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Abstract: Aimed for the difficulty and complexity of detecting the piston error for segmented
telescope, this paper proposed a new piston error measurement method based on a hybrid artificial
neural network. Firstly, we use Resnet network to learn the mapping relationship between the focal
plane degradation image and the signs of the piston error. Then, based on the established theoretical
relationship between modulation transfer function and the piston error, BP neural network is used
here to learn the mapping relationship between the MTF and the absolute value of the piston error.
After the training of the hybrid network is completed, a wide-range and high-precision detection of
the piston error of the sub-mirrors can be achieved using the combined output of the two networks
only a focal plane image of a point source with broadband illumination is used as input. The
detection range can reach the whole coherent length of the input broadband light, and the detection
accuracy can reach 10nm. The method proposed in this paper has the advantages of high detection
accuracy, wide detection range, low hardware cost, small network scale and low training difficult.

Keywords: piston error; segmented telescope; artificial neural network

1. Introduction

In order to meet the growing demand for space exploration and obtain higher observing
resolution, the telescope in recent years has larger aperture and longer focal length [1]. However, due
to the limitations of mirror material preparation, processing and testing, supporting structure,
transport and launch cost, it is difficult to build a single primary mirror with a diameter of more than
10m at present. Segmented mirror has been proposed to solve this problem, which utilizes the
segmented sub-mirrors with smaller diameters to form the lager primary mirror of the system [2].
But for a segmented telescope, there are relative position errors among each sub-mirror, and
especially for a space segmented telescope, the relative position errors will be further aggravated
under the influence of external interference, thermal deformation, gravity deformation, spacecraft
jitter and other factors, which will seriously affect the final imaging quality of the telescope [3].

The relative position errors between the sub-mirrors mainly include piston error along the
optical axis perpendicular to sub-mirror plane, and tip-tilt errors around the two axes in the sub-
mirror plane, which can be described by the first three terms of the Zernike polynomial. In order to
make the imaging quality of a segmented telescope close to that of a single primary mirror with the
same aperture, the RMSE value of the relative position error between each sub-mirror is generally
required to be less than 1/40 observation wavelength. One of the most difficult problems is to correct
the piston error between the sub-mirrors since the piston error has the 2 entanglement problem of
single-wavelength optical detection.

Currently, many piston error detection algorithms have been proposed and applied to
segmented telescopes. For example, the improved wideband/narrowband Shack-Hartmann method
proposed by Chanan has been successfully applied to the Keck series of telescopes, the piston error
detection range of broadband Shack-Hartmann algorithm [4] is £10A, and the accuracy is A/3 RMS.
The piston error detection range of the narrowband Shack-Hartmann algorithm [5] is +A/4 and the
accuracy is A/140 RMS. Esposito et al used a quadrangular mirror to detect the piston error [6,7],
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where the detection accuracy can reach 10nm. A Mach-Zehnder interference method [8] is proposed
by Angle, when multi-wavelength light is used for detection, the detection range can be extended to
several microns and the detection accuracy can reach 30nm. When developing the next generation
space telescope technology, the United States proposed a white light interferon-based dispersive
fringe sensor [9,10], which is composed of a broadband light source, a splitter prism and a grating,
with a piston error detection range of +200um and a detection accuracy of 20nm. However, these
wavefront detection techniques mentioned above need to introduce new optical hardware equipment
to the original optical system, which heavily increases the complexity of the optical path. The
wavefront detection technology based on focal plane image, mainly includes phase retrieval [11,12]
and phase diversity algorithm [13,14], has low hardware cost since no other hardware equipment is
needed. These methods have high precision but narrow detection range, which is not suitable for
detecting large piston error. In 2016, Junlun Jiang et al. [15,16] found that for the point source
observation target with broadband illumination, the modulation transfer function (MTF) of the
system optical transfer function (OTF) has a clear mathematical relationship with the piston error of
the sub-mirror, and the piecework polynomial is adopted to fit the theoretical relationship. The
detection range can reach 1/2 coherent wavelength of input broadband light and the detection
accuracy is 0.026A RMS(A=633nm). However, the theoretical relationship between MTF and piston
error of the system is an even function, which means that the MTF of a system is the same when the
piston error has the same absolute value while the sign of piston error is opposite. Therefore, this
method only measured the absolute value of the piston error between the sub-mirrors and could not
identify the specific spatial relative positions of each sub-mirror.

Aimed at this problem, based on the established theoretical relation between MTF and piston
error, this paper does not use the polynomial fitting method while adopts a hybrid artificial neural
network to measure the piston error. Although, the system MTF is the same when the absolute value
of the piston error is the same despite the sign of piston error is different, the system point spread
function (PSF) has a significant difference. Therefore, we first use Resnet network to learn the
mapping relationship between the system PSF and the sign of piston error, and then use BP (back-
propagation) neural network to learn the mapping relationship between the system MTF and
absolute value of piston error, thus the precise measurement of the piston error can be realized by
the combination output of the two networks. The reason for using hybrid artificial neural network is
that the system MTF cannot distinguish the sign of piston error, and it is quite difficult to realize the
piston error detection with wide range and high precision by using a single neural network directly
from the focal plane image of the system. For example, when the detection range is [-200~200]Jum and
the detection accuracy is required to be 0.01 um, for a segmented telescope with N sub-mirrors, the
output classification of a single neural network is about 40001N-1. When the Resnet network is used
to detect the sign of piston error, the outputs are only divided into 2V classes, so the network size
and the training difficulty can be greatly reduced. When calculating the specific value of piston error,
since the theoretical relationship between the MTF and the piston value is established, a BP neural
network is used here to realize the high precision detection of the absolute value of piston error.

In the following, we describe the imaging system model, generation of training data, andthe
implementation of Resnet and BP networks in our study in Section 2. Then the results are presented
in Section 3, including simulation results aimed for 2-pupil segmented system and 4-pupil segmented
system, and a comparation results between our hybrid network and others’ single network. Finally,
concluding thoughts are offered in Section 4.

2. Piston error detection method based on hybrid neural network

The principle of piston error detection method based on the hybrid neural network proposed in
this paper is shown in Figure 1. It mainly includes using Resnet network to detect the sign of piston
error from the focal plane degradation image and using BP neural network to detect the absolute
value of the piston error from the system MTF. In this part, we first describe the acquisition of focal
plane degradation image and the establishment of theoretical relation between system MTF and
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piston error value of sub-mirrors, then the principle and procedure of piston error detection using
the hybrid neural networks are introduced.
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Figure 1. The principle of piston error detection method based on the hybrid neural network.

2.1. The acquisition of focal plane degradation image

For a segmented telescope like Keck, which all of the sub-mirrors are assumed to have the same
shape and are perfect without high-order aberrations except pistons and tip-tilts. Thus, the
generalized pupil function (GPF) can be shown as:

Y 27
P(e,m)=Y. p,(e.1) exp[zT e,Z,+1t,Z,+1,7,)], 1)
n=l1

where Z, , Z, and Z, are the first three terms of the Zernike polynomials, e

n 7

t,and t  arethe
corresponding Zernike polynomial coefficients of the nth sub-mirror respectively, (&,7) is the
coordinate vector in pupil plane, p, is the is the binary function of sub-aperture and N is the total
number of sub-mirrors.

Based on the principle of Fourier optics, the relationship between the point spread function (PSF)
of the system and the GPF is:

PSF (x,y,4)=|3{Pen)f ?)

where (x,y) is the coordinate vector in the image plane, Ais the wavelength of input light and
3{} denotes the Fourier transform. When the input light is not monochromatic light, and is
centered at A, with thebandwidth AA, the PSF is defined as:

AL
PSF (x,y.34.00)=[ ;"; PSF (x,,)S(A)d A 3)
2

where S(A) is PSF weight of different wavelengths, assuming S§(4)=1.

According to the Fourier optics principle, the focal plane degradation image of the system is the
convolution of the observation object and the system PSF, hence for an ideal point source observation
target, the system focal plane image can be equivalent to the system multi-wavelength PSF.
Combined with the three formulas given above, the focal plane degradation image of the segmented
telescope for a point source observation target with broadband illumination can be acquired. The
following figures show the corresponding simulation results for a segmented telescope composed of
two sub-pupils.
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Figure 2 shows the segmented optics system model. A mask with two circles was set on the exit-
pupil plane of the primary mirror to fragment the pupil, so the sidelobes of the system MTF can be
separated from its main peak. And b is the distance between the center of the two circle pupils on the
mask, d is the diameter of the circle pupil. We set up this optical system in MATLAB, the sampling
grid of the exit pupil plane is set as 256x256 pixels, the pixel size of the CCD is 3.5 um and the F# of
the optical system is 8. Thus, the circumscribed circle diameter of the single hexagonal sub-mirror is
59 pixels, the diameter of the circle on the mask is18 pixels and the distance between the centers of
the two circles is 52 pixels to satisfy the Nyquist sampling criterion. The central wavelength of the
input broad light is 632.8 nm and its bandwidth is 20 nm. Half of the coherent length of this input
broadband light is

2 (632.8nm)
L=£= A =( m) =10um, 4

n
SIS
T

Figure 2. Two sub-mirrors segmented telescope with sparse circles configuration.

Different piston errors are introduced to the right sub-pupil while the left sub-mirror is set as
the reference mirror. Several groups of the introduced piston error and corresponding system focal
plane degradation images are shown in Figure 3. We can see that piston errors with the same absolute
value but opposite sign corresponds to different focal plane degradation images.

xxxxxxxxxxxx

0 120 w0 w0 e Xl
Xipixel

vvvvvv

vvvvvvv



https://doi.org/10.20944/preprints202309.0570.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 September 2023 do0i:10.20944/preprints202309.0570.v1

Figure 3. Piston errors and its corresponding system focal plane images (a) p=-5um; (b) corresponding
focal plane image with p=-5um; (c¢) p=5pum; (d) corresponding focal plane image with p=5um; (e) p=-
2.5um; (f) corresponding focal plane image with p=-2.5um; (g) p =2.5um; (h) corresponding focal
plane image with p=2.5um; (i) p=-1pm; (j) corresponding focal plane image with p=-1um; (k) p=1um;
() corresponding focal plane image with p=I1pm.

2.2. Theoretical relation between system MTF and piston error

For a segmented telescope with a mask set on the exit-pupil plane and the observation target is
a point source with broadband illumination, there is a determined theoretical relationship between
the system MTF and piston errors of sub-mirrors based on Fourier optics. Junlun Jiang et al. have
deduced the formula in detail and presented their work in paper [15]. Based on their work, we further
deduced the theoretical relationship and briefly introduce the derivation process.

For a segmented system shown in Figure 2, the GPF is

G(en)= A(8,77)|:circ (—g _;//22’77 j -e" +circ (—8 +;//22’77 j e }, ®)

where A(&,77) is the binary shape function of the hexagon segment, circ( ) stands for circle function,
the phase difference between the two segments is Ag=¢ —¢, = 27”2 p, A is the observation

wavelength, p is the piston error between the two sub-mirrors. When the input light centered at 4,

has a broad spectrum AA, based on Equation (3) and (4), the system PSF can be written as

n 2 2 2 2
PSF(x,y,4,A%) = %22[%] % V:‘yfy){H cos[i—”z P 2;szﬂ, )
t=1 t

where J,{ ] is first order Bessel function and A4 is divided into n intervals equally since a

differential summation approximation is used to replace the integral calculation. The complex OTF
of input broadband light is 2D Fourier transform of the PSF in Equation (6), which is shown as

OTF(f.. f,, 2, A%) = 3{ PSF(x,y, 4, AD)}

—i—”2p

2
0T, f, )+ OTEulf +7 fJe

AL
:_Z 27 ’

n o i——2p

b
OTFWbOZ—W’fy)e s

1

@)

where (f,,f,) is the spatial frequency inthe x and y direction respectively, OTF,,(f..f,) isthe

OTF of a single circle aperture diffraction system given by

2
E arccos (LJ—L I—LL] , P=<2p,
OTF (.. f,)=\7 2p, ) 2p, 20, 8)

0 ,others

among which p=./f’+ f} is radial coordinate on the frequency plane, p, = is the system

4
241
cut-off frequency, f is focal length of the imaging lens. Performing modulus operation to OTF, the

MTF of the system can be obtained. Based on Equation (7), the sidelobes of MTF can be extracted out
and shown as

A
MTF;idelabe(f;yfv,ﬂ,) :7 (9)

2
n b —171217
;{OTFM(/‘X +/1t—f,fy)e } )
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Since the value of the MTF central peak is 1, thus the peak height value of the MTF sidelobe with
piston error is

MTF,

sidelobe —
nN

(10)

t=1

We can see that the peak height of the MTF sidelobe is only related to the number of sub-pupils
of the segmented telescope, input wavelength and piston error between segments. So, the modulus
of MTF sidelobe can be easily calculated when the piston error is known.

Figure 4 shows the values of the MTF sidelobes calculated from Equation (10) aimed for the two
sub-mirrors segmented system described in Section 2.1. It can be seen that the value of MTF sidelobe
is an even function for the piston errors, the same absolute values of piston errors with opposite signs
have the same MTF sidelobes. The MTFs simulated from MATLAB shown in Figure 5 also prove this
point. Therefore, this method could not identify the specific spatial relative positions of each sub-
mirror while can only measure the absolute value of the piston error.
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Figure 4. The MTF sidelobes calculated from Equation (10) corresponding to different piston errors
of the two sub-mirrors segmented telescope system.
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Figure 5. MTFs simulated from MATLAB of the two sub-mirrors segmented telescope system (a) the
system MTF with p=2.5um; (b) the system MTF with p=-2.5um.

2.3. Use Resnet network to detect the sign of piston errors from focal plane images

Using neural network to solve the aberrations of optics system from focal plane image is
essentially a process of classifying the degraded images of the focal plane with the aberration
coefficient as the label. Resnet network proposes a unique residual module, which realizes identity
mapping through short circuit hopping, and is more sensitive to data fluctuations, thus it is more
suitable for building mapping models from image to data. At the same time, the network solved the
gradient loss problem caused by network deepening and effectively improves the classification
accuracy. However, when the required detection range is very wide and the detection accuracy is
quite high, for the large aperture and super large aperture segmented telescopes, the number of
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network classification increases explosively, which greatly increases the network size and training
difficulty. Therefore, the Resnet network in this paper is only used to detect the positive and negative
sign of piston errors.

The specific Resnet network structure is shown in Figure 6, here presents four different Resnet
networks with depths of 18, 34, 50, and 101, the difference in depth is due to the using of different
numbers of residual units in modules from convl to conv4. The structure of residual units with
different depths is also different. Figure 7 shows two different residual units. Please note that the full
connection layer of the network needs to be modified to adapt the vector dimension of the output
piston error.

‘ input ‘

v

‘ Conv7x7,64,stride 2 ‘

‘ Max Pooling3x3,stride 2 ‘

Layer 18-layer 34-layer 50-layer 101-layer
name
| Convl x | 3x3, 64 3x3, 64 Dk L
Convl x ’ x2 ’ x3f| 3x3,64 |x3 3x3, 64
- £, &) 33,64 | 1 1x1, 256 1x1, ol
‘ Conv2_x ‘ X X
1x1, 128 Ix1, 128
: cone (35129 | [ 2] s s lzs}
‘ Conv3 x ‘ 0 1x1, 512 1x1, 512
v G 1x1, 256 1x1, 256 7
\ Conv4_x | - Conv3_x ;";5:2} X2 E"; izg 3x3,256 | x6 || 3x3,256 (x23
=X, X L 1x1, 1024 1x1, 1024 |
‘ Average Pooling ‘ Conv4_x 3X% si2 33, 512 ;i;’ 23 x3 ;i; gg
OMVEX | 13x3, 512 3x3,512 b
v 1x1, 2048 1x1, 2048
| Fe |

Figure 6. The structural diagram of Resnet network.
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Figure 7. Different residual elements.

2.4. Use BP network to detect the absolute value of piston errors from MTE

According to Equation (10), when the system parameters are determined and the piston errors
are given, the sidelobes of the system MTF can be directly obtained. However, when the values of the
MTF sidelobes are obtained, it is very difficult to use Equation (10) to solve the piston errors in
reverse. Junlun Jiang et al. utilized piecewise quartic polynomials to fit the theoretical relationship,
but different polynomial coefficients are needed to be constructed in different piston error detection
ranges, so the implementation is complicated, and most importantly their method cannot distinguish
the sign of piston error. In our work, a BP network is used to learn the mapping relationship between
the absolute value of piston error and MTF sidelobes. When the network training is completed and
the value of the MTF sidelobes is input to the network, the absolute value of the corresponding sub-
mirror piston error can be directly output.

The structure diagram of BP neural network is shown in Figure 8, the BP network algorithm can
be divided into two steps: forward propagation and back propagation. In the forward propagation
process, the input signal of the input layer is propagated to the output layer through the hidden layer,
then the actual outputs are obtained. In the back propagation process, the difference between the
actual output and the expected output of the network is taken as the error signal, and the error signal
is propagated layer by layer from the output layer to the input layer, and the weights and thresholds
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of the network are adjusted by a certain algorithm. Through one forward propagation and one back
propagation, one update of network parameters can be realized. The network training process is to
continually carry out forward propagation and back propagation, and update the network
parameters until the error signals become smaller and smaller, and finally make the network
accurately map the relationship between the input and output.

Back propagation of error
- -

Weight updates Weight updates

L @ »e
VS —>

o Expected

4 > VI 1
Inputs w, v Y, Vo —Y Outputs A Error
Wi g w Vi N i
x, [ >O W,5 Vs v . g w »® outputs
: . g ohy . o T

+

Wz Vay
X ® Y Vo »®

, 0
W ) 4
Input layer " > Vap Output layer

Hidden layer

Figure 8. The structural diagram of BP neural network.

3. Simulation

Using the hybrid network proposed in this paper to detect the piston errors of sub-mirror
consists of three steps. Firstly, establish the data sets for network training. Within the coherent length
range of the input broadband light, multiple groups of piston errors are randomly generated and
loaded onto the corresponding sub-mirrors. By taking the piston errors to the established simulation
segmented optical system, the corresponding focal plane degraded images are generated for training
the Resnet network which is used to detect the signs of piston errors. Then taking the absolute value
of piston errors and optical system parameters into Equation (10), the values of MTF sidelobes can be
obtained to train the BP network. Secondly, train the hybrid network. The generated focal plane
degraded images and the signs of corresponding piston errors are used as input and output of Resnet
network respectively, and with the cross-entropy loss function used as the index function of the
network optimization, the Resnet network can be well trained through a certain optimization
algorithm. Then the calculated values of MTF sidelobes and the absolute values of corresponding
piston errors are used as input and output of BP network respectively and by setting up specific
training algorithm, the BP network can also be well trained. Finally, after the hybrid network training
is finished, by taking a degraded focal plane image into Resnet work, the signs of all sub-mirrors’
piston errors can be obtained. Then perform the Fourier transform to the focal plane image to get the
values of MTF sidelobes and input them to the BP network, the absolute values of all sub-mirrors’
piston errors can be solved. One thing to note here is that the corresponding relationship between
MTF sidelobe and its related sub-mirror should be established in advance, the absolute values of all
the sub-mirrors’ piston errors can be measured simultaneously by one CCD broadband image. Thus,
the measurement of the piston error with high precision and wide detection range can be realized by
combining output of the two networks.

We first conduct simulation experiment analysis on the segmented telescope system composed
of two hexagonal sub-mirrors as shown in Figure 2. Then the simulation experiments are processed
to multiple sub-mirrors (N>2) segmented telescope system which is composed of four hexagonal sub-
mirrors. In the end, we do some comparation work between our method and the work published by
MA XIAFEI et al in paper [17], since they also used a single wide-band image of a point source to
perform piston sensing by neural network.

3.1. Simulation on two sub-mirrors segmented telescope system

MATLAB software is used to build the simulation optical system model consisting of two
hexagonal sub-mirrors as shown in Figure 2. The specific system parameters are the same as those
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set in Section 2.1. During the simulation experiment, the left sub-mirror of the system is set as the
reference sub-mirror, and a series of piston errors are introduced on the right sub-mirror. Here, we
firstly generate 60,000 sets of piston error in [-10~10]Jum randomly and 60,000 sets of focal plane
degradation images are obtained by MATLAB simulation. Then by taking the corresponding piston
errors into Equation (10), we can obtain 60000 sets of the MTF sidelobes values. The generated data
sets are divided into three groups, namely training set, verification set and test set. The proportion of
the three parts is 65%:20%:15%, namely 39,000 groups for training, 12,000 groups for verification, and
9000 groups for testing.

Then the network training can be processed based on the obtained data sets. Here we build a
Pytorch deep learning environment on an Ubuntu server equipped with Nvidia GeForce 2080 GPU
to achieve the training of the hybrid networks. The Resnet network is first trained to predict the signs
of piston error. The focal plane degradation images shown in Figure 3 is used as the input of Resnet
network, and the signs of the piston errors are used as the output of Resnet network with label ‘0’
representing positive and label ‘1’ representing negative. Each network is trained with 300 epochs,
the batch size is set as 32 and the cross-entropy loss function is used as the index function. The
network parameters are updated by back-propagation and the evaluation of the trained network is
realized through the verification set. At the same time, some strategies are used to improve network
efficiency such as batch normalization used between convolutional layers to prevent gradient
disappearance.

Four Resnet networks with different depths including Resnetl8, Resnet34, Resnet50 and
Resnet101 are trained here to test their prediction accuracy of the piston error signs. Figure 9 shows
the loss functions of the training set and verification set, where the horizontal axis represents the
number of training and the vertical axis represents the cross-entropy loss function. We can see that
after 300 rounds of training, the loss function gradually declines and finally reaches a stable state.
From the loss function curve of the training set, the Resnet networks fitting degree gradually
increases with the deepening of the network, but from the loss function curve of the verification set,
with the deepening of the network, the generalization ability of the network Resnet50 and 101 are
much lower than that of Resnet18 and 34, resulting in the loss function oscillation of the verification
data set. Then we use the test data set to verify the piston error sign prediction accuracy of the four
Resnet networks with different depths, the test result is given by Figure 10 where the prediction
accuracy of the piston error signs is given by the number of correct predictions in the test set divided
by its total number . From Figure 9 and Figure 10, we can see that Resnet34 network has the highest
generalization ability and the highest prediction accuracy. Therefore, the optimal model for
prediction the signs of piston error for the two sub-mirror segmented system is Resnet34 network.

»107° Train Loss Val Loss

ResNet18
ResNet34

ResNet-18
ResNet-34 | 7|

ResNet-50 0.025 ResNet50 | |
ResNet101

ResNet-101 |

0.015

CrossEntropy Loss
CrossEntropy Loss

0.01

0.005

0 50 100 150 200 250 300 0
Epochs

0 50 100 150 200 250 300
Epochs

(a) (b)

Figure 9. The loss function curves of the four Resnet models: (a) Training data set; (b) validation data
sets.
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Figure 10. The piston error signs prediction accuracy for the four Resnet models.

Then, the BP neural network is trained to solve the absolute value of the piston errors. The values
of MTF sidelobes shown in Figure 5 is taken as the input of the network, and the corresponding
absolute value of the piston error is taken as the output of the network. The number of neurons in the
hidden layer of BP network is set as 10, the node transfer function of the hidden layer is logsig
function, the node transfer function of the output layer is purelin function, and the learning training
function is traindx which is a variable learning rate momentum algorithm. The training results of the
network are shown in Figure 11. Figure 11a shows the loss function changing with the number of
iterations and Figure 11b provides the error distribution between the expected value and the actual
network output value in the form of a histogram. According to the training results, the RMSE between
the expected value and the actual output of the network in the training set, the verification set and
the test set are 2.235x10-5um, 2.734x10-5um and 1.873x10-5um respectively. It is proved that the BP
neural network proposed here can be used to calculate the absolute value of piston error with high

prec151on.
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Figure 11. Training results of the BP neural network for the two sub-mirrors segmented system: (a)

T o027t
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Loss function; (b) error histogram.

After the hybrid network is well trained, the actual network performance can be tested. Here,
another 500 new focal plane images are generated from the simulation optical system for testing. In
order to approximate the actual imaging environment, Gaussian distribution noise with the mean of
0 and variance of 0.05 is introduced into the simulated PSF images. And since tip-tilt errors cannot be
completely corrected, the tip-tilt errors are also added to each sub-mirror during the generation of
the focal plane degradation image, where the total RMSE value of the added tip-tilt errors is 0.01A.
Since we only consider the co-phase errors like Keck where all sub-mirrors are assumed to have the
same shape and are perfect without high-order aberrations except pistons and tip-tilts, thus higher
order aberrations of each sub-mirror are not considered here.
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Figure 12 shows 30 groups of experiment results randomly selected from the whole 500 groups.
The piston error detection accuracy is given by the difference between the measured piston error and
the set piston error. According to the error analysis, the RMSE of the difference values of the 30

N
experimental results is 1.26nm where the RMSE is defined as RMSE= /%Z Diﬁ"erencej ,N is the
n=1

number of experiment groups.
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Figure 12. Piston error measurement results by the proposed hybrid network.

Figure 13 shows the piston error detection results of all the 500 groups of simulation
experiments, among which the difference of the detection results within 10nm is 494 groups, and the
RMSE of the 494 groups is 1.76nm. The left 6 groups of difference values of the piston error detection
results are very large, far greater than the mean difference values of the 494 groups of piston error
detection results. This is because the signs of piston errors are predicted wrongly by the Resnet
network, and the measurement error is basically twice of the set piston error. Figure 13a shows the
piston error measurement results of all 500 the groups of simulation experiments, Figure 13b shows
the measurement errors of these 494 groups in the form of a scatter plot, and Figure 13c takes the
absolute value of measurement error as the horizontal coordinate to give the statistical results of the
500 groups of piston error detection experiments. It can be seen that the detection range of this
method is very wide, ranging from -10um to 10um reaching the whole coherence length of the input
broadband light. The measurement accuracy is very high, and the probability of measurement error
less than or equal to 10nm is as high as 98.8%.
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Figure 13. Piston error detection results of the 500 test sets for the two sub-mirror segmented system
(a) The whole detection results of the 500 test sets; (b) detection results after removing the 6 sets of
outliers; (c) statistical histogram distribution of the piston error measurement difference.

3.2. Simulation on four sub-mirrors segmented telescope system

In this part, we use a four sub-mirror segmented telescope system as an example to test the
performance of the proposed algorithm on detecting the piston errors of multiple sub-mirrors (N>2)
segmented telescope system at one time. When using Resnet network to detect the signs of piston
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errors of the multi-submirrors, the output of Resnet network is set to 2 -0, which corresponds to the
piston error signs of all sub-mirror (except the reference sub-mirror). When BP network is used to
solve the absolute value of the piston errors of multiple sub-mirrors through the MTF sidelobes,
according to paper [16], as for a segmented telescope system composed of N sub-mirrors, there are
N2 sub-MTFs. In the spatial frequency domain, the N sub-MTFs overlapped at the position where the
center spatial frequency is zero to form the central peak, while the other N (N-1) sub-MTFs distributed
around the central peak to form the sidelobes. Every pair of sub-mirrors produce a pair of MTF
sidelobes, the sidelobes symmetrically distributed on both sides of the central peak. If all of the
sidelobes do not overlap, their amplitudes could be obtained at the same time by one CCD image,
hence the absolute value of the piston errors of all sub-mirrors can be retrieved at the same time by
inputting the peak height of sub-MTFs corresponding to each sub-mirror into the trained BP network.
Combined the outputs of the two networks, the piston errors of all the segmented sub-mirrors can be
solved at one time using a focal plane degradation image.

The established simulation model of four sub-mirrors segmented telescope system in MATLAB
is shown in Figure 14. The reason why the system model is built like this is to prevent the MTF
sidelobes from being overlapped. Here the wavelength of input broadband light is also centered at
632.8 nm with 20 nm bandwidth. The No.1 sub-mirror is set as reference pupil and the piston errors
randomly generated between -10 um and 10um are introduced on sub-mirrors No. 2, 3 and 4, thus
the degraded focal plane images with different piston errors can be obtained. Figure 15 shows several
degraded images on the focal plane corresponding to the several sets of introduced piston errors on
multiple sub-mirrors.
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Figure 15. Degraded focal plane images of the four sub-mirror segmented system: (a) [p2 p3 p4] = [-
2.5 0 5]um; (b) [p2 p3 p4]=[2.5 0 -5]um; (c) [p2 p3 p4l=[4 -7.5 10]um; (d) [p2 p3 p4]= [-4 7.5 -10]um; (e)
[p2 p3 p4]=[9 0.6 2.75]um; (f) [p2 p3 p4]=[-9 -0.6 2.75]um.

During the simulation experiment, 60000 sets of piston errors are randomly generated and
introduced into the simulation optical system, 60000 groups of focal plane degradation images can
be obtained. The focal plane degradation image is used as the input of the Resnet network, and the
signs of the piston errors of the 3 sub-mirrors are used as the output, here the Resnet network output
is divided into eight categories. When constructing the labels of network outputs, we use 0 to indicate
a positive sign and 1 to indicate a negative sign, which is similar to the binary encoding process and
shown in the following table. The other setting parameters and training process of Resnet network
are the same as those of the two sub-mirror system, which will not be repeated here.

Table 1. Resnet network output label.

Positive and negative e
& Classification

Input signs of.each sub- code Label

mirror

+ o+ 000 0
++ - 001 1
+ - 010 2
+ == 011 3
-+ 100 4
-+ - 101 5
- =+ 110 6
- == 111 7

When training the BP network, we take the number of sub-mirrors N=4, the wavelength of the
input broadband light, and 60000 sets of piston errors generated randomly into Equation (10). We
use the modulus values of MTF sidelobes calculated directly from Equation (10) as the input matrix,
while the corresponding piston errors are used as the output matrix of the training network. Figure
16 shows the relationship between the modulus values of MTF sidelobe directly calculated by
Equation (10) and the piston error of sub-mirror in the form of a curve. The obtained 60000 data sets
are used to train the BP network. The parameters setting and the training process of BP network are
the same as that of the two sub-mirrors segmented optical system, which also will not be repeated
here.
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Figure 16. The MTF sidelobes with different piston errors for the four sub-mirror segmented system.

In order to solve the absolute value of the piston errors of the multiple sub-mirrors
simultaneously from one focal plane image based on the well-trained BP network, the mapping
relationship between sub-MTFs and their corresponding sub-mirrors must be established in advance.
The system MTF of the four sub-mirrors segmented optical system in this experiment include a
central main peak and 12 (N (N-1) =4x (4-1) =12) sidelobes, which is shown as Figure 17 with color-
marks. When sub-mirror No. 1 is set as the reference mirror, sub-mirror No. 2 produces the red sub-
MTFs, sub-mirror No. 3 produces the green sub-MTFs, and sub-mirror No. 4 produces the yellow
sub-MTFs. The six peripheral blue sub-MTFs are modulated by piston errors of the other two sub-
mirrors simultaneously except the reference mirror, which cannot be used to measure the piston error
of each sub-mirror. The establishment of mapping relationship between the sub-mirror and the
corresponding MTF sidelobes can be referred to the paper [16]. It should be noted that the
relationship between the MTF sidelobes and the absolute value of piston error of each sub-mirrors is
the same (as shown in Figure 16), thus it is not necessary to conduct training for all the three sub-
mirrors at one time, but to use one data set to train a single BP network, then by inputting the
modulus of sub-MTF corresponding to each sub-mirror directly, the piston error absolute value of
each sub-mirror can be obtained. This can reduce the difficulty of network training and improve the
detection accuracy.

MTF

100
fy/pixel 0 o fx/pixel

Figure 17. The MTF of the four sub-mirror segmented system with color-marks.

After the hybrid network is well trained, the actual performance of the network should be tested.
We randomly generate multiple sets of piston errors in the range of [-10 10Jum and introduce them
into sub-mirrors No. 2, 3 and 4 separately, then the focal plane degradation image can be obtained.
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In order to be closer to the real imaging situation, Gaussian noise with mean 0, variance 0.05 and tip-
tilt errors with RMSE 0.01A are added to the generated the focal plane degradation images.

We also generated 500 focal plane images of the system for testing, and the test results are shown
in Figure 18. The piston error detection results of sub-mirror No.2, 3, 4 are shown in Figure 18a, 18b,
and 18c respectively, Figure 18d shows the distribution histogram of the RMSE values of the all three
sub-mirrors piston errors detection results in the 500 groups. It can be seen that with the increasement
of the number of sub-mirrors, the classification number of Resnet network becomes more and the
detection accuracy of the signs of piston errors decreased, but the detection accuracy of BP network
has on change. The probability of measurement error less than or equal to 10nm can still be
maintained above 85%.
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Figure 18. 3 Piston error detection results of the 500 test sets for the four sub-mirror segmented system
(a)~(c)Piston error detection results of sub-mirror No. 2, 3 and 4 respectively; (d) the RMSE values
histogram distribution of the 3 sub-mirrors piston error detection results.

3.3. Comparation work

Finally, we compare our method with the work published by MA XIAFEI et al in paper [17],
because they also used a single wide-band image of a point source to perform piston sensing by
neural network. But they did not establish the theoretical relationship between MTF and piston error
based on Fourier optics, while a DCNN network is used to directly learn the mapping relationship
between the focal plane degradation images and the piston errors of sub-mirrors, and finally the
piston error detection is realized based on a single neural network. The comparison experimental
results aimed for the two-pupil segmented system and the four- pupil segmented system are shown
in Figure 19. It can be seen that the piston error detection accuracy of the method proposed by us is
generally higher than that of the method proposed by MA et al. This is because we construct the
theoretical relationship between the system MTF and the piston errors and use the modulus of MTF
sidelobes as the network input, while MA et al directly use the focal plane image as the input of the
network. However, the maximum value of piston error detection difference of our proposed method
is much larger than that of MA’s method. This is because when using Resnet network to detect the
signs of the piston error wrongly, the detection difference value is almost the twice of the set piston
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error value. So how to improve the detection accuracy of the signs of piston error is quite important
in our next work.

2-pupil segmented system . 4‘-pupil segmlented sys!erp

9 [ our method [ our method
100 98.8% VA's method | 1 100 [ MA's method | |

| 87.2%
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Figure 19. Comparative experimental results of piston error detection accuracy between Ma’s and our
methods: (a) For the two sub-mirrors segmented system; (b) For the four sub-mirrors segmented
system.

4. Discussion

This paper proposed a piston error detection method based on a hybrid neural network, it can
realize a wide-range and high-precision measurement of all sub-mirrors’ piston errors by using a
single wide-band image of a point source observation target at one time. Its detection range can reach
the entire coherent length of the input broadband light. For the 2-pupil segmented system, the
proportion of detection accuracy within 10nm is 98.8%, and for the 4-pupil segmented system, the
proportion of detection accuracy within 10nm is 87.2%. Due to the establishment of the theoretical
relationship between the piston errors of the sub-mirror and the MTF of the system, each network’s
structure of the hybrid network is relatively simple, which greatly reduces the network size and
training difficulty, and ensures that the proposed method is simple to be implemented. By using the
method proposed in this paper, the piston error detection of the segmented optics system no longer
need to be divided into coarse phasing and fine phasing where different hardware devices are
needed. This greatly reduces the detection complexity and cost and provides a relatively simple and
feasible piston error detection method for the large aperture segmented telescope optics system.
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