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Abstract: In many industrial, automotive, and aerospace applications, electro-mechanical systems are subjected 

to random vibration excitations, and the most critical components are required to undergo qualification tests to 

verify their suitability. Measured field data are commonly considered as reference for the synthesis of random 

stationary signals used as shaker input excitations in laboratory tests. For the most popular procedures of ran-

dom-control testing, the user sets the input profiles in terms of power spectral density (PSD) associated with 

randomized phases generated by the shaker controller to finally provide the physical motion. As a result, the 

overall probability distribution of the test signal tends toward Gaussian, whereas many real-life random exci-

tations prove non-Gaussian due to distinctive bursts and peaks. The quantitative estimate of the number and 

amplitudes of peaks present in a certain signal is usually made through the statistical parameter known as 

kurtosis. The so-called kurtosis control methods presented in the literature are conceived to perform qualifica-

tion tests with random and non-Gaussian vibration excitations. In this paper, two novel algorithms able to 

synthesize shaker input signals for random-control testing with prescribed PSD and kurtosis value are pro-

posed, and the results of their application are comparatively discussed to assess their effectiveness and poten-

tialities in different kinds of qualification testing, including accelerated fatigue-life tests. 

Keywords: vibration qualification testing; random vibration; non-gaussian signals; kurtosis control; test tai-

loring; mission synthesis  

 

1. Introduction 

In the operating lifetime of mechanical systems working at high dynamics, vibrations are a 

common source of fatigue damage that could lead components to premature failure. To test whether 

the components could withstand the elastodynamic loads occurring for a particular application, just 

the latter is used to tailor qualification tests performed by means of shakers/slip tables. The so 

-<called Test Tailoring procedure aims at a proper definition of the vibratory profiles (Mission Syn-

thesis) to be used as the excitation for the device under test (DUT), based on the processing of ref-

erence environmental data – measured in those working conditions that are particularly significant 

to represent real-life excitations expected for the DUT – in order to reproduce their most important 

characteristics in laboratory tests. 

Instead of replicating the recorded environmental data as shaker input signals, which would 

result in the major drawback of losing stochasticity and limiting the qualification tests to represent a 

given working condition only [1], the conventional Mission Synthesis procedures implemented so 

far [2] provide the synthesis of a test profile in terms of a Power Spectral Density (PSD). In Random 

Control tests, the shaker controller then generates the actual vibration after applying the Inverse Fast 

Fourier Transform (IFFT) to the spectral domain. Amplitudes and phases characterize this domain, 

with the former being obtained from the PSD and the latter being randomly generated as uniformly 

distributed random variables. 

Owing to their random generation, the probability distribution of the values of the obtained 

time-series is Gaussian. This could compromise the reliability of tests since most excitation signals 

encountered in real applications feature non-Gaussian distributions. A parameter that accounts for 

deviations from Gaussianity is kurtosis [3]: for Gaussian signals, its theoretical value amounts to 3.0, 
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whereas if peaks and bursts or deterministic components are preponderant, it becomes higher or 

lower than 3.0, respectively. Signals with kurtosis value greater than 3.0 are named Leptokurtic, and 

so is their distribution. 

Over the last decades, the so-called kurtosis control methods have gained increasing interest: the 

aim is to generate shaker input signals by controlling both the PSD and the kurtosis parameter, in 

order to carry out more realistic tests by preserving the nature of real-life random excitations (i.e. the 

values probability distribution due to peaks and bursts). Several kurtosis-control algorithms can be 

found in the literature [1, 4-17], which are essentially based on three different main approaches (or 

their possible combinations): Phase Manipulation [5, 8, 12, 16, 17], Amplitude Modulation [10, 11], 

and Polynomial Transformation [13-15]. The methods proposed feature different characteristics and 

performance depending on the corresponding targeted goals (not limited to durability testing ap-

plications, which is instead the general framework of the present work). Overall, however, one 

common critical issue exists that needs to be addressed by any procedure of kurtosis-control, as it 

significantly affects the effectiveness of transferring peaks and bursts from the excited base to the 

DUT. In fact, it is known that the response of a lightly damped system to a generic excitation may 

tend to a Gaussian probability distribution due to a filtering effect [18]. Thus, if this occurs, the tests 

would be no different from the standard procedure that generates directly Gaussian signals. Here-

inafter, this filtering effect will be referred to as Papoulis’ Rule, which stems from the mathematician 

who proved it based on the Central Limit Theorem [18, 19]. 

In this work, two novel algorithms are proposed for the synthesis of random excitation signals 

with prescribed PSD and kurtosis value, able to robustly circumvent the Papoulis’ Rule and to excite 

a generic DUT effectively irrespective of the signal features of the reference environmental data. 

Indeed, most kurtosis control algorithms prove to be effective only if certain conditions are met (e.g.: 

the DUT natural frequencies must be known; the reference environmental data to be processed need 

to be narrowband signals…). The main difference between the two algorithms regards the predicted 

kurtosis value of the DUT response: constant and equal to the excitation one for the first algorithm, 

variable and significantly larger for the second one. Moreover, it will also be shown that the pro-

posed methods can be used for accelerated fatigue-life tests with the help of the filter proposed by 

Kihm et al. [20]. These tests seek to preserve the damage potential of a signal measured from an ap-

plication and replicate it in a shorter time. The damage potential associated with a vibratory excita-

tion is estimated via a spectral function called Fatigue Damage Spectrum (FDS) [21] and current 

procedures already available in some commercial software permit the synthesis of a PSD from pre-

scribed FDS and duration of the test [2]. Since the output is the only PSD, the standard procedure 

leads to accelerated tests featuring Gaussian excitation signals, hence the same problems with not 

preserving the nature of reference signals – possibly non-Gaussian – may occur in this case as well. 

The two kurtosis-control algorithms do not directly control the FDS, but by convolving the synthe-

sized signal with the filter mentioned above, it is possible to match a prescribed FDS for accelerated 

fatigue-life tests while preserving the non-Gaussian features of the environmental data. 

The paper structure is as follows: Section 2 reports the theoretical background on the popular 

procedures of kurtosis-control and the analytical formulations of the two original algorithms pro-

posed in this work; the results of the application of the algorithms for a case study are reported and 

discussed in Sections 3 and 4, respectively; finally, Section 5 is devoted to some concluding remarks. 

In addition, details about some computational issues related to the algorithms implementation are 

reported in the Appendices: in particular, computationally efficient procedures for the implementa-

tion of kurtosis-control algorithms based on Phase Modulation and for the kurtosis value computa-

tion of multiple/concatenated time-series are proposed in Appendices A and B, respectively, 

whereas the effectiveness of the special filter proposed by Kihm et al. in [20] is analytically proven in 

Appendix C. 

2. Materials and Methods 

2.1. Theoretical background 

In the field of random vibration testing, the shaker controller typically generates a stationary 

vibratory signal in the time domain from a prescribed PSD input by applying the IFFT to the spec-
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tral domain. Amplitudes and phases characterize the spectral domain; the former are related to the 

PSD via the equation: 𝐴𝑛 =  2 𝐺𝑛  ∆𝑓  (1) 

where the amplitude An of the nth harmonic is related to the nth PSD element Gn and frequency reso-

lution f. The randomness required for the generation of the time-series is guaranteed by the phas-

es, which are defined as uniformly distributed random variables in the interval [0, 2[. The time 

histories generated in such a way are always characterized by a probability distribution of their 

values close to Gaussian. The statistical parameter known as kurtosis is the 4th statistical central 

moment of a signal, normalized by the 4th power of its standard deviation. For Gaussian signals, the 

theoretical value of kurtosis is 3.0, whereas Leptokurtic signals feature greater values (e.g. due to 

high peaks caused by micro-collisions). In practical applications, discretized formulations of the 

signal statistical quantities are typically used: 

𝑥 = 1𝑁 𝑥𝑛𝑁
𝑛=1

  

 

(2) 

𝜎 =  1𝑁 (𝑥𝑛 − 𝑥 )2

𝑁
𝑛=1

 

 

(3) 

𝜎2 =
1𝑁 (𝑥𝑛 − 𝑥 )2

𝑁
𝑛=1

 

 

(4) 

𝑘 =
1𝑁𝜎4

 (𝑥𝑛 − 𝑥 )4

𝑁
𝑛=1

 

 

(5) 

where , σ, σ2, k are the mean value, the standard deviation, the variance, and the kurtosis of the 

signal, respectively, xn its nth sample, and N its total number of samples. Current kurtosis control 

algorithms are generally based on three approaches: Phase Manipulation (PM), Polynomial Trans-

formation (PT), and Amplitude Modulation (AM). 

PM methods [5, 8, 12, 16, 17] employ the formulation of kurtosis written in terms of the amplitudes 

and phases of a time-series. Steinwolf et al. [4-9, 17] described some analytical methods that control 

kurtosis by changing only the phases while keeping the amplitudes constant. This would imply 

preserving the PSD as well since it only depends on amplitudes. In Appendix A, computational 

cost issues are discussed and an original procedure is proposed to efficiently implement the PM al-

gorithms based on Steinwolf’s studies. 
PT methods consist of generating a Gaussian signal x(t) with the prescribed PSD first and then ap-

plying an analytical transformation of the form: 

 (6) 

with the coefficients 1 and 3 being functions of the target kurtosis value [13-15]. The transfor-

mation in Eq. (6) presents two disadvantages: (i) the PSD of the signal is affected by an unwanted 

disturbance and (ii) Papoulis’ Rule is very likely to occur, thus causing the peaks present in the in-
put signal to be filtered out and leading the response to approaching a Gaussian probability distri-

bution.  

The second problem is similar to the case of PM methods. In fact, the effectiveness of kurto-

sis-control methods lies in the fact that the bursts of the signal must have either of two characteris-

tics: (i) a long enough duration in order to appear also in the unavoidably time-delayed response of 

the system, (ii) a narrow-band frequency content containing the natural frequency of the system. 
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Typically, the bursts generated by both PM and PT methods do not have a long enough duration 

and this is the reason why they are likely to be filtered out by the system.  

Methods that generate bursts of desired duration employ the AM approach, which consists in 

modulating a Gaussian signal x(t) having the desired PSD with an appropriate function w(t) in or-

der to obtain a signal with a desired kurtosis value [10, 11]: 

 (7) 

 This method is effective in transferring the kurtosis value to the response of the DUT if the 

signal bursts of the modulating signal have greater duration than the inverse of the bandwidth of 

the lightly-damped system [11]. The carrier waveform w(t) introduces low frequency components 

in the spectrum of y(t) compared to that of x(t), albeit negligible if w(t) is appropriately designed.  

Both the algorithms presented in this paper, which aim to synthesize vibratory profiles whose 

kurtosis and PSD match the reference input ones, are based on two different approaches that can 

hardly be classified into the above-mentioned categories. The following Sections are devoted to the 

detailed description of their implementation. 

2.2. Multi-Level Variance (MLV) algorithm  

The algorithm named Multi-Level Variance (MLV) attains the synthesis of a signal by dividing 

the signal duration Ttot into nb blocks of the same size and duration Tb (Tb = Ttot/nb). The generated 

blocks are not overlapped and have different variance, which is closely related to a modulation 

procedure, although no modulating function is explicitly used. As shown in the following, the dif-

ferent levels of variance σi2 (i = 1,…, nb) are produced in such a way that the synthesized signal 

complies with the kurtosis and PSD constraints. In general, the PSD of a signal is computed by cal-

culating the Fast Fourier Transforms (FFT) over small-sized blocks and squaring their magnitude to 

obtain the so-called periodograms. More specifically, the periodogram could be thought of as some 

sort of PSD computed only for the generic block of the signal. After obtaining the periodograms, the 

last step is to average them in order to calculate the PSD of the signal. In the algorithm, the PSD of 

the ith block of the signal, Gi, is defined to be proportional to the PSD of the reference signal, G, as in 

the following expression:  

 
(8) 

In Eq. (8) σtot2 and σi2 are the variance values of the overall signal and the ith block, respectively. 

It is to be highlighted that the σi2 parameters are the unknowns, whereas σtot2 can be calculated from 

either the reference signal, Eq. (4), or directly from the reference PSD:  

 
(9) 

where G(f) is the PSD amplitude at the generic frequency f of a continuous signal. However, since the 

processed signal is discrete in practice, the PSD is also discrete and the theoretical computation of 

Eq. (9) must be discretized. The unknown parameters σi2 are also related to the overall variance σtot2 
through the following equation (cf. Appendix B for proof):  

 
(10) 

From Eqs. (8, 10) the following relation must hold:  

 

(11) 

Since the PSD G is computed by averaging the PSDs of the blocks, Eq. (11) is automatically 

satisfied. Hence, the constraint on the PSD spectrum is fulfilled if nb values σi2 that comply with Eq. 

(10) are found. In addition to Eqs. (10, 11), there is also a relation between the kurtosis values of the 

overall signal, ktot, and of the single blocks, ki (cf. Appendix B):  
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(12) 

The first step of the algorithm is to randomly generate the σi2 values such that σi2  [σmin2, σmax2] 

and σmin2 < σtot2 < σmax2. The ratio rσ2 = σmin2/σtot2  ]0, 1[ must be selected by the user as an input for the 

algorithm: the closer to 0, the more the variance of the synthesized signal will vary in time, whereas 

the opposite is true if closer to 1. The parameter σmax2 is not selectable directly by the user because it is 

adjusted throughout the algorithm iterations in order to converge to the target kurtosis value. The 

user can also choose the number of bursts with high amplitude excursion of the synthesized signal 

(parameter np = 0,…, nb); this is typically done by referring to the number of bursts that can be ob-

served in the reference measured data. The algorithm generates np blocks with a variance equal to 

σmax2, which is greater than the variance of the other blocks. The kurtosis ki and variance σi2 of the 

blocks are calculated via Eqs. (4, 5) only on the first iteration, whereas the discrete signal xn is ob-

tained by the IFFT of the PSD of the single blocks with randomly generated phases and then by 

concatenating the blocks. A random integer s, representing a single block, is then automatically 

generated in the interval [1, nb]. After the σi2 levels are generated (i = 1,…, nb, i ≠ s), the variance and 

the kurtosis of the randomly selected sth block are calculated via the following relations, which stem 

from Eqs. (9, 12):  

 
(13) 

 

(14) 

Eqs. (13, 14) are used in order to verify if the prescribed PSD and target kurtosis can be 

achieved: indeed, σs2 is required to be not null and ks greater than a lower threshold, ks_min, and 

smaller than an upper threshold, ks_max. The upper threshold should not be set excessively high be-

cause it would lead to generating unrealistic peaks in the sth block exceeding by far the amplitude of 

those of the other blocks. Afterward, in order to obtain the ks given by Eq. (14), the harmonics phases 

of the sth block are adjusted using a phase manipulation procedure (cf. Section 2). With very few it-

erations, where the parameter σmax2 is changed in order to converge towards the target kurtosis val-

ue, Eqs. (13, 14) are usually satisfied. The final step of the algorithm is to concatenate the generated 

blocks by smoothing them through proper interpolation of the values close to the edges of the ad-

joining blocks, in order to avoid unrealistic discontinuities among them.  

In conclusion, the user has to insert:  

• the reference input signal or, alternatively, reference PSD and kurtosis value;  

• the duration Ttot of the signal to be synthesized;  

• the sampling frequency Fs of the synthesized signal (usually the same as the reference signal); 

• the signal blocks duration Tb;  

• the ratio rσ2;  

• the number of bursts np;  

• the lower and upper thresholds for kurtosis value ks_min and ks_max, respectively.  

2.3. Variable Spectral Density (VSD) algorithm  

The algorithm hereinafter called Variable Spectral Density (VSD) splits the signal to be synthe-

sized into nb blocks of the same duration Tb as the previous algorithm. The major difference is that 

the PSD Gi of the ith block is randomly generated.  

Let the PSD matrix [G’’ij] be defined as: 

 (15) 

where Nh is the number of spectral lines. This matrix has Nh rows and nb columns, with the jth 

column being the PSD vector of the jth block of the reference signal. Eq. (15), where all the columns 
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have the same elements (harmonic amplitudes), refers implicitly to a signal having a stationary PSD. 

On the other hand, the PSD matrix [G’’ij] corresponding to the signal synthesized through the MLV 

algorithm has the following form: 

  (16) 

Both the matrices in Eqs. (15) and (16) satisfy Eq. (11) that may be rewritten in this case, in 

conformity with the notation used in this Section, as: 

          (17) 

The VSD algorithm synthesizes a signal with a PSD variable over time, corresponding to a PSD 

matrix having the most general form: 

  (18) 

where the elements must comply with Eq. (17).  

The generic matrix in Eq. (18) can be derived from Eqs. (15) and (17), by changing one row, the 

ith for instance, as in the following equation, where p  [0, 1] and l is a positive integer such that l ≤ nb: 

 (19) 

Equation (17) is still complied with if the terms of the type pGi are l – 1. If similar operations 

were done not only on the term Gij but also on other terms and in a random manner, then the PSD of 

each block could be varied still preserving the overall PSD. 

In conclusion, the user is required to perform the following operations: 

• insert a reference input signal or, alternatively, reference PSD and kurtosis value; 

• set the duration Ttot and the sampling frequency Fs of the signal to be synthesized; 

• choose p  [0, 1]. 

Then, the workflow of the algorithm is based on the following operations that are automatically 

performed:  

1. set Tb and i = 1; 

2. set s = 0; 

3. choose a random element j of the ith row; 

4. generate a positive random integer l ≤ nb – s; 

5. set Gij = [1 + (l – 1)(1 – p)Gi and s = s + l;  

6. repeat 3 – 4 – 5 with another value for j (different from the values generated in the previous 

loops) and another value of l, until s ≥ nb – 1; 

7. set Gim = pGi with m ranging over all the elements of the ith row which have not been modified in 

point 5; 

8. if i < Nh, set i = i+1 and repeat from point 2, otherwise proceed to point 9; 

9. terminate if the kurtosis of the synthesized signal matches the target value (within a certain 

tolerance, to be preliminarily set), otherwise repeat from point 1 where a different Tb is auto-

matically generated. Decreasing Tb makes the kurtosis value increase and vice versa (this is how 

the algorithm converges towards the target kurtosis). 

jth column 
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As in the case of the MLV algorithm, the very last step is to smooth the signal at the edges of the 

blocks in order to avoid unrealistic discontinuities. 

It is worth noting that a limitation of the algorithm could be that the variation of the PSD over 

time (i.e. over the blocks) is not controlled but randomly generated.  

3. Results 

Real field data sampled at 8192Hz and having a duration of 660s are used as reference signal for 

an example of application (Figure 1). The synthesis by the MLV and VSD algorithms was performed 

in order to obtain signals with the same sampling frequency and duration for the sake of a direct and 

more straightforward comparison. Two signals synthesized by the MLV algorithm are shown in 

Figure 2, hereinafter referred to as MLV1 and MLV2, respectively. The main difference between the 

two implementations of the algorithm was in the choice of the signal blocks durations and number 

of bursts: {Tb = 3s, np = 10} and {Tb = 0.1s, np = 300}, for MLV1 and MLV2 signals, respectively. The 

parameter rσ2 was set equal to 0.25 for both. Statistical parameters and PSDs of the signals are re-

spectively reported in Table 1 and Figure 3, over the frequency range 0÷4096Hz. The acceleration 

response of a series of single-degree-of-freedom (SDOF) linear systems, with natural frequency in 

the range 0÷4000Hz and a constant damping ratio equal to 2.5%, was calculated by convolution 

between the impulse response of the system and its input. The response kurtosis of the synthesized 

and reference signals is shown in Figure 4, where the kurtosis parameter is plotted versus the natu-

ral frequencies of the SDOF systems. It can be observed that the kurtosis of the synthesized signals 

remains approximately constant over the frequency range; however, the signal with the lower Tb 

(MLV2) suffers more from the Papoulis’ Rule, whereas the higher Tb (MLV1) permits the generation 

of bursts that last enough to be transferred to the response, thus almost preserving the input kurtosis 

value. By inspecting the plot, it should be evident that the kurtosis of the response to the reference 

signal is not constant over the frequency range and in particular, for some frequencies it is much 

higher.  

   (a)    (b) 

Figure 1. Reference signal: (a) time-series and (b) PSD (frequency resolution f = 5Hz). 

  

   (a)    (b) 

Figure 2. Signals synthesized with different parameters of algorithm MLV: (a) Tb = 3s, rσ2 = 0.25, np = 10, (b) Tb = 

0.1s, rσ2 = 0.25, np = 300. 

Table 1. Statistical parameters of the reference and synthesized signals MLV1, MLV2. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 September 2023                   doi:10.20944/preprints202309.0792.v1

https://doi.org/10.20944/preprints202309.0792.v1


8 
 

 Reference signal MLV1 MLV2 

Std deviation [m/s2] 14.3 14.3 14.3 

Kurtosis [-] 7.19 7.04 7.03 

Crest factor [-] 11.9 12.0 13.2 

Duration [s] 660 660 660 

  

   (a)    (b) 

Figure 3. PSD computed with frequency resolution f = 5Hz: (a) MLV1, (b) MLV2. The same curve of Figure 1b, 

relative to the reference signal, is reported in both graphs for comparison. 

  

   (a)    (b) 

Figure 4. Kurtosis of the SDOF systems responses, with natural frequencies in the range 0÷4000Hz, to the syn-

thesized excitation signals (red lines): (a) MLV1, (b) MLV2. The corresponding curve (blue line) computed for 

the reference excitation signal is also reported. 

The VSD algorithm only requires the parameter p to be specified, and two synthesized signals 

with different p (respectively 0.1 and 0.6) are shown in Figure 5, hereinafter referred to as VSD1 and 

VSD2, respectively. Their corresponding statistical parameters are listed in Table 2 and their PSD in 

Figure 6. The kurtosis of the SDOF systems responses is shown in Figure 7. It can be observed that 

the kurtosis changes over the frequency range and proves significantly higher than the input kurto-

sis, to which extent depending on parameter p: the lower p, the higher the output kurtosis.  

  

   (a)    (b) 

Figure 5. Signals synthesized with different parameters of algorithm VSD: (a) p = 0.1, (b) p = 0.6. 
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Table 2. Statistical parameters of the reference and synthesized signals VSD1, VSD2. 

 Reference signal VSD1 VSD2 

Std deviation [m/s2] 14.3 14.3 14.3 

Kurtosis [-] 7.19 7.02 7.11 

Crest factor [-] 11.9 10.2 12.6 

Duration [s] 660 660 660 

 

  

   (a)    (b) 

Figure 6. PSD computed with frequency resolution f = 5Hz: (a) VSD1, (b) VSD2. The same curve of Figure 1b, 

relative to the reference signal, is reported in both graphs for comparison. 

  

   (a)    (b) 

Figure 7. Kurtosis of the SDOF systems responses, with natural frequencies in the range 0÷4000Hz, to the ref-

erence excitation (blue line) and the synthesized signals (red lines): (a) VSD1, (b) VSD2. 

In the perspective of using the proposed algorithms to generate shaker input signals for fatigue 

life tests, further processing of the synthesized signals is carried out. For a straightforward compar-

ative illustration of results, the duration of the hypothetical durability tests is ideally assumed to be 

equal to the duration of the reference field data. In particular, the FDS curves over the frequency 

range 0÷4000Hz are calculated and plotted with a resolution of 1/12th octave. For brevity, only the 

FDS of the reference, MLV1, and VSD1 signals are shown. The most influent parameters in the FDS 

calculation are the Wohler’s curve slope (i.e. the exponent b in the well-known Basquin’s law NSb = 

const.) and the damping ratio of the SDOF systems, which were set to 7 and 2.5%, respectively. The 

plots of the reference and the synthesized signals FDSs are reported in Figure 8. It should be evident 

that the Fatigue Damage curves are not overlapped. In order to adjust the FDS of the signals to 

match the reference one, the filter described in [20] is used (cf. Appendix C for an original mathe-

matical proof of the filter effectiveness). The steps of the procedure are: 

1. calculate the FDSs of the reference and synthesized signals Dr(fn) and Ds(fn), respectively; 

2. define the spectral function:  ; 

3. calculate the Inverse Fourier Transform of W(fn) to obtain the impulse response of the filter; 

4. convolve the so-obtained impulse response with the synthesized signal. 
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Now, the synthesized and the reference profiles have the same FDS. It must be highlighted that 

the newly obtained signals are different from those synthesized previously and their statistical pa-

rameters and PSD change to some extent (Figures 9 and 10, Table 3). However, their nature remains 

Leptokurtic and similar to the signals MLV1 and VSD1. The plots of the signals FDSs obtained after 

convolution with the filter are reported in Figure 11 and show a precise matching. It is worth noting 

that the signals in Figure 9 have a sampling frequency of 10240Hz since an up-sampling was neces-

sary to correctly compute the FDS, as highlighted in [22, 23]. Though, the PSDs in Figure 10 are 

plotted in the range 0÷4096Hz, consistently with Figures 1b, 3, 6. 

  

   (a)    (b) 

Figure 8. FDS of the synthesized signals MLV1 (a) and VSD1 (b), calculated by assuming: slope of Wohler’s 
curve equal to 7, frequency resolution of 1/12th octave, damping ratio equal to 2.5%. The corresponding curve 

relative to the reference excitation signal is also reported (blue line). 

  

   (a)    (b) 

Figure 9. Signals generated by the convolution between the filter proposed in [20] and the signals MLV1 (a) and 

VSD1 (b) in order to match the FDS associated with the reference excitation signal. 

  

(a) (b) 

Figure 10. PSD of the signals generated by convolution between the filter proposed in [20] and the signals 

MLV1 (a) and VSD1 (b), computed with frequency resolution f = 5Hz. The corresponding curve relative to the 

reference signal is also reported (blue line). 

Table 3. Statistical parameters of filtered synthesized signals. 
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 MLV1 with filter VSD1 with filter 

Std deviation [m/s2] 17.3 10.4 

Kurtosis [-] 6.14 5.89 

Crest factor [-] 12.1 9.99 

Duration [s] 660 660 

 

  

   (a) (b) 

Figure 11. FDS of the signals generated by convolution between the filter proposed in [20] and the signals 

MLV1 (a) and VSD1 (b), calculated by assuming: slope of Wohler’s curve equal to 7, frequency resolution of 

1/12th octave, damping ratio equal to 2.5%. 

4. Discussion 

The results show that the MLV algorithm synthesizes shaker input signals that can transfer their 

kurtosis value to the output of any SDOF linear system, irrespective of the latter’s natural frequency. 
This aspect eliminates the main flaw of Phase Manipulation and Polynomial Transformation meth-

ods. In particular, the kurtosis of the output features small fluctuations around a value close to the 

excitation one, due to the following reason: all the blocks constituting the synthesized signal have a 

wideband PSD, thus resonance effects cannot occur. The kurtosis transfer is only due to the energy 

of the bursts appearing in the signal, and the high excursions in the output cannot physically contain 

more energy. However, the input parameters of the algorithm are relevant and may affect the re-

sults. In fact, if the bursts duration (represented by parameter Tb) is not long enough, the system may 

not have time to respond and high excursions may not appear in the response. In addition, the MLV 

algorithm only deterministically imposes the phases of one block, thus achieving a high random-

ness. Consequently, different runs of the algorithm – with unchanged setup parameters – to process 

the same reference signal provide the synthesis of different time-series (all complying with the target 

PSD and kurtosis). Therefore, random vibration tests that require a sizable duration can be carried 

out starting from short environmental measurements by concatenating many profiles synthesized 

by the MLV algorithm. 

The VSD algorithm can generate narrowband blocks, which can exasperate resonance effects on 

the DUT: the lower the value of parameter p, the more evident the resonance occurrence. The ad-

vantages of this algorithm are two-fold: (i) the synthesized signals are capable of generating SDOF 

systems responses with high kurtosis, though the excitation features relatively small value of the 

crest factor, thus subjecting the shaker to non-critical loads; (ii) kurtosis of the response is not con-

stant over the natural frequency and is generally broadly higher than the excitation one (this sce-

nario being quite common in many practical applications, due to the variable spectrogram of real-life 

vibrations). It must be highlighted, however, that a significant limitation of the algorithm could be 

that the PSD variation cannot be controlled. On the other side, its randomness contributes to the 

synthesized signal stochasticity, which is further increased by the complete aleatory generation of 

the phases in the IFFT transform for each block.  

Both the algorithms could lead to signals with a very different damage potential from the exci-

tation one, since kurtosis control does not directly control the FDS. The filter described in [20] was 

used to correct the FDSs of the signals generated by both the MLV and the VSD algorithms. The new 

signals showed similar Leptokurtic distributions as their corresponding synthesized ones, with 
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slightly different PSD and statistical parameters. The procedure was used to synthesize signals 

having the same duration as that of the reference input, for the sake of direct comparison of results, 

but is actually intended to be used for accelerated fatigue-life testing. 

 

5. Conclusions 

In this work, two novel kurtosis control algorithms were proposed. The first algorithm, named 

Multi-Level Variance (MLV), splits the signal to be synthesized into blocks of the same duration and 

featuring variable variance. Namely, the shape of the PSD of each single block remains the same but 

scaled by an appropriate factor. The overall PSD and kurtosis approach closely to the reference input 

ones within a certain tolerance. The Papoulis’ Rule proves not to apply if the parameter that controls 

the duration of the bursts in the synthesized signal is appropriately chosen. In particular, the kurto-

sis of the output features the tendency to be constant over the natural frequency range of the DUT.  

The second algorithm, named Variable Spectral Density (VSD), splits the signal into blocks of 

the same duration, not only with variable variance but in general with variable PSD. The overall 

PSD and kurtosis approach closely to the reference input ones, within a certain tolerance. The Pa-

poulis’ Rule proves to not apply for every value of the only algorithm parameter that depends on the 

user’s choice. The kurtosis of the output tends to vary conspicuously over the natural frequency 

range of the DUT, with broadly higher values than those determined by the reference field data.  

 The damage potential associated with the shaker input signals synthesized by both algorithms 

proves different from that of the reference field data. The difference in the FDSs functions can be 

corrected by applying a special filter found in the literature. This leads to the generation of new 

profiles that match the reference FDS still featuring PSD and kurtosis values very similar to those of 

the signals synthesized by the algorithms. Hence, the overall procedure can be effectively employed 

to generate shaker input signals for accelerated fatigue-life testing.  

The proposed algorithms have been validated through the application to many case studies, not 

reported in this paper for the sake of brevity (but a few examples can be partially considered in ref-

erences [24, 25], where the formulation of the algorithms was not still optimized), starting from dif-

ferent reference field data featuring different characteristics – e.g. kurtosis value, bandwidth, spec-

tral content, duration – thus proving their robustness for different scenarios. 
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Appendix A 

This paragraph focuses on operative aspects associated with the implementation of PM-based 

methods to control the kurtosis of synthesized signals. A number of kurtosis-control algorithms (in 

particular the works by Steinwolf, e.g. [5, 8], considered by the Authors as the most significant ones 

in this field) exploit analytical methods that preserve the PSD of the reference field data by changing 

only the phases while keeping constant the amplitudes. Indeed, from Eq. A1 (which is a simpler 

expression of the equation used by Steinwolf in [8] to demonstrate the proof of the proposed meth-

od) and Eq. A2, it is evident that the kurtosis k depends on both the signal amplitudes and phases, 

whereas the PSD depends on amplitudes only: 
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 𝑘 =

1

 𝜎4
  1

2
𝐴𝑛𝐴𝑘𝐴𝑙𝐴𝑚 cos 𝜑𝑛 + 𝜑𝑘 + 𝜑𝑙 − 𝜑𝑚   𝑛+𝑘+𝑙=𝑚

+  3

8
𝐴𝑛𝐴𝑘𝐴𝑙𝐴𝑚 cos 𝜑𝑛 + 𝜑𝑘 − 𝜑𝑙 − 𝜑𝑚  𝑛+𝑘=𝑙+𝑚   

 

(A1) 

𝜎 =   1

2
 𝐴𝑛2𝑛    

 

(A2) 

It is worth noting that PM procedures based on the direct implementation of Eq. A1 (or equiv-

alent formulations) are not particularly efficient due to the high number of calculations required. 

From the computational cost standpoint, the procedure based on the following steps is suggested as 

a simple and efficient implementation of PM methods: 

Step 0) starting from the PSD of the reference signal, generate phases randomly; 

Step 1) select one of the phases randomly; 

Step 2) randomly set another value for that phase between 0 and 2; 

Step 3) perform IFFT and calculate the new kurtosis value via Eq. (5); 

Step 4) if the new kurtosis value is closer to the target value, keep the value of the phase 

changed at step 2, otherwise discard it and restore the former value for that phase; 

Step 5) repeat from step 1 until the target is reached. 

The upgrade in speed of the method is given by the fact that there is no burdensome analytical 

formula to compute, and it allows for a very straightforward implementation. However, this pro-

cedure may present two major disadvantages if not used along with other methods. The first one 

regards the filtering of the peaks occurring because of Papoulis’ Rule: in fact, the natural frequency 

of the DUT should be known a priori, in order to change the phases only in the vicinity of the reso-

nance [17], otherwise the response may be close to Gaussian [18]. The second one concerns compu-

tational complexity: despite optimizing its implementation, the method is still slower than other 

commonly used kurtosis-control methods. If PM is implemented, it is suggested to generate a signal 

by splitting it into blocks in order to create more realistic peaks and decrease computational com-

plexity, since smaller blocks would imply a lower Nh. 

Appendix B 

The formulae for kurtosis and variance of a time-series composed of n signals can be written in 

the following forms: 𝑘𝑡𝑜𝑡 =
 𝑘𝑗 ∙  𝑇𝑗 ∙ 𝜎𝑗 4𝑛𝑗=1𝑇 ∙ 𝜎𝑡𝑜𝑡 4

  (B1) 

𝜎𝑡𝑜𝑡 2 =
 𝑇𝑗 ∙ 𝜎𝑗 2𝑛𝑗=1𝑇  

 
(B2) 

where the following nomenclature holds: 

n: number of concatenated signals/blocks; 

kj: kurtosis of the jth signal/block;  

ktot: kurtosis of the overall signal;  

σj2: variance of the jth signal/block;  

σtot2: variance of the overall signal/block; 

Tj: duration of the jth signal/block; 

T: duration of the overall signal (
1

n

j
j

T T
=

= ). 

These formulae are a generalization of Eqs. (10, 12) because, in that case, the blocks had the 

same duration. Their proof is given next, with the assumption that a signal xj has zero mean 

(without loss of generality). From the definition of the sth statistical moment Mstot of the signal xj: 
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(B3) 

and the definition of the following parameters: 

Ntot: number of samples of the overall signal; 

ns: number of samples of the sth signal/block; 

Ns: sum of the number of samples of the 1st, 2nd,…, sth signal/block. 

Equation (B1) can be derived from the following equalities: 

𝑀4𝑡𝑜𝑡 =
 𝑥𝑗 4𝑁𝑡𝑜𝑡𝑗=1𝑁𝑡𝑜𝑡 =

  𝑥𝑗 4𝑁𝑠−1+𝑛𝑠𝑗=𝑁𝑠−1+1
𝑛𝑠=1 𝑁𝑡𝑜𝑡 =  𝑛𝑠𝑁𝑡𝑜𝑡  𝑥𝑗 4𝑛𝑠𝑁𝑠−1+𝑛𝑠

𝑗=𝑁𝑠−1+1

=  𝑇𝑠𝑇   𝑥𝑗 4𝑛𝑠𝑁𝑠−1+𝑛𝑠
𝑗=𝑁𝑠−1+1

 𝑛
𝑠=1

𝑛
𝑠=1

=  𝑇𝑠𝑇 𝑀4𝑠𝑛
𝑠=1

 
(B4

) 

In the last step, M4s represents the 4th statistical moment of the sthblock. By substituting the 

definition for kurtosis Eq. (B1) is found: 

 
(B5) 

Similarly, Eq. (B2) can be derived in the following way: 

𝑀2𝑡𝑜𝑡 =
 𝑥𝑗 2𝑁𝑡𝑜𝑡𝑗=1𝑁𝑡𝑜𝑡 =

  𝑥𝑗 2𝑁𝑠−1+𝑛𝑠𝑗=𝑁𝑠−1+1
𝑛𝑠=1 𝑁𝑡𝑜𝑡 =  𝑛𝑠𝑁𝑡𝑜𝑡  𝑥𝑗 2𝑛𝑠𝑁𝑠−1+𝑛𝑠

𝑗=𝑁𝑠−1+1

=  𝑇𝑠𝑇   𝑥𝑗 2𝑛𝑠𝑁𝑠−1+𝑛𝑠
𝑗=𝑁𝑠−1+1

 𝑛
𝑘=1

𝑛
𝑠=1

=  𝑇𝑠𝑇 𝑀2𝑠𝑛
𝑠=1

 
(B6

) 

By substituting the definition for the second-order moments Eq. (B2) is found: 

 
(B7) 

Appendix C 

The procedure reported in Section 3, which permits to adjust the FDS based on the filter 

proposed by Kihm et al. [20], is mathematically justified. Let the following quantities be defined: 

D(fn): value of the Fatigue Damage if the DUT had a natural frequency equal to fn;  

x(t): signal synthesized by any kurtosis control algorithm; 

T: duration of x(t); 

h(t): impulse response of the system/DUT; 

z(t): relative displacement between the SDOF system mass and the base excitation at time t; 

z: half-cycle belonging to the histogram of z(t); 

p(z): probability density of z; 

K: proportionality constant between mechanical stress and relative displacement; 

b: exponent of Wohler’s curve; 
C: constant in Wohler’s curve; 
Np: number of positive peaks per unit time of a signal. 

The expected damage caused by the signal x(t) can be expressed via the following equation [2]: 𝐸 𝐷 𝑓𝑛  =
𝑁𝑝𝐾𝑏𝐶  ∆𝑧𝑏𝑝 ∆𝑧 𝑑∞

0

∆𝑧 

 
(C1) 

Equation (C1) could be equivalently re-written in terms of z(t) in the following way: 𝐸 𝐷 𝑓𝑛  =
𝑁𝑝𝑇𝐾𝑏𝐶    𝑧 𝑡2 − 𝑧(𝑡1) 𝑏∞

0

∞
0

  𝑝 𝑡1 , 𝑡2  𝑑𝑡1𝑑𝑡2 

 
(C2) 

where p(t1, t2) is the probability density to find a valley/trough at instant t1 and its 

corresponding peak at instant t2. Since z(t) can be related to x(t) via convolution: 
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 𝑧 𝑡 =  𝑥 𝜏 ℎ(𝑡 − 𝜏)𝑑𝜏∞

−∞  

 
(C3) 

Eq. (C2) can also be put in the following form: 𝐸 𝐷 𝑓𝑛  =
𝑁𝑝𝑇𝐾𝑏𝐶     𝑥 𝜏 [ℎ 𝑡2 − 𝜏 − ℎ 𝑡1 − 𝜏 ]𝑑𝜏∞

−∞  𝑏∞
0

∞
0

 𝑝 𝑡1 , 𝑡2  𝑑𝑡1𝑑𝑡2 

 

(C4) 

Let us now assume that the Fatigue Damage Spectrum of x(t), namely E{D(fn)}, has been 

computed and it differs from the reference one, symbolically written as Dr(fn). To simplify the 

mathematical details and arrive at simple results, assume that the spectral function: 

𝐺 𝑓𝑛 =  𝐷𝑟 𝑓𝑛 𝐸 𝐷 𝑓𝑛   1𝑏
 

 

(C5) 

can be considered relatively constant over the natural frequency axis. Hence, its Inverse 

Fourier Transform is approximately proportional to a Dirac delta: 

𝑔 𝑡 ≈  𝐷𝑟 𝑓𝑛 𝐸 𝐷 𝑓𝑛   1𝑏 𝛿(𝑡)  
 

(C6) 

If a new signal  is considered, given by the convolution between x(t) and g(t) and 

substituted into Eq. (C4) in place of x(t), the following would result: 

 

 

 
(C7

) 

The steps show that the FDS of the function , obtained from convolving x(t) with g(t), is 

equal to the reference one. Thus, the filter defined by Eq. (C5) or Eq. (C6) is effective for adjusting 

the FDS of a signal synthesized by kurtosis-control methods. 
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