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Abstract: "Finding fresh water in the ocean of data." is a challenge that all deep learning domains

struggle with, especially in the area of hyperspectral image analysis. As hyperspectral remote

sensing technology advances by leaps and bounds, there are increasing amounts of hyperspectral

images(HSIs) can be available. Whereas in fact, these unlabeled HSIs are powerless to be used as

material to driven a supervised learning task due to the extremely expensive labeling costs and some

unknown regions. Although learning-based methods have achieved remarkable performance due

to their superior ability to represent features, at the cost, these methods are complex, inflexible

and tough to carry out transfer learning. In this paper, we propose the "Instructional Mask

AutoEncoder"(IMAE), which is a simple and powerful self-supervised learner for HSI classification

that uses a transformer-based mask autoencoder to extract the general features of HSIs through a

self-reconstructing agent task. Moreover, we utilize the metric learning to perform an instructor

which can direct the model focus on the human interested region of the input so that we can alleviate

the defects of transformer-based model such as local attention distraction, lack of inductive bias

and tremendous training data requirement. In downstream forward propagation, instead of global

average pooling, we employ a learnable aggregation to put the tokens into fullplay. The obtained

results illustrate that our method effectively accelerates the convergence rate and promotes the

performance in downstream task.

Keywords: self-supervised; pretrained model; transfer learning; metric learning; transformer; mask

autoencoder; hyperspectral image classification

1. Introduction

Recent years, hyperspectral remote sensing technology has made significant strides which uses

spectroscopy imagery technology to synchronously gather enormous spectral and spatial information

of the observing targets at pixel level[1], thus enabling to conduct accurate classification for the

observation targets[2–4]. Numerous fields including ecological research[5], precision agriculture[6],

mineral exploration[7], and medicine[8], are covered by the categorization tasks of HSI considering the

advantage of a wealth of information contained in it. Unlike some other image classification missions,

HSI classification is an operation which carried out at pixel-wise, assigning each of the pixels in the

imagery into a specific category[9].

In the early stage of the study on the HSI classification, the spectral information played the

leading role. Most methods focus on exploring the discrepancy of original spectral signatures in HSI

to distinguish the pixels into different categories, including k-nearest neighbor(KNN)[10], support

vector machines(SVM)[11], logistic regression[12], and so on. However, the original spectral features

in HSI always obey a complex high-dimensional nonlinear distribution where traditional machine

learning based methods can not handle it well. In light of this, direct exploration of the original spectral

vectors leads to a large computing cost as well as decreased classification performance. Thus, several
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methods for dimension reduction and spectral information extraction have also been developed, such

as PCA[13,14], ICA[15], and LDA[16]. Despite the fact that several standard spectral feature extraction

methods may extract useful spectral features, the basic linear processing present in these linear models

makes it sitll difficult to manage the complicated spectrum properties of HSIs.

With the advancement of deep learning, recent research in the domain of hyperspectral image

classification has predominantly relied on deep learning based methodologies. Thanks to their robust

representational capabilities, these approaches have led to a notable enhancement in classification

performance. For insistence, Ahmad et al.[17] and Mughees et al[18]. gathered the feature sets by using

a autoencoder(AE) based method to extract HSI features. Zhong et al.[19] proposed a semi-supervised

deep belief networks(DBN), this method through regularizing pretraining and fine-tuning procedures

by a diversity promoting prior over latent factors,thereby improving model classification performance.

Nevertheless, owing to inherent challenges in hyperspectral imagery, such as spectral drift, spectral

variability within identical materials, and material variability within identical spectra, methods that

directly incorporate spectral information continue to exhibit a significant number of classification

errors. To address this issue, convolutional neural networks (CNNs) have been introduced into the

research on hyperspectral image classification, where a pixel and its neighbors in a hyperspectral image

are taken as inputs of the CNN, and the final CNN output is the predicted class labels[20–23]. The

architectural design of such networks not only incorporates translational invariance but also effectively

introduces an inductive bias, implying that pixels within the same patch are likely to belong to the

same land cover class. Furthermore, to harness spectral information more effectively, 3D convolutions

have been incorporated into this research. For examples, Xu et al[24]. designed a multiple spectral

resolution 3D convolutional neural network (MSR-3DCNN) where combined the 3D convolution layer

and residual connection to better adapt to the 3D cubic form of hyperspectral data and make efficient

use of spectral information in different bands. Li et al[25]. combined depthwise separable convolution

and 3DCNN, this work successfully accelerated the training speed and achieved good classification

performance.

While convolutional network structures have demonstrated strong performance in this domain,

certain limitations persist, constraining the network’s overall performance. The additional inductive

bias introduced by convolutional operations may not be applicable to pixels located at the boundaries

of land cover regions. For instance, within the same patch, there may exist a variety of pixels belonging

to distinct land cover classes. Furthermore, due to the sensitivity of convolutions to geometric textures

in images, boundaries between land cover regions are also prone to extraction, introducing noise during

classification[26]. In the context of convolutional mechanisms for hyperspectral image classification,

a limitation arises due to the convolutional operations being performed on the neighborhood of

target pixels. Typically, when the neighborhood size is fixed, the structure of the convolutional

network becomes rigid, resulting in a singular input scale and limited generalization performance[27].

Altering the neighborhood size necessitates a corresponding modification in the convolutional network

structure, rendering previously trained model parameters unusable and leading to inefficient data

utilization.

To surmount these inherent deficiencies of convolutional neural networks, certain research

endeavors opt to employ Transformer modules as foundational structures in designing classification

models[27–34]. Models of this nature have demonstrated the capacity to surmount the inherent

limitation of fixed input dimensions in convolutional networks, resulting in superior performance

in high-dimensional spectral image classification tasks compared to convolutional neural networks.

However, their generalization capabilities remain unverified, and due to the absence of inductive biases

in Transformer networks, they often necessitate a larger volume of data for effective fitting to achieve

optimal performance[35]. In the realm of natural language processing tasks, pre-trained large-scale

models have exhibited remarkable performance, showcasing robust generalization and transfer

capabilities, even when exposed to a limited amount of downstream task-specific annotations[36,37].

Prominent examples include BERT[38] and the GPT series[39–41]. Building upon the foundation
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laid by Vision Transformers(ViT)[42], researchers have devised pre-training models tailored for

the visual domain, such as Google’s BEiT[43] and the MAE model developed by the team led

by Kaiming He et al[44]. These methods employ self-supervised learning techniques for model

pre-training and have consistently achieved state-of-the-art performance in downstream tasks. Scholars,

drawing inspiration from this concept, have devised pre-trained models tailored for hyperspectral

imagery. These models have demonstrated commendable performance in classification tasks,

exemplified by Masked Autoencoding Spectral–Spatial Transformer(MAEST) designed by Ibanez

et al.[45], Spectral–Spatial Masked Transformer(SS-MTr) proposed by Huang et al.[46] and Masked

spatial-spectral model(Masked SST) raised by Scheibenreif et al.[47] However, it is noteworthy that

these models have primarily leveraged a limited subset of hyperspectral data available in the public

domain, such as Indian Pines, PaviaU and Salinas Dataset. Moreover, when employing these models

on different datasets, apart from fine-tuning on the new data, retraining on the new dataset is

often necessary. These methodologies have not fully harnessed the extensive reservoir of unlabeled

hyperspectral data that is accessible and have maintained certain constraints on network inputs.

Inspired by these insights, this study introduces a pre-trained model specifically designed

for hyperspectral images, employing the Transformer architecture as its foundational framework.

This model boasts the ability to process patches of arbitrary dimensions and exhibits remarkable

generalization capabilities across varying spectral resolutions within hyperspectral imagery. Within

this model, we implement a self-supervised training strategy inspired by the methodology employed

in MAE. This involves the random masking of individual pixels within each patch, followed by their

passage through an encoder-decoder network structure, ultimately facilitating the reconstruction

of the original, unmasked patch. During this process, each pixel, serving as a carrier of spectral

information, can be analogously likened to words in the context of natural language processing.

Meanwhile, the spatial relationships between these pixels are reminiscent of contextual information in

NLP. Consequently, the network inherently acquires an understanding of spatial spectral information

within hyperspectral images as it undertakes the patch reconstruction task. To accommodate variable

input sizes, this study introduces adaptable conditional positional embedding.[48] In response to the

inherent absence of inductive biases within Transformer architectures, we propose a novel approach.

This entails the incorporation of an ins_token at the input side of the model’s encoder, initialized with

random values. Leveraging a metric learning paradigm[49], we aim to align the output vector of

this ins_token , post-decoding, as closely as possible with the embedding vector of the target pixel

within a designated projection space. This strategic augmentation serves to direct the model’s attention

towards the specific target pixel. In the context of downstream tasks, instead of global average

pooling(GAP)[50], we introduce a mechanism to adaptively combine the tokens generated by the

encoder to fully exploit the knowledge acquired by the network. The resulting composite output

is subsequently utilized as the ultimate classification vector, which is then fed into the classifier for

supervised training.

To facilitate the training of our model, we undertook a comprehensive data curation process,

sourcing a diverse collection of hyperspectral images from the Gaofen-5 satellite. This dataset

encompassed a broad spectrum of environmental scenarios, ranging from desert, forest, township,

forest village, snowfield, village, city and metropolis. Subsequently, we meticulously divided these

unlabeled images into non-overlapping patches, categorized into four distinct size parameters. When

transferring pre-trained model parameters to a new dataset, the process primarily involves the

replacement of the network’s input layer to accommodate varying spectral resolutions. Subsequently,

supervised fine-tuning can be conducted with a limited number of samples. In the same circumstances,

compared to similar, our technique delivered state-of-the-art performance.

In summary, the primary contributions of this paper are as follows:

1. We have devised a pre-trained model capable of effectively harnessing a substantial volume of

unlabeled hyperspectral imagery. This model significantly enhances data utilization efficiency
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and augments downstream task performance, particularly in scenarios characterized by limited

sample availability.
2. We have introduced a model instructor, denoted as the ins_token, a randomly initialized vector

that effectively directs the model’s focus toward areas of human interest through metric learning.
3. Our proposed model exhibits robust generalization capabilities while maintaining simplicity and

ease of implementation.
4. We have curated a comprehensive hyperspectral imaging (HSI) pre-training dataset,

encompassing a multitude of environmental scenarios and varying input sizes.

2. Methodology

2.1. Overview of IMAE

Inspired by recent self-supervised models for computer vision, we design a transformer-based

HSI classification pre-training model that automatically extracts general features of hyperspectral

images through two self-supervised proxy tasks. After pre-training is completed, the model can be

easily transferred to any hyperspectral remote sensing data. To keep employing the common sense

the model has learnt, regardless of how the HSI’s spectral resolution changes, we just need to alter

the model’s first input layer parameters. In this section, we first introduce the overview of IMAE.

Afterwards, we will present the primary components of the network in detail, including spectral

embedding, instructor masked autoencoder and learnable aggregation.

In this work, we use ViT as the backbone and construct a masked autoencoder to extract general

spatial spectral features of HSI. Normally, ViT needs to execute linear embedding on the patch before

encoding the extracted image information into a token, the input of model is the whole image. In

contrast to RGB images, HSI includes abundant spectral information that could indicate material

attributes. Therefore, we embed each spectral signal in the patch into token, this means we use the

patch as the model input. In this method, we combine 3D convolution and 2D convolution and use

a 1*1 convolution kernel to perform linear embedding of spectral information to achieve spectral

feature extraction while maintaining the correlation between different band of spectra. In transformer,

position embedding is a very important component for the extraction of spatial information. Usually, a

predefined position embedding method is used to generate the position tokens. This method has a

fixed length and is independent of the input tokens and can’t fully utilize neighborhood information.

Therefore, we use conditional position embedding to generate the position tokens. That strategy is

learnable which considers both the neighborhood and semantic information of the token and it can

be easily generalized to token sequences of various lengths. For the analysis of HSIs, humans mainly

concentrate on the central pixel of the patch merely the transformer-based model performs global

feature extraction on the patch, which namely local attention distraction. Therefore, we teach the

model, by integrating an instructor token named ins_token, how to infer the information embedded in

the central pixel from the global information of the patches, thus model naturally learns this domain

prior. Moreover, this method can help model focus on the in interested region regardless of the size of

the input. In downstream tasks, in order to fully utilize the information contained in tokens, instead

of GAP, we design a learnable aggregation strategy for the output tokens of encoder. The overall

architecture of IMAE is illustrated in Figure 1.
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Figure 1. The overall architecture of IMAE.

2.2. Spatial-spectral embedding

The spatial-spectral embedding is mainly composed of two basic components which are spectral

embedding and position embedding. We first present our spectral embedding procedure in this section,

followed by the positional encoding strategy.

The standard vision transformer divides the entire image into non-overlapping patches and then

encodes these patches into a token sequence. However, the patch-level feature extraction is not suitable

for the analysis of HSIs. Given it typically conduct pixel-level analysis when analyzing HSIs, thus the

spectral embedding require more fine-grained features. Specifically, we adjust the input of the model

to patch, then preform embedding on the spectral signal. We give up the dimensionality reduction

approach of some independent components, like PCA, ICA, etc, to prevent breaking the correlation

between different spectral bands. In our spectral embedding strategy, 1 × 1 convolution kernels in

combination with 2D and 3D convolution are used to perform feature embedding on the spectral

dimension in order to obtain the maximum spectral information possible. Given a traning sample

X, X ∈ R
h×w×b, where h and w represent the height and width of the input patch, b represents the

number of bands. In 2D convolution operation, the lth convolution kernel W
(l)
2d , W

(l)
2d ∈ R

1×1×C2d , the

feature map of W
(l)
2d is Z

(l)
2d . For illustration, consider the input layer, we calculate Z

(l)
2d according to the

equation 1.

Z2d = Cov2D(X)

Z
(l)
2d (i,j)

=
b

∑
n=1

X(i,j,n) × W
(l)
2d (i,j,n)

(1)
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In 3D convolution operation, the lth convolution kernel W
(l)
3d , W

(l)
3d ∈ R

1×1×C3d , the feature map of

W
(l)
3d is Z

(l)
3d . As a demonstration, suppose the input data Z2d ∈ R

h×w×m, we calculate Z
(l)
3d according to

the equation 2.

Z3d = Cov3D(Z2d)

Z
(l)
3d (i,j,k)

=
C3d

∑
n=1

Z2d(i,j,(k−1)∗s+n) × W
(l)
3d (i,j,n)

(2)

Where s represents the stride of the 3D convolution kernel on third dimension of the input, the third

dimension c of Z
(l)
3d can be computed as equation 3.

c =

⌈
m − C3d

s

⌉
+ 1 (3)

We construct the spectral embedding(SE) module using two 2D convolution layers and a 3D

convolution layer, and its expression is as equation 4.

Z = SE(X)

= Cov2D(Cov3D(Cov2D(X)))
(4)

In addition, position embedding plays a crucial role in the transformer-based model. Through the

self-attention mechanism, the transformer-based model can learn the relationships between tokens

and pay attention to essential facts, but it is unable to learn the precise positions of each token, thus

necessitating the input of extra token position information to the model. Position embedding is an

approach for re-representing each token in the sequence with the token’s position information so that

the input tokens carrier the position information and the model can learn the features of the positions.

The common position embedding methods are predefined, the length of position token sequence is

fixed even if the position tokens are learnable, which will make the model unable to handle sequences

exceeding the predefined length. The sequence length growth in a HSI patch is a square term of its

size, so using the length fixed embedding method will prevent the model from generalizing to larger

patch inputs. Furthermore, the pre-defined methods just add a particular encoding to each token in

accordance with the sequence, disregarding the relationship between the pixels in the patch and the

neighborhood in which they are located.

Conditional position embedding is a flexible, parameter-free approach which can solve this defect.

It hinges on the the input token and its neighborhood to dynamically produce the position embedding

token associated with the input token. Moreover, CPE is translation-invariant which allows it to

efficiently leverage the local homogeneity of natural images. CPE can be easily implemented by 2D

convolution layer and same padding layer. Figure 2 illustrates the structure of CPE. After spectral

embedding(SE) and position embedding(PE), the input of the transformer is:

Xembeded = SE(X) + PE(SE(X)) (5)

where Xembeded ∈ R
hw×c, c reperesents the embedding dimension.
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Figure 2. The the structure of CPE. Note F is a flatten function that flatten the 2D position embedding

from R
h×w×c to R

hw×c.

2.3. Instructor Masked AutoEncoder for HSI spectral-spatial feature extraction

In this section, we focus on how to extract general features in hyperspectral images through

IMAE. Concretely, we perform self-supervised training for IMAE through constructing two proxy

tasks, which are constructing a pixel-level masked autoencoder to reconstruct the random masked

input as well as designing a instructor token to direct the model to concentrate on the region we are

interested in.

In pixel-level masked autoencoder, we use transformer as the basic module of encoder and

decoder. Transformer is a seq2seq model that conquers the neural network and convolution network

input size limitations and can accept sequence inputs of any length, allowing the model to generalize

to inputs of various sizes. It primarily utilizes the multi-head self-attention mechanism to carry out

representation learning of the input sequence, which can capture the dependencies between different

positions in the sequence and achieve the perception of global context information.

A transformer encoder or decoder includes several blocks, each block is composed of multi-head

self-attention layer(MSA), multi-layer perceptron(MLP), layer normalization(LN) and residual

connection. The structure of the transformer block are shown as Figure 3. The output token Z(l)

of lth block can be computed as equation 6:

Ẑ(l) = MSA(LN(Z(l−1))) + Z(l−1)

Z(l) = LN(MLP(Ẑ(l))) + Ẑ(l) (6)

The attention mechanism can be achieved through three learnable matrices, namely WK, WQ, WV .

These matrices allow the input tokens X = {x1, x2, ..., xn|x ∈ R
d},X ∈ R

n×d to be mapped into an

assembly of query, key, and value vectors, respectively. It can be generated by matrix operation as

follows:

Q = XWQ⊤
= {WQx1, WQx2, ..., WQxn|WQ ∈ R

m×d, x ∈ R
d} (7)

K = XWK⊤
= {WKx1, WKx2, ..., WKxn|WK ∈ R

m×d, x ∈ R
d} (8)

V = XWV⊤
= {WV x1, WV x2, ..., WV xn|WV ∈ R

m×d, x ∈ R
d} (9)

Where K, Q and V(K, Q, V ∈ R
n×m) represent the matrices which combined by the query, key, and

value vectors, respectively. d represents the dimension of input tokens and m represents the dimension

of tokens after mapping.
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Afterwards, we use scaled dot-product to compute the attention map by K, Q and generate the

output tokens by V and the attention map, as follow equation:

Attr(K, Q, V) = so f tmax

(
QK⊤
√

dk

)
V (10)

Where so f tmax

(
QK⊤√

dk

)
represents the attention map, dk represents the dimension of key tokens.

The multi-head attention mechanism involves performing various attention operations on the

tokens independently, followed by a weighted linear combination of the output through a learnable

matrix WO. To be more specific, suppose there are p heads(H1, H1, ..., Hp), the output of MSA can be

computed as follows:

Hi = Attr(XWK
i
⊤

, XW
Q
i

⊤
, XWV

i
⊤
) (11)

H =
[
H1, H2, ..., Hp

]
WO (12)

Where Hi ∈ R
n×m,

[
H1, H2, ..., Hp

]
∈ R

n×pm, WO ∈ R
pm×m.

Visible token Masked token 

(a) (b)

Visible token Masked token 

(a) (b)

Figure 4. Suppose the image above is a 5 × 5 HSI patch. (a) Illustration of local homogeneity. The

red pixel is the target pixel, the yellow area is made of the similar material as the target pixel. (b)

Illustration of visible token and mask token.
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Local homogeneity is widespread in natural imagery. In the analysis of HSIs, to expand the

amount of input information to enhance the performance of model, the neighborhood surrounding

the target pixel is used as the network input. Yet, quite a bit more semantic redundancy comes with

this strategy. Inspired by He Kaiming’s work, we randomly mask the input data to destroy its local

homogeneity. After that, it conducts representation learning and reconstructs the original input that

had been unmasked via an autoencoder. In this way, the model can implicitly learn the context and

texture features in natural images.

Regrettably, since the transformer model performs indiscriminate global self-attention calculations

on input tokens, lacks inductive bias, has a broad function domain, and disperses local attention,

training the transformer network requires a large amount of data. Considering that we are primarily

interested in the relationship between the target pixel and its neighborhood with regard to HSIs

analysis. In order to guide the model to prefer learning the information that is strongly related to

the target pixel in the global information, so that the model can naturally focus on the area of human

interested in. We introduce a randomly initialized instructor token, similar to cls_token in ViT, to

represent the general features of the input, called the ins_token. Subsequently, minimize the distance

between the projected vectors by mapping the output of decoder that corresponding to ins_token

and the spectral vector target pixel to a certain metric space. This instructing term can be regarded

as a regularization constraint of the autoencoder that encourages the model to learn human prior

knowledge of HSIs implicitly while decreasing the quantity of training data needed. Its working

mechanism is shown in the Figure 5.

mlp1

mlp2

spectral

ins_token

𝑚𝑚𝑚𝑚𝑚𝑚 𝑊𝑊1𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −𝑊𝑊2𝑚𝑚𝑚𝑚𝑠𝑠_𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠𝑚𝑚 2

Figure 5. The the work mechanism of instrctor.

Specifically, after the spatial-spectral embedding Xembedded ∈ R
h×w×c, we random mask

and flatten Xembedded, then contact the ins_token to it as the input of encoder Xmasked =

{ins_token, x1, x2, ..., xn |ins_token, xi ∈ R
c}. Let Z represents the latent features of Xmasked.

Z = encoder(Xmasked) = {ins_token, z1, z2, ..., zn} (13)

Afterwards, we move the visible token to its original position, and then fill the masked token with a

random token, called f ill(·).

Z f illed = f ill(Z) (14)

Finally, we use Z f illed as the input of decoder to reconstruct the original HSI patch X′ as well as conduct

instruction.

X′ = decoder(Z f illed) = {ins_token, x′1, x′2, ..., x′hw} (15)

min||xc − ins_token||2 (16)
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where xc represents the center pixel. The loss function of the pretraining stage is:

l = lr + αlins

=
1

hw

hw

∑
i=1

||xi − x
′
i ||2 + α||xc − ins_token||2 (17)

2.4. Learnable aggregation

In downstream task, in order to make full use of the information learned by the network,

we propose a learnable aggregation to combine the tokens from the encoder and then feed its

outputs to the classifier as the final logit for supervised training. Specifically, we use the uncovered

patch X ∈ R
h×w×b as model input in forward propagation. Let the output of encoder Z =

{ins_token, z1, z2, ..., zhw|ins_token, zi ∈ R
d}, the final logit can compute as follow equations:

Z = [z1, z2, ..., zhw]
T , Z ∈ R

hw×d (18)

Z′ = [ f (z1), f (z2), ..., f (zhw)]
T , Z′ ∈ R

hw×d (19)

logit = classi f ier(ZTZ′g(ins_token) + ins_token), logit ∈ R
cls_nums (20)

Where f and g represent MLP mapping, b represents the spectral bands of input, d represents the

embedding dimension of encoder.

Finally, we employ the CrossEntropy loss function to train the classifier,as shown in equation 21.

minimize
θ

E(y, logits) = −
n

∑
i=1

yilog(logiti) (21)

Where θ represents the parameters of model, y represents the ground-truth of training data, y represents

the number of training data.

3. Experiment Results and Analysis

3.1. Datasets Description

In pertraining stage, we selected hyperspectral images from a variety of scenes, including desert,

forest, township, forest village, snowfield, village, city, metropolis, and divided them into four patches

of varying size, 9, 15, 29, 33 respectively. These HSIs were gathered by GaoFen-5 satellite which contain

330 spectral bands in the wavelength range 0.4–2.5 × 10−6m. The spectral resolution of VNIR and

SWIR are 10nm and 20nm respectively. The size of each hyperspectal image is 2008 × 2083 and the

spatial resolution of these data is 30m peer pixel. 33 water absorption bands are removed in the process

of data preprocessing.
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(a)

(f)

(c)(b) (d)

(e) (h)(g)

Figure 6. The false-color images of GaoFen-5 pretraining dataset. (a) Desert; (b) Forest; (c) Township;

(d) Forest Village; (e) Snowfield; (f) Village; (g) City; (h) Metropolis.

After pertraining, the performance of the proposed method is evaluated on three widely-used

hyperspectral datasets, including Indian Pines, Pavia University, and Salinas.

Indian Pines. The Indian Pines data set contains 145×145 pixels which gathered by the

AVIRIS sensor in Northwestern Indiana, where AVRIS stands for airborne visible infrared imaging

spectrometer. The original Indian Pines data set contains 220 spectral channels in the wavelength

range from 0.4–2.5 × 10−6m with a spatial resolution of 20m. In this paper, 20 bands corrupted by

water absorption effects are discarded. It contains 16 classes and 42776 labeled pixels in total.

PaviaU. The University of Pavia data set contains 610 × 340 pixels collected by the ROSIS sensor

at the University of Pavia, where ROSIS stands for reflective optics system imaging spectrometer. This

image scene contains 103 spectral bands in the wavelength range from 0.43–0.86× 10−6m with a spatial

resolution of 1.3 m. The data set was provided by Prof. Paolo Gamba from the Telecommunications

and Remote Sensing Laboratory, University of Pavia. It contains 9 classes and 42776 labeled pixels in

total.

Salinas. The Salinas dataset contains 512×217 pixels also collected by the AVIRIS sensor over

Salinas Valley, California. These data contain 224 spectral bands range from 0.4–2.5 × 10−6m with a

spatial resolution of 3.7m. It contains 16 classes and 50929 labeled pixels in total.In this paper, 20 water

absorption bands (108–112, 154–167, and 224) are removed during data preprocessing.

In our experiment, the characters of GaoFen5 Pretrained Dataset are all different from India Pians,

PaviaU as well as Salinas. Thus, evaluating the classification performance of proposed method on

these three widely used datasets can also test its generalization ability. The descriptions of all the

datasets are summarized in Table 4 and the false-color images and groundtruth of three widely used

datasets are illustrated in Figure 7.
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Figure 7. The false-color images and groundtruth of three widely used dataset. (a) The false-color

images of Salinas; (b) The groundtruth of Salinas; (c) The false-color images of PaviaU; (d) The

groundtruth of PaviaU; (e) The false-color images of Indian Pines; (f) The groundtruth of Indian Pines.

Table 1. Land cover classes illustration and numbers of training and testing samples for India Pines.

No. Class Training samples Testing samples Total samples

1 Alfalfa 20 26 46
2 Corn-notill 20 1408 1428
3 Corn-mintill 20 810 830
4 Corn 20 217 237
5 Grass-pasture 20 463 483
6 Grass-trees 20 710 730
7 Grass-pasture-mowed 14 14 28
8 Hay-windrowed 20 450 478
9 Oats 10 10 20
10 Soybean-notill 20 952 972
11 Soybean-mintill 20 2435 2455
12 Soybean-clean 20 573 593
13 Wheat 20 185 205
14 Woods 20 1245 1265
15 Buildings-Grass-Trees 20 366 386
16 Stone-Steel-Towers 20 73 93

Total 304 9945 10249

Table 2. Land cover classes illustration and numbers of training and testing samples for Salinas.

No. Class Training samples Testing samples Total samples

1 Broccoli green weeds 1 20 1989 2009
2 Broccoli green weeds 2 20 3726 3726
3 Fallow 20 1956 1976
4 Fallow rough plow 20 1374 1394
5 Fallow smooth 20 2658 2678
6 Stubble 20 3939 3959
7 Celery 20 3559 3579
8 Grapes untrained 20 11251 11271
9 Soil vineyard develop 20 6183 6203
10 Corn senesced green weeds 20 3258 3278
11 Lettuce romaine 4 wk 20 1048 1068
12 Lettuce romaine 5 wk 20 1907 1927
13 Lettuce romaine 6 wk 20 896 916
14 Lettuce romaine 7 wk 20 1050 1070
15 Vineyard untrained 20 7248 7268
16 Vineyard vertical trellis 20 1787 1807

Total 320 50609 50929
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Table 3. Land cover classes illustration and numbers of training and testing samples for PaviaU.

No. Class Training samples Testing samples Total samples

1 Asphalt 20 6611 6631
2 Meadows 20 18629 18649
3 Gravel 20 2079 2099
4 Trees 20 3044 3064
5 Mental sheets 20 1325 1345
6 Bare soil 20 5009 5029
7 Bitumen 20 1310 1330
8 Bricks 20 3662 3682
9 Shadow 20 927 947

Total 180 42596 42776

Table 4

Dataset Sensor Bands Spatial Resolution Classes Acquisition Year

GaoFen-5 AHSI 330 30m - 2019
Indian Pines AVIRIS 200 20m 16 1992

PaviaU ROSIS 103 1.3m 9 2001
Salinas AVIRIS 204 3.7m 16 1998

3.2. Training Details and Experiment Settings

In the pre-training phase, the HSIs in GaoFen-5 Dataset are sliced into samples with 4 divergent

sizes, 9, 15, 29, 33 respectively. Samples of the same size are uncovered.(For instance, suppose the size

of HSI is 100 × 100, we divide it into patches with two different sizes, 10, 20 respectively. Consequently,

the number of samples with size 10 is 100, the number of samples with size 20 is 25.) To compensate

for the discrepancy in the number of samples of different sizes, we resample samples of larger size to

align the number of samples of different sizes, hence eliminating the model’s bias with regard to the

input sample size. After aligning, the number of total samples is about 300 thousand.

Mini-batch training strategy was employed during the training processing. Besides, we designed

a custom dataloader, when sampling from dataset, each step in each epoch has a separate size, so as to

guarantee that the model will be not biased by the sizes of samples. As illustrated in Figure 8.

Step 1 Step 2 Step 3 Step 4

33

33

29

29

Epoch N

……

15

15

9

9

Step n-3 Step n-2 Step n-1 Step n

33

33

29

29

15

15

9

9

Figure 8. The sample strategy of custom dataloader.

During the fine-tuning stage, 20 samples per class were random selected as the training data.

In case a certain class has less than 40 samples, 50% of them are assigned as training data. Details

of the data assignments can be found in Tables 1 and 2. Given that the number of spectral bands in

the downstream task’s data differs from that of the pre-trained network, we have to substitute the
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input layer of the trained IMAE encoder with an alternative input layer that can adapt to the new

hyperspectral data. Otherwise, the network is unable to execute matrix operations due to dimension

mismatch. Subsequently, as presented in section 2.4, we aggregate the output tokens of encoder and

submit the output feature vectors to a randomly initialized classifier for supervised classification

training.

The implementation of our method is very sample which is completed entirely on PyTorch

platform. In pretraining stage, a server with two A40 computing cards and 256GB memory was

employed as the hardware platform; the mask ratio, embedding dimension, depth and heads of

encoder were set to 0.5, 256, 4, 8 respectively, the parameters of decoder was half of it. AdamW was

utilized as optimizer, the learning rate was set to 8 × 10−4. In downstream task, we use a terminal with

a RTX3090 graphics card and 56GB memory as the computing platform; the learning rate of encoder

and classifier were set to 10−5 and 10−3 respectively.

In order to quantify the classification performance of our method, the overall accuracy (OA),

average accuracy (AA) and kappa coefficient (Kappa) were employed as evaluation measures. OA is

the ratio of the number of correctly labeled hyperspectral pixels to the total number of hyperspectral

pixels in test samples. AA is the mean of accuracy in different land-cover categories. Kappa measures

the consistency between classification results and ground truth. The larger values of OA, AA, and

Kappa represent the better classification results.

3.3. Validity Estimate

The generalization performance of the model is the core metric of our method. In this section, we

first test the reconstruction ability of the pertrained model. Afterawards we are going to assess the

generalizability of IMAE, from the perspective of training and inference of downstream tasks. Finally,

we analyze the influence of pre-trained weights on model convergence speed.

As above mentioned, we random mask 50% hyperspectral image samples, then reconstruct it

to the original samples through a transformer based autoencoder. PSNR and SSIM are employed to

evaluate the reconstruction performance. The average value of PSNR and SSIM on test set are 50dB

and 0.99 respectively, which means the latent knowledge of HSI was fully learnt by our model, and the

overfitting did not take place. Figure 9 shows the original samples, masked samples and reconstructed

samples.

orignal orignal orignal orignal orignal orignal orignal orignal orignal orignal

mask mask mask mask mask mask mask mask mask mask

re re re re re re re re re re

Figure 9. Reconstruction examples obtained by IMAE with 50% masking ratio on the PaviaU dataset.

In the pertrained stage, IMAE was trained by HSI samples with 4 different sizes namely 33, 29, 15,

9. To examine the generation capacity of our pretrained model on the sample size, we random seleced

10% samples of per class in three widely used datasets with 3 different sizes which are distinct from it

in the pretraining dataset. The classification results are shown in Figure 10.
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Figure 10. Classification results of different training sample sizes differ from the pretraining dataset.

It is evident that despite the fact that the size and spectral resolution of the training data in the

downstream tasks are not consistent with those in the pretraining dataset, our method still achieves

excellent classification results on these data.

In the inference stage, we only fine-tune on the training set with a sample size of 15. Then, we

evaluate the classification accuracy of our inferences using samples whose sizes differ from those in

the training set. The experiment result is illustrated in Figure 11.

Figure 11. Inference performance on variety input sample sizes where the model was finetuned on

training samples with fixed size 15.

Obviously, the common feature of the three curves in Figure 11 is that When the input sample size

is small, the inference accuracy is also small. As the input sample size increases, the inference accuracy

also increases sharply until the inference sample size is equal to the training sample size. The inference

accuracy gradually declines as the inference sample is larger than the training sample. We postulate

that the reason for this phenomenon is that when the input sample size is small, the model is unable to

learn enough contextual information, leading to low inference accuracy; when the input sample size is

large, due to the presence of ins_token, the model prefers to focus on areas close to the center pixel,

allowing the model to suppress invalid information brought on by the increase in input sample size,

thereby lessening the impact on inference accuracy.

In classification task, as the Figure 12 shown, our method can greatly improve the performance

and speed up the convergence rate especially when the training data is relatively small. By observing

the curves in the figure we find that training with randomly initialized weights converges slowly on

PU and SA, and it not converges on IN. When pre-trained weights were used for training, however, it

significantly accelerated convergence on SA and PU datasets and really converged on the IN dataset,

and its accuracy was equivalent to some start-of-the-art methods. We only replaced an input layer!
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Figure 12. Accuracy curve in training process with 10% training data each class.(Left: Training curve,

Right: Testing curve)

3.4. Classification Results

To verify the advancement of the our method, we compared the classification results with SVM,

RNN, 3D-CNN, VIT, HIT, MAEST, SSTN and SS-MTr. Among these comparative methods, SVM is a

classic machine learning method. RNN and 3D-CNN are mainstream deep learning methods. VIT, HIT

and SSTN are Transformer-based methods, in particular, VIT is the first Transformer-based model used

for image processing. HIT and SSTN have implemented some improvements on its basis to make it

more suitable for HSI classification tasks. Similar to our method, MAEST and SS-MTr are pre-training

methods with backbone network as MAE. The training data assignments for all compared methods as

same as IMAE; the size of the input samples for CNN-based and transformer-based methods was set

to 15×15.

Tables 5–7 record the classification results of different methods on Inidan Pine, PaviaU and

Salinas dataset, including accuracy for each class and OA, AA, Kappa for all classes. Figures 13–15

illustrate the classification maps of different methods. Based on the empirical evidence derived from

our experiments, it becomes apparent that traditional machine learning and deep learning algorithms

struggle to perform effectively in scenarios marked by a paucity of available samples. Even the

original ViT model yields suboptimal results. This phenomenon can be attributed to the fact that

classical machine learning algorithms exhibit limited feature extraction capabilities, particularly when

confronted with the intricate nature of hyperspectral imagery, thereby constraining their capacity for

accurate classification. Mainstream deep learning algorithms, owing to the intricate complexity of their

architectures, necessitate a substantial volume of data for successful model fitting. Consequently, their

performance tends to degrade notably when dealing with datasets comprising as few as 20 samples

per class or even fewer, frequently leading to severe overfitting issues. ViT, as a model grounded in

the Transformer architecture and devoid of specific inductive biases, paradoxically exhibits reduced

performance compared to CNN-based models when faced with limited sample availability, due to its

greater data requirements. In contrast, enhanced Transformer-based networks, often incorporating

convolutional networks at the input layer, exhibit substantially improved feature extraction capabilities.

Beyond achieving translational invariance, these models also excel at capturing long-range contextual

information, thereby markedly enhancing their performance in settings characterized by limited

training sample numbers. Lastly, pre-trained networks akin to ours, which mitigate data requirements

through pre-training, have demonstrated commendable performance. Nevertheless, limitations

imposed by their model architecture and training strategies hinder their ability to exploit extensive

pools of unlabeled data for pre-training, leaving room for further enhancement.
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Table 5. Classification results of different methods using 20 training samples per class on Indian Pines

Dataset.

Classes SVM RNN 3D-CNN VIT HIT MAEST SSTN SS-MTr Ours

1 97.83% 84.78% 97.83% 91.3% 95.65% 100% 100% 96.15% 95.65%
2 47.76% 30.74% 35.64% 35.85% 66.32% 41.81% 57.29% 72.51% 75.35%
3 10.12% 31.45% 36.39% 19.88% 35.06% 66.27% 49.76% 78.40% 74.22%
4 17.72% 63.71% 44.73% 64.98% 81.86% 76.79% 93.25% 97.24% 98.31%
5 0% 62.32% 13.25% 25.47% 39.75% 87.37% 80.12% 77.32% 81.16%
6 39.86% 85.34% 79.45% 63.97% 88.63% 84.11% 88.9% 99.15% 92.47%
7 0% 92.86% 100% 100% 100% 96.43% 100% 100% 96.43%
8 80.75 88.28% 89.96% 85.98% 85.77% 98.95% 99.79% 100% 98.54%
9 0% 85% 100% 100% 100% 100% 80% 100% 100%

10 74.07% 44.96% 59.88% 35.49% 64.71% 57.10% 66.36% 87.5% 76.13%
11 1.87% 38.7% 34.50% 38.04% 55.11% 43.14% 88.47% 69.86% 86.03%
12 22.09% 52.45% 41.15% 32.04% 51.77% 31.53% 70.49% 72.95% 72.68%
13 99.51% 98.05% 77.56% 98.54% 96.59% 99.51% 98.54% 100% 99.51%
14 94.31% 88.30% 74.23% 79.76% 83.72% 72.72% 92.17% 91.97% 85.77%
15 3.37% 48.19% 23.83% 31.87% 43.01% 81.34% 100% 95.08% 95.60%
16 90.32% 96.77% 100% 93.55% 98.92% 97.84% 100% 100% 100%

OA 38.26% 54.36% 49.18% 46.95% 64.17% 61.09% 79.39% 81.82% 83.79%
AA 42.47% 68.24% 63.02% 62.30% 74.18% 77.18% 85.32% 89.88% 89.24%

Kappa 32% 49.21% 44.17% 41.37% 59.98% 56.76% 76.8% 79.45% 81.60%

Table 6. Classification results of different methods using 20 training samples per class on Salinas

Dataset

Classes SVM RNN 3D-CNN VIT HIT MAEST SSTN SS-MTr Ours

1 99.65% 97.31% 54.95% 74.51% 79.24% 90.69% 100% 98.59% 99.15%
2 48.66% 96.56% 96.46% 64.04% 97.80% 43.26% 99.97% 95.84% 97.58%
3 40.79% 87.35% 92.86% 85.98% 96.96% 65.64% 99.9% 97.96% 92.76%
4 98.78% 98.78% 90.32% 95.98% 96.56% 93.97% 99.14% 97.89% 99.57%
5 97.98% 98.77% 88.87% 80.77% 95.33% 81.07% 89.32% 100% 94.88%
6 96.84% 99.49% 95.33% 95.38% 95.38% 97.42% 99.97% 99.92% 99.72%
7 98.60% 99.69% 91.95% 95.39% 93.66% 95.95% 99.78% 99.75% 98.97%
8 62.31% 33.86% 83.44% 65.84% 72.62% 61.76% 68.32% 70.3% 85.18%
9 95.81% 99.85% 97.79% 93.36% 96.5% 98.61% 97.94% 99.98% 97.10%

10 1.98% 70.44% 81.94% 88.87% 86.15% 45.85% 98.54% 98.68% 80.29%
11 66.10% 91.39% 69.94% 87.83% 93.07% 96.16% 100% 100% 98.69%
12 88.69% 98.65% 88.22% 93.15% 92.79% 100% 98.86% 98.32% 98.24%
13 99.02% 99.02% 93.23% 93.45% 94.21% 98.14% 100% 100% 98.91%
14 88.22% 91.50% 88.13% 91.21% 94.02% 99.44% 99.44% 100% 100%
15 65.63% 87.08% 22.43% 72.34% 64.72% 66.39% 96.87% 30.81% 85.66%
16 41.84% 97.51% 57.44% 60.71% 65.58% 90.81% 99.89% 100% 89.71%

OA 71.70% 81.25% 78.16% 80.03% 84.45% 76.61% 91.76% 83.84% 92.20%
AA 74.43% 90.45% 80.83% 83.68% 88.41% 82.82% 96.62% 93% 94.78%

Kappa 68.53% 79.37% 75.69% 82.86% 82.86% 74.11% 90.88% 81.96% 91.34%
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Table 7. Classification results of different methods using 20 training samples per class on PaviaU

Dataset

Classes SVM RNN 3D-CNN VIT HIT MAEST SSTN SS-MTr Ours

1 61.02% 51.95% 63.17% 67.26% 53.55% 70.68% 71.62% 90.15% 95.34%
2 70.57% 47.36% 66.89% 61.67% 82.34% 76.14% 98.04% 74.66% 92.92%
3 16.15% 29.25% 55.60% 58.89% 36.11% 72.89% 87.28% 90.52% 90.33%
4 96.70% 90.05% 81.46% 85.93% 92.20% 89.46% 58.02% 85.48% 89.85%
5 99.11% 99.11% 85.50% 100% 99.85% 99.78% 100% 99.40% 99.26%
6 33.27% 34.86% 64.94% 80.71% 46.25% 80.97% 92.42% 91.08% 80.49%
7 95.26% 98.50% 78.65% 77.82% 89.10% 87.44% 100% 99.01% 89.47%
8 81.72% 48.18% 70.56% 89.33% 62.49% 79.44% 87.05% 85.94% 87.62%
9 72.63% 99.05% 92.19% 92.93% 99.26% 99.89% 39.5% 91.80% 93.24%

OA 67.18% 53.20% 68.40% 71.16% 71.50% 78.56% 87.78% 84.95% 91.13%
AA 72.63% 66.48% 73.22% 79.39% 73.46% 84.08% 81.55% 89.78% 90.95%

Kappa 58.10% 44.52% 60.55% 64.66% 63.22% 72.7% 83.78% 80.91% 88.28%
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Figure 13. Classification maps using different methods on the Indian Pines dataset.

Our method has achieved state-of-the-art performance under equivalent experimental conditions.

Specifically, on the IN dataset, we attained an Overall Accuracy (OA) of 83.79%, an Average Accuracy

(AA) of 89.24%, and a Kappa coefficient of 81.60%. Similarly, on the SA dataset, our model achieved an

OA of 92.2%, an AA of 94.78%, and a Kappa of 91.34%. On the PU dataset, our performance metrics

were recorded at 91.13% for OA, 90.95% for AA, and 88.28% for Kappa. Across these three datasets,

our model outperforms traditional machine learning and deep learning methods by a substantial

margin. In comparison to the enhanced ViT model, our approach, including the best-performing model

SSTN within it, exhibits notable improvements across various performance indicators. Furthermore, in

comparison to similar pre-training methods, our model surpasses MAEST in terms of AA, OA, and

Kappa on all datasets. Compared to SS-MTr, except for the Indian Pines dataset, where AA score of

IMAE is on par with SS-MTr. In all other datasets, our model consistently outperforms SS-MTr across

various performance metrics.
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Figure 14. Classification maps using different methods on the Salinas dataset.
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Figure 15. Classification maps using different methods on the PaviaU dataset.

4. Conclusions

In this article, we have devised a pre-training model tailored for hyperspectral imagery based

on the principles of self-supervised learning. This approach leverages copious amounts of unlabeled

hyperspectral data as training material. Through a masking and reconstruction mechanism, it captures

intrinsic spectral spatial characteristics prevalent within hyperspectral images. Additionally, it employs
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metric learning to guide the model’s focus toward points of interest. Our method exhibits robust

generalization capabilities, which we have rigorously tested in both training and inference phases.

Remarkably, using a consistent set of pre-training weights, our model demonstrates outstanding

generalization performance across varying spectral resolutions, spatial resolutions, and input sample

sizes. For fine-tuning IMAE on new datasets, a simple adjustment of the input layer to accommodate

different spectral resolutions suffices. This adaptation significantly expedites model convergence and

enhances performance in downstream tasks, particularly in scenarios characterized by limited samples.

When compared to classical and state-of-the-art methods under identical conditions, our model attains

state-of-the-art performance. The approach we have introduced opens up new possibilities for the

application of large pre-trained models in the domain of hyperspectral imagery. Our future research

endeavors will focus on exploring methods to unify the channel numbers of hyperspectral images

with different spectral resolutions, enabling the model to seamlessly accommodate images generated

by various sensors without the need for input layer replacement.
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Abbreviations

The following abbreviations are used in this manuscript:

IMAE Instructional Mask AutoEncoder

HSI Hyperspectral Image

PCA Principal Component Analysis

LCA Independent Component Analysis

LDA Linear Discriminant Analysis

CNN Convolutional Neural Network

DBN Deep Belief Network

MAE Mask AutoEncoder

NLP Natural Language Process

PSNR Peak Signal-to-Noise Ratio

SSIM Structural Similarity
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