Review

Advancements in Exploiting Sporosarcina Pasteurii as Sustainable Construction Material: A Review

Shiva Khoshtinat 1,*

- Department of Materials, Chemistry and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy; shiva.khoshtinat@polimi.it
- * Correspondence: shiva.khoshtinat@polimi.it;

1. Supplementary Materials

Table S 1. Selective examples of literature employing *S. Pasteurii* for soil stabilization via surface percolation and mixing techniques.

Method	Characterization								
	SEM	EDS	XRD	CaCO ₃ content	Mechanical test (MPa)	Permeability reduction	Time (Days)	Comments and results	Ref.
Surface Percolation	Х	Х	Х	5.6-33.2	4.8-11.5		4	 92 hours treatment + 3 weeks curing CaCO₃ crystal morphology were similar for technical and analytical grade cementation solution. 	[74]
	Х			13	0.5-2.5			fine-grained: stiffness 166-1056 MPa	[99]
				7.5	0.5-11.3).5-11.3		medium-grained: 153-1974 MPa	
					0.5-4.8	_		natural sand-gravel mixture: 355-1243 MPa	
	Х	х		5.7-6.9	0.57		14	 6 treatment cycles CaCO₃ distribution was better along the sample with fewer fine particulates 	[46]
	х				X			 the resistance of treated samples to cyclic stress improved The relative density increased 	[134]
	X	X		2.5-16 1.5-8	0.2-2.3 0.4-1.5	- x	16	MICP: $E_{50} = 20-250 \text{ MPa}$ EICP: $E_{50} = 50-200 \text{ MPa}$	[43]
	Х	х	Х	22	14		14	 32 treatment cycle CaCO₃ content, dry density, void ratio, and porosity were determined by XCT 	[52]
				Х			12	• CaCO ₃ production rates is higher in samples treated with CaCl ₂ and Ca(CH ₃ COO) ₂ than Ca(NO ₃) ₂	[71]
Sprayed	Х				Х		14	• sand-steel interface shear strength increased 3 to 7 times	[102]
	Χ			65	0.4		6	• soil's resistance to rainfall simulation improved	[75]
				Χ	3.6-4.2		30	 CaCO₃ content = 270-310 kg/m³ mechanical Characterisation done by three-point loading text (flexural strength) 	[73]

				Х	0.1-0.2		10	 CaCO₃ content = 19.7-82.3 kg/m³ UCS values increased by 3 to 6 times 	[45]
Mixed	Χ	X		3.2-5.6	0.6	Χ	14	• CBR test values : 7.5-14 %	[2]
	Χ		Χ		Χ	Χ	21	• tensile strength increased by 12 kPa	[47]
	Х		х	X			12	• the number of crystals produced by natural bacteria in soil is more, but the size of the crystals produced by Sp. Pasteurii is significantly greater	[44]
	Χ		Χ		Χ		5	• CBR = 49 %, moisture content=11.8 %	[7]
	Х		X	14	0.8			The prosity of the sample reduced by 10.6%Using seawater in solution improved the MICF performance	P[103]

^{*} X: Experiment has been performed