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Abstract: Convolution, recurrent and attention-based deep learning techniques have produced
the most recent state-of-the-art results in multiple sensor-based human activity recognition (HAR)
datasets. However, these techniques have high computing costs, restricting their use in low-powered
devices. Different methods have been employed to increase the efficiency of these techniques;
however, this often results in worse performance. Recently, pure MLP architectures have
demonstrated competitive performance in vision-based tasks with lower computation costs than
other deep-learning techniques. The MLP-Mixer is a pioneering pure MLP architecture that produces
competitive results with state-of-the-art models in computer vision tasks. This paper shows the
viability of the MLP-Mixer in sensor-based HAR. Furthermore, experiments are performed to gain
insight into the Mixer modules essential for HAR, and a visual analysis of the Mixer’s weights
is provided, validating the Mixer’s learning capabilities. As a result, the Mixer achieves an F
score of 97%, 84.2%, 91.2% and 90% on the PAMAP2, Daphnet Gait, Opportunity Gestures and
Opportunity Locomotion datasets, respectively, outperforming state-of-the-art models in all datasets
except Opportunity Gestures.

Keywords: human activity recognition; MLP-Mixer; efficiency

1. Introduction

The last two decades have witnessed the rapid growth of wearable devices, increasingly being
used for ubiquitous health monitoring. Human activity recognition (HAR) aims at detecting simple
behaviours such as walking or gestures and more complex behaviours like cooking or opening a
door with various use-cases that continue to grow as the field expands; assistive technology, such
as identifying odd behaviours in the elderly, including falls [1], skill assessment [2], helping with
rehabilitation [3], sports injury detection, and ambient assisted living [4-6]. Accurately predicting
human activities from sensor data is difficult due to the complexity of human behaviour and the noise
in the sensor data [7].

With larger datasets and more computational power, deep learning has evolved, removing the
need for manually created features and inductive biases from models and increasing the reliance on
automatically learning features from raw labelled data [8]. Complex deep learning techniques, such as
convolutions and attention-based mechanisms, are used increasingly with growing computational
capacity. These techniques perform well with larger models resulting in processes that are generally
more expensive computationally and memory-wise than previous techniques. Although wearable
devices and smartphones have rapidly increased in computation efficiency over the past two decades,
they are still limited in power and storage; this prevents them from using state-of-the-art deep learning
techniques in HAR.

MLP-Mixers, recently created by Google Brain [8], are simplistic and less computationally
expensive models, yet they produce near state-of-the-art results in computer vision tasks. Wearable
devices could produce competitive results in HAR without the significant computational demands
that current state-of-the-art models impose if MLP-Mixers performed similarly in HAR which would
help advance HAR toward low-powered devices.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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The main contributions of this paper are as follows:

* We investigate the performance of the MLP-Mixer in multi-sensor HAR achieving competitive,
and in some cases, state-of-the-art performance in HAR without convolution, recurrent or
attention-based mechanisms in the model.

¢ We analyse the impact of each layer in the Mixer for HAR.

* We analyse the effect of the sliding windows on the Mixer’s performance in HAR.

* We perform a visual analysis of the Mixer’s weights to validate that the Mixer is successfully
recognising different human activities.

2. Related Work

Four main categories of deep-learning architecutres have been used in HAR, convolution-based
architectures, recurrent networks, hybrid models, and attention-based models [9]. Evaluation is
performed on benchmark HAR datasets including Opportunity [10], Daphnet Gait [11], PAMAP2 [12],
Skoda Checkpoint [13], WISDM [14], MHEALTH [15,16] and UCI-HAR [17].

With the recent success of CNNs in feature detection, Zeng et al. [18] first proposed using CNNs in
HAR, but they only used a basic CNN on a single accelerometer. Next, Hammerla et al. [19] thoroughly
investigated CNN use in HAR and established its viability. However, good performance requires
large CNN models or residual CNNs [20]; this increases the computational cost, constraining their
use on low-power devices. To solve this, Tang et al. [21] looked into the performance and viability
of an efficient CNN that uses a tiny Lego filter inspired by Yang et al. [22]. The paper investigated a
resource-constrained CNN model for HAR on mobile and wearable devices achieving an F; score of
91.40% and 86.10% in the PAMAP2 and Opportunity datasets, respectively. However, this work had
the drawback of having slightly worse performance when compared to conventional CNNs when
using small Lego filters instead of traditional filters.

Recurrent networks are good at capturing long-term dependencies, and because of their
architecture, they can pick up temporal features in sequenced data. Hammerla et al. [19] took advantage
of these benefits and proposed three LSTM models: two uni-directional LSTM and a bi-directional
LSTM model, which trains on both historical and upcoming data. The models were trained and
evaluated on the PAMAP2, Opportunity and Dapnet Gait datasets. This work described how to train
similar recurrent networks in HAR and introduced a brand-new regularisation method. The bi-LSTM
model outperformed state-of-the-art models in the Opportunity Gestures dataset achieving an F; score
of 92.7%. Murad et al. [23] showcased the performance of uni-directional, bi-directional and cascaded
LSTM models. The bi-direction LSTM performed best on the Opportunity dataset with an accuracy of
92.5%. The cascaded LSTM performed the best on Daphnet with an accuracy of 94.1%. However, the
work did not evaluate the models on extensive and complex human activities; additionally, resource
efficiency was not considered when designing the model.

CNNs effectively extract spatial features from a local area; however, these models do not have
"memory", making it hard to learn long-term dependencies between different samples. RNNs, on
the other hand, due to their specific structure, have memory allowing them to learn long-term
dependencies; however, they are challenging to train. Researchers have created hybrid deep learning
models to address the shortcomings of both CNN and RNN neural networks. Nafea et al. [24] proposed
a new deep neural network that combined a CNN with variable kernel dimensions and bi-directional
LSTM. This combination allows the model to capture features and learn long-term dependencies in
the dataset. The model achieved 98.53% and 97.05% accuracy in the WIDSM and UCI-HAR datasets,
respectively. As a result of combining CNNs and LSTMs, this paper did not consider power and
memory usage when designing the model, limiting usage in low-powered devices. In addition, this
work did not evaluate the model on complex human activities.

Recently, attention mechanisms have been applied in models to improve performance in HAR.
Attention mechanisms allow the model to learn what to focus on in the dataset and understand
the relationship between each input element. Ma et al. [25] combined attention mechanisms with a
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CNN-GRU. This architecture provides the benefits of CNNs, GRUs and attention, enabling spatial and
temporal understanding of the dataset. The model had good performance on all the datasets explored.
However, the model is unsuitable for low-powered devices due to the computational complexity
of combining all these models. Gao et al. [26] combined temporal and sensor attention in residual
networks using a novel dual attention technique to enhance the capacity for feature learning in HAR
datasets. The temporal attention focuses on the target activity sequence and chooses where in the
sequence to concentrate, whereas the sensor attention is vital in selecting which sensor to focus on,
obtaining accuracy scores of 82.75% and 93.16%, on Opportunity and PAMAP?2, respectively. Although
this model performed well, it was constrained by the shortage of labelled multimodal training samples.
Additionally, this work did not consider this model’s computation and memory requirements, which
decreases its potential for use in low-powered devices.

2.1. MLP Architectures

In a different area of study, with the arrival of the MLP-Mixer, pure deep MLP architectures
have started appearing in computer vision tasks. The MLP variants have similar structures to the
MLP-Mixer, usually with only the internal layers being modified to improve the model. These MLPs
work by using a "token-mixing" or/and "channel-mixing" layer to capture relevant information from
the input, followed by stacking these layers N times. The MLP-Mixer achieved competitive results in
computer vision tasks; however, CNNs and Transformer-based Models such as Vision Transformers
(ViT) [27] outperform the Mixer. To overcome this, Liu et al. [28] proposed a new MLP model called
gMLP that introduces a spatial gating unit into MLP layers to enable cross-token interactions. GMLPs
exploit the same input and output procedures as BERT [29] in natural language processing (NLP)
and ViT [30] in vision. The gMLP performs spatial and channel projections similar to the MLP-Mixer;
however, there is no channel-mixing layer. The gMLP has 66% fewer parameter than the MLP-Mixer
yet has a 3% performance improvement.

Another method involves using only channel projections. Removing the token-mixing layer
prevents MLPs from gaining context from the input and stops the tokens from interacting with one
another. Instead, to regain context, the feature maps are spatially interacted with using channel
projections after being shifted to align them between the various channels [27]. Yu et al. [31] proposed
the S2-MLP. This model uses spatial shift operations to communicate between patches. This method
is computationally efficient with low complexity. This model achieves high performance even with
its simplicity outperforming the MLP-Mixer and remaining competitive with ViT. Finally, Wei et
al. [32] proposed ActiveMLP. This is a token-mixing mechanism that enables the model to learn how
to combine the current token with useful contextual information from other tokens within the global
context of the input. This mechanism allows the model to learn diverse patterns successfully in
vision-based tasks achieving an accuracy of 82% in ImageNet-1K.

The token-mixer uses static operations. This prevents the token-mixer from adapting to the
varying content contained in the different tokens. Methods have been proposed to add adaptability,
allowing the varying information in the tokens to be mixed [27]. Tang et al. [33] try to overcome the
static token-mixing layer by viewing each token as an amplitude and phase-varying wave. The phase
is a complex number which controls the influence of how tokens and fixed weights are related in the
MLP, whereas the amplitude is a real number that represents each token’s content. The combined
output of these tokens is affected by the phase difference between them, and tokens with similar
phases tend to complement one another. WaveMLP limits the fully connected layers to only tokens
connected within a local window to address the issue of input resolution sensitivity; however, this
prevents the MLP from taking global context across the entire input. WaveMLP is among the best
MLP architectures, achieving 82.6% top 1-accuracy in ImageNet-1K. It achieves competitive results
with CNNs and Transformers but is still outperformed by them. To improve on this Wang et al. [34]
proposed the DynaMixer; by considering the contents of each set of tokens to be mixed, DynaMixer
can dynamically generate mixing matrices. DynaMixer mixes the tokens row-wise and column-wise to
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improve the computation speed. In each iteration of the Dynamixer, feature dimensionality occurs to
produce the mixer matrices; additionally, substantially reducing the number of dimensions has little
impact on the performance. These feature spaces are separated into various segments for token-mixing.
DynaMixer currently produces state-of-the-art performance among MLP vision architectures achieving
82.7% top-1 in Imagenet-1k.

3. Methodology

3.1. MLP-Mixer

The MLP-mixer (Mixer) does not use convolutions or self-attention mechanisms and is instead
made up entirely of MLPs. Even with a simpler architecture than CNNs and transformers, the Mixer
produces competitive results in computer vision tasks against state-of-the-art models. The Mixer
only uses basic matrix multiplication, changes to data layout and scalar non-linearities, resulting in
a simpler and faster model. The Mixer has a similar architecture to the ViT, however, the Mixer’s
structure benefits in speed by allowing linear computation scaling when increasing the number of
input patches instead of quadratic scaling in the case of the ViT.

Figure 1 illustrates the MLP-Mixer architecture. The input is divided into unique patches which
do not overlap. The patches are linearly projected into an embedding space. In contrast to the
transformer and ViT, the input does not need positional embeddings, as the Mixer is sensitive to the
position of the inputs in the token-mixing MLPs [8]. The Mixer consists of two types of MLP layers,
the token-mixing layer and the channel-mixing layer. The inspiration behind this is that modern
vision neural architectures, according to [8], (1) mix their features at a given spatial location across
channels and (2) mix their features between different spatial locations. CNNs implement (1) with a
convolution layer through the 1 x 1 convolution operation, and (2) using large kernels and by adding
multiple convolution layers with pooling which decreases the input spatially. In attention-based
models, both (1) and (2) are performed within each self-attention layer. The Mixer’s purpose is to
separate per-location operations (1) and cross-location operations (2). These features are achieved
through two layers, called "token-mixing" and "channel-mixing", representing the per-location and the
cross-location operations, respectively.

Token-mixing Channel-mixing
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Figure 1. Annotated MLP-Mixer architecture with token-mixing annotated on the left and
channel-mixing annotated on the right. Image from [8].

Each unique patch has identical dimensions. The number of patches is calculated by dividing the
input dimensions (H, W) by the patch resolution(P, P), S = HW/ P2. The sequence of non-overlapping
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patches is projected into an embedding space with dimension C, resulting in a matrix of dimensions
SxC. The layers in the Mixer are all the same size and are made up of two MLP blocks each.

* The first block is the token-mixing MLP; the input matrix is normalised and transposed to allow
the data to mix across each patch. The MLP(MLP1) will act on each column of the input matrix,
sharing its weights across the columns. The matrix is transposed back into its original form.
The overall context of the input is obtained by feeding each patch’s data into the MLP. This
token-mixing block essentially allows different patches in the same channel to communicate.

® The second block is the channel-mixing MLP; this receives residual connections from its
pre-normalised original input to prevent information from being lost during the training process.
The result is normalised, and a different MLP(MLP2) performs the channel-mixing with a
separate set of weights. The MLP acts on each input matrix row, and its weights are shared across
the rows. A single patch’s MLP receives data from every channel, enabling communication
between the information from various channels.

Each MLP block contains two feed-forward layers with a GELU [35] activation function applied
to each row of the input data. The Mixer layers are calculated in equation 1 (the layer index is not
included) and the GELU function is demonstrated in equation 2.

U,; = X, i+ Woo(WiLayerNorm(X), ), fori=1..C, (1)
Y+ = Uj . + Wyo(W3LayerNorm(U);), forj=1..S.

GELU(x) = xP(X < x) = xP(x) (2)

It is intuitive to share the weights in each layer of the channel-mixing MLPs, as this offers
positional invariance, a key characteristic of convolution layers in CNNs. However, it is less intuitive to
share the weights across channels in the token-mixing MLPs. For instance, some CNNs use separable
convolutions [36], which apply convolutions to each channel independently of the other. However,
these convolutions apply different filters to each channel, in contrast to the token-mixing MLPs,
which use the same filter for all channels. Additionally, sharing weights in the token-mixing and
channel-mixing layers prevents the Mixer from growing in size quickly when the number of patches,
S, or the dimensions of the embedding space, C, increases, leading to substantial memory savings.
Furthermore, the empirical performance of this model is unaffected by this characteristic.

4. Datasets

To evaluate the performance of the MLP-Mixer in classifying a variety of activities, three datasets
are used for benchmarking.

4.1. Opportunity

The opportunity dataset [10] contains complex labelled data collected from multiple body sensors.
It consists of data from 4 subjects recorded in a daily living scenario designed to create multiple
activities in a realistic manner. Each subject had six sets of data.

The opportunity dataset consists of all three types of human activities, recurrent, static, and
spontaneous. The subjects wore a body jacket which contained five inertial measurement units (IMU),
made up of a 3D accelerometer, gyroscope and magnetic sensor, two inertial sensors for both feet, and
12 wireless accelerometers sensors, which suffered from data loss due to their Bluetooth connection.
In this dataset, only sensor data without packet loss was used. This included data from the inertial
sensors on both feet and the accelerometer sensors on the back and upper limbs, resulting in each
sample containing 77 dimensions of sensor data when combining all the sensor data together. The
sensors recorded the data at a sampling rate of 30Hz. Mixer is trained, validated and tested on are
similar to that in previous literature [19,37-41] for consistency and fair comparison. The Mixer was
tested on ADL4 and AD5 from subjects 2 and 3, ADL2 from subject 1 was used as the validation set,
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and the rest of the ADLs and all the drill sessions were used for training the Mixer. The Opportunity
dataset has multiple benchmark HAR tasks, including:

¢ Opportunity gestures: This involves successfully classifying different gestures being performed

by the subjects from both arm sensors. There are 18 different gesture classes.
* Opportunity locomotion: This involves accurately classifying the locomotion of the subjects the

full body sensors. There are five different locomotion classes.

4.2. PAMAP2

The PAMAP?2 dataset [12] contains complex labelled data collected from chest, hand and ankle
sensors. This consisted of data recorded from nine subjects. Each subject followed a routine of 12
different actions and optionally performed an addition of 6 activities resulting in 18 recorded activities
each, 19 if you include the null class.

The PAMAP2, similar to the Opportunity dataset, contains all three types of human activities.
The nine subjects wore IMUs on their hands, ankles and chest. The IMU recorded multimodal data,
which consisted of an accelerometer, gyroscope, heart rate, temperature and magnetic data. In total,
the data contains 40 sensor recordings and 12 IMU orientation data points, resulting in each sample
containing 52 dimensions of sensor data when combined. Each sensor sampled the data at a sampling
rate of 100Hz, and the dataset was downsampled to approximately 33.3Hz to have a similar sampling
rate to the opportunity dataset. There were missing data present in the dataset from the packet loss
of the wireless sensors. To account for this, only the heart rate sensor was interpolated; afterwards,
samples with missing values were excluded from the dataset. The parts of the dataset that are trained,
tested and validated are identical to previous literature [39,42]. The Mixer was tested on subject 6 and
validated on subject 5, and the rest were used for training; however, subject 9 was dropped due to
significantly less sensor data compared to the rest of the subjects. Additionally, the orientation data
points were not used as they were unimportant for this problem, leaving the dataset with a dimension
of 40 features. To make the experiments performed on PAMAP2 comparable with previous literature,
the optional activities and the null activities are excluded while training the Mixer, resulting in a total
of 12 classes to be classified.

4.3. Daphnet Gait

The daphnet gait dataset [11] contains labelled data collected from accelerometer sensors. It
consists of data collected from 10 subjects who are affected with Parkinson’s Disease (PD). The subjects
are instructed to carry out three types of tasks, walking in a straight line, walking while turning, and
realistic ADL scenarios which involve tasks such as getting coffee. These tasks were designed to
frequently induce gait freezing in the subjects. Freezing is a common symptom of PD, which causes
difficulty starting movements, such as taking steps, for a short period of time [19]. The goal of the
dataset is to detect whether the subjects are freezing or doing the specified actions (walk, turn). This is
a binary classification problem since the specified action are combined into one class, No Freeze, and
the "Null" class is excluded from the experiment.

Accelerometers were used to capture information about the subjects. They were placed on the
chest, above the ankle and above the knee, resulting in each sample containing 9 dimensions of sensor
data when combined. Each sensor sampled the data at a sampling rate of 64Hz, and the dataset
was downsampled to 32Hz for temporal comparison with the other datasets. A fair comparison
was maintained by splitting the dataset into training, validation, and testing sets identical to early
literature [19]. The Mixer was tested on data from subject 2, validated on subject 9 and trained using
the rest of the information.

4.4. Sliding Windows

For the datasets to be trained and tested by the Mixer, a sliding window approach is used on the
dataset. This splits the dataset into multiple sequences with the dimensions, (Dy X Sp.), where Dy is
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the number of features in the dataset and Sy is the sliding window length. These 2D sequences, in the
case of the Mixer, are treated as images. The length of the sliding window maintains a fixed length
throughout each separate training process but varies across the different datasets and experiments.
As mentioned in section 3.1, the Mixer takes an input image with dimensions (H, W) that is split into
patches with identical dimensions (P, P). This requires the patch resolution, P, to be fully divisible by
both dimensions of the input. This limits the length of the sliding window to either be divisible by the
number of features in the dataset or divisible by the patch resolution.

The Mixer outputs a prediction of the activity for every sliding window interval after observing
it; however there would be multiple predictions in the sliding window instead of a single ground
truth prediction. There are multiple methods around this [42,43], which involve using the prediction
at the end of the sliding window, max-pooling all of the sequence predictions over time, or returning
the most frequent predictions. The Mixer benefits from mixing its features at a given spatial location
across channels and between different spatial locations. In addition, the token-mixing MLP provides a
global context of the input to the model. Therefore using the most frequent predictions as the ground
truth prediction is preferred to other methods since the Mixer learns context from the whole input.
The details of the sliding window for each dataset are briefly described below, and the summary of
their parameters is tabulated in Table 1.

Table 1. The parameters used for each dataset.

Opportunity PAMAP2 Daphnet Gait

Parameters

Number of Features 77 40 9
Sliding Window Length 77 84 126
Downsampling 1 3 2
Step Size 3 3 3
Normalisation True False False
Interpolation False True False
Includes Null activities True False False

* Opportunity: The dataset was fit into a sliding window with an interval of 2.57 seconds. This
duration represents 77 samples, which makes the input dimensions identical, allowing the patch
resolution to be a factor of 77. The dataset was normalised to account for the wide range of
sensors used in the dataset. After preprocessing the data, there were no labels of "close drawer 2"
activity in the test set (ADL4 and AD5 from subjects 2 and 3).

¢ PAMAP2: Before downsampling, the dataset was fitted into a sliding window interval of 0.84
seconds, which corresponds to 84 samples. The "rope-jumping" activity in subject 6 had a very
small number of samples. After preprocessing, there were no labels of this activity present in the
test set (subject 6).

¢ Daphnet Gait: Before downsampling, a sliding window interval of 2.1 seconds was used to fit the
dataset; this interval corresponds to 126 samples. Daphnet Gait contains a lot of longer activities,
so a wider sliding window interval was chosen to provide the Mixer with more information.

Large sliding windows were used to give the Mixer access to more information and enable the
sequence to be divided into patches correctly and error-free. Smaller step sizes were used because the
Mixer tends to overfit, giving it more training points and ensuring that there were enough data points
for adequate testing on the various activities in each dataset.

4.5. Data Sampler and Generation

A class balance sampler was applied to the training dataset to give similar probability to the
classes during training allowing the Mixer to learn from each class equally in the imbalanced datasets.
The different samples are stored based on their labelled class. During each batch, the sampler accesses
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the training samples based on their weights. The samples are weighted based on the proportion of
their class in the training dataset.

4.6. Patches

The MLP-Mixer requires a sequence of input patches. This layer converts the input sensor data
into separate patches. The patch resolution has to be fully divisible by both the input height and
width dimensions. The patch resolution differed between datasets and the resolution for each dataset
is tabulated in Table 2. This was implemented using a strided Conv2D layer in Pytorch. A strided
Conv2D layer produces the same results as the per-patch fully-connected layer used in [8]. This
layer reshapes the input from (number of samples, number of channels, input height, input width) to
(number of samples, number of patches, patch embedding dimensionality).

Table 2. Specification of the Mixer architecture for each dataset.

Opportunity PAMAP2 Daphnet Gait

Specifications

Number of Layers 10 10 10
Patch Resolution 11 4 9
Input Sequence Length 49 210 14
Patch Embedding Size 512 512 512
Token Dimension 256 256 256
Channel Dimension 2048 2048 512
Learnable Parameters (M) 21 21 5

5. Experimental Setup

The Mixer was trained using the Adam optimiser with the cross-entropy loss as the criterion and
hyperparameters 1 = 0.9, B2 = 0.999. The Mixer has a tendency to overfit, so a weight decay of 1le-3
was used. The gradient clipping at the global norm was set to 1, and the batch size for the training and
testing dataset was 64. A learning rate scheduler was used, and the learning rate was set to 0.01. For
the first 500 steps, the learning rate scheduler used a linear warm-up rate. Then, until the training was
finished, it used a cosine decay.

The specifications of the Mixer architecture used to produce the main results in Section 6 is
tabulated in Table 2. The experiments were run five times with the best specifications, and the mean of
the results was taken.

5.1. Ablation Study

The Mixer is ablated to compare the importance of different design choices of the MLP-Mixer
in HAR. The different design choices involve the architecture of the Mixer (token-mixing MLP,
channel-mixing MLP) and the RGB embedding layer. The macro F; score is used in the ablation
study to assess the model. This prevents high evaluation scores by simply choosing the majority class
in imbalanced datasets and provides accurate insight into the model’s learning capabilities across class
activities.

The MLP-Mixer without RGB Embedding: The Mixer saw a slight decrease in performance,
which meant that this layer had some contribution to the Mixer’s learning capabilities. This allows the
sensor data to simulate the RGB channels in images. This produces three sets of features for the Mixer
to project into its embedding space instead of a single set of features from the single sensor channel.
The results are tabulated in Table 3.
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Table 3. Mixer ablation study.

Opportunity PAMAP2 Daphnet

Metric Fu Fn Fn

Base Mixer 0.68 0.971 0.85
Mixer with no RGB Embedding 0.63 0.940 0.79
Mixer with no Token-Mixing 0.05 0.165 0.12
Mixer with no Channel-Mixing 0.569 0.82 0.795

The MLP-Mixer without the Token-Mixing MLPs: The model had a significant decrease in
performance in all the datasets without the token-mixing MLPs. The Mixer uses token-mixing to learn
global context from the input and communicate information between patches; without this layer, the
Mixer can not effectively capture the spatial and temporal information of the activities in the datasets.
The results tabulated in Table 3 indicate the Mixer loses its capabilities to learn relevant features of the
dataset; hence it can be concluded that the token-mixing MLP is necessary for the Mixer to perform
well in HAR benchmark datasets.

The MLP-Mixer without the Channel-Mixing MLPs: The channel-mixing MLPs allow the
model to communicate between channels, essentially acting as a 1x1 convolution. It enables the Mixer
to detect features between channels, and without it, only spatial information between the various
patches will be learned. The results tabulated in Table 3 showcase substantial performance loss which
indicates that the channel-mixing MLP is important for HAR. However, the performance loss is lower
compared to the performance loss in the absence of the token-mixing MLPs. This indicates that
the channel-mixing MLP is a supplement to the token-mixing MLP, communicating the information
learned from the token-mixing layer across channels rather than capturing core features needed for
accurate prediction in HAR.

6. Results

The Mixer is compared with the following state-of-the-art architectures:

¢ Ensemble LSTMs [37]: combines multiple LSTMs using ensemble techniques to produce a single
LSTM.

¢ CNN-BiGRU [44]: CNN connected with a biGRU.

¢ AttenSense [25]: a CNN and GRU are combined using an attention mechanism to learn spatial
and temporal patterns.

* Multi-Agent Attention [45]: combines multi-agent collaboration with attention-based selection.

* DeepConvLSTM [42]: combines an LSTM to learn temporal information with a CNN to learn
spatial features.

¢ BLSTM-RNN [38]: a bi-LSTM, with its weights and activation functions binarized.

¢ Triple Attention [46]: a ResNet, using a triple-attention mechanism.

¢ Self-Attention [47]: a self-attention-based model without any recurrent architectures.

¢ CNN [19]: a CNN with three layers and max pooling.

* b-LSTM-S [19]: bidirectional LSTM that uses future training data.

Table 4 shows the performance comparison between the Mixer and existing state-of-the-art
literature. Table 4 shows that the MLP-Mixer performs better than previous techniques in the
Opportunity Locomotion, PAMAP2, and the Daphnet Gait datasets. Despite the model’s shortcomings
in the Opportunity Gestures dataset, it is still competitive with most of the previously developed
methods. Sliding window techniques were used in all the previous techniques, with only the
sliding window lengths and overlaps differing. Although the Mixer beats the previous techniques
in Opportunity Locomotion, most previous work that used the Opportunity dataset for performance
evaluation only focused on the gesture classification task while disregarding the locomotion task.
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Table 4. State-of-the-art comparison for MLP-Mixer scores. Mixer results in the format mean +std.

Opportunity  Opportunity o, \»\ by Daphnet Gait

Locomotion Gestures
Metric Fy, Fu Fn
Ensemble LSTMs [37] - 0.726 0.854 -
CNN-BiGRU [44] - - 0.855 -
AttenSense [25] - - 0.893 -
Multi-Agent Attention [45] - - 0.899 -
DeepConvLSTM [42] 0.895 0917 - -
BLSTM-RNN [38] - - 0.93 -
Triple Attention [46] - - 0.932 -
Self-Attention [47] - - 0.96 -
CNN [19] - 0.894 0.937 0.684
b-LSTM-S [19] - 0.927 0.868 0.741
MLP-Mixer 0.90 +0.005 0.912 £0.002  0.97 £0.002 0.842 +0.007

The sliding window lengths used were similar to or larger than previous techniques, allowing the
model to capture more information from each interval. Therefore, it can be concluded that the MLP
mixer model can learn the spatial and temporal dynamics of the sensor data more effectively than the
previous models. The Mixer performs better than existing attention and convolution-based models in
PAMAP2. The macro-score of the Mixer is slightly higher(0.97) than the triple-attention model [46]
(0.96) and significantly higher than the best convolution-based model [19] (0.937), it performed better
than the state-of-the-art by 1%. In the daphnet-gait dataset the model also performed better than
convolution and recurrent models, producing a macro-score of 0.842 compared to 0.741. It performed
better than the state-of-the-art by 10.1%. However, existing literature using the Daphnet Gait focus
more on future prediction [48-50] instead of recognition and use different evaluation metrics, therefore
cannot be directly compared to the Mixer. In the opportunity gestures, the Mixer remains competitive
but does not perform better than the b-LSTM-S, the opportunity dataset was particularly challenging
for the MLP-Mixer, due to shorter activities combined with a larger sliding window necessary for the
image to be split into patches. As a result, there were several activities in the training sliding window,
making it more difficult for the Mixer to learn and harder for it to predict activities in the test sliding
window. The b-LSTM-S performed 1.7% better than the Mixer in this dataset.

7. Discussion

Convolutions capture the spatial information in a local area of the data. However, they are not
effective at learning long-term dependencies (temporal data) [27], unlike recurrent networks, which
specialise in long-term dependencies. The self-attention mechanism learns the entire context of input
patches. Additionally, it learns what to pay attention to based on its weights [47], allowing it to learn
the relationship between the sensors and the different activities. The token-mixing MLPs can be
considered a convolution layer that captures information about the entire input. It combines spatial
information from a single channel and distributes channel weights to increase efficiency, which allows
the Mixer to perform better than previous techniques when an adequate amount of data is provided
and the invariant features of the input are coherent.

The normalised confusion matrices of the PAMAP2, Opportunity and Daphnet datasets are
illustrated in Figures 2—4, respectively. The model’s ability to distinguish between activities in the
PAMAP?2 confusion matrix showed that it had learned various spatial and temporal characteristics of
each activity. The model did have some trouble distinguishing between the "ironing" and "standing"
activities; this is probably because the sensor data for these actions are similar in the chest and
ankle regions but only slightly different in the hand regions. With further inspection, standing
consisted of talking while gesticulating, further validating the possibility of similarities in the hand
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sensors. Furthermore, The model had little trouble differentiating "walking", "vacuum cleaning", and
"descending stairs" activities; this is understandable since it mistook these activities for similar ones.
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Figure 2. Normalised Confusion Matrix of the PAMAP2 Dataset.
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Figure 3. Normalised Confusion Matrix of the Opportunity Dataset.
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Figure 4. Normalised Confusion Matrix of the Daphnet Gait Dataset.

It was more difficult for the model to distinguish between different activities in the Opportunity
dataset. Because there were significantly more samples of Null activities than any other activity, the
Opportunity confusion matrix, Figure 3, shows that the model frequently mistook activities for being
unrelated. Furthermore, because the activities were short, the model had a more challenging time
figuring out where a given activity began and ended in the sliding window. The confusion matrix
demonstrates that the model was could pick up on some of the "open door 2" and "close fridge" activity
characteristics. However, the model did not successfully capture features of "open drawer 1" and
mistook this activity for "close drawer 1". Further investigation revealed that the activity—which
consisted of opening and closing the drawer—took place in a single sequence, suggesting that the
model could not determine when the activity began and, therefore, could not correctly distinguish
between the two.

There was a significant imbalance between the two activities in the Daphnet Gait dataset, much
like in the opportunity dataset. As shown in Figure 4, the Mixer was trained on an adequate sample
size for the majority class,” No freeze,” allowing it to learn when the participants were not freezing
correctly. However, in the minority case, there was insufficient data from the Mixer to properly learn
relevant features, resulting in the Mixer incorrectly classifying the participants as not freezing 26% of
the time.

8. Performance of Sliding Window Parameters

Each dataset contains a different range of activity lengths and repetition rates. The sliding
window length has a significant impact depending on how long the activities are in the dataset. The
sliding window’s parameters were altered to study its effect on the Mixer performance. The model’s
parameters were fixed, and the step size was constant instead of using an overlap percentage of the
window length to prevent the number of samples from affecting the results. Small window intervals
contain insufficient data for the Mixer to learn from and make decisions. On the other hand, if the
sliding window interval is large relative to the activities in the window, it allows information from
multiple activities to be present in a single sliding window, making it harder for the Mixer to determine
which activity the sliding window represents among the multiple activities.

Performance generally improves with increasing overlap, but as there are more samples to train
and test, the computational complexity of training the Mixer also rises. In contrast, little to no overlap
significantly reduces the sample size, particularly for larger sliding window sizes, which causes the
Mixer to over-fit on the dataset.

Figures 5-7 illustrate the changes in the Mixer’s performance when the sliding window length
is changed. In datasets with more extended activities, such as PAMAP2 and Daphnet, larger sliding
windows increase the model’s capability to learn by providing more information. On the other hand,
in the Opportunity dataset, which contains shorter activities, the model’s performance decreases with
larger window lengths. The sliding window figures indicate that the sliding window has a slight effect
on the Mixer’s performance, but overall the model is not sensitive to the sliding window length.
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Figure 5. Evaluation of Sliding Window Length on the Opportunity dataset.
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Figure 6. Evaluation of Sliding Window Length on the Daphnet Gait dataset.
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Figure 7. Performance Evaluation of Sliding Window Length on the PAMAP2 dataset.
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9. Weight Visualisation

The models” weights are visualised to provide insight into which sensors the model considers
necessary for different activities. This experiment aims to confirm that the Mixer is capturing relevant
features and to offer some interpretation of how the Mixer categorises the activities. The analysis is
performed on the PAMAP?2 dataset to showcase various simple and complex activities. Six different
activities and their associated weights are illustrated in Figure 8.
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Figure 8. The Mixer’s weight visualisation for each accelerometer sensors in the sliding window. Each
figure represents an different activity: (a) Ascending stairs (b) Cycling (c) Ironing (d) Lying (e) Running
(f) Vacuum Cleaning,.

Figure 8 shows how the Mixer associates various sensors with various activities. The Mixer not
only learns which sensors are crucial but also when they are crucial as the emphasis of sensors changes
throughout the sliding window. For example, in ascending stairs, the hand(X, Y), chest(X), and ankle
sensors have essential features that the Mixer emphasises, typical when climbing a staircase with
handrails. Cycling focuses on the hand(Y) sensor, most likely for steering, and the chest and ankle
sensors, likely for pedalling. The Mixer prioritises the hand’s (X, Z) sensors when ironing, as expected.
While lying down, the Mixer considered all sensors important, except for the ankle (Z) and hand
(Y), which is to be expected given that the participants had complete freedom to change their lying
positions. Finally, the Mixer values the hand (X, Z) and chest (X) sensors for vacuum cleaning and the
ankles (X, Y) and chest (X) sensors for running activities, which is consistent with common sense. This
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analysis concludes that the Mixer is successfully learning the spatial and temporal characteristics of
the various activities because the weight assignments for these activities are understandable and in
tune with common sense.

10. Conclusions

In this paper, the MLP-Mixer performance is investigated for HAR. The Mixer does not use
convolutions or self-attention mechanisms and instead relies solely on MLPs. It uses token-mixing and
channel mixing layers to communicate between patches and channels, learning the global context of
the input and enabling excellent spatial and temporal pattern recognition in HAR. Experiments were
performed on three popular HAR datasets, Opportunity, PAMAP2 and Daphnet Gait. The Mixer was
assessed using sliding windows on the dataset. This paper demonstrates that pure-MLP architectures
can compete with convolutional and attention-based architectures in terms of HAR viability and
performance. We demonstrate that the MLP-Mixer outperforms current state-of-the-art models in
the test benchmarks for all datasets except for Opportunity Gestures. It performs 10.1% better in the
Daphnet Gait dataset, 1% better in the PAMAP2 dataset and 0.5% in the Opportunity Locomotion
dataset. The Mixer was outperformed in the Opportunity Gestures; however it remained competitive
with the state-of-the-art results. To the best of my knowledge vision-based MLP architectures have
not been applied to HAR tasks. It is interesting to see the performance of a pure-MLP architecture,
outperform and remain competitive with state-of-the-art models in HAR.
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