
Article

Not peer-reviewed version

MLPs Are All You Need for Human

Activity Recognition

Kamsiriochukwu Ojiako 

*

 and Katayoun Farrahi 

*

Posted Date: 11 September 2023

doi: 10.20944/preprints202309.0635.v1

Keywords: Human Activity Recognition; MLP-Mixer; Efficiency

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3142186
https://sciprofiles.com/profile/798099


Article

MLPs Are All You Need for Human
Activity Recognition

Kamsiriochukwu Ojiako 1,* and Katayoun Farrahi 2

1 University of Southampton
2 University of Southamption; k.farrahi@soton.ac.uk

* Correspondence: kco1e20@soton.ac.uk

Abstract: Convolution, recurrent and attention-based deep learning techniques have produced

the most recent state-of-the-art results in multiple sensor-based human activity recognition (HAR)

datasets. However, these techniques have high computing costs, restricting their use in low-powered

devices. Different methods have been employed to increase the efficiency of these techniques;

however, this often results in worse performance. Recently, pure MLP architectures have

demonstrated competitive performance in vision-based tasks with lower computation costs than

other deep-learning techniques. The MLP-Mixer is a pioneering pure MLP architecture that produces

competitive results with state-of-the-art models in computer vision tasks. This paper shows the

viability of the MLP-Mixer in sensor-based HAR. Furthermore, experiments are performed to gain

insight into the Mixer modules essential for HAR, and a visual analysis of the Mixer’s weights

is provided, validating the Mixer’s learning capabilities. As a result, the Mixer achieves an F1

score of 97%, 84.2%, 91.2% and 90% on the PAMAP2, Daphnet Gait, Opportunity Gestures and

Opportunity Locomotion datasets, respectively, outperforming state-of-the-art models in all datasets

except Opportunity Gestures.

Keywords: human activity recognition; MLP-Mixer; efficiency

1. Introduction

The last two decades have witnessed the rapid growth of wearable devices, increasingly being

used for ubiquitous health monitoring. Human activity recognition (HAR) aims at detecting simple

behaviours such as walking or gestures and more complex behaviours like cooking or opening a

door with various use-cases that continue to grow as the field expands; assistive technology, such

as identifying odd behaviours in the elderly, including falls [1], skill assessment [2], helping with

rehabilitation [3], sports injury detection, and ambient assisted living [4–6]. Accurately predicting

human activities from sensor data is difficult due to the complexity of human behaviour and the noise

in the sensor data [7].

With larger datasets and more computational power, deep learning has evolved, removing the

need for manually created features and inductive biases from models and increasing the reliance on

automatically learning features from raw labelled data [8]. Complex deep learning techniques, such as

convolutions and attention-based mechanisms, are used increasingly with growing computational

capacity. These techniques perform well with larger models resulting in processes that are generally

more expensive computationally and memory-wise than previous techniques. Although wearable

devices and smartphones have rapidly increased in computation efficiency over the past two decades,

they are still limited in power and storage; this prevents them from using state-of-the-art deep learning

techniques in HAR.

MLP-Mixers, recently created by Google Brain [8], are simplistic and less computationally

expensive models, yet they produce near state-of-the-art results in computer vision tasks. Wearable

devices could produce competitive results in HAR without the significant computational demands

that current state-of-the-art models impose if MLP-Mixers performed similarly in HAR which would

help advance HAR toward low-powered devices.
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The main contributions of this paper are as follows:

• We investigate the performance of the MLP-Mixer in multi-sensor HAR achieving competitive,

and in some cases, state-of-the-art performance in HAR without convolution, recurrent or

attention-based mechanisms in the model.
• We analyse the impact of each layer in the Mixer for HAR.
• We analyse the effect of the sliding windows on the Mixer’s performance in HAR.
• We perform a visual analysis of the Mixer’s weights to validate that the Mixer is successfully

recognising different human activities.

2. Related Work

Four main categories of deep-learning architecutres have been used in HAR, convolution-based

architectures, recurrent networks, hybrid models, and attention-based models [9]. Evaluation is

performed on benchmark HAR datasets including Opportunity [10], Daphnet Gait [11], PAMAP2 [12],

Skoda Checkpoint [13], WISDM [14], MHEALTH [15,16] and UCI-HAR [17].

With the recent success of CNNs in feature detection, Zeng et al. [18] first proposed using CNNs in

HAR, but they only used a basic CNN on a single accelerometer. Next, Hammerla et al. [19] thoroughly

investigated CNN use in HAR and established its viability. However, good performance requires

large CNN models or residual CNNs [20]; this increases the computational cost, constraining their

use on low-power devices. To solve this, Tang et al. [21] looked into the performance and viability

of an efficient CNN that uses a tiny Lego filter inspired by Yang et al. [22]. The paper investigated a

resource-constrained CNN model for HAR on mobile and wearable devices achieving an F1 score of

91.40% and 86.10% in the PAMAP2 and Opportunity datasets, respectively. However, this work had

the drawback of having slightly worse performance when compared to conventional CNNs when

using small Lego filters instead of traditional filters.

Recurrent networks are good at capturing long-term dependencies, and because of their

architecture, they can pick up temporal features in sequenced data. Hammerla et al. [19] took advantage

of these benefits and proposed three LSTM models: two uni-directional LSTM and a bi-directional

LSTM model, which trains on both historical and upcoming data. The models were trained and

evaluated on the PAMAP2, Opportunity and Dapnet Gait datasets. This work described how to train

similar recurrent networks in HAR and introduced a brand-new regularisation method. The bi-LSTM

model outperformed state-of-the-art models in the Opportunity Gestures dataset achieving an F1 score

of 92.7%. Murad et al. [23] showcased the performance of uni-directional, bi-directional and cascaded

LSTM models. The bi-direction LSTM performed best on the Opportunity dataset with an accuracy of

92.5%. The cascaded LSTM performed the best on Daphnet with an accuracy of 94.1%. However, the

work did not evaluate the models on extensive and complex human activities; additionally, resource

efficiency was not considered when designing the model.

CNNs effectively extract spatial features from a local area; however, these models do not have

"memory", making it hard to learn long-term dependencies between different samples. RNNs, on

the other hand, due to their specific structure, have memory allowing them to learn long-term

dependencies; however, they are challenging to train. Researchers have created hybrid deep learning

models to address the shortcomings of both CNN and RNN neural networks. Nafea et al. [24] proposed

a new deep neural network that combined a CNN with variable kernel dimensions and bi-directional

LSTM. This combination allows the model to capture features and learn long-term dependencies in

the dataset. The model achieved 98.53% and 97.05% accuracy in the WIDSM and UCI-HAR datasets,

respectively. As a result of combining CNNs and LSTMs, this paper did not consider power and

memory usage when designing the model, limiting usage in low-powered devices. In addition, this

work did not evaluate the model on complex human activities.

Recently, attention mechanisms have been applied in models to improve performance in HAR.

Attention mechanisms allow the model to learn what to focus on in the dataset and understand

the relationship between each input element. Ma et al. [25] combined attention mechanisms with a
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CNN-GRU. This architecture provides the benefits of CNNs, GRUs and attention, enabling spatial and

temporal understanding of the dataset. The model had good performance on all the datasets explored.

However, the model is unsuitable for low-powered devices due to the computational complexity

of combining all these models. Gao et al. [26] combined temporal and sensor attention in residual

networks using a novel dual attention technique to enhance the capacity for feature learning in HAR

datasets. The temporal attention focuses on the target activity sequence and chooses where in the

sequence to concentrate, whereas the sensor attention is vital in selecting which sensor to focus on,

obtaining accuracy scores of 82.75% and 93.16%, on Opportunity and PAMAP2, respectively. Although

this model performed well, it was constrained by the shortage of labelled multimodal training samples.

Additionally, this work did not consider this model’s computation and memory requirements, which

decreases its potential for use in low-powered devices.

2.1. MLP Architectures

In a different area of study, with the arrival of the MLP-Mixer, pure deep MLP architectures

have started appearing in computer vision tasks. The MLP variants have similar structures to the

MLP-Mixer, usually with only the internal layers being modified to improve the model. These MLPs

work by using a "token-mixing" or/and "channel-mixing" layer to capture relevant information from

the input, followed by stacking these layers N times. The MLP-Mixer achieved competitive results in

computer vision tasks; however, CNNs and Transformer-based Models such as Vision Transformers

(ViT) [27] outperform the Mixer. To overcome this, Liu et al. [28] proposed a new MLP model called

gMLP that introduces a spatial gating unit into MLP layers to enable cross-token interactions. GMLPs

exploit the same input and output procedures as BERT [29] in natural language processing (NLP)

and ViT [30] in vision. The gMLP performs spatial and channel projections similar to the MLP-Mixer;

however, there is no channel-mixing layer. The gMLP has 66% fewer parameter than the MLP-Mixer

yet has a 3% performance improvement.

Another method involves using only channel projections. Removing the token-mixing layer

prevents MLPs from gaining context from the input and stops the tokens from interacting with one

another. Instead, to regain context, the feature maps are spatially interacted with using channel

projections after being shifted to align them between the various channels [27]. Yu et al. [31] proposed

the S2-MLP. This model uses spatial shift operations to communicate between patches. This method

is computationally efficient with low complexity. This model achieves high performance even with

its simplicity outperforming the MLP-Mixer and remaining competitive with ViT. Finally, Wei et

al. [32] proposed ActiveMLP. This is a token-mixing mechanism that enables the model to learn how

to combine the current token with useful contextual information from other tokens within the global

context of the input. This mechanism allows the model to learn diverse patterns successfully in

vision-based tasks achieving an accuracy of 82% in ImageNet-1K.

The token-mixer uses static operations. This prevents the token-mixer from adapting to the

varying content contained in the different tokens. Methods have been proposed to add adaptability,

allowing the varying information in the tokens to be mixed [27]. Tang et al. [33] try to overcome the

static token-mixing layer by viewing each token as an amplitude and phase-varying wave. The phase

is a complex number which controls the influence of how tokens and fixed weights are related in the

MLP, whereas the amplitude is a real number that represents each token’s content. The combined

output of these tokens is affected by the phase difference between them, and tokens with similar

phases tend to complement one another. WaveMLP limits the fully connected layers to only tokens

connected within a local window to address the issue of input resolution sensitivity; however, this

prevents the MLP from taking global context across the entire input. WaveMLP is among the best

MLP architectures, achieving 82.6% top 1-accuracy in ImageNet-1K. It achieves competitive results

with CNNs and Transformers but is still outperformed by them. To improve on this Wang et al. [34]

proposed the DynaMixer; by considering the contents of each set of tokens to be mixed, DynaMixer

can dynamically generate mixing matrices. DynaMixer mixes the tokens row-wise and column-wise to
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improve the computation speed. In each iteration of the Dynamixer, feature dimensionality occurs to

produce the mixer matrices; additionally, substantially reducing the number of dimensions has little

impact on the performance. These feature spaces are separated into various segments for token-mixing.

DynaMixer currently produces state-of-the-art performance among MLP vision architectures achieving

82.7% top-1 in Imagenet-1k.

3. Methodology

3.1. MLP-Mixer

The MLP-mixer (Mixer) does not use convolutions or self-attention mechanisms and is instead

made up entirely of MLPs. Even with a simpler architecture than CNNs and transformers, the Mixer

produces competitive results in computer vision tasks against state-of-the-art models. The Mixer

only uses basic matrix multiplication, changes to data layout and scalar non-linearities, resulting in

a simpler and faster model. The Mixer has a similar architecture to the ViT; however, the Mixer’s

structure benefits in speed by allowing linear computation scaling when increasing the number of

input patches instead of quadratic scaling in the case of the ViT.

Figure 1 illustrates the MLP-Mixer architecture. The input is divided into unique patches which

do not overlap. The patches are linearly projected into an embedding space. In contrast to the

transformer and ViT, the input does not need positional embeddings, as the Mixer is sensitive to the

position of the inputs in the token-mixing MLPs [8]. The Mixer consists of two types of MLP layers,

the token-mixing layer and the channel-mixing layer. The inspiration behind this is that modern

vision neural architectures, according to [8], (1) mix their features at a given spatial location across

channels and (2) mix their features between different spatial locations. CNNs implement (1) with a

convolution layer through the 1 x 1 convolution operation, and (2) using large kernels and by adding

multiple convolution layers with pooling which decreases the input spatially. In attention-based

models, both (1) and (2) are performed within each self-attention layer. The Mixer’s purpose is to

separate per-location operations (1) and cross-location operations (2). These features are achieved

through two layers, called "token-mixing" and "channel-mixing", representing the per-location and the

cross-location operations, respectively.

Figure 1. Annotated MLP-Mixer architecture with token-mixing annotated on the left and

channel-mixing annotated on the right. Image from [8].

Each unique patch has identical dimensions. The number of patches is calculated by dividing the

input dimensions (H, W) by the patch resolution(P, P), S = HW/P2. The sequence of non-overlapping
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patches is projected into an embedding space with dimension C, resulting in a matrix of dimensions

SxC. The layers in the Mixer are all the same size and are made up of two MLP blocks each.

• The first block is the token-mixing MLP; the input matrix is normalised and transposed to allow

the data to mix across each patch. The MLP(MLP1) will act on each column of the input matrix,

sharing its weights across the columns. The matrix is transposed back into its original form.

The overall context of the input is obtained by feeding each patch’s data into the MLP. This

token-mixing block essentially allows different patches in the same channel to communicate.
• The second block is the channel-mixing MLP; this receives residual connections from its

pre-normalised original input to prevent information from being lost during the training process.

The result is normalised, and a different MLP(MLP2) performs the channel-mixing with a

separate set of weights. The MLP acts on each input matrix row, and its weights are shared across

the rows. A single patch’s MLP receives data from every channel, enabling communication

between the information from various channels.

Each MLP block contains two feed-forward layers with a GELU [35] activation function applied

to each row of the input data. The Mixer layers are calculated in equation 1 (the layer index is not

included) and the GELU function is demonstrated in equation 2.

U∗,i = X∗,i + W2σ(W1LayerNorm(X)∗,i), f ori = 1...C, (1)

Yj,∗ = Uj,∗ + W4σ(W3LayerNorm(U)j,∗), f orj = 1...S.

GELU(x) = xP(X ≤ x) = xΦ(x) (2)

It is intuitive to share the weights in each layer of the channel-mixing MLPs, as this offers

positional invariance, a key characteristic of convolution layers in CNNs. However, it is less intuitive to

share the weights across channels in the token-mixing MLPs. For instance, some CNNs use separable

convolutions [36], which apply convolutions to each channel independently of the other. However,

these convolutions apply different filters to each channel, in contrast to the token-mixing MLPs,

which use the same filter for all channels. Additionally, sharing weights in the token-mixing and

channel-mixing layers prevents the Mixer from growing in size quickly when the number of patches,

S, or the dimensions of the embedding space, C, increases, leading to substantial memory savings.

Furthermore, the empirical performance of this model is unaffected by this characteristic.

4. Datasets

To evaluate the performance of the MLP-Mixer in classifying a variety of activities, three datasets

are used for benchmarking.

4.1. Opportunity

The opportunity dataset [10] contains complex labelled data collected from multiple body sensors.

It consists of data from 4 subjects recorded in a daily living scenario designed to create multiple

activities in a realistic manner. Each subject had six sets of data.

The opportunity dataset consists of all three types of human activities, recurrent, static, and

spontaneous. The subjects wore a body jacket which contained five inertial measurement units (IMU),

made up of a 3D accelerometer, gyroscope and magnetic sensor, two inertial sensors for both feet, and

12 wireless accelerometers sensors, which suffered from data loss due to their Bluetooth connection.

In this dataset, only sensor data without packet loss was used. This included data from the inertial

sensors on both feet and the accelerometer sensors on the back and upper limbs, resulting in each

sample containing 77 dimensions of sensor data when combining all the sensor data together. The

sensors recorded the data at a sampling rate of 30Hz. Mixer is trained, validated and tested on are

similar to that in previous literature [19,37–41] for consistency and fair comparison. The Mixer was

tested on ADL4 and AD5 from subjects 2 and 3, ADL2 from subject 1 was used as the validation set,
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and the rest of the ADLs and all the drill sessions were used for training the Mixer. The Opportunity

dataset has multiple benchmark HAR tasks, including:

• Opportunity gestures: This involves successfully classifying different gestures being performed

by the subjects from both arm sensors. There are 18 different gesture classes.
• Opportunity locomotion: This involves accurately classifying the locomotion of the subjects the

full body sensors. There are five different locomotion classes.

4.2. PAMAP2

The PAMAP2 dataset [12] contains complex labelled data collected from chest, hand and ankle

sensors. This consisted of data recorded from nine subjects. Each subject followed a routine of 12

different actions and optionally performed an addition of 6 activities resulting in 18 recorded activities

each, 19 if you include the null class.

The PAMAP2, similar to the Opportunity dataset, contains all three types of human activities.

The nine subjects wore IMUs on their hands, ankles and chest. The IMU recorded multimodal data,

which consisted of an accelerometer, gyroscope, heart rate, temperature and magnetic data. In total,

the data contains 40 sensor recordings and 12 IMU orientation data points, resulting in each sample

containing 52 dimensions of sensor data when combined. Each sensor sampled the data at a sampling

rate of 100Hz, and the dataset was downsampled to approximately 33.3Hz to have a similar sampling

rate to the opportunity dataset. There were missing data present in the dataset from the packet loss

of the wireless sensors. To account for this, only the heart rate sensor was interpolated; afterwards,

samples with missing values were excluded from the dataset. The parts of the dataset that are trained,

tested and validated are identical to previous literature [39,42]. The Mixer was tested on subject 6 and

validated on subject 5, and the rest were used for training; however, subject 9 was dropped due to

significantly less sensor data compared to the rest of the subjects. Additionally, the orientation data

points were not used as they were unimportant for this problem, leaving the dataset with a dimension

of 40 features. To make the experiments performed on PAMAP2 comparable with previous literature,

the optional activities and the null activities are excluded while training the Mixer, resulting in a total

of 12 classes to be classified.

4.3. Daphnet Gait

The daphnet gait dataset [11] contains labelled data collected from accelerometer sensors. It

consists of data collected from 10 subjects who are affected with Parkinson’s Disease (PD). The subjects

are instructed to carry out three types of tasks, walking in a straight line, walking while turning, and

realistic ADL scenarios which involve tasks such as getting coffee. These tasks were designed to

frequently induce gait freezing in the subjects. Freezing is a common symptom of PD, which causes

difficulty starting movements, such as taking steps, for a short period of time [19]. The goal of the

dataset is to detect whether the subjects are freezing or doing the specified actions (walk, turn). This is

a binary classification problem since the specified action are combined into one class, No Freeze, and

the "Null" class is excluded from the experiment.

Accelerometers were used to capture information about the subjects. They were placed on the

chest, above the ankle and above the knee, resulting in each sample containing 9 dimensions of sensor

data when combined. Each sensor sampled the data at a sampling rate of 64Hz, and the dataset

was downsampled to 32Hz for temporal comparison with the other datasets. A fair comparison

was maintained by splitting the dataset into training, validation, and testing sets identical to early

literature [19]. The Mixer was tested on data from subject 2, validated on subject 9 and trained using

the rest of the information.

4.4. Sliding Windows

For the datasets to be trained and tested by the Mixer, a sliding window approach is used on the

dataset. This splits the dataset into multiple sequences with the dimensions, (D f X SL), where D f is
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the number of features in the dataset and SL is the sliding window length. These 2D sequences, in the

case of the Mixer, are treated as images. The length of the sliding window maintains a fixed length

throughout each separate training process but varies across the different datasets and experiments.

As mentioned in section 3.1, the Mixer takes an input image with dimensions (H, W) that is split into

patches with identical dimensions (P, P). This requires the patch resolution, P, to be fully divisible by

both dimensions of the input. This limits the length of the sliding window to either be divisible by the

number of features in the dataset or divisible by the patch resolution.

The Mixer outputs a prediction of the activity for every sliding window interval after observing

it; however there would be multiple predictions in the sliding window instead of a single ground

truth prediction. There are multiple methods around this [42,43], which involve using the prediction

at the end of the sliding window, max-pooling all of the sequence predictions over time, or returning

the most frequent predictions. The Mixer benefits from mixing its features at a given spatial location

across channels and between different spatial locations. In addition, the token-mixing MLP provides a

global context of the input to the model. Therefore using the most frequent predictions as the ground

truth prediction is preferred to other methods since the Mixer learns context from the whole input.

The details of the sliding window for each dataset are briefly described below, and the summary of

their parameters is tabulated in Table 1.

Table 1. The parameters used for each dataset.

Opportunity PAMAP2 Daphnet Gait

Parameters

Number of Features 77 40 9
Sliding Window Length 77 84 126
Downsampling 1 3 2
Step Size 3 3 3
Normalisation True False False
Interpolation False True False
Includes Null activities True False False

• Opportunity: The dataset was fit into a sliding window with an interval of 2.57 seconds. This

duration represents 77 samples, which makes the input dimensions identical, allowing the patch

resolution to be a factor of 77. The dataset was normalised to account for the wide range of

sensors used in the dataset. After preprocessing the data, there were no labels of "close drawer 2"

activity in the test set (ADL4 and AD5 from subjects 2 and 3).
• PAMAP2: Before downsampling, the dataset was fitted into a sliding window interval of 0.84

seconds, which corresponds to 84 samples. The "rope-jumping" activity in subject 6 had a very

small number of samples. After preprocessing, there were no labels of this activity present in the

test set (subject 6).
• Daphnet Gait: Before downsampling, a sliding window interval of 2.1 seconds was used to fit the

dataset; this interval corresponds to 126 samples. Daphnet Gait contains a lot of longer activities,

so a wider sliding window interval was chosen to provide the Mixer with more information.

Large sliding windows were used to give the Mixer access to more information and enable the

sequence to be divided into patches correctly and error-free. Smaller step sizes were used because the

Mixer tends to overfit, giving it more training points and ensuring that there were enough data points

for adequate testing on the various activities in each dataset.

4.5. Data Sampler and Generation

A class balance sampler was applied to the training dataset to give similar probability to the

classes during training allowing the Mixer to learn from each class equally in the imbalanced datasets.

The different samples are stored based on their labelled class. During each batch, the sampler accesses
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the training samples based on their weights. The samples are weighted based on the proportion of

their class in the training dataset.

4.6. Patches

The MLP-Mixer requires a sequence of input patches. This layer converts the input sensor data

into separate patches. The patch resolution has to be fully divisible by both the input height and

width dimensions. The patch resolution differed between datasets and the resolution for each dataset

is tabulated in Table 2. This was implemented using a strided Conv2D layer in Pytorch. A strided

Conv2D layer produces the same results as the per-patch fully-connected layer used in [8]. This

layer reshapes the input from (number of samples, number of channels, input height, input width) to

(number of samples, number of patches, patch embedding dimensionality).

Table 2. Specification of the Mixer architecture for each dataset.

Opportunity PAMAP2 Daphnet Gait

Specifications

Number of Layers 10 10 10
Patch Resolution 11 4 9
Input Sequence Length 49 210 14
Patch Embedding Size 512 512 512
Token Dimension 256 256 256
Channel Dimension 2048 2048 512
Learnable Parameters (M) 21 21 5

5. Experimental Setup

The Mixer was trained using the Adam optimiser with the cross-entropy loss as the criterion and

hyperparameters β1 = 0.9, β2 = 0.999. The Mixer has a tendency to overfit, so a weight decay of 1e-3

was used. The gradient clipping at the global norm was set to 1, and the batch size for the training and

testing dataset was 64. A learning rate scheduler was used, and the learning rate was set to 0.01. For

the first 500 steps, the learning rate scheduler used a linear warm-up rate. Then, until the training was

finished, it used a cosine decay.

The specifications of the Mixer architecture used to produce the main results in Section 6 is

tabulated in Table 2. The experiments were run five times with the best specifications, and the mean of

the results was taken.

5.1. Ablation Study

The Mixer is ablated to compare the importance of different design choices of the MLP-Mixer

in HAR. The different design choices involve the architecture of the Mixer (token-mixing MLP,

channel-mixing MLP) and the RGB embedding layer. The macro F1 score is used in the ablation

study to assess the model. This prevents high evaluation scores by simply choosing the majority class

in imbalanced datasets and provides accurate insight into the model’s learning capabilities across class

activities.

The MLP-Mixer without RGB Embedding: The Mixer saw a slight decrease in performance,

which meant that this layer had some contribution to the Mixer’s learning capabilities. This allows the

sensor data to simulate the RGB channels in images. This produces three sets of features for the Mixer

to project into its embedding space instead of a single set of features from the single sensor channel.

The results are tabulated in Table 3.
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Table 3. Mixer ablation study.

Opportunity PAMAP2 Daphnet

Metric Fm Fm Fm

Base Mixer 0.68 0.971 0.85
Mixer with no RGB Embedding 0.63 0.940 0.79
Mixer with no Token-Mixing 0.05 0.165 0.12
Mixer with no Channel-Mixing 0.569 0.82 0.795

The MLP-Mixer without the Token-Mixing MLPs: The model had a significant decrease in

performance in all the datasets without the token-mixing MLPs. The Mixer uses token-mixing to learn

global context from the input and communicate information between patches; without this layer, the

Mixer can not effectively capture the spatial and temporal information of the activities in the datasets.

The results tabulated in Table 3 indicate the Mixer loses its capabilities to learn relevant features of the

dataset; hence it can be concluded that the token-mixing MLP is necessary for the Mixer to perform

well in HAR benchmark datasets.

The MLP-Mixer without the Channel-Mixing MLPs: The channel-mixing MLPs allow the

model to communicate between channels, essentially acting as a 1x1 convolution. It enables the Mixer

to detect features between channels, and without it, only spatial information between the various

patches will be learned. The results tabulated in Table 3 showcase substantial performance loss which

indicates that the channel-mixing MLP is important for HAR. However, the performance loss is lower

compared to the performance loss in the absence of the token-mixing MLPs. This indicates that

the channel-mixing MLP is a supplement to the token-mixing MLP, communicating the information

learned from the token-mixing layer across channels rather than capturing core features needed for

accurate prediction in HAR.

6. Results

The Mixer is compared with the following state-of-the-art architectures:

• Ensemble LSTMs [37]: combines multiple LSTMs using ensemble techniques to produce a single

LSTM.
• CNN-BiGRU [44]: CNN connected with a biGRU.
• AttenSense [25]: a CNN and GRU are combined using an attention mechanism to learn spatial

and temporal patterns.
• Multi-Agent Attention [45]: combines multi-agent collaboration with attention-based selection.
• DeepConvLSTM [42]: combines an LSTM to learn temporal information with a CNN to learn

spatial features.
• BLSTM-RNN [38]: a bi-LSTM, with its weights and activation functions binarized.
• Triple Attention [46]: a ResNet, using a triple-attention mechanism.
• Self-Attention [47]: a self-attention-based model without any recurrent architectures.
• CNN [19]: a CNN with three layers and max pooling.
• b-LSTM-S [19]: bidirectional LSTM that uses future training data.

Table 4 shows the performance comparison between the Mixer and existing state-of-the-art

literature. Table 4 shows that the MLP-Mixer performs better than previous techniques in the

Opportunity Locomotion, PAMAP2, and the Daphnet Gait datasets. Despite the model’s shortcomings

in the Opportunity Gestures dataset, it is still competitive with most of the previously developed

methods. Sliding window techniques were used in all the previous techniques, with only the

sliding window lengths and overlaps differing. Although the Mixer beats the previous techniques

in Opportunity Locomotion, most previous work that used the Opportunity dataset for performance

evaluation only focused on the gesture classification task while disregarding the locomotion task.
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Table 4. State-of-the-art comparison for MLP-Mixer scores. Mixer results in the format mean ±std.

Opportunity
Locomotion

Opportunity
Gestures

PAMAP2 Daphnet Gait

Metric Fw Fm Fm

Ensemble LSTMs [37] - 0.726 0.854 -
CNN-BiGRU [44] - - 0.855 -
AttenSense [25] - - 0.893 -
Multi-Agent Attention [45] - - 0.899 -
DeepConvLSTM [42] 0.895 0.917 - -
BLSTM-RNN [38] - - 0.93 -
Triple Attention [46] - - 0.932 -
Self-Attention [47] - - 0.96 -
CNN [19] - 0.894 0.937 0.684
b-LSTM-S [19] - 0.927 0.868 0.741
MLP-Mixer 0.90 ±0.005 0.912 ±0.002 0.97 ±0.002 0.842 ±0.007

The sliding window lengths used were similar to or larger than previous techniques, allowing the

model to capture more information from each interval. Therefore, it can be concluded that the MLP

mixer model can learn the spatial and temporal dynamics of the sensor data more effectively than the

previous models. The Mixer performs better than existing attention and convolution-based models in

PAMAP2. The macro-score of the Mixer is slightly higher(0.97) than the triple-attention model [46]

(0.96) and significantly higher than the best convolution-based model [19] (0.937), it performed better

than the state-of-the-art by 1%. In the daphnet-gait dataset the model also performed better than

convolution and recurrent models, producing a macro-score of 0.842 compared to 0.741. It performed

better than the state-of-the-art by 10.1%. However, existing literature using the Daphnet Gait focus

more on future prediction [48–50] instead of recognition and use different evaluation metrics, therefore

cannot be directly compared to the Mixer. In the opportunity gestures, the Mixer remains competitive

but does not perform better than the b-LSTM-S, the opportunity dataset was particularly challenging

for the MLP-Mixer, due to shorter activities combined with a larger sliding window necessary for the

image to be split into patches. As a result, there were several activities in the training sliding window,

making it more difficult for the Mixer to learn and harder for it to predict activities in the test sliding

window. The b-LSTM-S performed 1.7% better than the Mixer in this dataset.

7. Discussion

Convolutions capture the spatial information in a local area of the data. However, they are not

effective at learning long-term dependencies (temporal data) [27], unlike recurrent networks, which

specialise in long-term dependencies. The self-attention mechanism learns the entire context of input

patches. Additionally, it learns what to pay attention to based on its weights [47], allowing it to learn

the relationship between the sensors and the different activities. The token-mixing MLPs can be

considered a convolution layer that captures information about the entire input. It combines spatial

information from a single channel and distributes channel weights to increase efficiency, which allows

the Mixer to perform better than previous techniques when an adequate amount of data is provided

and the invariant features of the input are coherent.

The normalised confusion matrices of the PAMAP2, Opportunity and Daphnet datasets are

illustrated in Figures 2–4, respectively. The model’s ability to distinguish between activities in the

PAMAP2 confusion matrix showed that it had learned various spatial and temporal characteristics of

each activity. The model did have some trouble distinguishing between the "ironing" and "standing"

activities; this is probably because the sensor data for these actions are similar in the chest and

ankle regions but only slightly different in the hand regions. With further inspection, standing

consisted of talking while gesticulating, further validating the possibility of similarities in the hand
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sensors. Furthermore, The model had little trouble differentiating "walking", "vacuum cleaning", and

"descending stairs" activities; this is understandable since it mistook these activities for similar ones.

Figure 2. Normalised Confusion Matrix of the PAMAP2 Dataset.

Figure 3. Normalised Confusion Matrix of the Opportunity Dataset.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 September 2023                   doi:10.20944/preprints202309.0635.v1

https://doi.org/10.20944/preprints202309.0635.v1


12 of 17

Figure 4. Normalised Confusion Matrix of the Daphnet Gait Dataset.

It was more difficult for the model to distinguish between different activities in the Opportunity

dataset. Because there were significantly more samples of Null activities than any other activity, the

Opportunity confusion matrix, Figure 3, shows that the model frequently mistook activities for being

unrelated. Furthermore, because the activities were short, the model had a more challenging time

figuring out where a given activity began and ended in the sliding window. The confusion matrix

demonstrates that the model was could pick up on some of the "open door 2" and "close fridge" activity

characteristics. However, the model did not successfully capture features of "open drawer 1" and

mistook this activity for "close drawer 1". Further investigation revealed that the activity—which

consisted of opening and closing the drawer—took place in a single sequence, suggesting that the

model could not determine when the activity began and, therefore, could not correctly distinguish

between the two.

There was a significant imbalance between the two activities in the Daphnet Gait dataset, much

like in the opportunity dataset. As shown in Figure 4, the Mixer was trained on an adequate sample

size for the majority class,” No freeze,” allowing it to learn when the participants were not freezing

correctly. However, in the minority case, there was insufficient data from the Mixer to properly learn

relevant features, resulting in the Mixer incorrectly classifying the participants as not freezing 26% of

the time.

8. Performance of Sliding Window Parameters

Each dataset contains a different range of activity lengths and repetition rates. The sliding

window length has a significant impact depending on how long the activities are in the dataset. The

sliding window’s parameters were altered to study its effect on the Mixer performance. The model’s

parameters were fixed, and the step size was constant instead of using an overlap percentage of the

window length to prevent the number of samples from affecting the results. Small window intervals

contain insufficient data for the Mixer to learn from and make decisions. On the other hand, if the

sliding window interval is large relative to the activities in the window, it allows information from

multiple activities to be present in a single sliding window, making it harder for the Mixer to determine

which activity the sliding window represents among the multiple activities.

Performance generally improves with increasing overlap, but as there are more samples to train

and test, the computational complexity of training the Mixer also rises. In contrast, little to no overlap

significantly reduces the sample size, particularly for larger sliding window sizes, which causes the

Mixer to over-fit on the dataset.

Figures 5–7 illustrate the changes in the Mixer’s performance when the sliding window length

is changed. In datasets with more extended activities, such as PAMAP2 and Daphnet, larger sliding

windows increase the model’s capability to learn by providing more information. On the other hand,

in the Opportunity dataset, which contains shorter activities, the model’s performance decreases with

larger window lengths. The sliding window figures indicate that the sliding window has a slight effect

on the Mixer’s performance, but overall the model is not sensitive to the sliding window length.
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Figure 5. Evaluation of Sliding Window Length on the Opportunity dataset.

Figure 6. Evaluation of Sliding Window Length on the Daphnet Gait dataset.

Figure 7. Performance Evaluation of Sliding Window Length on the PAMAP2 dataset.
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9. Weight Visualisation

The models’ weights are visualised to provide insight into which sensors the model considers

necessary for different activities. This experiment aims to confirm that the Mixer is capturing relevant

features and to offer some interpretation of how the Mixer categorises the activities. The analysis is

performed on the PAMAP2 dataset to showcase various simple and complex activities. Six different

activities and their associated weights are illustrated in Figure 8.

Figure 8. The Mixer’s weight visualisation for each accelerometer sensors in the sliding window. Each

figure represents an different activity: (a) Ascending stairs (b) Cycling (c) Ironing (d) Lying (e) Running

(f) Vacuum Cleaning.

Figure 8 shows how the Mixer associates various sensors with various activities. The Mixer not

only learns which sensors are crucial but also when they are crucial as the emphasis of sensors changes

throughout the sliding window. For example, in ascending stairs, the hand(X, Y), chest(X), and ankle

sensors have essential features that the Mixer emphasises, typical when climbing a staircase with

handrails. Cycling focuses on the hand(Y) sensor, most likely for steering, and the chest and ankle

sensors, likely for pedalling. The Mixer prioritises the hand’s (X, Z) sensors when ironing, as expected.

While lying down, the Mixer considered all sensors important, except for the ankle (Z) and hand

(Y), which is to be expected given that the participants had complete freedom to change their lying

positions. Finally, the Mixer values the hand (X, Z) and chest (X) sensors for vacuum cleaning and the

ankles (X, Y) and chest (X) sensors for running activities, which is consistent with common sense. This
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analysis concludes that the Mixer is successfully learning the spatial and temporal characteristics of

the various activities because the weight assignments for these activities are understandable and in

tune with common sense.

10. Conclusions

In this paper, the MLP-Mixer performance is investigated for HAR. The Mixer does not use

convolutions or self-attention mechanisms and instead relies solely on MLPs. It uses token-mixing and

channel mixing layers to communicate between patches and channels, learning the global context of

the input and enabling excellent spatial and temporal pattern recognition in HAR. Experiments were

performed on three popular HAR datasets, Opportunity, PAMAP2 and Daphnet Gait. The Mixer was

assessed using sliding windows on the dataset. This paper demonstrates that pure-MLP architectures

can compete with convolutional and attention-based architectures in terms of HAR viability and

performance. We demonstrate that the MLP-Mixer outperforms current state-of-the-art models in

the test benchmarks for all datasets except for Opportunity Gestures. It performs 10.1% better in the

Daphnet Gait dataset, 1% better in the PAMAP2 dataset and 0.5% in the Opportunity Locomotion

dataset. The Mixer was outperformed in the Opportunity Gestures; however it remained competitive

with the state-of-the-art results. To the best of my knowledge vision-based MLP architectures have

not been applied to HAR tasks. It is interesting to see the performance of a pure-MLP architecture,

outperform and remain competitive with state-of-the-art models in HAR.
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