

In conclusion, the user has to insert:

. the reference input signal or, alternatively, reference PSD and kurtosis value;

. the duration Tt of the signal to be synthesized;

. the sampling frequency Fs of the synthesized signal (usually the same as the reference signal);
. the signal blocks duration Ty;

. the ratio ro%;

. the number of bursts ny;

. the lower and upper thresholds for kurtosis value ks_min and ks_max, respectively.

2.3. Variable Spectral Density (VSD) algorithm

The algorithm hereinafter called Variable Spectral Density (VSD) splits the signal to be synthe-
sized into n» blocks of the same duration T as the previous algorithm. The major difference is that
the PSD Gi of the i block is randomly generated.

Let the PSD matrix [G"j] be defined as:

Gl Gl e Gl

Gl=| : : oo [t T
7 A s

(15)

where Ni is the number of spectral lines. This matrix has Ni rows and n columns, with the j*
column being the PSD vector of the j* block of the reference signal. Eq. (15), where all the columns
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have the same elements (harmonic amplitudes), refers implicitly to a signal having a stationary PSD.
On the other hand, the PSD matrix [G"jj] corresponding to the signal synthesized through the MLV
algorithm has the following form:

2 0
gy np
2 Gl o Gl 2 Gl
Otot tot Otot
[Gij] = o : (16)
0'% GN 022 GN aﬁb G
2 2 N
Ofar M Oy M tor 1

Both the matrices in Eqgs. (15) and (16) satisty Eq. (11) that may be rewritten in this case, in
conformity with the notation used in this Section, as:

it Gy = Gimy, i=1,..,N, (17)

The VSD algorithm synthesizes a signal with a PSD variable over time, corresponding to a PSD
matrix having the most general form:

Gir Giz - Gy,

611 = s

Gny1 o Gupz o Gy,

where the elements must comply with Eq. (17).
The generic matrix in Eq. (18) can be derived from Egs. (15) and (17), by changing one row, the
i*" for instance, as in the following equation, where p € [0, 1] and [ is a positive integer such that [ < s

G, G, G4 G4 jf* column

[GU] — Gii ...p(i’.]‘i..-[1+(l—1:)(1—33)]65-..;0?6,: ...p:GiGAGfI\ (19)

Gy, Gy Gy

h

Gy

h

Gy, Gn

h h h

Equation (17) is still complied with if the terms of the type pGi are [ — 1. If similar operations
were done not only on the term Gj but also on other terms and in a random manner, then the PSD of
each block could be varied still preserving the overall PSD.

In conclusion, the user is required to perform the following operations:

. insert a reference input signal or, alternatively, reference PSD and kurtosis value;

. set the duration Tw and the sampling frequency F;s of the signal to be synthesized;

. choose p € [0, 1].

Then, the workflow of the algorithm is based on the following operations that are automatically

performed:

1. setTrandi=1;

2. sets=0;

3. choose a random element j of the i** row;

4. generate a positive random integer [ < ny —s;

5 setGij=[1+(-1)(1-p)Giands=s+1;

6. repeat 3 — 4 — 5 with another value for j (different from the values generated in the previous

loops) and another value of I, until s 2 m — 1;

7. set Gim=pGi with m ranging over all the elements of the i row which have not been modified in
point 5;

8. if i <N, set i =i+l and repeat from point 2, otherwise proceed to point 9;

9. terminate if the kurtosis of the synthesized signal matches the target value (within a certain
tolerance, to be preliminarily set), otherwise repeat from point 1 where a different T» is auto-
matically generated. Decreasing T» makes the kurtosis value increase and vice versa (this is how
the algorithm converges towards the target kurtosis).
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As in the case of the MLV algorithm, the very last step is to smooth the signal at the edges of the
blocks in order to avoid unrealistic discontinuities.

It is worth noting that a limitation of the algorithm could be that the variation of the PSD over
time (i.e. over the blocks) is not controlled but randomly generated.

3. Results

Real field data sampled at 8192Hz and having a duration of 660s are used as reference signal for
an example of application (Figure 1). The synthesis by the MLV and VSD algorithms was performed
in order to obtain signals with the same sampling frequency and duration for the sake of a direct and
more straightforward comparison. Two signals synthesized by the MLV algorithm are shown in
Figure 2, hereinafter referred to as MLV1 and MLV2, respectively. The main difference between the
two implementations of the algorithm was in the choice of the signal blocks durations and number
of bursts: {Tv = 3s, np = 10} and {Tv = 0.1s, np = 300}, for MLV1 and MLV?2 signals, respectively. The
parameter r.2 was set equal to 0.25 for both. Statistical parameters and PSDs of the signals are re-
spectively reported in Table 1 and Figure 3, over the frequency range 0+4096Hz. The acceleration
response of a series of single-degree-of-freedom (SDOF) linear systems, with natural frequency in
the range 0+4000Hz and a constant damping ratio equal to 2.5%, was calculated by convolution
between the impulse response of the system and its input. The response kurtosis of the synthesized
and reference signals is shown in Figure 4, where the kurtosis parameter is plotted versus the natu-
ral frequencies of the SDOF systems. It can be observed that the kurtosis of the synthesized signals
remains approximately constant over the frequency range; however, the signal with the lower Tb
(MLV2) suffers more from the Papoulis’ Rule, whereas the higher T (MLV1) permits the generation
of bursts that last enough to be transferred to the response, thus almost preserving the input kurtosis
value. By inspecting the plot, it should be evident that the kurtosis of the response to the reference
signal is not constant over the frequency range and in particular, for some frequencies it is much

higher.
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Figure 1. Reference signal: (a) time-series and (b) PSD (frequency resolution Af = 5Hz).
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Figure 2. Signals synthesized with different parameters of algorithm MLV: (a) T» = 3s, ro?> = 0.25, np = 10, (b) Tv =
0.1s, rs? =0.25, np = 300.

Table 1. Statistical parameters of the reference and synthesized signals MLV1, MLV2.
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Reference signal MLV1 MLV2
Std deviation [m/s?] 14.3 14.3 14.3
Kurtosis [-] 7.19 7.04 7.03
Crest factor [-] 11.9 12.0 13.2
Duration [s] 660 660 660
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Figure 3. PSD computed with frequency resolution Af=5Hz: (a) MLV1, (b) MLV2. The same curve of Figure 1b,
relative to the reference signal, is reported in both graphs for comparison.

70 MLV1
r.\ Ref.
60 I Synt. |
‘ \
\
50 7 ' |
= f \
40 I | [
2 N [ Il
- | I
3Py || || |
z \ L Vo I
2l [ | b ]
/ | i | \I\- {
il I"‘ i A A | I‘\ / 'f‘\‘ |‘I \'-
10 7_ ‘\\\. :_;HL 7"\_)______‘,..." L'/"""’\'_ ;l‘._ | .\i_ I — \,./_/\_\ =
0 i
10 10% 10°
Frequency [Hz]
(a)

w S [5) @
o o =] o
T

Kurtosis [-]

)
=]

MLV2
s ! g
r‘\ Ref.
\ Synt. |
R
|
f“| | ‘ |
1 “ | [
[l I | I
kil ) (
\ -‘ \ ‘|,| T I
| f‘ ” ‘|f“ I\ | A1) ‘
PR A f‘ | W [
‘ VA A Ao CXal
i Ny / I"\J ek
g A J,';L‘ VRN . R N
10° 102 e
Frequency [Hz]

Figure 4. Kurtosis of the SDOF systems responses, with natural frequencies in the range 0+4000Hz, to the syn-
thesized excitation signals (red lines): (a) MLV1, (b) MLV2. The corresponding curve (blue line) computed for
the reference excitation signal is also reported.

The VSD algorithm only requires the parameter p to be specified, and two synthesized signals
with different p (respectively 0.1 and 0.6) are shown in Figure 5, hereinafter referred to as VSD1 and
VSD2, respectively. Their corresponding statistical parameters are listed in Table 2 and their PSD in
Figure 6. The kurtosis of the SDOF systems responses is shown in Figure 7. It can be observed that
the kurtosis changes over the frequency range and proves significantly higher than the input kurto-
sis, to which extent depending on parameter p: the lower p, the higher the output kurtosis.
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Figure 5. Signals synthesized with different parameters of algorithm VSD: (a) p = 0.1, (b) p = 0.6.
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Table 2. Statistical parameters of the reference and synthesized signals VSD1, VSD2.

Reference signal VSD1 VSD2
Std deviation [m/s?] 14.3 14.3 14.3
Kurtosis [-] 7.19 7.02 7.11
Crest factor [-] 11.9 10.2 12.6
Duration [s] 660 660 660
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Figure 6. PSD computed with frequency resolution Af=5Hz: (a) VSD1, (b) VSD2. The same curve of Figure 1b,
relative to the reference signal, is reported in both graphs for comparison.
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Figure 7. Kurtosis of the SDOF systems responses, with natural frequencies in the range 0+4000Hz, to the ref-
erence excitation (blue line) and the synthesized signals (red lines): (a) VSD1, (b) VSD2.

In the perspective of using the proposed algorithms to generate shaker input signals for fatigue
life tests, further processing of the synthesized signals is carried out. For a straightforward compar-
ative illustration of results, the duration of the hypothetical durability tests is ideally assumed to be
equal to the duration of the reference field data. In particular, the FDS curves over the frequency
range 0+4000Hz are calculated and plotted with a resolution of 1/12% octave. For brevity, only the
FDS of the reference, MLV1, and VSD1 signals are shown. The most influent parameters in the FDS
calculation are the Wohler’s curve slope (i.e. the exponent b in the well-known Basquin’s law NSt =
const.) and the damping ratio of the SDOF systems, which were set to 7 and 2.5%, respectively. The
plots of the reference and the synthesized signals FDSs are reported in Figure 8. It should be evident
that the Fatigue Damage curves are not overlapped. In order to adjust the FDS of the signals to
match the reference one, the filter described in [20] is used (cf. Appendix C for an original mathe-
matical proof of the filter effectiveness). The steps of the procedure are:

1. calculate the FDSs of the reference and synthesized signals D«(f:) and Ds(f.), respectively;
1
Dy(fn)]b |
DS (fn) !
3. calculate the Inverse Fourier Transform of W(f:) to obtain the impulse response of the filter;
4.  convolve the so-obtained impulse response with the synthesized signal.

2. define the spectral function: W (f,) = [
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Now, the synthesized and the reference profiles have the same FDS. It must be highlighted that
the newly obtained signals are different from those synthesized previously and their statistical pa-
rameters and PSD change to some extent (Figures 9 and 10, Table 3). However, their nature remains
Leptokurtic and similar to the signals MLV1 and VSD1. The plots of the signals FDSs obtained after
convolution with the filter are reported in Figure 11 and show a precise matching. It is worth noting
that the signals in Figure 9 have a sampling frequency of 10240Hz since an up-sampling was neces-
sary to correctly compute the FDS, as highlighted in [22, 23]. Though, the PSDs in Figure 10 are
plotted in the range 0+4096Hz, consistently with Figures 1b, 3, 6.

MLV1 VSD1
10°10 —rr M—— T — — T em— M S — —
Ref. Ref.
s Synt.| TS / A Synt. |
T 4020} ] 7":':~<‘, A Ty} l“"\. A A ;
% AT 4 . WACA R T
g MR g N
g ~ \ '\\ A .g '\\ :‘/‘;.;.
& 0% TN 8 o0 | “ N
=) 0\ 3 b
g N, g A ;)
Ny o
1040 - \ 1040 -
10 10° 10° 10 10° 10°
Frequency [Hz] Frequency [Hz]
(a) (b)

Figure 8. FDS of the synthesized signals MLV1 (a) and VSD1 (b), calculated by assuming: slope of Wohler’s
curve equal to 7, frequency resolution of 1/12" octave, damping ratio equal to 2.5%. The corresponding curve
relative to the reference excitation signal is also reported (blue line).
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Figure 9. Signals generated by the convolution between the filter proposed in [20] and the signals MLV1 (a) and
VSD1 (b) in order to match the FDS associated with the reference excitation signal.
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Figure 10. PSD of the signals generated by convolution between the filter proposed in [20] and the signals
MLV1 (a) and VSD1 (b), computed with frequency resolution Af = 5Hz. The corresponding curve relative to the
reference signal is also reported (blue line).

Table 3. Statistical parameters of filtered synthesized signals.
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MLV1 with filter VSD1 with filter
Std deviation [m/s2] 17.3 104
Kurtosis [-] 6.14 5.89
Crest factor [-] 12.1 9.99
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Figure 11. FDS of the signals generated by convolution between the filter proposed in [20] and the signals
MLV1 (a) and VSD1 (b), calculated by assuming: slope of Wohler’s curve equal to 7, frequency resolution of
1/12% octave, damping ratio equal to 2.5%.

4. Discussion

The results show that the MLV algorithm synthesizes shaker input signals that can transfer their
kurtosis value to the output of any SDOF linear system, irrespective of the latter’s natural frequency.
This aspect eliminates the main flaw of Phase Manipulation and Polynomial Transformation meth-
ods. In particular, the kurtosis of the output features small fluctuations around a value close to the
excitation one, due to the following reason: all the blocks constituting the synthesized signal have a
wideband PSD, thus resonance effects cannot occur. The kurtosis transfer is only due to the energy
of the bursts appearing in the signal, and the high excursions in the output cannot physically contain
more energy. However, the input parameters of the algorithm are relevant and may affect the re-
sults. In fact, if the bursts duration (represented by parameter Tb) is not long enough, the system may
not have time to respond and high excursions may not appear in the response. In addition, the MLV
algorithm only deterministically imposes the phases of one block, thus achieving a high random-
ness. Consequently, different runs of the algorithm — with unchanged setup parameters — to process
the same reference signal provide the synthesis of different time-series (all complying with the target
PSD and kurtosis). Therefore, random vibration tests that require a sizable duration can be carried
out starting from short environmental measurements by concatenating many profiles synthesized
by the MLV algorithm.

The VSD algorithm can generate narrowband blocks, which can exasperate resonance effects on
the DUT: the lower the value of parameter p, the more evident the resonance occurrence. The ad-
vantages of this algorithm are two-fold: (i) the synthesized signals are capable of generating SDOF
systems responses with high kurtosis, though the excitation features relatively small value of the
crest factor, thus subjecting the shaker to non-critical loads; (ii) kurtosis of the response is not con-
stant over the natural frequency and is generally broadly higher than the excitation one (this sce-
nario being quite common in many practical applications, due to the variable spectrogram of real-life
vibrations). It must be highlighted, however, that a significant limitation of the algorithm could be
that the PSD variation cannot be controlled. On the other side, its randomness contributes to the
synthesized signal stochasticity, which is further increased by the complete aleatory generation of
the phases in the IFFT transform for each block.

Both the algorithms could lead to signals with a very different damage potential from the exci-
tation one, since kurtosis control does not directly control the FDS. The filter described in [20] was
used to correct the FDSs of the signals generated by both the MLV and the VSD algorithms. The new
signals showed similar Leptokurtic distributions as their corresponding synthesized ones, with
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slightly different PSD and statistical parameters. The procedure was used to synthesize signals
having the same duration as that of the reference input, for the sake of direct comparison of results,
but is actually intended to be used for accelerated fatigue-life testing.

5. Conclusions

In this work, two novel kurtosis control algorithms were proposed. The first algorithm, named
Multi-Level Variance (MLV), splits the signal to be synthesized into blocks of the same duration and
featuring variable variance. Namely, the shape of the PSD of each single block remains the same but
scaled by an appropriate factor. The overall PSD and kurtosis approach closely to the reference input
ones within a certain tolerance. The Papoulis’ Rule proves not to apply if the parameter that controls
the duration of the bursts in the synthesized signal is appropriately chosen. In particular, the kurto-
sis of the output features the tendency to be constant over the natural frequency range of the DUT.

The second algorithm, named Variable Spectral Density (VSD), splits the signal into blocks of
the same duration, not only with variable variance but in general with variable PSD. The overall
PSD and kurtosis approach closely to the reference input ones, within a certain tolerance. The Pa-
poulis’ Rule proves to not apply for every value of the only algorithm parameter that depends on the
user’s choice. The kurtosis of the output tends to vary conspicuously over the natural frequency
range of the DUT, with broadly higher values than those determined by the reference field data.

The damage potential associated with the shaker input signals synthesized by both algorithms
proves different from that of the reference field data. The difference in the FDSs functions can be
corrected by applying a special filter found in the literature. This leads to the generation of new
profiles that match the reference FDS still featuring PSD and kurtosis values very similar to those of
the signals synthesized by the algorithms. Hence, the overall procedure can be effectively employed
to generate shaker input signals for accelerated fatigue-life testing.

The proposed algorithms have been validated through the application to many case studies, not
reported in this paper for the sake of brevity (but a few examples can be partially considered in ref-
erences [24, 25], where the formulation of the algorithms was not still optimized), starting from dif-
ferent reference field data featuring different characteristics — e.g. kurtosis value, bandwidth, spec-
tral content, duration — thus proving their robustness for different scenarios.
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Appendix A

This paragraph focuses on operative aspects associated with the implementation of PM-based
methods to control the kurtosis of synthesized signals. A number of kurtosis-control algorithms (in
particular the works by Steinwolf, e.g. [5, 8], considered by the Authors as the most significant ones
in this field) exploit analytical methods that preserve the PSD of the reference field data by changing
only the phases while keeping constant the amplitudes. Indeed, from Eq. Al (which is a simpler
expression of the equation used by Steinwolf in [8] to demonstrate the proof of the proposed meth-
od) and Eq. A2, it is evident that the kurtosis k depends on both the signal amplitudes and phases,
whereas the PSD depends on amplitudes only:
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n+k=Il+m

(A2)

It is worth noting that PM procedures based on the direct implementation of Eq. Al (or equiv-
alent formulations) are not particularly efficient due to the high number of calculations required.
From the computational cost standpoint, the procedure based on the following steps is suggested as
a simple and efficient implementation of PM methods:

Step 0) starting from the PSD of the reference signal, generate phases randomly;

Step 1) select one of the phases randomly;

Step 2) randomly set another value for that phase between 0 and 2x;

Step 3) perform IFFT and calculate the new kurtosis value via Eq. (5);

Step 4) if the new kurtosis value is closer to the target value, keep the value of the phase
changed at step 2, otherwise discard it and restore the former value for that phase;

Step 5) repeat from step 1 until the target is reached.

The upgrade in speed of the method is given by the fact that there is no burdensome analytical
formula to compute, and it allows for a very straightforward implementation. However, this pro-
cedure may present two major disadvantages if not used along with other methods. The first one
regards the filtering of the peaks occurring because of Papoulis’ Rule: in fact, the natural frequency
of the DUT should be known a priori, in order to change the phases only in the vicinity of the reso-
nance [17], otherwise the response may be close to Gaussian [18]. The second one concerns compu-
tational complexity: despite optimizing its implementation, the method is still slower than other
commonly used kurtosis-control methods. If PM is implemented, it is suggested to generate a signal
by splitting it into blocks in order to create more realistic peaks and decrease computational com-
plexity, since smaller blocks would imply a lower Np.

Appendix B

The formulae for kurtosis and variance of a time-series composed of n signals can be written in
the following forms:

n LT g4
j=1ki T -9

J
keor = T- O_wt4 (B1)
n T . g2
j=17% %
R — (82

where the following nomenclature holds:
n: number of concatenated signals/blocks;
kj: kurtosis of the ji signal/block;

kior: kurtosis of the overall signal;

o/2: variance of the j signal/block;

ow?: variance of the overall signal/block;
Tj: duration of the j* signal/block;

n
T: duration of the overall signal (T = z T).
j=1
These formulae are a generalization of Egs. (10, 12) because, in that case, the blocks had the
same duration. Their proof is given next, with the assumption that a signal xj has zero mean
(without loss of generality). From the definition of the s statistical moment Ms:u: of the signal x;:
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N,
E} tczlt xj
M -4 - -

= (B3)
Stot Ntot

and the definition of the following parameters:

N number of samples of the overall signal;

ns: number of samples of the s signal/block;

Ns: sum of the number of samples of the 1st, 2n9,.., s signal/block.
Equation (B1) can be derived from the following equalities:

ZNtot .4 n_ Ng_1+ng Ns_q1+ng Ns_1+n;

n
M, = ZEN PP Z z izzg z B4 2
tot Niot Niot Niot Ng T ng) T

j=Ns_1+1 s=1 j=Ns_1+1

In the last step, M represents the 4t statistical moment of the s”block. By substituting the
definition for kurtosis Eq. (B1) is found:

M, =k, o
{ 4g s N . (B5)
My, e = Ktot " Otor
Similarly, Eq. (B2) can be derived in the following way:
N¢o Ng_1+ng n Ns—1+ng n Ns—1+ng n
” Z]tijz Xo=12 N, 711+1,2_ ng Z x; ZT Z xB6 —ZTSM
2tot — = -— p— -— | = —M;,
Niot Niot P Niot jeima ™ A T jeia T ) = T
By substituting the definition for the second-order moments Eq. (B2) is found:
M, =a.*
{ TR (B7)
M; .0t = Otot

Appendix C

The procedure reported in Section 3, which permits to adjust the FDS based on the filter
proposed by Kihm et al. [20], is mathematically justified. Let the following quantities be defined:

D(fx): value of the Fatigue Damage if the DUT had a natural frequency equal to fi;

x(t): signal synthesized by any kurtosis control algorithm;

T: duration of x(¢);

h(t): impulse response of the system/DUT;

z(t): relative displacement between the SDOF system mass and the base excitation at time ¢;

Az: half-cycle belonging to the histogram of z(t);

p(Az): probability density of Az;

K: proportionality constant between mechanical stress and relative displacement;

b: exponent of Wohler’s curve;

C: constant in Wohler’s curve;

Np: number of positive peaks per unit time of a signal.

The expected damage caused by the signal x(t) can be expressed via the following equation [2]:

b

ED(f)} = 2 f " A p(Az)d Az (1)
0

Equation (C1) could be equivalently re-written in terms of z(t) in the following way:

N,TK" )
E{D(f)} = C —z(t1))" p(ty, t2) dtydt, (C2)

where p(t;, t2) is the probability density to find a valley/trough at instant #1 and its
corresponding peak at instant t2. Since z(¢) can be related to x() via convolution:
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z(t) = f x(Dh(t — 1)dt (C3)
Eq. (C2) can also be put in the following form:

N,TK®
E{D(f)} =

0 00 o) b
f f (f x()[h(ty — 1) — h(ty — r)]dr) p(ty, ty) dtydt,  (C4)
0 0 —00

Let us now assume that the Fatigue Damage Spectrum of x(t), namely E{D(f:)}, has been
computed and it differs from the reference one, symbolically written as D:«(fs). To simplify the
mathematical details and arrive at simple results, assume that the spectral function:

_ | D (fa cs5
() = [E{D(fn)}] )

can be considered relatively constant over the natural frequency axis. Hence, its Inverse
Fourier Transform is approximately proportional to a Dirac delta:

r (fn
E{D(f,

If a new signal ¥(t) is considered, given by the convolution between x(f) and g(#) and
substituted into Eq. (C4) in place of x(f), the following would result:

TKb 0 o o b
E{D(f,)} = -2 f f (f J‘E(T)[h(tz—‘f)—h(tl—f)]d”f) p(ts,t,) dtydt,
0 0 —oo

b 0 00 o0 00 b
= N”ZK fo J; [Lw(ﬁwx(s)g(s—f)ds) [h(t; — 1) — h(ty —T)]d"-'] p(ty, tp) dtydt;

~ (C6)
g®) [ )}] 5(t)

b
N,TK? (f

¢ Jf Lo x()[E{D((ffn)}] 8(s —)ds |[A(t; = 1) — h(ty —Dldt| p(ty, ;) dtrdey
_ D.(f) NTK"-” b
= F00) f f U_Do( DoJc(s)d(s—'r)ds)[f‘l,(tz—T)b h(tl—r)]dr] p(ty, t,) dt, dt,

D,(f, NTKb

E{D((]}n))} J f (f_mx(f)[h(fz—ﬂ h(tl—r)]dr) p(tr, ) diydty
D) 7
- E{D(fn)} E{D(fn)} D(fn) )

The steps show that the FDS of the function X(t), obtained from convolving x(t) with g(t), is
equal to the reference one. Thus, the filter defined by Eq. (C5) or Eq. (C6) is effective for adjusting
the FDS of a signal synthesized by kurtosis-control methods.
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