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Abstract: Deep neural networks (DNNs) have gained prominence in addressing regression problems, offering
versatile architectural designs that cater to various applications. In the field of earthquake engineering, seismic
response prediction is a critical area of study. Simplified models such as single-degree-of-freedom (SDOF) and
multi-degree-of-freedom (MDOF) systems have traditionally provided valuable insights into structural
behavior, known for their computational efficiency facilitating faster simulations. However, these models have
notable limitations in capturing the nuanced nonlinear behavior of structures and the spatial variability of
ground motions. This study focuses on leveraging ambient vibration (AV) measurements of buildings,
combined with earthquake (EQ) time-history data, to create a predictive model using a neural network (NN)
in image format. The primary objective is to predict a specific building's earthquake response accurately. The
training dataset consists of 1,197 MDOF 2D shear models, generating a total of 32,319 training samples. To
evaluate the performance of the proposed model, termed MLPER (Machine Learning based Prediction of
building structures' Earthquake Response), several metrics are employed. These include mean absolute
percentage error (MAPE) and mean deviation angle (MDA) for comparisons in the time domain. Additionally,
we assess magnitude-squared coherence values and phase differences (4¢) for comparisons in the frequency
domain. This study underscores the potential of MLPER as a reliable tool for predicting building earthquake
response, addressing the limitations of simplified models. By integrating AV measurements and EQ time-
history data into a neural network framework, MLPER offers a promising avenue for enhancing our
understanding of structural behavior during seismic events, ultimately contributing to improved earthquake
resilience in building design and engineering.

Keywords: long short-term memory network; ambient vibration measurements; earthquake
response; multi-degree-of-freedom models; structural response phase and magnitude images

1. Introduction

Deep neural networks (DNNs) have gained significant popularity in addressing regression
problems, and numerous architectural designs have become prevalent. One such architecture is the
multi-layer perceptron (MLP), which has been widely employed in various regression problems [1].
The developers of MLP are acknowledged for introducing the backpropagation algorithm, a key
method for training neural networks [2]. Another notable architecture is the convolutional neural
network (CNN) introduced by LeCun et al. [3-6]. CNNs are extensively utilized in image and signal
processing tasks and have also found application in regression tasks. Recurrent neural networks
(RNNSs), initially introduced by John Hopfield in the early 1980s [7], gained widespread adoption

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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with the advent of the long short-term memory (LSTM) architecture developed by Hochreiter and
Schmidhuber in 1997 [8]. LSTMs have proven highly effective in capturing long-term dependencies
in sequential data. During the mid-2000s, Restricted Boltzmann Machines (RBMs) and deep belief
networks (DBNs) played a pivotal role in the advancement of deep learning techniques, particularly
in unsupervised learning and feature learning [9]. Between 2000 and 2017, advancements such as
dropout, batch normalization, convolutional LSTMs, and residual connections further enhanced the
performance of existing architectures for regression tasks. Transformers, a more recent architectural
design, have exhibited remarkable success in natural language processing tasks and exhibit potential
for regression tasks [10].

Meanwhile, seismic response prediction is an important aspect of earthquake engineering, and
simplified models such as SDOF and MDOF systems can provide valuable insights into the behavior
of structures, being advantageous due to their processing efficiency, which allows for faster and more
manageable computational simulations. However, these simplified models have limitations,
particularly in accurately capturing the nonlinear behavior of structures and the spatial variability of
ground motions, which is something we shall bear in mind. Software tools and methodologies such
as Hazus-MH 2.1 in the United States [11], pre-quake rapid visual inspection (RVI) in Greece [30],
and the FEMA P-58 methodology [12] have been developed to enable fast-track inspection and risk
estimations for large building stock. Open-source software frameworks such as OpenSees [14] and
OpenQuake [15] have also been developed, which provide a platform for researchers and engineers
to develop and apply advanced techniques for seismic response prediction, including machine
learning and hybrid simulation. For example, OpenQuake has been used for probabilistic seismic
hazard assessment and loss estimation [16]. While these tools have their own limitations, ongoing
research is focused on improving their accuracy and applicability through advanced techniques and
open-source software. Additionally, advancements in big data and structural health monitoring have
created new opportunities for seismic response prediction methods. Structural health monitoring
systems, such as accelerographs, provide real-time data on the behavior of structures during seismic
events, enabling a detailed understanding of their response. This data, along with geological and
seismic activity data, can be used to build large datasets for machine learning and other advanced
techniques [17,18]. Various machine learning-based approaches have been made such as predicting
seismic damage of building structures considering soil-structure interaction effects [19], their seismic
performance levels [20] or even damage identification [21]. Other studies are dealing with the various
dynamic quantities of building structures such as acceleration, displacement response quantities
trying to manipulate them [22].

This study primarily focuses on utilizing ambient vibration (AV) measurements from a building
in conjunction with earthquake (EQ) time histories, which are processed through a neural network
(NN) in image format to predict the building's specific earthquake response. The training phase
involved the development of 1,197 multi-degrees of freedom (MDOF) 2D shear models, resulting in
the creation of a total of 32,319 samples. To assess the NN's performance, various metrics were
employed, including MAPE (mean absolute percentage error), MDA (mean difference amplitude) for
time-history comparisons, and magnitude-squared coherence values and phase difference (4¢) for
frequency domain comparisons. This proposed model is named MLPER, which stands for machine
learning-based prediction of building structures' earthquake response.

The remainder of this study is structured as follows: Section 1 presents the structural parameters
employed in dataset creation, outlines the assumptions made regarding the MDOF 2D shear models,
and provides the list of earthquake recordings used, along with their characteristics. Section 2 offers
an overview of available deep neural network options, highlighting their suitability for addressing
the specific problem at hand. It delves into the reasoning behind the rejection of some options and
the preference for others in the context of the regression task. It also discusses the underlying
principles and the chosen structural parameters of the model. Section 3 examines the format of the
training data and discusses decisions made regarding their utilization in the neural network training
process. Section 4 provides a detailed description of the MLPER architecture, while section 5 presents
the results using various metrics to assess performance. Section 6 concludes the study, offering
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remarks on performance and suggesting avenues for future work within the presented network
framework.

2. Structural models used for generating the calibration data

In this study, the objective is to develop a neural networks-based model capable of predicting
the response, specifically the acceleration time-history, of the top floor translational degree of
freedom, of a multi-degree-of-freedom (MDOF) building system when subjected to an earthquake
event, without relying on any finite element analysis. The underlying motivation behind this
endeavor is to eventually contribute, with a refined neural network model, to a rapid estimation of a
structure's response, accounting for its nonlinear behavior and the characteristics of the ground, at
least in bilinear terms, by utilizing field measurements. More specifically, the proposed model will
combine ambient response timeframes of 60 seconds with earthquake timeframes. For each set of
inputs, consisting of the ambient top floor response and the earthquake data, the model will produce
the response of the specific MDOF system to specific seismic event.

The data and measurements employed in this study were obtained through a rigorous process
involving numerical generation and computational derivation, utilizing the Newmark numerical
integration method. This approach was selected to encompass a wide range of MDOF models,
ensuring the inclusion of all possible parameter combinations. A comprehensive set of 1,197 models
was specifically utilized for the purpose of this investigation, ensuring a robust and extensive
analysis.

The assumptions used to construct these models were based on a building model that can be
seen in Figure 1. This reference building model was mainly used for the estimation of mass baseline
per floor. The stiffness matrix is also seen in the following Table 1. However, stiffness value was
derived after setting the target frequency and target mass. This model was developed using the

ADINA analysis software [23]. The number of assumptions and parameters used are shown in Table
1.

Table 1. Models’ generation parameters.

Geometry
Plan 10.00 x 7.00 (m?)
Stories 1to7
Story height 3.50 (m)
Slab thickness 0.25 (m)
Columns 0.50 x 0.50 (m?)
Beams 0.40 x 0.70 (m?)
Loads
Dead 806.75 (kN)
Live 806.75 (kN)
Safety factor 1!

Dynamic characteristics

Mass (per story)
Damping ratio C
Eigenfrequency

110.78 (tons)
5%
1 to 10 Hz with step of 0.5

Material

Reinforced concrete
Bilinear material
Yield point (uy)
Post yield stiffness (Kefr)

Shear building model

Figure 3
0.0105 (m) 2
50% of geometric one (Kg) 3
K matrix for N=3 (stories)
k1+k2 -k2 0
-k2 k2+k3 | -k3
0 -k3 k3
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1 Assessment of existing condition -real loads. 2 0.003drift x 3.50m = 0.0105m (Hazus C3L - LowCode). More
details can be found in Hazus ® {MH 2.1 Technical Manual (see Paragraph 5.2.1 of [11]). 3 EC8-1 (K.sf = 0.5"
K,), after the first yield, loading-unloading is implemented using K,ss even for the cases that F < F,,.
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Figure 1. The assumptions-table is referring to the typical building model.

To capture some level of the nonlinearity of material or/and level of damages, a bilinear capacity
curve was constructed, which applied to all structural members of each MDOF model (Figure 2). The
general layout of the curve is illustrated in Figure 3. Bilinear capacity curve of all structural members.
Each numerically produced ambient acceleration response signals is the sum of ambient excitation
itself with the response of the corresponding MDOF model at the last degree of Freedom (top of the
building). The case study did not incorporate soil-structure interaction (SSI). Nevertheless, it can be
readily incorporated by utilizing a system of horizontal and vertical springs within fictitious
elements, which simulate the diverse bedrock layers and their influence on the structure [24].
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Figure 2. The MDOF 2D shear model.
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Uy U
Figure 3. Bilinear capacity curve of all structural members.

The signals in this study have a sampling rate of 100Hz, and their duration is consistently 60
seconds. It is important to note that these signals are intentionally generated without any electronic
noise. This is because it is assumed that the measurements will either be obtained using low noise
accelerographs or processed using some form of neural network for denoising the signal. Each
building model in the dataset comprises 1 to 7 floors, with a mass ranging from 80% to 120% of typical
values mentioned in Table 1 and with an eigenfrequency ranging between 1 and 10 Hz with a step of
0.5Hz. Therefore, 1,197 models of MDOF models were derived. For each of these models, three
timeframes of ambient response were selected, leading to the generation of 3,591 artificial ambient
responses.

In terms of earthquake signals, nine acceleration time histories were carefully chosen to
accompany the ambient response signals. These earthquakes are classified into categories of low,
medium, and high amplitudes (refer to Table 2 and Figure 4). For each earthquake scenario, model
responses were generated, resulting in a total of 10,773 earthquake responses. These earthquake
responses will be combined with the corresponding 3,591 ambient responses, bringing the total
number of cases in the created dataset to 32,319. Again, it's important to mention that all signals in
the dataset are sampled at 100Hz and have a duration of 60 seconds.

Table 2. List of seismic records used for developing the training and validation sets.

ID Name Absolute peak acceleration (m/sec?)
1 ML431_100_60sec 0.1579
2 ML5.5Larissa2021 0.1750
3 ML6.0Crete2021 0.1973
4 ML512_100_60sec 1.2467
5 ML6.3Crete2021 3.4509
6 ChiChi 3.5414
7 Kobe_100_60sec 3.3815
8 ERZ0002_100_60sec 5.0536
9 Northridge_100_60sec 5.5750

The split to training and validation datasets was made on the model’s level. Meaning that from
the 1,197 models, ~75% of them are used for training (training set), while the other ~25% (299 models
// ~8100 samples) are used as the validation sample (validation set). Therefore, the network learns to
predict the response on unforeseen models for the 9 “known” EQs.
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Figure 4. Earthquakes adopted for generating the training-validation sets; starting from ID 1 (a) to ID
9 (i).

3. Neural network architecture options

Neural networks are computational models that draw inspiration from the structure and
functioning of the human brain. These models comprise interconnected layers of artificial neurons
(known also as nodes), which process information by emulating the communication between
biological neurons. As data traverses the network, each neuron processes and transforms the input,
progressively constructing a hierarchy of increasingly intricate features. During training, the network
fine-tunes its weights and biases through a process known as learning (by means of an algorithmic
procedure like backpropagation), which minimizes the discrepancy between its predictions and the
actual output. Through iterative search optimization, neural networks acquire the ability to discern
intricate patterns, generalize from training data, and effectively tackle complex tasks like image
recognition, natural language processing, and decision-making.

The problem at hand can be characterized as a deterministic regression task. However, due to
the specific nature of the system inputs, employing a popular generative adversarial network (GAN)
architecture was deemed unsuitable. GANs generate outputs that are non-deterministic, meaning
that the same input can yield different outputs each time the model is used. This behavior arises from
the stochastic processes utilized by GANs, such as incorporating random noise during sample
generation. Furthermore, the output of GANs is highly reliant on factors like training data,
hyperparameter selection, and the training process itself. While GANs can produce impressive and
realistic results, they do not offer a unique and definitive solution to a given problem. Even when
considering the subclass of GANs known as conditional generative adversarial networks (CGANSs),
which can be trained to generate samples conditioned on specific input information, the results were
still not deterministic. As a result, an alternative approach was pursued using recurrent neural
networks (RNNs), specifically the long short-term memory (LSTM) architecture. LSTMs can mitigate
the vanishing gradient problem often encountered in traditional RNNs. Another option considered
for the regression task was to employ convolutional neural networks (CNNs). However, considering
the substantial size of the dataset (multiple gigabytes), the limitations of LSTM in comparison to
CNNs were taken into careful consideration:

*  Computationally expensive: LSTMs are computationally expensive compared to CNNss, as they
require a more complex architecture and involve more computations. This can make them more
challenging to train and deploy, especially in real-time applications.

*  Limited parallelization: LSTMs are less parallelizable compared to CNNSs, as the computations
in LSTMs are sequential and depend on the output of previous time steps. This can limit their
scalability and make them less suitable for high-performance computing applications.

In the context of the proposed neural network architecture, CNN layers were selected as a
fundamental component. Convolutional networks (e.g., LeCun et al. [3-6]), often referred to as
convolutional neural networks (CNNs), were chosen due to their specialized nature in handling data
with grid-like structures. Such grid-like data examples encompass time-series data, which can be
conceptualized as a 1-D grid with regularly spaced time interval samples, as well as image data,
which can be visualized as a 2-D grid composed of pixels. Convolutional networks have exhibited
remarkable success in practical applications, and the term "convolutional neural network" reflects
their utilization of a mathematical operation known as convolution.

s(t) = Jx(a) ‘w(t —a)da (1)

where x(t) is the raw signal measurement at time ¢, w(a) a weighted average that gives more weight
to recent measurements, a denotes the age of a measurement and s(t) is the smoothed estimate of x(t)
measurement. Convolution is also denoted as follows:

s(t) = (x-w)(®) 2)
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In the terminology of convolutional networks, the initial parameter (referred to as function x) of
the convolution operation is commonly denoted as the input, while the second parameter (referred
to as function w) is known as the kernel. The resulting outcome is often termed the feature map (as
illustrated in Figure 5). In our scenario, as well as in numerous other instances, the convolution
operation is two-dimensional, and time is considered discrete. Consequently, its mathematical
representation, known as convolution without flipping and equivalent to cross-correlation, can be
expressed as follows:

s(i,j)=(K-I)(i,j)=ZZI(i+m,j+n)-K(m,n) 3)

where I is a two-dimensional array of data (e.g., an image) and K is a two-dimensional kernel; both I
and K of discrete values.

Input

(e.g., monochromatic image) Kernel
a b M d
& WX
e f g h i =
: : ¢ |z
i i 1 Yy
Output

{e.g.. filtered & reduced monochromatic image)

— | aw+bx+ey+iz bw +ex + fy + gz ew +dx + gy + hz

ew + X +iy +jz fw + gx + jy +kz ew + hx +ky + Iz

Figure 5. A 2D CNN channel.

3. Training data format

In coherence to use CNNs as main form of our NN, time series had to be converted into images.
However, using images of timeseries in time domain would be a bad decision, as the range of values
in our dataset is large, characterized also by large outliers (maximum and minimum values) in
comparison with the mean value of the time histories being around zero. This large range in scale can
be seen in Figure 4, between (a) and (i). Moreover, the variation in values is also present between the
different categories of time series (Ambient Response, EQ excitation, Response under EQ).
Specifically, the amplitude of timeseries used by the NN model varies as follows:

*  Ambient Response: [-7.380213e-05, 7.189604e-05] (g)
=  EQ excitation: [-3.54141, 5.57502] (m/sec?)
*  Response under EQ: [-19.02244, 20.79666] (m/sec?)

Consequently, all time histories underwent a transformation from the time domain to the
frequency domain. To achieve this, spectrograms representing both amplitude and phase were
computed for each signal in the time domain. As a result, two images were generated for each signal
type, shifting the problem from a from a 2-images input — 1-image output one to a 2-set of two images
input — 1-set of two images output scenario (illustrated in Figure 6). The parameters used for the
short-time Fourier Transform across the entire dataset were as follows: a) 400 discrete Fourier
transform (DFT) points, b) a sampling rate of 100Hz, c) a 6-sample overlapping window applied
between adjacent segments, and d) an 8-point symmetric Hann window used for segmenting the
signal and applying windowing.
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Figure 6. A sample of input/output set of images for training, with (a) Ambient response phase
(input), (b) Ambient response magnitude (input), (c) EQ excitation phase (input), (d) EQ excitation
magnitude (input), (e) EQ response phase (output), (f) EQ response magnitude (output).

Subsequently, the maximum and minimum values across the entire dataset were identified and
employed to normalize all input and output categories uniformly. The magnitude spectrograms are
presented in decibels (dB), ranging from -380 to +40 dB on a black-to-white color scale, while the
phase spectrograms are represented in degrees, spanning from -7 to +1t degrees also on a black-to-
white color scale.

The training and validation datasets consist of images with dimensions 2997x201 pixels, saved
in.png format. These images are grayscale, meaning that each pixel is represented by a single integer
within the range of [0, 255]. To optimize storage while preserving necessary resolution, an 8-bit depth
was selected. An 8-bit image offers a dynamic range of 48.13dB, distinct from the time series data
discussed later in the “Numerical investigation — reesults” section. Tensorflow neural network models
typically employ 32-bit variables, occasionally dipping to 16-bit variables in mixed precision mode.
For our experiments, we opted for the default 32-bit precision to ensure stability. Due to the dataset's
size, direct RAM loading is unfeasible. Consequently, we converted the images into TFRecords, a
binary file format designed for efficient storage and processing within TensorFlow. TFRecords
serializes data, transforming it into a sequence of bytes that can be effortlessly transmitted over
networks or stored on disks. This format proves invaluable when handling substantial datasets,
enabling efficient data streaming, shuffling, and random access. TFRecords accommodates various
data types, including images, audio, text, and numerical data. They find widespread applications in
TensorFlow for data preprocessing, augmentation, and input pipeline optimization. In total, the
training dataset occupies approximately 342 GB, while the validation dataset consumes around 114
GB. To prepare the data for neural network input, standard scaling procedures are performed. This
involves normalizing every pixel value to fall within the [0, 1] range by dividing by 255.

4. The MLPER architecture

In this study, we introduce a machine learning-based model designed to forecast seismic-
induced responses of MDOF systems in terms of acceleration. Referred to as MLPER, which stands
for Machine Learning-based Prediction of Earthquake Response in Building Structures, this model
represents a universal approach for predicting earthquake responses in building structures. A
graphical representation of MLPER is provided in Figure 7. MLPER comprises three key stages:
Encoding, Latent Space, and Decoding. As previously described in Section 3, the input to our model
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consists of two sets of images: amplitude and phase spectrograms representing ambient responses
and earthquake data, respectively. The model's output is a pair of images, consisting of amplitude
and phase spectrograms, but this time capturing the earthquake-induced response. Each input and
output image is a 2D representation with dimensions T x F, where T signifies the signal's time
duration, and F denotes the frequency values. The third dimension, the channel, represents the
monochromatic color value. For amplitude spectrograms, the channel dimension represents the
amplitude of acceleration (in dB) at specific frequencies and times, while for phase spectrograms, it
denotes the phase angle (in pi) of the signal at particular frequencies and times. The output images
follow the same format. To offer a visual overview of the MLPER model's structure, please refer to
the schematic representation in Figure 7.
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Figure 7. The MLPER neural network model.

The input format comprises four single-channel images, each sized at 2997x201 pixels, resulting
in a tensor of shape [4, 201, 2997, 1]. We begin by splitting this tensor into four individual tensors,
each having a shape of [1, 201, 2997, 1]. The next step involves the Encoding stage for each signal in
the frequency domain (Table 3). Initially, the two images of shape [201, 2997, 1] are concatenated to
form a tensor of shape [201, 2997, 2]. Three layers of 2D convolution (Conv2D) are applied,
interspersed with Batch Normalization, ReLu activation, and Spatial 2D Dropout layers. Batch
Normalization standardizes the inputs of each layer, promoting faster convergence, improved
generalization, and reduced sensitivity to parameter initialization. It also acts as a regularization
method. Spatial 2D Dropout is a regularization technique that randomly sets a fraction of feature
maps to zero during training, preventing overfitting and encouraging the network to learn more
robust features. In the encoding stage, Spatial 2D Dropout layers were set at a 15% dropout rate,
meaning 15% of randomly selected neurons in these layers were set to zero during each iteration.
Following the encoding, the final layer is flattened, creating a Latent Space through several Dense
layers. After the Flatten layer, two Dense layers follow with ReLu activation. At this juncture, the
"paths" for the Ambient response signal and the Earthquake signal converge. This concatenation is
succeeded by a Dense layer with 20 nodes and another Dense layer with 13,399,920 nodes (Table 4).
Subsequently, reshaping is necessary to transition from fully connected dense layers to image-like
tensors with a shape of [height, width, channels], preparing for the Decoding phase of the network.
The decoding stage (Table 5) consists of 5 Conv2D layers, with Batch Normalization and ReLu layers
in between. The final two Conv2D layers use a Sigmoid activation function, which constrains output
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values to the [0, 1] range (representing colors). No dropout layers are utilized in the decoding portion
of the network. Ultimately, the tensor produced by the Decoder, as depicted in Figure 7, is reshaped
into a [2, 201, 2997, 1] tensor, resulting in two output images.

Table 3. Architecture of MLPER - Part I. 'C' indicates a convolutional layer (Conv2D).

Encoder
C11 C2! C3!
Filters: 64 128 256
Kernel size: (2,2) (4,4) (4,4)
Dilation: (1,1) (1,1) (1,1)
Stride: (1L,1) (8,8) 8,8)
Padding;: Valid Valid Valid

! Followed by Batch Normalization, ReLu and SpatialDropout2D of 15%.

Table 4. Architecture of MLPER - Part II.

Latent space

Flatten Dense! Dense? Dense! Dense?
Ambient response: 4 20 10 - -
Earthquake: 4 20 10 - -
Earthquake response: x - - 20 13399920

'Followed by ReLu. 2Followed by ReLu and Concatenation Layer. Followed by ReLu and Reshape Layer.

Table 5. Architecture of MLPER - Part III. 'C' indicates a convolutional layer (Conv2D).

Decoder
C4 C5! Cé! C72 C83
Filters: 9 16 16 16 2
Kernel size: (3,3) (5,5) (10,10) (3,3) (1,1)
Dilation: (3,3) (1,1) (1,1) (1,1) (1,1)
Stride: (L,1) (L,1) (1,1) (L1) (L1
Padding: Valid Valid Valid Valid Valid

Followed by Batch Normalization and ReLu. 2Followed by Sigmoid. *Followed by Sigmoid and Reshape layer.

During the training process, a batch size of 12 was chosen, spanning a total of 80 epochs. The
neural network employed a substantial 284,190,769 trainable parameters. To optimize the training,
we utilized the Adam optimizer with a learning rate set to 0.001. Notably, in the final epoch, the
training error reached 0.0133, while the prediction error amounted to 0.0143. For a comprehensive
overview of the training progress, please refer to Figure 8. The selected loss function for this task was

Mean Absolute Error (MAE), computed pixel-wise by comparing the true labels and the predicted
values, as defined in Equation (4).

n n
loss = 1/712'91:' = l/an’pred - ytrue' (4)
t=1 t=1

doi:10.20944/preprints202309.0724.v1
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Figure 8. Training and validation loss function value during 80 epochs.

5. Numerical investigation - results

As previously demonstrated, the training error was recorded at 0.0133, with the prediction error
slightly higher at 0.0143. These errors represent the mean absolute errors (MAEs) computed at the
pixel level between the predicted and target spectrograms, encompassing both magnitude and phase.
However, as structural engineers, our primary concern lies in understanding the core problem at
hand: the prediction of seismic responses in terms of acceleration. To address this, all spectrograms
were transformed back into time histories, enabling us to evaluate their similarity in magnitude and
trend. For this comparative analysis, we selected two key metrics: mean absolute percentage error
(MAPE) (Equation (5)) for assessing magnitude congruence and mean directional accuracy (MDA)
(Equation (6)) to gauge the directional accuracy of the time history regression between each time step.
To address the challenge posed by small, near-zero values in the data, we employed a modified
version of both metrics. This adaptation necessitates the introduction of a threshold mask (T) to assess
signal similarities specifically for values exceeding certain magnitudes (m/sec?).

n n
100% A, — F, i — 1
Modified MAPE = OZ o1 nz —true — BTl for il =T (5)
noa Ac t=1 Uerue
s 100% .. v .
Modified MDA = N ngn(u;rediction —iifnl)  for |iGLI=T (6)

t

When employing small threshold mask values (T>0.0001), the mean Modified MAPE registers
an average of 32%, as demonstrated in Figure 9, while the Modified MDA maintains a robust average
of 95%, as illustrated in Figure 10. It is worth noting that there is a more substantial deviation in
accuracy observed in lower-frequency signals, suggesting potential avenues for enhancing the
model's performance. These potential modifications will be discussed in greater detail in the
forthcoming chapter, Discussion. For signals of higher frequency (23,000 signal, equivalent to 4Hz),
the mean MAPE averages at 24.09%, and the MDA at an impressive 97.46%. To offer greater clarity
to the reader regarding the extent of masking, Figures 11 and 12 provide a comprehensive listing of
the omitted values from the time history, which primarily include values that are in close proximity
to zero, as dictated by the chosen threshold T mask.
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Figure 9. Modified MAPE (T>0.0001) of time history signals between actual and predicted for the
validation set (8100 signals — 300 models).
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Figure 10. Modified MDA (T>0.0001) of time history signals between actual and predicted for the
validation set (8100 signals — 300 models).
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for threshold T>0.0001 of signal 1 (model #100, EQ #1).
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Figure 12. Example EQ response time history (blue) unmasked compared to the masked one (orange)
for threshold T>0.0001 of signal 2 (model #100, EQ #2).

When utilizing larger threshold mask values (T>0.01), the mean Modified MAPE averages out
at 18%, as indicated in Figure 13, while the Modified MDA maintains a strong average of 95%, as
shown in Figure 14. The deviation pattern observed remains consistent with that observed when
using lower mask values, with deviations being more prominent in lower-frequency signals. For
signals of higher frequency (23,000 signal, equivalent to 4Hz), the mean MAPE stands at an average
of 14.09%, and the MDA at an impressive 97.19%. To provide greater clarity to the reader regarding
the extent of masking, Figures 15 and 16 list the values from the time history that are omitted when
the threshold T mask is applied. These omitted values typically correspond to those close to zero.
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Figure 13. Modified MAPE (T>0.01) of time history signals between actual and predicted for the
validation set (8100 signals — 300 models).
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Figure 14. Modified MDA (T>0.01) of time history signals between actual and predicted for the
validation set (8100 signals — 300 models).
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Figure 16. EQ response time history (blue) unmasked compared to the masked one (orange) for
threshold T>0.01 of signal 2 (model #100, EQ #2).

As illustrated in the figures referring to the specific test example, spanning from Figure 23 to
Figure 39 in Appendix A, it is evident that the predicted response time histories for model #711 across
all earthquakes (Table 2) display a certain level of similarity to the original/target responses in specific
aspects. However, this congruence is not consistent across all parameters. In terms of phase accuracy,
the model's predictions exhibit impressive performance, with the modified MDA consistently
exceeding 95%. This alignment is particularly evident when examining the "zoomed" subplots in the
referenced figures, where the motion direction matches closely across timesteps for each case. One
noteworthy observation pertains to the loss of accuracy in amplitude scaling, which becomes more
pronounced in instances of strong acceleration values compared to weaker ones. Nevertheless, it's
important to highlight that the dynamic range remains intact, as demonstrated, especially in Figure
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39.The dynamic range for the threshold mask set at T=0.0001, used for the calculations of the
aforementioned metrics, reaches a maximum of 106dB. This is approximately equivalent to an 18-bit
sensor (108.4dB), closely approaching the capabilities of a 20-bit accelerometer with a 120dB dynamic
range, without factoring in any losses attributed to electronic noise.

Py (D’
Per(F)Pyy ()

Furthermore, we conducted a comparison based on frequency spectra. Given the typically
limited frequency spectrum of earthquake excitations (usually up to 10Hz), either due to their
inherent characteristics or dataset restrictions, our analysis focused on the 1-10Hz frequency range.
The initial metric involves assessing the similarity in magnitude between the Fourier spectra of the
predicted and original signals, as depicted in [25-27]. More precisely, we calculated the magnitude-

Coy(f) = )

squared coherence values using (Equation (7)) for each sample, subsequently deriving the mean
value from these results. In Figure 17, it is evident that the mean Cyy consistently averages at 91%,
while the standard deviation of C,, for each target/predicted signal pair averages at 15%, as
illustrated in Figure 18.
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Figure 17. Mean C,, (T>0.0001) of time history signals between actual and predicted for the
validation set (8100 signals — 300 models).
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Figure 18. Standard deviation C,, (T>0.0001) of time history signals between actual and predicted
for the validation set (8100 signals — 300 models).
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As evident in the referenced figures, particularly in Figure 17, and to a somewhat lesser extent
in Figure 18, there is a noticeable increase in error rates at lower frequencies. This observation can be
attributed to certain aspects of the neural network architecture's substructure. Fortunately, this issue
presents an opportunity for improvement, and adjustments could be made to enhance overall
performance, similar to the excellent results already achieved for signals above 4Hz. Specifically, for
signals exceeding the 3,000 ones in this context, the mean C,, reaches an impressive 93.85%, with a
corresponding standard deviation averaging at 13.46%.

As for the phase difference 4¢ (Equation (8)), the results, as shown in Figures 19 and 20, are
presented below. The mean phase difference consistently hovers close to zero, specifically at 0.27°
across all samples. Meanwhile, the average standard deviation of A¢ for the entire dataset stands at
25.28°. It's worth noting that, unlike MAPE, MDA, and C,,, the error in 4¢ doesn't exhibit a
significant increase in low-frequency signals. Instead, its standard deviation shows a slightly wider
dispersion at lower frequencies, although it does not dominate the overall pattern.

Ap(f) = atan (P (f))/pt * 180 (8)
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Figure 19. Mean phase difference (4¢) (T>0.0001) of time history signals between actual and predicted
for the validation set (8100 signals — 300 models).
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Figure 20. Standard deviation phase difference (4¢) (T>0.0001) of time history signals between actual
and predicted for the validation set (8100 signals — 300 models).


https://doi.org/10.20944/preprints202309.0724.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2023 doi:10.20944/preprints202309.0724.v1

19

6. Discussion

In this study, we introduce a neural network model designed to predict the response of multi-
degree-of-freedom (MDOF) systems when subjected to seismic events, specifically targeting the n-
degree of freedom (top storey translational degree of freedom), all without the need performing
complex nonlinear time history analyses. This study serves as a pivotal foundational milestone in our
pursuit of a larger goal: achieving precise earthquake response predictions for all types of buildings,
while comprehensively considering factors such as site effects, second-order effects, and deviations
from bilinear stiffness behavior. To realize this overarching objective, we intend to leverage various
means, including the accumulation of insights derived from real-world observations and numerically
generated datasets.

Our prediction methodology utilizes time history images of ambient responses of MDOF
systems in conjunction with the target earthquake event. The model then forecasts the response of
the MDOF system's top floor, typically the concrete floor exhibiting diaphragm behavior. In
evaluating our model's performance in the time domain, we find generally favorable results.
However, it is worth noting that outliers in the predictions exhibit an average error rate of 14% (see
Figure 21); for signals over 3000 ID, this error becomes equal to 11.10%. This issue could potentially
be mitigated through the implementation of a weighted loss function, which would penalize
inaccuracies in extreme values (0 or 1) more severely. Further analysis reveals that the model's error
variation is more pronounced at lower frequency samples, likely stemming from the chosen decoding
layers of the network (see Table 5). Despite using strides with small kernel sizes (2,2) and (4,4), it
appears that the model struggles to capture the low-frequency attributes of motion in the signals.
Consequently, future research should focus on enhancing the network's ability to extract information
from input images, particularly at lower frequencies.
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Figure 21. Modified MAPE (T>0.75MaxOfEachTimeseries) of time history signals between actual and
predicted for the validation set (8100 signals — 300 models) for the validation of outliers’ performance.

Our study's evaluation metrics, including modified Mean Absolute Percentage Error (MAPE),
MDA, magnitude-square coherence values, and phase differences (A4¢ ), collectively indicate
promising performance from the proposed network. It successfully predicts earthquake responses
for various MDOF systems with efficiency and accuracy, relying solely on acceleration time history
images.
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Appendix A

Predicted response time histories for model #711 (6.5Hz, 2 stories, 1.2 Mass reference ratio)
across all earthquakes. This sample, as with the others, displays a certain level of similarity to the
original/target responses in specific aspects. In each of the following Figures, the response of the
specific sample model is shown, both in frequency and time domains for each of the earthquakes.
Meanwhile, MDOF models” IDs are increment values of the combination of frequency, number of
stories and mass reference ratio. The model naming is shown in the following table:

Table 6. MDOF models’ labeling.

id Frequency (Hz) Stories Mass reference ratio
1 1 1 0.8
1 1 0.85
62 1 7 1.15
63 1 7 1.2
66 1.5 1 0.9
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Figure 22. A sample of input/output set of images for training, with (a) EQ response phase target
(signal 5995), (b) EQ response phase predicted (signal 5995), (c) EQ response magnitude target (signal
5995), (d) EQ response magnitude predicted (signal 5995).
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Figure 23. Predicted EQ response time history (blue) compared to the target one (orange) of signal
5995 (model #711, EQ #1).
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Figure 24. A sample of input/output set of images for training, with (a) EQ response phase target
(signal 5996), (b) EQ response phase predicted (signal 5996), (c) EQ response magnitude target (signal
5996), (d) EQ response magnitude predicted (signal 5996).
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Figure 25. Predicted EQ response time history (blue) compared to the target one (orange) of signal
5996 (model #711, EQ #2).
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Figure 26. A sample of input/output set of images for training, with (a) EQ response phase target
(signal 5997), (b) EQ response phase predicted (signal 5997), (c) EQ response magnitude target (signal
5997), (d) EQ response magnitude predicted (signal 5997).
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Figure 27. Predicted EQ response time history (blue) compared to the target one (orange) of signal
5997 (model #711, EQ #3).

;"' el ,,
IR T

itk “»‘. el 5 ‘,“J“v‘~ '."‘I.‘:
VIO eI e s

;:»‘_r“:{-'wv‘ LAY et
IR LR LAy

i l" ‘ll U rl!"l
s ' )

T ()
Q

(d)

Figure 28. A sample of input/output set of images for training, with (a) EQ response phase target
(signal 5998), (b) EQ response phase predicted (signal 5998), (c) EQ response magnitude target (signal
5998), (d) EQ response magnitude predicted (signal 5998).
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Figure 29. Predicted EQ response time history (blue) compared to the target one (orange) of signal
5998 (model #711, EQ #4).
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Figure 30. A sample of input/output set of images for training, with (a) EQ response phase target
(signal 5999), (b) EQ response phase predicted (signal 5999), (c) EQ response magnitude target (signal
5999), (d) EQ response magnitude predicted (signal 5999).
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Figure 31. Predicted EQ response time history (blue) compared to the target one (orange) of signal
5999 (model #711, EQ #5).
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Figure 32. A sample of input/output set of images for training, with (a) EQ response phase target
(signal 6000), (b) EQ response phase predicted (signal 6000), (c) EQ response magnitude target (signal
6000), (d) EQ response magnitude predicted (signal 6000).


https://doi.org/10.20944/preprints202309.0724.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 September 2023 doi:10.20944/preprints202309.0724.v1

26

T T T
R -
3
@
£ 2 7
s
.:g 0 o vt o 22 e e e e o ]
Qo
<
-4 & 1 | 1 1 1 [ —
0 1000 2000 3000 4000 5000 6000
Time (sec)
0.1 ,
-~ | -~ I
% | % e |
g, == Boosf Lo
E . £ Y uﬁ ::'lli:(;tnl’l I“n:: h“"[,‘ Hxllx'.::;: R
c '] | = “li |1|1|||1,|1|, TR
2 of *ﬂ‘% ik u,ni‘;;m: W M (GBI
N L i R
= -0.05 i ' el
g2 . - 8 ::
< i < i
-4 -0.1 !
2500 3000 3500 5500 5600 5700 5800 5900 6000
Time (sec) Time (sec)

Figure 33. Predicted EQ response time history (blue) compared to the target one (orange) of signal
6000 (model #711, EQ #6).
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Figure 34. A sample of input/output set of images for training, with (a) EQ response phase target
(signal 6001), (b) EQ response phase predicted (signal 6001), (c) EQ response magnitude target (signal
6001), (d) EQ response magnitude predicted (signal 6001).
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Figure 35. Predicted EQ response time history (blue) compared to the target one (orange) of signal
6001 (model #711, EQ #7).
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Figure 36. A sample of input/output set of images for training, with (a) EQ response phase target
(signal 6002), (b) EQ response phase predicted (signal 6002), (c) EQ response magnitude target (signal
6002), (d) EQ response magnitude predicted (signal 6002).
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Figure 37. Predicted EQ response time history (blue) compared to the target one (orange) of signal
6002 (model #711, EQ #8).
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Figure 38. A sample of input/output set of images for training, with (a) EQ response phase target
(signal 6003), (b) EQ response phase predicted (signal 6003), (c) EQ response magnitude target (signal
6003), (d) EQ response magnitude predicted (signal 6003).
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Figure 39. Predicted EQ response time history (blue) compared to the target one (orange) of signal
6003 (model #711, EQ #9).
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