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Abstract: Deep neural networks (DNNs) have gained prominence in addressing regression problems, offering 

versatile architectural designs that cater to various applications. In the field of earthquake engineering, seismic 

response prediction is a critical area of study. Simplified models such as single-degree-of-freedom (SDOF) and 

multi-degree-of-freedom (MDOF) systems have traditionally provided valuable insights into structural 

behavior, known for their computational efficiency facilitating faster simulations. However, these models have 

notable limitations in capturing the nuanced nonlinear behavior of structures and the spatial variability of 

ground motions. This study focuses on leveraging ambient vibration (AV) measurements of buildings, 

combined with earthquake (EQ) time-history data, to create a predictive model using a neural network (NN) 

in image format. The primary objective is to predict a specific building's earthquake response accurately. The 

training dataset consists of 1,197 MDOF 2D shear models, generating a total of 32,319 training samples. To 

evaluate the performance of the proposed model, termed MLPER (Machine Learning based Prediction of 

building structures' Earthquake Response), several metrics are employed. These include mean absolute 

percentage error (MAPE) and mean deviation angle (MDA) for comparisons in the time domain. Additionally, 

we assess magnitude-squared coherence values and phase differences (𝛥𝜑) for comparisons in the frequency 

domain. This study underscores the potential of MLPER as a reliable tool for predicting building earthquake 

response, addressing the limitations of simplified models. By integrating AV measurements and EQ time-

history data into a neural network framework, MLPER offers a promising avenue for enhancing our 

understanding of structural behavior during seismic events, ultimately contributing to improved earthquake 

resilience in building design and engineering. 

Keywords: long short-term memory network; ambient vibration measurements; earthquake 

response; multi-degree-of-freedom models; structural response phase and magnitude images 

 

1. Introduction 

Deep neural networks (DNNs) have gained significant popularity in addressing regression 

problems, and numerous architectural designs have become prevalent. One such architecture is the 

multi-layer perceptron (MLP), which has been widely employed in various regression problems [1]. 

The developers of MLP are acknowledged for introducing the backpropagation algorithm, a key 

method for training neural networks [2]. Another notable architecture is the convolutional neural 

network (CNN) introduced by LeCun et al. [3–6]. CNNs are extensively utilized in image and signal 

processing tasks and have also found application in regression tasks. Recurrent neural networks 

(RNNs), initially introduced by John Hopfield in the early 1980s [7], gained widespread adoption 
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with the advent of the long short-term memory (LSTM) architecture developed by Hochreiter and 

Schmidhuber in 1997 [8]. LSTMs have proven highly effective in capturing long-term dependencies 

in sequential data. During the mid-2000s, Restricted Boltzmann Machines (RBMs) and deep belief 

networks (DBNs) played a pivotal role in the advancement of deep learning techniques, particularly 

in unsupervised learning and feature learning [9]. Between 2000 and 2017, advancements such as 

dropout, batch normalization, convolutional LSTMs, and residual connections further enhanced the 

performance of existing architectures for regression tasks. Transformers, a more recent architectural 

design, have exhibited remarkable success in natural language processing tasks and exhibit potential 

for regression tasks [10]. 

Meanwhile, seismic response prediction is an important aspect of earthquake engineering, and 

simplified models such as SDOF and MDOF systems can provide valuable insights into the behavior 

of structures, being advantageous due to their processing efficiency, which allows for faster and more 

manageable computational simulations. However, these simplified models have limitations, 

particularly in accurately capturing the nonlinear behavior of structures and the spatial variability of 

ground motions, which is something we shall bear in mind. Software tools and methodologies such 

as Hazus-MH 2.1 in the United States [11], pre-quake rapid visual inspection (RVI) in Greece [30], 

and the FEMA P-58 methodology [12] have been developed to enable fast-track inspection and risk 

estimations for large building stock. Open-source software frameworks such as OpenSees [14] and 

OpenQuake [15] have also been developed, which provide a platform for researchers and engineers 

to develop and apply advanced techniques for seismic response prediction, including machine 

learning and hybrid simulation. For example, OpenQuake has been used for probabilistic seismic 

hazard assessment and loss estimation [16]. While these tools have their own limitations, ongoing 

research is focused on improving their accuracy and applicability through advanced techniques and 

open-source software. Additionally, advancements in big data and structural health monitoring have 

created new opportunities for seismic response prediction methods. Structural health monitoring 

systems, such as accelerographs, provide real-time data on the behavior of structures during seismic 

events, enabling a detailed understanding of their response. This data, along with geological and 

seismic activity data, can be used to build large datasets for machine learning and other advanced 

techniques [17,18]. Various machine learning-based approaches have been made such as predicting 

seismic damage of building structures considering soil-structure interaction effects [19], their seismic 

performance levels [20] or even damage identification [21]. Other studies are dealing with the various 

dynamic quantities of building structures such as acceleration, displacement response quantities 

trying to manipulate them [22]. 

This study primarily focuses on utilizing ambient vibration (AV) measurements from a building 

in conjunction with earthquake (EQ) time histories, which are processed through a neural network 

(NN) in image format to predict the building's specific earthquake response. The training phase 

involved the development of 1,197 multi-degrees of freedom (MDOF) 2D shear models, resulting in 

the creation of a total of 32,319 samples. To assess the NN's performance, various metrics were 

employed, including MAPE (mean absolute percentage error), MDA (mean difference amplitude) for 

time-history comparisons, and magnitude-squared coherence values and phase difference (𝛥𝜑) for 

frequency domain comparisons. This proposed model is named MLPER, which stands for machine 

learning-based prediction of building structures' earthquake response. 

The remainder of this study is structured as follows: Section 1 presents the structural parameters 

employed in dataset creation, outlines the assumptions made regarding the MDOF 2D shear models, 

and provides the list of earthquake recordings used, along with their characteristics. Section 2 offers 

an overview of available deep neural network options, highlighting their suitability for addressing 

the specific problem at hand. It delves into the reasoning behind the rejection of some options and 

the preference for others in the context of the regression task. It also discusses the underlying 

principles and the chosen structural parameters of the model. Section 3 examines the format of the 

training data and discusses decisions made regarding their utilization in the neural network training 

process. Section 4 provides a detailed description of the MLPER architecture, while section 5 presents 

the results using various metrics to assess performance. Section 6 concludes the study, offering 
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remarks on performance and suggesting avenues for future work within the presented network 

framework. 

2. Structural models used for generating the calibration data 

In this study, the objective is to develop a neural networks-based model capable of predicting 

the response, specifically the acceleration time-history, of the top floor translational degree of 

freedom, of a multi-degree-of-freedom (MDOF) building system when subjected to an earthquake 

event, without relying on any finite element analysis. The underlying motivation behind this 

endeavor is to eventually contribute, with a refined neural network model, to a rapid estimation of a 

structure's response, accounting for its nonlinear behavior and the characteristics of the ground, at 

least in bilinear terms, by utilizing field measurements. More specifically, the proposed model will 

combine ambient response timeframes of 60 seconds with earthquake timeframes. For each set of 

inputs, consisting of the ambient top floor response and the earthquake data, the model will produce 

the response of the specific MDOF system to specific seismic event. 

The data and measurements employed in this study were obtained through a rigorous process 

involving numerical generation and computational derivation, utilizing the Newmark numerical 

integration method. This approach was selected to encompass a wide range of MDOF models, 

ensuring the inclusion of all possible parameter combinations. A comprehensive set of 1,197 models 

was specifically utilized for the purpose of this investigation, ensuring a robust and extensive 

analysis. 

The assumptions used to construct these models were based on a building model that can be 

seen in Figure 1. This reference building model was mainly used for the estimation of mass baseline 

per floor. The stiffness matrix is also seen in the following Table 1. However, stiffness value was 

derived after setting the target frequency and target mass. This model was developed using the 

ADINA analysis software [23]. The number of assumptions and parameters used are shown in Table 

1. 

Table 1. Models’ generation parameters. 

Geometry 

Plan 10.00 × 7.00 (m2) 

Stories 1 to 7 

Story height 3.50 (m) 

Slab thickness 0.25 (m) 

Columns 0.50 × 0.50 (m2) 

Beams 0.40 × 0.70 (m2) 

Loads 

Dead 806.75 (kN) 

Live 806.75 (kN) 

Safety factor 1 1 

Dynamic characteristics 

Mass (per story) 110.78 (tons) 

Damping ratio ζ 5% 

Eigenfrequency 1 to 10 Hz with step of 0.5 

Material 

Reinforced concrete  

Bilinear material Figure 3 

Yield point (uy) 0.0105 (m) 2 

Post yield stiffness (Keff) 50% of geometric one (Kg) 3 

Shear building model 

K matrix for N=3 (stories) 

k1 + k2 -k2 0 

- k2 k2 + k3 - k3 

0 - k3 k3 
 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 September 2023                   doi:10.20944/preprints202309.0724.v1

https://doi.org/10.20944/preprints202309.0724.v1


 4 

 

1 Assessment of existing condition -real loads. 2 0.003drift × 3.50m = 0.0105m (Hazus C3L – LowCode). More 

details can be found in Hazus ® {MH 2.1 Technical Manual (see Paragraph 5.2.1 of [11]). 3 EC8–1 (𝐾𝑒𝑓𝑓 = 0.5 ∙𝐾𝑔), after the first yield, loading-unloading is implemented using 𝐾𝑒𝑓𝑓 even for the cases that 𝐹 < 𝐹𝑦. 

 

Figure 1. The assumptions-table is referring to the typical building model. 

To capture some level of the nonlinearity of material or/and level of damages, a bilinear capacity 

curve was constructed, which applied to all structural members of each MDOF model (Figure 2). The 

general layout of the curve is illustrated in Figure 3. Bilinear capacity curve of all structural members. 

Each numerically produced ambient acceleration response signals is the sum of ambient excitation 

itself with the response of the corresponding MDOF model at the last degree of Freedom (top of the 

building). The case study did not incorporate soil-structure interaction (SSI). Nevertheless, it can be 

readily incorporated by utilizing a system of horizontal and vertical springs within fictitious 

elements, which simulate the diverse bedrock layers and their influence on the structure [24]. 

 

Figure 2. The MDOF 2D shear model. 
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Figure 3. Bilinear capacity curve of all structural members. 

The signals in this study have a sampling rate of 100Hz, and their duration is consistently 60 

seconds. It is important to note that these signals are intentionally generated without any electronic 

noise. This is because it is assumed that the measurements will either be obtained using low noise 

accelerographs or processed using some form of neural network for denoising the signal. Each 

building model in the dataset comprises 1 to 7 floors, with a mass ranging from 80% to 120% of typical 

values mentioned in Table 1 and with an eigenfrequency ranging between 1 and 10 Hz with a step of 

0.5Hz. Therefore, 1,197 models of MDOF models were derived. For each of these models, three 

timeframes of ambient response were selected, leading to the generation of 3,591 artificial ambient 

responses. 

In terms of earthquake signals, nine acceleration time histories were carefully chosen to 

accompany the ambient response signals. These earthquakes are classified into categories of low, 

medium, and high amplitudes (refer to Table 2 and Figure 4). For each earthquake scenario, model 

responses were generated, resulting in a total of 10,773 earthquake responses. These earthquake 

responses will be combined with the corresponding 3,591 ambient responses, bringing the total 

number of cases in the created dataset to 32,319. Again, it's important to mention that all signals in 

the dataset are sampled at 100Hz and have a duration of 60 seconds. 

Table 2. List of seismic records used for developing the training and validation sets. 

ID Name Absolute peak acceleration (m/sec2) 

1 ML431_100_60sec 0.1579 

2 ML5.5Larissa2021 0.1750 

3 ML6.0Crete2021 0.1973 

4 ML512_100_60sec 1.2467 

5 ML6.3Crete2021 3.4509 

6 ChiChi 3.5414 

7 Kobe_100_60sec 3.3815 

8 ERZ0002_100_60sec 5.0536 

9 Northridge_100_60sec 5.5750 

The split to training and validation datasets was made on the model’s level. Meaning that from 
the 1,197 models, ~75% of them are used for training (training set), while the other ~25% (299 models 

// ~8100 samples) are used as the validation sample (validation set). Therefore, the network learns to 

predict the response on unforeseen models for the 9 “known” EQs. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

 
(i) 
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Figure 4. Earthquakes adopted for generating the training-validation sets; starting from ID 1 (a) to ID 

9 (i). 

3. Neural network architecture options 

Neural networks are computational models that draw inspiration from the structure and 

functioning of the human brain. These models comprise interconnected layers of artificial neurons 

(known also as nodes), which process information by emulating the communication between 

biological neurons. As data traverses the network, each neuron processes and transforms the input, 

progressively constructing a hierarchy of increasingly intricate features. During training, the network 

fine-tunes its weights and biases through a process known as learning (by means of an algorithmic 

procedure like backpropagation), which minimizes the discrepancy between its predictions and the 

actual output. Through iterative search optimization, neural networks acquire the ability to discern 

intricate patterns, generalize from training data, and effectively tackle complex tasks like image 

recognition, natural language processing, and decision-making. 

The problem at hand can be characterized as a deterministic regression task. However, due to 

the specific nature of the system inputs, employing a popular generative adversarial network (GAN) 

architecture was deemed unsuitable. GANs generate outputs that are non-deterministic, meaning 

that the same input can yield different outputs each time the model is used. This behavior arises from 

the stochastic processes utilized by GANs, such as incorporating random noise during sample 

generation. Furthermore, the output of GANs is highly reliant on factors like training data, 

hyperparameter selection, and the training process itself. While GANs can produce impressive and 

realistic results, they do not offer a unique and definitive solution to a given problem. Even when 

considering the subclass of GANs known as conditional generative adversarial networks (CGANs), 

which can be trained to generate samples conditioned on specific input information, the results were 

still not deterministic. As a result, an alternative approach was pursued using recurrent neural 

networks (RNNs), specifically the long short-term memory (LSTM) architecture. LSTMs can mitigate 

the vanishing gradient problem often encountered in traditional RNNs. Another option considered 

for the regression task was to employ convolutional neural networks (CNNs). However, considering 

the substantial size of the dataset (multiple gigabytes), the limitations of LSTM in comparison to 

CNNs were taken into careful consideration: 

▪ Computationally expensive: LSTMs are computationally expensive compared to CNNs, as they 

require a more complex architecture and involve more computations. This can make them more 

challenging to train and deploy, especially in real-time applications. 

▪ Limited parallelization: LSTMs are less parallelizable compared to CNNs, as the computations 

in LSTMs are sequential and depend on the output of previous time steps. This can limit their 

scalability and make them less suitable for high-performance computing applications. 

In the context of the proposed neural network architecture, CNN layers were selected as a 

fundamental component. Convolutional networks (e.g., LeCun et al. [3–6]), often referred to as 

convolutional neural networks (CNNs), were chosen due to their specialized nature in handling data 

with grid-like structures. Such grid-like data examples encompass time-series data, which can be 

conceptualized as a 1-D grid with regularly spaced time interval samples, as well as image data, 

which can be visualized as a 2-D grid composed of pixels. Convolutional networks have exhibited 

remarkable success in practical applications, and the term "convolutional neural network" reflects 

their utilization of a mathematical operation known as convolution. 𝑠(𝑡) = ∫ 𝑥(𝑎) ∙ 𝑤(𝑡 − 𝑎)𝑑𝑎 (1) 

where x(t) is the raw signal measurement at time t, w(a) a weighted average that gives more weight 

to recent measurements, a denotes the age of a measurement and s(t) is the smoothed estimate of x(t) 

measurement. Convolution is also denoted as follows: 𝑠(𝑡) = (𝑥 ∙ 𝑤)(𝑡) (2) 
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In the terminology of convolutional networks, the initial parameter (referred to as function x) of 

the convolution operation is commonly denoted as the input, while the second parameter (referred 

to as function w) is known as the kernel. The resulting outcome is often termed the feature map (as 

illustrated in Figure 5). In our scenario, as well as in numerous other instances, the convolution 

operation is two-dimensional, and time is considered discrete. Consequently, its mathematical 

representation, known as convolution without flipping and equivalent to cross-correlation, can be 

expressed as follows: 𝑠(𝑖, 𝑗) = (𝐾 ∙ 𝐼)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛) ∙ 𝐾(𝑚, 𝑛)𝑛𝑚  (3) 

where I is a two-dimensional array of data (e.g., an image) and K is a two-dimensional kernel; both I 

and K of discrete values. 

 

Figure 5. A 2D CNN channel. 

3. Training data format 

In coherence to use CNNs as main form of our NN, time series had to be converted into images. 

However, using images of timeseries in time domain would be a bad decision, as the range of values 

in our dataset is large, characterized also by large outliers (maximum and minimum values) in 

comparison with the mean value of the time histories being around zero. This large range in scale can 

be seen in Figure 4, between (a) and (i). Moreover, the variation in values is also present between the 

different categories of time series (Ambient Response, EQ excitation, Response under EQ). 

Specifically, the amplitude of timeseries used by the NN model varies as follows: 

▪ Ambient Response: [-7.380213e-05, 7.189604e-05] (g) 

▪ EQ excitation: [-3.54141, 5.57502] (m/sec2) 

▪ Response under EQ: [-19.02244, 20.79666] (m/sec2) 

Consequently, all time histories underwent a transformation from the time domain to the 

frequency domain. To achieve this, spectrograms representing both amplitude and phase were 

computed for each signal in the time domain. As a result, two images were generated for each signal 

type, shifting the problem from a from a 2-images input – 1-image output one to a 2-set of two images 

input – 1-set of two images output scenario (illustrated in Figure 6). The parameters used for the 

short-time Fourier Transform across the entire dataset were as follows: a) 400 discrete Fourier 

transform (DFT) points, b) a sampling rate of 100Hz, c) a 6-sample overlapping window applied 

between adjacent segments, and d) an 8-point symmetric Hann window used for segmenting the 

signal and applying windowing. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6. A sample of input/output set of images for training, with (a) Ambient response phase 

(input), (b) Ambient response magnitude (input), (c) EQ excitation phase (input), (d) EQ excitation 

magnitude (input), (e) EQ response phase (output), (f) EQ response magnitude (output). 

Subsequently, the maximum and minimum values across the entire dataset were identified and 

employed to normalize all input and output categories uniformly. The magnitude spectrograms are 

presented in decibels (dB), ranging from -380 to +40 dB on a black-to-white color scale, while the 

phase spectrograms are represented in degrees, spanning from -π to +π degrees also on a black-to-

white color scale. 

The training and validation datasets consist of images with dimensions 2997×201 pixels, saved 

in.png format. These images are grayscale, meaning that each pixel is represented by a single integer 

within the range of [0, 255]. To optimize storage while preserving necessary resolution, an 8-bit depth 

was selected. An 8-bit image offers a dynamic range of 48.13dB, distinct from the time series data 

discussed later in the “Numerical investigation – reesults” section. Tensorflow neural network models 
typically employ 32-bit variables, occasionally dipping to 16-bit variables in mixed precision mode. 

For our experiments, we opted for the default 32-bit precision to ensure stability. Due to the dataset's 

size, direct RAM loading is unfeasible. Consequently, we converted the images into TFRecords, a 

binary file format designed for efficient storage and processing within TensorFlow. TFRecords 

serializes data, transforming it into a sequence of bytes that can be effortlessly transmitted over 

networks or stored on disks. This format proves invaluable when handling substantial datasets, 

enabling efficient data streaming, shuffling, and random access. TFRecords accommodates various 

data types, including images, audio, text, and numerical data. They find widespread applications in 

TensorFlow for data preprocessing, augmentation, and input pipeline optimization. In total, the 

training dataset occupies approximately 342 GB, while the validation dataset consumes around 114 

GB. To prepare the data for neural network input, standard scaling procedures are performed. This 

involves normalizing every pixel value to fall within the [0, 1] range by dividing by 255. 

4. The MLPER architecture 

In this study, we introduce a machine learning-based model designed to forecast seismic-

induced responses of MDOF systems in terms of acceleration. Referred to as MLPER, which stands 

for Machine Learning-based Prediction of Earthquake Response in Building Structures, this model 

represents a universal approach for predicting earthquake responses in building structures. A 

graphical representation of MLPER is provided in Figure 7. MLPER comprises three key stages: 

Encoding, Latent Space, and Decoding. As previously described in Section 3, the input to our model 
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consists of two sets of images: amplitude and phase spectrograms representing ambient responses 

and earthquake data, respectively. The model's output is a pair of images, consisting of amplitude 

and phase spectrograms, but this time capturing the earthquake-induced response. Each input and 

output image is a 2D representation with dimensions T × F, where T signifies the signal's time 

duration, and F denotes the frequency values. The third dimension, the channel, represents the 

monochromatic color value. For amplitude spectrograms, the channel dimension represents the 

amplitude of acceleration (in dB) at specific frequencies and times, while for phase spectrograms, it 

denotes the phase angle (in pi) of the signal at particular frequencies and times. The output images 

follow the same format. To offer a visual overview of the MLPER model's structure, please refer to 

the schematic representation in Figure 7. 

 

Figure 7. The MLPER neural network model. 

The input format comprises four single-channel images, each sized at 2997×201 pixels, resulting 

in a tensor of shape [4, 201, 2997, 1]. We begin by splitting this tensor into four individual tensors, 

each having a shape of [1, 201, 2997, 1]. The next step involves the Encoding stage for each signal in 

the frequency domain (Table 3). Initially, the two images of shape [201, 2997, 1] are concatenated to 

form a tensor of shape [201, 2997, 2]. Three layers of 2D convolution (Conv2D) are applied, 

interspersed with Batch Normalization, ReLu activation, and Spatial 2D Dropout layers. Batch 

Normalization standardizes the inputs of each layer, promoting faster convergence, improved 

generalization, and reduced sensitivity to parameter initialization. It also acts as a regularization 

method. Spatial 2D Dropout is a regularization technique that randomly sets a fraction of feature 

maps to zero during training, preventing overfitting and encouraging the network to learn more 

robust features. In the encoding stage, Spatial 2D Dropout layers were set at a 15% dropout rate, 

meaning 15% of randomly selected neurons in these layers were set to zero during each iteration. 

Following the encoding, the final layer is flattened, creating a Latent Space through several Dense 

layers. After the Flatten layer, two Dense layers follow with ReLu activation. At this juncture, the 

"paths" for the Ambient response signal and the Earthquake signal converge. This concatenation is 

succeeded by a Dense layer with 20 nodes and another Dense layer with 13,399,920 nodes (Table 4). 

Subsequently, reshaping is necessary to transition from fully connected dense layers to image-like 

tensors with a shape of [height, width, channels], preparing for the Decoding phase of the network. 

The decoding stage (Table 5) consists of 5 Conv2D layers, with Batch Normalization and ReLu layers 

in between. The final two Conv2D layers use a Sigmoid activation function, which constrains output 
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values to the [0, 1] range (representing colors). No dropout layers are utilized in the decoding portion 

of the network. Ultimately, the tensor produced by the Decoder, as depicted in Figure 7, is reshaped 

into a [2, 201, 2997, 1] tensor, resulting in two output images. 

Table 3. Architecture of MLPER - Part I. `C' indicates a convolutional layer (Conv2D). 

 Encoder 

 C11 C21 C31 

Filters: 64 128 256 

Kernel size: (2,2) (4,4) (4,4) 

Dilation: (1,1) (1,1) (1,1) 

Stride: (1,1) (8,8) (8,8) 

Padding: Valid Valid Valid 
1 Followed by Batch Normalization, ReLu and SpatialDropout2D of 15%. 

Table 4. Architecture of MLPER - Part IΙ. 

 Latent space 

 Flatten Dense1 Dense2 Dense1 Dense3 

Ambient response: 🗸 20 10 - - 

Earthquake: 🗸 20 10 - - 

Earthquake response:  - - 20 13399920 
1Followed by ReLu. 2Followed by ReLu and Concatenation Layer. 3Followed by ReLu and Reshape Layer. 

Table 5. Architecture of MLPER - Part III. `C' indicates a convolutional layer (Conv2D). 

 Decoder 

 C41 C51 C61 C72 C83 

Filters: 9 16 16 16 2 

Kernel size: (3,3) (5,5) (10,10) (3,3) (1,1) 

Dilation: (3,3) (1,1) (1,1) (1,1) (1,1) 

Stride: (1,1) (1,1) (1,1) (1,1) (1,1) 

Padding: Valid Valid Valid Valid Valid 
1Followed by Batch Normalization and ReLu. 2Followed by Sigmoid. 3 Followed by Sigmoid and Reshape layer. 

During the training process, a batch size of 12 was chosen, spanning a total of 80 epochs. The 

neural network employed a substantial 284,190,769 trainable parameters. To optimize the training, 

we utilized the Adam optimizer with a learning rate set to 0.001. Notably, in the final epoch, the 

training error reached 0.0133, while the prediction error amounted to 0.0143. For a comprehensive 

overview of the training progress, please refer to Figure 8. The selected loss function for this task was 

Mean Absolute Error (MAE), computed pixel-wise by comparing the true labels and the predicted 

values, as defined in Equation (4). 

𝑙𝑜𝑠𝑠 = 1 𝑛⁄ ∑|𝑒𝑡| = 1 𝑛⁄ ∑|𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒|𝑛
𝑡=1

𝑛
𝑡=1  (4) 
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Figure 8. Training and validation loss function value during 80 epochs. 

5. Numerical investigation - results 

As previously demonstrated, the training error was recorded at 0.0133, with the prediction error 

slightly higher at 0.0143. These errors represent the mean absolute errors (MAEs) computed at the 

pixel level between the predicted and target spectrograms, encompassing both magnitude and phase. 

However, as structural engineers, our primary concern lies in understanding the core problem at 

hand: the prediction of seismic responses in terms of acceleration. To address this, all spectrograms 

were transformed back into time histories, enabling us to evaluate their similarity in magnitude and 

trend. For this comparative analysis, we selected two key metrics: mean absolute percentage error 

(MAPE) (Equation (5)) for assessing magnitude congruence and mean directional accuracy (MDA) 

(Equation (6)) to gauge the directional accuracy of the time history regression between each time step. 

To address the challenge posed by small, near-zero values in the data, we employed a modified 

version of both metrics. This adaptation necessitates the introduction of a threshold mask (T) to assess 

signal similarities specifically for values exceeding certain magnitudes (m/sec2). 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑀𝐴𝑃𝐸 = 100%𝑛 ∑ |𝐴𝑡 − 𝐹𝑡𝐴𝑡 | = 1 𝑛⁄ ∑ |𝑢̈𝑡𝑟𝑢𝑒 − 𝑢̈𝑝𝑟𝑒𝑑𝑢̈𝑡𝑟𝑢𝑒 |𝑛
𝑡=1

𝑛
𝑡=1   𝑓𝑜𝑟   |𝑢̈𝑡𝑟𝑢𝑒| ≥ 𝑇 (5) 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑀𝐷𝐴 = 100%𝑁  ∑ 𝑠𝑔𝑛(𝑢̈𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑡 − 𝑢̈𝑡𝑟𝑢𝑒𝑡−1 )𝑡      𝑓𝑜𝑟    |𝑢̈𝑡𝑟𝑢𝑒𝑡−1 | ≥ 𝑇 (6) 

When employing small threshold mask values (T>0.0001), the mean Modified MAPE registers 

an average of 32%, as demonstrated in Figure 9, while the Modified MDA maintains a robust average 

of 95%, as illustrated in Figure 10. It is worth noting that there is a more substantial deviation in 

accuracy observed in lower-frequency signals, suggesting potential avenues for enhancing the 

model's performance. These potential modifications will be discussed in greater detail in the 

forthcoming chapter, Discussion. For signals of higher frequency (≥3,000 signal, equivalent to 4Hz), 

the mean MAPE averages at 24.09%, and the MDA at an impressive 97.46%. To offer greater clarity 

to the reader regarding the extent of masking, Figures 11 and 12 provide a comprehensive listing of 

the omitted values from the time history, which primarily include values that are in close proximity 

to zero, as dictated by the chosen threshold T mask. 
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Figure 9. Modified MAPE (T>0.0001) of time history signals between actual and predicted for the 

validation set (8100 signals – 300 models). 

 

Figure 10. Modified MDA (T>0.0001) of time history signals between actual and predicted for the 

validation set (8100 signals – 300 models). 
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Figure 11. Example EQ response time history (blue) unmasked compared to the masked one (orange) 

for threshold T>0.0001 of signal 1 (model #100, EQ #1). 

 

Figure 12. Example EQ response time history (blue) unmasked compared to the masked one (orange) 

for threshold T>0.0001 of signal 2 (model #100, EQ #2). 

When utilizing larger threshold mask values (T>0.01), the mean Modified MAPE averages out 

at 18%, as indicated in Figure 13, while the Modified MDA maintains a strong average of 95%, as 

shown in Figure 14. The deviation pattern observed remains consistent with that observed when 

using lower mask values, with deviations being more prominent in lower-frequency signals. For 

signals of higher frequency (≥3,000 signal, equivalent to 4Hz), the mean MAPE stands at an average 

of 14.09%, and the MDA at an impressive 97.19%. To provide greater clarity to the reader regarding 

the extent of masking, Figures 15 and 16 list the values from the time history that are omitted when 

the threshold T mask is applied. These omitted values typically correspond to those close to zero. 
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Figure 13. Modified MAPE (T>0.01) of time history signals between actual and predicted for the 

validation set (8100 signals – 300 models). 

 

Figure 14. Modified MDA (T>0.01) of time history signals between actual and predicted for the 

validation set (8100 signals – 300 models). 
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Figure 15. EQ response time history (blue) unmasked compared to the masked one (orange) for 

threshold T>0.01 of signal 1 (model #100, EQ #1). 

 

Figure 16. EQ response time history (blue) unmasked compared to the masked one (orange) for 

threshold T>0.01 of signal 2 (model #100, EQ #2). 

As illustrated in the figures referring to the specific test example, spanning from Figure 23 to 

Figure 39 in Appendix A, it is evident that the predicted response time histories for model #711 across 

all earthquakes (Table 2) display a certain level of similarity to the original/target responses in specific 

aspects. However, this congruence is not consistent across all parameters. In terms of phase accuracy, 

the model's predictions exhibit impressive performance, with the modified MDA consistently 

exceeding 95%. This alignment is particularly evident when examining the "zoomed" subplots in the 

referenced figures, where the motion direction matches closely across timesteps for each case. One 

noteworthy observation pertains to the loss of accuracy in amplitude scaling, which becomes more 

pronounced in instances of strong acceleration values compared to weaker ones. Nevertheless, it's 

important to highlight that the dynamic range remains intact, as demonstrated, especially in Figure 
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39.The dynamic range for the threshold mask set at T=0.0001, used for the calculations of the 

aforementioned metrics, reaches a maximum of 106dB. This is approximately equivalent to an 18-bit 

sensor (108.4dB), closely approaching the capabilities of a 20-bit accelerometer with a 120dB dynamic 

range, without factoring in any losses attributed to electronic noise. 

𝐶𝑥𝑦(𝑓) = |𝑃𝑥𝑦(𝑓)|2𝑃𝑥𝑥(𝑓)𝑃𝑦𝑦(𝑓)  (7) 

Furthermore, we conducted a comparison based on frequency spectra. Given the typically 

limited frequency spectrum of earthquake excitations (usually up to 10Hz), either due to their 

inherent characteristics or dataset restrictions, our analysis focused on the 1–10Hz frequency range. 

The initial metric involves assessing the similarity in magnitude between the Fourier spectra of the 

predicted and original signals, as depicted in [25–27]. More precisely, we calculated the magnitude-

squared coherence values using (Equation (7)) for each sample, subsequently deriving the mean 

value from these results. In Figure 17, it is evident that the mean 𝐶𝑥𝑦 consistently averages at 91%, 

while the standard deviation of 𝐶𝑥𝑦  for each target/predicted signal pair averages at 15%, as 

illustrated in Figure 18. 

 

Figure 17. Mean 𝐶𝑥𝑦  (T>0.0001) of time history signals between actual and predicted for the 

validation set (8100 signals – 300 models). 

 

Figure 18. Standard deviation 𝐶𝑥𝑦 (T>0.0001) of time history signals between actual and predicted 

for the validation set (8100 signals – 300 models). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 September 2023                   doi:10.20944/preprints202309.0724.v1

https://doi.org/10.20944/preprints202309.0724.v1


 18 

 

As evident in the referenced figures, particularly in Figure 17, and to a somewhat lesser extent 

in Figure 18, there is a noticeable increase in error rates at lower frequencies. This observation can be 

attributed to certain aspects of the neural network architecture's substructure. Fortunately, this issue 

presents an opportunity for improvement, and adjustments could be made to enhance overall 

performance, similar to the excellent results already achieved for signals above 4Hz. Specifically, for 

signals exceeding the 3,000 ones in this context, the mean 𝐶𝑥𝑦 reaches an impressive 93.85%, with a 

corresponding standard deviation averaging at 13.46%. 

As for the phase difference 𝛥𝜑 (Equation (8)), the results, as shown in Figures 19 and 20, are 

presented below. The mean phase difference consistently hovers close to zero, specifically at 0.27° 

across all samples. Meanwhile, the average standard deviation of 𝛥𝜑 for the entire dataset stands at 

25.28°. It's worth noting that, unlike MAPE, MDA, and 𝐶𝑥𝑦 , the error in 𝛥𝜑  doesn't exhibit a 

significant increase in low-frequency signals. Instead, its standard deviation shows a slightly wider 

dispersion at lower frequencies, although it does not dominate the overall pattern. 𝛥𝜑(𝑓) = atan (𝑃𝑥𝑦(𝑓))/𝑝𝑖 ∗ 180  (8) 

 

Figure 19. Mean phase difference (𝛥𝜑) (T>0.0001) of time history signals between actual and predicted 

for the validation set (8100 signals – 300 models). 

 

Figure 20. Standard deviation phase difference (𝛥𝜑) (T>0.0001) of time history signals between actual 

and predicted for the validation set (8100 signals – 300 models). 
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6. Discussion 

In this study, we introduce a neural network model designed to predict the response of multi-

degree-of-freedom (MDOF) systems when subjected to seismic events, specifically targeting the n-th 

degree of freedom (top storey translational degree of freedom), all without the need performing 

complex nonlinear time history analyses. This study serves as a pivotal foundational milestone in our 

pursuit of a larger goal: achieving precise earthquake response predictions for all types of buildings, 

while comprehensively considering factors such as site effects, second-order effects, and deviations 

from bilinear stiffness behavior. To realize this overarching objective, we intend to leverage various 

means, including the accumulation of insights derived from real-world observations and numerically 

generated datasets. 

Our prediction methodology utilizes time history images of ambient responses of MDOF 

systems in conjunction with the target earthquake event. The model then forecasts the response of 

the MDOF system's top floor, typically the concrete floor exhibiting diaphragm behavior. In 

evaluating our model's performance in the time domain, we find generally favorable results. 

However, it is worth noting that outliers in the predictions exhibit an average error rate of 14% (see 

Figure 21); for signals over 3000 ID, this error becomes equal to 11.10%. This issue could potentially 

be mitigated through the implementation of a weighted loss function, which would penalize 

inaccuracies in extreme values (0 or 1) more severely. Further analysis reveals that the model's error 

variation is more pronounced at lower frequency samples, likely stemming from the chosen decoding 

layers of the network (see Table 5). Despite using strides with small kernel sizes (2,2) and (4,4), it 

appears that the model struggles to capture the low-frequency attributes of motion in the signals. 

Consequently, future research should focus on enhancing the network's ability to extract information 

from input images, particularly at lower frequencies. 

 

Figure 21. Modified MAPE (T>0.75MaxOfEachTimeseries) of time history signals between actual and 

predicted for the validation set (8100 signals – 300 models) for the validation of outliers’ performance. 

Our study's evaluation metrics, including modified Mean Absolute Percentage Error (MAPE), 

MDA, magnitude-square coherence values, and phase differences ( 𝛥𝜑 ), collectively indicate 

promising performance from the proposed network. It successfully predicts earthquake responses 

for various MDOF systems with efficiency and accuracy, relying solely on acceleration time history 

images. 
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Appendix A 

Predicted response time histories for model #711 (6.5Hz, 2 stories, 1.2 Mass reference ratio) 

across all earthquakes. This sample, as with the others, displays a certain level of similarity to the 

original/target responses in specific aspects. In each of the following Figures, the response of the 

specific sample model is shown, both in frequency and time domains for each of the earthquakes. 

Meanwhile, MDOF models’ IDs are increment values of the combination of frequency, number of 
stories and mass reference ratio. The model naming is shown in the following table: 

Table 6. MDOF models’ labeling. 

id Frequency (Hz) Stories Mass reference ratio 

1 1 1 0.8 

2 1 1 0.85 

. . . . 

. . . . 

. . . . 

62 1 7 1.15 

63 1 7 1.2 

. . . . 

. . . . 

. . . . 

66 1.5 1 0.9 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 22. A sample of input/output set of images for training, with (a) EQ response phase target 

(signal 5995), (b) EQ response phase predicted (signal 5995), (c) EQ response magnitude target (signal 

5995), (d) EQ response magnitude predicted (signal 5995). 
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Figure 23. Predicted EQ response time history (blue) compared to the target one (orange) of signal 

5995 (model #711, EQ #1). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 24. A sample of input/output set of images for training, with (a) EQ response phase target 

(signal 5996), (b) EQ response phase predicted (signal 5996), (c) EQ response magnitude target (signal 

5996), (d) EQ response magnitude predicted (signal 5996). 
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Figure 25. Predicted EQ response time history (blue) compared to the target one (orange) of signal 

5996 (model #711, EQ #2). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 26. A sample of input/output set of images for training, with (a) EQ response phase target 

(signal 5997), (b) EQ response phase predicted (signal 5997), (c) EQ response magnitude target (signal 

5997), (d) EQ response magnitude predicted (signal 5997). 
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Figure 27. Predicted EQ response time history (blue) compared to the target one (orange) of signal 

5997 (model #711, EQ #3). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 28. A sample of input/output set of images for training, with (a) EQ response phase target 

(signal 5998), (b) EQ response phase predicted (signal 5998), (c) EQ response magnitude target (signal 

5998), (d) EQ response magnitude predicted (signal 5998). 
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Figure 29. Predicted EQ response time history (blue) compared to the target one (orange) of signal 

5998 (model #711, EQ #4). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 30. A sample of input/output set of images for training, with (a) EQ response phase target 

(signal 5999), (b) EQ response phase predicted (signal 5999), (c) EQ response magnitude target (signal 

5999), (d) EQ response magnitude predicted (signal 5999). 
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Figure 31. Predicted EQ response time history (blue) compared to the target one (orange) of signal 

5999 (model #711, EQ #5). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 32. A sample of input/output set of images for training, with (a) EQ response phase target 

(signal 6000), (b) EQ response phase predicted (signal 6000), (c) EQ response magnitude target (signal 

6000), (d) EQ response magnitude predicted (signal 6000). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 September 2023                   doi:10.20944/preprints202309.0724.v1

https://doi.org/10.20944/preprints202309.0724.v1


 26 

 

 

Figure 33. Predicted EQ response time history (blue) compared to the target one (orange) of signal 

6000 (model #711, EQ #6). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 34. A sample of input/output set of images for training, with (a) EQ response phase target 

(signal 6001), (b) EQ response phase predicted (signal 6001), (c) EQ response magnitude target (signal 

6001), (d) EQ response magnitude predicted (signal 6001). 
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Figure 35. Predicted EQ response time history (blue) compared to the target one (orange) of signal 

6001 (model #711, EQ #7). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 36. A sample of input/output set of images for training, with (a) EQ response phase target 

(signal 6002), (b) EQ response phase predicted (signal 6002), (c) EQ response magnitude target (signal 

6002), (d) EQ response magnitude predicted (signal 6002). 
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Figure 37. Predicted EQ response time history (blue) compared to the target one (orange) of signal 

6002 (model #711, EQ #8). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 38. A sample of input/output set of images for training, with (a) EQ response phase target 

(signal 6003), (b) EQ response phase predicted (signal 6003), (c) EQ response magnitude target (signal 

6003), (d) EQ response magnitude predicted (signal 6003). 
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Figure 39. Predicted EQ response time history (blue) compared to the target one (orange) of signal 

6003 (model #711, EQ #9). 
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