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Abstract: The primary purpose of this article is to deduce specific order estimates for the Mertens

Function M(n), which facilitates us to analyze the location of zeros of the Riemann Zeta function ζ(s).

The paper also provides a brief overview about the notion of the Mertens Function M(n) and Redheffer

Matrices An. In addition to learning about various spectral properties of An, we shall also deduce the

relation between these two, which, eventually would lead us to establish a necessary and sufficient

condition for the Riemann Hypothesis to hold true, as justified by Redheffer himself. We shall also

observe several numerical evidence as well as theoretical justification behind the falsity of the famous

Mertens Hypothesis, along with how researchers over the years have approached towards deriving an

estimate of the smallest possible natural number n for which the first such violation of the theorem

occurs, utilizing numerous conjectures annotating about the order of M(n). Readers who are highly

motivated in pursuing research in any of the topics relevent to the contents of this paper will surely

find the References section to be extremely resourceful.
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1. Introduction

Arguably one of the most intriguing problems in the field of pure mathematics, especially Number

Theory to be more precise, it is by no means, a surprise that the famous "Riemann Hypothesis" is still

considered as an open problem, and has drawn tremendous interest from mathematicians and even

scholars from other areas of science, for example, Quantum Physics, Computer Science etc. since more

than two centuries.

Among all the equivalent versions of the statement of the Riemann Hypothesis, its extremely rare

that one intends to approach the problem using concepts of Advanced Linear Algebra and Advanced

Matrix Theory. Although every possible headway in this daunting endeavour is extremely appreciable,

its absolutely correct to say that, over the years, there have been several instances of outstanding claims

made by pioneers in this field, which gave their successors enough motivation to observe this problem

from a different perspective altogether.

This article is devoted to provide an exposition on one such method proposed by Redheffer [48]

in the late 1900’s, when he defined formally a special kind of non-symmetric matrices, which was

eventually named after him as Redheffer Matrices, usually denoted as An. These matrices were "special"

in a sense that, apart from its unique spectral properties, Redheffer claimed and proved that,

A necessary and sufficient condition for the statement of Riemann Hypothesis to be true is,

det(An) = O
(

n
1
2+ǫ
)

, for every ǫ > 0.

Roesler [54] also introduced another type of non-symmetric matrices named after him, with similar

properties (6) like Redheffer Matrices. Furthermore, he also established a condition which is necessary

and sufficient for Riemann Hypothesis to be true.
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One can, in fact, observe that, in terms of determinant, these two matrices are very closely related

to the Mertens function M(n), which, by definition, can also be interpreted as a summatory function of

the Möbius Function µ(n) (3.2.1) [59, pp. 91].

As simple as it might seem, to be honest, understanding the true essence of these results and their

implications in Linear Algebra and Number Theory takes a humoungous effort from any motivated

indivudual. As a prerequisite for studying these results in detail, we shall familiarize ourselves with

the notion of Mertens Function and Redheffer Matrices in the earlier sections of 3 to 5, along with deriving

the relation between these two.

In addition to studying the Spectral Properties for An in section 5, our aim is to focus on trying

to estimate the order of M(n) and even for the extended Mertens Function M(x) (3.2.1), a significant

application of which is to analyze the location of zeros of the Riemann Zeta Function ζ(s). [ section 6 ]

Another important use of order estimates of M(n) is to find counterexamples in support of

disproving the statement of the famous Mertens Hypothesis [ref. (3.3) ]. In section 7, we shall discuss

several numerical evidence and theoretical justifications in the form of conjectures proposed by experts

in this field, where our objective is to learn the approach opted by researchers in order to assess the

optimal value of n for which the first such violation to the statement of Mertens Hypothesis occurs.

Although the deductions are far from acceptable, and realistically not completely verifible by rigorous

computation, thus it is still considered to be an active area of research. Although almost all the results

and notations pertinent to the contents of this paper has been explained properly to the best of one’s

ability, the paper contains several references, which should be resourceful to any motivated indivual

interested in pursuing further studies or maybe research in any of these topics.

2. Notations and Abbreviations

• a | b b is divisible by a
• a ∤ b b is not divisible by a
• ⌊x⌋ Greatest Integer less than or equal to x
• ⌈x⌉ Least Integer greater than or equal to x
• Re(s) Real part of a complex number s ∈ C
• RH Riemann Hypothesis
• MH Mertens Hypothesis

3. Mertens Function

3.1. Notion of Arithmetic Functions

We start with some standard definitions in Analytic Number Theory.

Definition 3.1.1. (Arithmetic Function) These are real or complex valued functions defined on the set

of natural numbers N.

In this section, we shall define some specific examples of arithmetic functions pertinent to the

concept of Mertens Function.

Definition 3.1.2. (Möbius Function) The Möbius Function µ : N → {0,±1} is defined as follows:

µ(n) :=



































(−1)k if n =
k

∏
i=1

pi
ai such that, gcd(pi, pj) = 1 ∀ i 6= j

1 if, n = 1

0 otherwise.

One can in fact use definition (3.1.2) to deduce the following property regarding the Möbius

Function.
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Theorem 3.1.1.

∑
d|n

µ(d) =

⌊

1

n

⌋

=











1 if, n = 1

0 otherwise.

(3.1)

With all the neccessary analytic tools already discussed in this section, we can formally introduce

the notion of a specific arithemtic function proposed by F. Mertens in his paper [9].

3.2. Formal Definition of M(n)

Definition 3.2.1. (Mertens Function) The Mertens Function M : N → Z is defined as,

M(n) :=
n

∑
d=1

µ(d) (3.2)

Remark 3.2.1. In general, we can define the Extended Mertens Function as,

M(x) := ∑
1≤n≤x

µ(n) , ∀ x ∈ R

In his paper [9], Mertens conjectured that, for all M(n) with 1 ≤ n ≤ 104, we shall have,

|M(n)| <
√

n (3.3)

This is also known as the Mertens Hypothesis. [ Interested readers can refer to [2, Theorem 14.28, pp. 374]

]

Extending Mertens’ results further upto n = 5 × 106, Sterneck [10] conjectured that,

|M(n)| < 1
2

√
n , ∀ n > 200 .

The primary objective for Mertens behind introducing the function M(x) (As defined in (3.2.1))

was its underlying relation to the location of the zeros of the Riemann Zeta Function ζ(s), the reason

being largely due to it’s consequences for the distribution of the primes, also hailed as one of the most

important unsolved problems in Analytic Number Theory.

4. The Riemann Hypothesis

In this section, we introduce our readers to the famous Riemann Zeta Function, first introduced by

Leonhard Euler, later extended by Bernhard Riemann, which is the integral part of the Riemann Hypothesis,

and also has applications in the field of Modular Forms, Class Field Theory etc.

4.1. Riemann Zeta Function ζ(s)

Definition 4.1.1. (Riemann Zeta Function) The Riemann Zeta Function ζ(s) is defined as,

ζ(s) :=
∞

∑
n=1

1

ns
where s ∈ C, Re(s) > 1. (4.1)

We can, in fact extend ζ(s) to the whole complex plane using the Analytic Continuation Property of

this function defined for Re(s) > 1. Interested readers may refer to the book written by L. Ahlfors [6].

Using the Euler Product Formula, we can pursue an alternative approach to define ζ(s) as,

Definition 4.1.2. Riemann Zeta Function has the following Euler Product Representation,

ζ(s) =
∞

∑
n=1

1

ns
= ∏

p=primes

{

1

1 − p−s

}

(4.2)

Where, the product on the R.H.S. is taken over all primes p, and converges for Re(s) > 1.
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4.2. Analytic Properties of ζ(s)

As for the analytic properties of ζ(s), we assert the following.

Proposition 4.2.1. The following are true for ζ(s):-

• ζ(s) is meromorphic on C.
• ζ(s) has a simple pole at s = 1 with residue 1.
• ζ(1) is a Harmonic Series that diverges to +∞.

• ζ(2) = π2

6 . (Also known as the “Basel Problem”)

Using Definition (3.1.2) and Definition (4.1.2) of ζ(s), we can conclude,

Proposition 4.2.2.

1

ζ(s)
=

∞

∑
n=1

µ(n)

ns
(4.3)

Proof. Follows from expanding the R.H.S. in Definition (4.1.2) .

The Functional Equation of ζ(s) further allows us to conclude that, the trivial zeros of ζ(s) occurs

at negative even integers, i.e., at s = −2k, ∀ k ∈ N.

Also, Riemann conjectured in his paper [5] that, all the non-trivial zeros of ζ(s) must lie on the

critical strip, {s ∈ C : 0 < Re(s) < 1}, moreover, they are symmetrically located about the real axis

and the critical line, Re(s) = 1
2 .

Theorem 4.2.3. (Riemann Hypothesis) All the non-trivial zeroes of the Riemann Zeta Function ζ(s) lie

on the critical line, Re(s) = 1
2 .

RH still remains one of Number Theory’s most elusive unsolved problems (also well-known

as Problem 8 in Hilbert’s list of 23 unsolved problems, and also known as one of the Millenium Prize

Problems), and it is still open till date.

However, one of the most important consequences of RH in Number Theory is it’s connection to

the prime counting function π(x).

Definition 4.2.1. For each x ≥ 0, we define,

π(x) := The number of primes ≤ x .

In particular, it has been established by von Koch [11] in 1901 that, RH is equivalent to,

π(x) = Li(x) + O(
√

x ln x) .

To be more specific, Schoenfield [12] proved in 1976 that, under RH,

|π(x)− Li(x)| ≤ 1
8π

√
x ln x , ∀ x ≥ 2657 .

where, we define,

Li(x) :=
x
∫

2

1
ln t dt .

It is important to observe that, we already have an explicit formula for π(x) and if we observe closely

the structural similarity of this equation to the function Li(x), thus approaching Riemann hypothesis

using concepts of Linear Algebra, especially the notion of Redheffer Matrices ( which we shall discuss in

the next section ) seems to be a promising direction.
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5. Redheffer Matrix

5.1. Definition

Definition 5.1.1. (Redheffer Matrix) Often denoted by An, Redheffer Matrix was first introduced by

mathematician Redheffer (1977), and is defined to be a square (0, 1) matrix of the form, An := (aij)n×n

such that,

aij :=











1 if, i | j

0 otherwise.

(5.1)

for every 1 ≤ i, j ≤ n .

A priori given the invertibility of the Redheffer Matrices being relatively complicated due to the

existence of the initial column of 1’s in the matrix, An is often expressed as,

An := Cn + Dn

where, Cn := (cij)n×n and, Dn := (dij)n×n are the (0, 1) matrices defined as,

cij :=











1 iff, i 6= 1, j = 1.

0 otherwise.

(5.2)

dij :=











1 iff, i | j

0 otherwise.

(5.3)

for every i = 1, 2, 3, ..., n and, j = 1, 2, 3, ..., n.

For example, a 4 × 4 Redheffer Matrix can be represented in the following manner:

A4 =











1 1 1 1

1 1 0 1

1 0 1 0

1 0 0 1











=











0 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0











+











1 1 1 1

0 1 0 1

0 0 1 0

0 0 0 1











Here, one can observe that,

C4 =











0 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0











And,

D4 =











1 1 1 1

0 1 0 1

0 0 1 0

0 0 0 1










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5.2. Relation with Mertens Function M(n)

Theorem 5.2.1. (Determinant of An) We have, for the Redheffer Matrix An,

det(An) = M(n). (5.4)

Proof. Proof uses the following result.

Lemma 5.2.2. The inverse of the matrix Dn defined in (5.3) is defined as, Dn
−1 =

(

δij

)

n
, where,

δij =











µ
(

j
i

)

if, i | j

0 otherwise.

(5.5)

Using Lemma (5.2.2), we obtain, det(Dn
−1) = 1. Hence, det(An) = det(Dn

−1An) =

det(Dn
−1Cn + In) .

Hence, Dn
−1Cn is lower triangular, so is

(

Dn
−1Cn + In

)

, which implies that, det
(

Dn
−1Cn + In

)

is the

product of its diagonal entries.

Consequently,

det
(

Dn
−1Cn + In

)

=

{

n

∑
k=2

µ(k) + 1

}

= M(n) .

5.3. Characteristic Polynomial of An

We start with stating a formal definition of a Directed Graph .

Definition 5.3.1. (Directed Graph) A directed graph, also called a digraph, is a graph in which each of

the edges has a direction.

One method to derive the characteristic polynomial of An is to use the concept of directed graph

D(Mn) corresponding to the matrix, Mn := xIn −An.

By definition (5.3.1), D(Mn) has vertex set, Λ = {1, 2, ....., n} and a directed edge from vertex i to

vertex j iff, mij 6= 0 . In other words, D(Mn) will have a directed edge from i to j iff, i | j or, j = 1 . We

denote it by the ordered pair (i, j).

Definition 5.3.2. (Cycle) A set of directed edges {(i1, j1), (i2, j2), ....., (ik, jk)} is called a cycle of length

k if, jr = ir+1 , ∀ r = 1(1)k − 1 , and jk = i1 , and i1, i2, ....., ik are distinct.

Moreover, suppose c = {(i1, i2), (i2, i3), ....., (ik, i1)} is a cycle in D(Mn).

We set, P [c] = mi1i2 mi2i3 .....mik i1 . Also, for any I ⊆ Λ, we define Mn[I ] as the Principal Submatrix

of Mn with rows and columns in I . Assume C1 to be the set of cycles in D(Mn) containg the vertex

1, and for every c ∈ C1, denote its length by l(c). Also, suppose c
′ be the complement of the vertices

connected by c in Λ.

Using [16, Theorem 2, pp. 503], we can assert that,

det(Mn) = ∑
c∈C1

(−1)l(c)+1.P [c].det(Mn[c
′]). (5.6)

We can further claim that, the principal submatrix Mn[c′] is upper-triangular [ a priori since, each

c ∈ C1 contains the vertex 1] having determinant equal to (x − 1)n−l(c). Moreover, for l(c) ≥ 2, P [c]

doesn’t contain any diagonal entry and precisely is equal to (−1)l(c). Since, the only cycle of length 1 is,

c = {(1, 1)}, hence, P [c] = x − 1.
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Therefore, we obtain the characteristic equation of An as,

det(Mn) = (x − 1)n − ∑
c∈C1

l(c)≥2

(x − 1)n−l(c) (5.7)

which can be rewritten as,

det(Mn) = (x − 1)n −
n

∑
k=2

(x − 1)n−kvn,k−1. (5.8)

where, vn,k denotes the number of cycles starting at vertex 1, of length k + 1, in the graph D(Mn). In

other words, if a k-list in Λ is a list {1, i1, i2, ....., ik} with ir | ir+1, ∀ r = 1(1)k − 1 and 1 < i1 < i2 <

..... < ik ≤ n, then, vn,k shall denote the number of k-lists in Λ.

Remark 5.3.1. Similar computation for a particular case A6 can be found in [17, pp. 676].

Remark 5.3.2. It has been deduced that,

vn,1 = n − 1 , and, vn,2 =
n

∑
k=2

(

⌊ n
k ⌋ − 1

)

.

Remark 5.3.3. Also, we can conclude that, each vn,k is positive and bounded above, as evident from

the relation,

vn,k < n.
(log n)k−1

(k − 1)!
(5.9)

5.4. Eigenvalues of An

Theorem 5.4.1. The Redheffer Matrix An has eigenvalue 1 with multiplicity n − ⌊log2 n⌋ − 1 .

Proof. Here, instead of computing the eigenvalues using the characteristic polynomial of An given by,

pn(x) = det(xIn −An)

We work with the following polynomial,

qn(x) = det(xIn + (An − In))

Observation: pn(x) and qn(x) are very closely related polynomials.

Thus using properties of determinants, we obtain,

pn(x) = (−1)ndet{(1 − x)In + (An − In)} = (−1)nqn(1 − x) .

Implying that, each eigenvalue αj of An can be expressed as (1 − α′j), where, α′j is a root of qn(x), ∀
j = 1, 2, 3, ...., n .

Hence it only suffices to compute roots of qn(x) in order to deduce the eigenvalues of An.

Using properties of directed graphs, we can associate a directed graph with any given square matrix,

say, B := (bij)n×n, all of whose entries are either 0 or 1, by assigning a vertex to each row ( or column

equivalently ) and including an edge between the ith and the jth vertices iff, bij = 1, ∀ i, j = 1, 2, 3, ...., n .

Therefore, corresponding to the matrix (An − In), we can assert from (5.4),

qn(x) = xn +
n

∑
k=1

(−1)k−1c(n, k)xn−k
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Where, c(n, k) denotes the cycles of length k in the directed graph corresponding to the matrix

(An − In) .

Now, for the proof of Theorem (5.4.1), observe that, in the directed graph of (An − In), the

longest cycle is,

1 → 2 → 22 → ........ → 2⌊log2 n⌋ → 1 .

(Since, each entry in the cycle must be a non-trivial multiple of the previous one, and multiplying by 2

each time increases the cycle’s elements as slowly as possible . )

The cycle contains ⌊log2 n⌋+ 1 elements, which yields, c(n, k) = 0 for k > ⌊log2 n⌋+ 1.

The lowest power of x occuring in qn(x) is, xn−⌊log2 n⌋−1. Thus, qn has a root 0 with multiplicity

n − ⌊log2 n⌋ − 1, implying that, pn has a root 1 with multiplicity n − ⌊log2 n⌋ − 1 .

With this information, we can make further deductions about the spectral radius of An .

5.5. Spectral Radius of An

Definition 5.5.1. (Spectral Radius) Spectral Radius of a matrix is defined to be the maximum absolute

value of its eigenvalues.

Remark 5.5.1. An has a positive spectral radius.

( A priori given the “Perron-Frobenius Theorem”, we can deduce that, An clearly satisfies the

irreducibility criterion mentioned in the theorem, hence, the statement follows. )

Remark 5.5.2. Barrett, Forcade and Follington [1] deduced the upper bounds for the co-efficients of the

characteristic polynomial of An. If ρn denotes the spectral radius of An, then using these bounds, they

proved the following asymptotic relation for ρn.

Theorem 5.5.3. lim
n→∞

ρn√
n
= 1 .

Barrett proposed several interesting conjectures based on numerical evidence regarding the other

eigenvalues of An. Interested readers can find the details about this in [13].

One of the significant among them was,

Theorem 5.5.4. An has a negative (real) eigenvalue of magnitude −√
n, and the remaining eigenvalues

are bounded and are close to the origin.

In [15, Theorem 2, pp. 147], the existence of such a negative real eigenvalue has been proven.

Furthermore, we can conclude that it is asymptotically equal to −√
n as n → ∞, and also that, the

remaining eigenvalues of An have magnitude O
( √

n
log n

)

.

Again, given that most of the eigenvalues of An are 1, we can comment on their corresponding

eigenspaces.

5.6. Eigenspaces of An corresponding to its Eigenvalues

Theorem 5.6.1. The eigenspace of An corresponding to the eigenvalue 1 has dimension ⌈ n
2 ⌉ − 1. In

particular, An is non-diagonalizable for n ≥ 5 .

Proof. Follows by obtaining the row-reduced echelon form of the matrix (An − In) and then determining

its nullity.

A priori from the fact that, the eigenspaces of An and AT
n are isomorphic, we can comment further

about the eigenspaces corresponding to the eigenvalues of An that are not equal to 1 .

Theorem 5.6.2. Every eigenspace of An with eigenvalue not equal to 1 has dimension 1 .
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Proof. As for the proof, we use the following result.

Lemma 5.6.3. (w1, w2, ......, wn) is an eigenvector of AT
n with λ as an eigenvalue iff,

• ∑
d|n

wd = λwn

•
n

∑
j=1

wj = λw1

Observe that, if λ 6= 1 be an eigenvalue of AT
n , then, given a value for w1, we can uniquely determine

the remaining wj’s using Lemma (5.6.3) and the following recursive relation,

wj =
1

(λ−1) ∑
d|j

d 6=j

wd

Hence the result follows.

As a result of the above concept, we can introduce another arithmetic function in the next section.

5.7. The Arithmetic Function “νλ”

5.7.1. Definition

Definition 5.7.1. The function νλ : N → R is defined for arbitrary λ 6= 1 using the following recursive

formula,

νλ(n) :=



















1 if, n = 1

1
(λ−1) ∑

d|n
d 6=n

νλ(d) otherwise .
(5.10)

Remark 5.7.1. Definition (5.7.1) allows us to conclude that, λ is an eigenvalue of An iff,

n

∑
k=1

νλ(k) = λ . (5.11)

5.7.2. Dirichlet Series Representation

Given the definition of νλ, we can obtain the following estimate regarding it’s corresponding

Dirichlet Series.

Vλ(s) =
∞

∑
n=1

νλ(n)

ns
(5.12)

As a consequence, we obtain,

Proposition 5.7.2.

Vλ(s) =
∞

∑
n=1

νλ(n)

ns
=

λ − 1

λ − ζ(s)
(5.13)

Where, ζ(s) stands for the Riemann Zeta Function .

Proof. Using partial summation formula,

Vλ(s)ζ(s) =
∞

∑
n=1

(

∑
d|n

νλ(d)

)

1
ns =

(

∞

∑
n=1

λνλ(n)
ns

)

− λ + 1

[ Since, ∑
d|n

νλ(d) = λνλ(n) for every n ∈ N \ {1} ]
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= λVλ(s)− λ + 1 .

Solving for Vλ gives us the result.

Definition 5.7.2. If ak(n) denotes the number of ways of expressing a natural number n as a product

of k factors in some particular order, then, we have the following recursive definition given by,

ak(n) =































1 if, k = 0, n = 1

0 if, k = 0, n 6= 1

∑
d|n

ak−1

(

n
d

)

if, k > 0 .

Using Definition (5.7.2), we can have another expression for νλ.

Theorem 5.7.3. For any n ∈ N, we have,

νλ(n) =

(

1 − 1

λ

) ∞

∑
k=0

ak(n)

λk
(5.14)

Where, λ > 1.

Remark 5.7.4. The Redheffer Matrix does provide an alternative approach on different notions of

divisibility. Being closely related to the Riemann Zeta Functions, it effectively bundles together the

divisibility properties of many numbers into a single term, which can then be studied using techniques

of Linear Algebra .

6. Order of M(x) and its relation to the zeros of ζ(s)

As mentioned previously in the introduction, among the various statements of the famous

Riemann Hypothesis proposed by mathematicians over the years which are equialent to each other, only

few of them have been approached using concepts of Linear Algebra and Advanced Matrix Theory.

Mertens [9] introduced the notion of the extended Mertens Function, M(x) and suggested a

completely different method to analyze the zeros of the location of the Riemann Zeta Function ζ(s). A

priori for Re(s) > 1, one can observe from Proposition (4.2.2),

1

ζ(s)
=

∞

∑
n=1

µ(n)

ns
=

∞

∑
n=1

M(n)− M(n − 1)

ns
=

∞

∑
n=1

(

1

ns
− 1

(n ++1)s

)

= s

∞
∫

1

M(x)

xs+1
dx (6.1)

If we assume, M(x) = O(xǫ) for some ǫ > 0, then the integral on the R.H.S. of (6.1) represents

an analytic function in the half-plane, Re(s) > ǫ. Thus, 1
ζ(s)

shall also be analytic in that region.

Consequently, we can in fact conclude, ζ(s) 6= 0, which, in turn will imply [18, Theorem 30, pp. 83],

π(x) = Li(x) + O (xǫ log x) (6.2)

Clearly the above relation justifies the significance of studying the order of M(x).

Remark 6.0.1. In particular, it seems obvious that, RH follows from the statement of MH [(3.3)], which

can be generalized as follows:

M(x) = O
(

x
1
2

)

(6.3)

A slightly more rigorous computation of the statement in Remark (6.0.1) yields [2, Theorem 14.25C,

pp.370],
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Theorem 6.0.2. A necessary and sufficient condition for the Riemann Hypothesis to be true is,

M(x) = O
(

x
1
2+ǫ
)

(6.4)

for every ǫ > 0.

Remark 6.0.3. Given the definition (5.1.1) of An and the underlying relation between the redheffer

matrices and M(n) [ See (5.2.1) ], we can relate to the result proved by Redheffer [48] that the statement

of RH is true iff,

det(An) = O
(

n
1
2+ǫ
)

(6.5)

for every ǫ > 0 .

Roesler also defined a special kind of matrix, Bn := (bij)2≤i,j≤n such that,

bij :=











i − 1 if, i | j

−1 otherwise.

(6.6)

for every 2 ≤ i, j ≤ n .

Known as the Roesler Matrices, using these matrices, he established that in a similar manner as for

Redheffer Matrices, RH holds true iff,

det(Bn) = O
(

n! n− 1
2+ǫ
)

(6.7)

for every ǫ > 0. It is important to observe that, both An and Bn are extensively related to M(n) via

their determinants. It can be checked that, these matrices are not symmetric, and one has to compute

many of their eigenvalues to estimate their respective determinants.

7. Conjectures on the Order of M(x)

This section provides a survey on various important numerical estimates on the bounds of M(x) ,

and conjectures proposed by pioneers in this field of research during a timeline spanning over more

than half a century. Significant to observe that, many of these theories were enough to refute the

validity of Mertens Hypothesis (3.3).

Neubauer deduced four isolated value of M(x) in his paper [20] for which von Sterneck’s conjecture

(3.2) doesn’t hold true. One of the smallest such values of n is, M(7760000000) = 47465.

Later on, Cohen and Dress further claimed and proved [21] that, the first violation of von

Sterneck’s conjecture in the positive direction is, M(7725038629) = 43947, whereas, credit for deriving

the first violation of the theorem in the negative direction belongs to Dress [22], as he showed,

M(330486258610) = −287440.

Towards the end of the 20th century, Odlyzko and te Riele [23] astonishingly came up with the

following bounds which which was sufficient to conclude tha, the statemnt of MH is indeed false along

both the directions.

lim inf
x→∞

|M(x)|√
x

< −1.009

lim sup
x→∞

|M(x)|√
x

> 1.06
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Although, Pintz established in his paper [24], that the violation occurs for some, x . e3.21×1064 ≃
101.4×1064

. As for further research in this area, interested readers can refer to the works of Jurkat [25],

[26], Spira [27], Jurkat and Peyerimhoff [28], te Riele [29], Möller [30] and Anderson [31].

Many claim that, a priori assuming RH to be true, (6.4) is satisfied, although the statement of the

generalized Mertens Hypothesis (6.3) is indeed false. One of the conjectures which supports this claim is

as follows.

lim sup
x→∞

|M(x)|
√

x log log x
= C (7.1)

where one can obtain estimates for C in the form of, C = 6
√

2
π2 ( Lévy in a comment to Saffari [49] ), and

C =
√

12
π ( Good and Churchhouse [32] ).

El Marraki [33] did provide one of the strongest unconditional order estimate for M(x). He

claimed,

M(x) = O

(

x

log
236
75 x

)

(7.2)

A similar result can be found in Walfisz’s article [34],

M(x) = O

(

x exp

(

−A
(log x)

3
5

(log log x)
1
5

))

(7.3)

for some costant A > 0. One valid estimate for A can be obtained as, A = 0.2098. ( Ford [35] )

There have been significant progress in the direction of obtaing estimates for M(x) of the form,

|M(x)| < x
K , for some constant K > 0 and ∀ x > x0 for some x0 ∈ R. Interested readers can read from

the papers of Hackel [36], MacLeod [37], dress [38], Diamond and McCurley [39], Costa Pereira [40] and

Dress and El Marraki [41].

Some more article pertinent to this topic can be cited as Landau [42], [43] , te Riele [44], [45] and,

Odlyzko and te Riele [46].

Some of the authors even opted for rigorous computation of the function M(n) and the ratio
M(n)√

n
with high hopes of finding possible counterexample to MH. For refernce, one can study articles by

Mertens [9], von Sterneck [50], [51], [10], Neubauer [20], Yorinaga [52], Cohen and Dress [21], dress [22],

Lioen and van de Lune [53].

8. Research Prospects in Mertens Hypothesis

In section 7, we have encountered enough theoretical justification and numerical data which

clearly suggests that anyhow Mertens Hypothesis isn’t true. Furthermore, looking at the already derived

estimates for n ∈ N at which the first violation occurs for MH, one should spontaneously come up

with this obvious question,

Is it justifiable to study the Mertens Hypothesis, and if so, why ?

As ludacris as it may sound, the appropriate answer to this question is, YES. Even though MH have

been disproved convincingly, the everlasting desire among many mathematicians in this era to pursue

research in this area using different techniques is truly commendable. One of the most important

among all the problems in this field of study is to estimate the least possible value of n for which first

violation of MH occurs.

Recall that, Pintz provided a proper bound for n satisfying such condition as, n < 101.4×1064
.

An extensive study of the conjectures of Good and Churchhouse, and also that of Lévy, enables us to

conclude, n ≃ 10 and, n ≃ 48 respectively. Naturally, these bounds are not preferable, as we can obtain

by hands on computation, n > 1014.
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In their article [46], Odlyzko and te Riele claimed that, the first violation for MH won’t occur for

n < 1020, and probably not even for n < 1030. We recall the following theorem from Titchmarsh [2,

Theorem 14.27, pp. 372].

Theorem 8.0.1. A priori assuming RH, suppose we denote the zeros of ζ(s) on the critical line, Re(s) =
1
2 by, ρ = 1

2 + it. Further consider all the zeros to be simple. Then, ∃ a sequence, Tk, satisfying,

k ≤ Tk ≤ k + 1, such that,

M(x) = 2 lim
k→∞

∑
0<t<Tk

Re

(

xρ

ρζ ′(ρ)

)

+ O(1) (8.1)

Kotnik and van de Lune [47] illustrated an experimentdepending on the evaluation of partial sums

of the series on the R.H.S. of (8.1). Thus, eventually, we can obtain,

lim sup
x→∞

|M(x)|
√

x log log log x
= C

where, a valid estimate for C can be derived as, C ≈ 0.5 . As a consequence, we deduce the following

estimate for n as, n ≃ 102.3×1023
for the occurance of the first violation of MH.

Remark 8.0.2. This approximation for n is significantly better than the bound derived by Pintz, although

being too large makes it difficult for mathematicians to verify all the details by direct computation.

It is the very reason why people are still motivated as ever to investigate such a violation of MH by

computing M(n) consistently.
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Mathematikerkongres (1961) 11.

26. W. B. Jurkat, On the Mertens conjecture and related general Ω-theorems, In H. Diamond, editor, Analytic Number

Theory, pp. 147-158, American Mathematical Society, 1973.

27. R. Spira , Zeros of sections of the zeta function. II, Math. Comp. 22 (1966) 163-173.

28. W. B. Jurkat, A. Peyerimhoff, A constructive approach to Kronecker approximation and its applications to the

Mertens conjecture, J. reine angew. Math. 286-287 (1976) 332-340.

29. H. J. J. te Riele, Computations concerning the conjecture of Mertens J. reine angew. Math. 311-312 (1979) 356-360.
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