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Abstract: The development of cost-effective methods for estimating hydraulic conductivity profiles has been
an ongoing effort in the field of engineering practice, which can be used to increase availability to clarify the
hydrogeological complexity of fractured rock aquifers for the aid of solving groundwater-related problems. A
methodology is presented, which combines electrical well logs, fluid conductivity logs, double packer
hydraulic tests, Archie’s law, and the Kozeny-Carman-Bear equation to investigate relations between
formation factor and hydraulic conductivity. This method was applied to develop hydraulic conductivity
profiles based on the data collected from 88 boreholes in Taiwan's mountainous areas. The investigation results
include: (1) Well logging signals were suggested to be categorized by rock types to establish effective
relationships with hydraulic conductivity. (2) Removing the mud-bearing section data with two proposed data
clustering techniques could effectively enhance the correlation between the formation factor and hydraulic
conductivity. (3) The predictive models for estimating hydraulic conductivity have been developed for
sandstone, schist, and slate. (4) The prevalence of clay content in most of Taiwan's mountainous rock
formations has been found, which implies that careful consideration of clay-related issues in complex geologic
formations is essential while applying Archie's law theory.

Keywords: hydraulic conductivity; well logging; formation factor; fluid conductivity; resistivity

1. Introduction

Hydraulic conductivity plays an essential role in controlling the distribution, flow path, and
storage of groundwater in the formation, especially in complex geological environments where this
parameter is highly heterogeneous and, as generally recognized, may vary with spatial locations [1-
4]. Therefore, if detailed and continuous hydraulic conductivity along boreholes can be obtained
during the site investigation [5], it will be constructive to clarify the hydrogeological complexity of
rock formations [6]. However, such detailed information is not easily obtained due to the limitations
of budget, manpower, and exploration methods. Most of the projects only take the representative
data as the basis to characterize hydrogeological conditions of a site for the assistance of engineering
planning and design. When the representative data cannot deal with the complexity of an
engineering system, construction accidents may occur, such as large groundwater inflow accidents
during tunnel construction [7]. In addition, limited access to detailed data may lead to undiscovered
scientific problems related to hydrogeology, or the possible cross-disciplinary applications may be
limited by insufficient observed information. Thus, there is a demand for detailed and continuous
hydrogeological information for handling vertical heterogeneity in engineering practice and science.

Traditionally, direct field hydraulic tests with the fixed-interval approach can be adopted to
determine the hydraulic conductivity profile along a borehole in a geologically complex formation
[8]. Although this method can provide detailed information concerning hydraulic conductivity with
accurate results, the method is labor-intensive, time-consuming, and costly, as mentioned above. To
improve the limitation, down-hole logging tools, such as flowmeter [9-11], electrical well logging
[5,12,13], the liner profiling method [14], or NMR (nuclear magnetic resonance) logging [15] have
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been studied to explore profiles of the hydraulic properties of formations surrounding boreholes.
Although these down-hole logging tools can provide higher resolutions, not all tools have the
advantage of low cost while estimating hydraulic conductivity. Besides, geophysical data measured
from these tools still need to combine transform functions to obtain hydraulic conductivity, and these
studies have not yet been fully developed [5,10,12,14,15].

Inexpensive and less time-consuming methods with high resolution for estimating such a profile
increase their worth in practical applications. Among these logging tools, electrical well logging
meets the criteria of relatively inexpensive survey costs and high resolution. Although most of the
downhole electrical logging signals are mainly used to identify the profiles of lithology, porosity,
hydraulic property, cementation, strength, and water-bearing zones of a formation in a qualitative
way, a few studies have attempted to utilize such data to estimate hydraulic conductivity.

Since 1951, studies have focused on exploring electrical-hydraulic relationships for groundwater
exploration [16]. In the early time, previous studies utilized electrical well logging data to calculate
values of the formation factor [17], and then establish direct relationships between electrical data and
hydraulic conductivity [17-20]. The later studies used a two-step approach to construct the electrical-
hydraulic relationship. First, electrical well logging data were utilized to calculate values of the
formation resistivity factor and then estimate the porosity using Archie's law [17,21]. Second, the
predicted porosity is typically used in conjunction with the Kozeny-Carman model to estimate
hydraulic conductivity. The abovementioned methodology has been presented in the literature
[5,12,13,22,23]. These studies also pointed out that Archie’s law and Kozeny-Carman model are only
validated in sandy strata. If clayed or shaley formations are present in the analysis, estimation results
are inferior. To improve electrical-hydraulic relationships in response to the effect of clay mineralogy,
the modification of Archie’s law was proposed by Waxman and Smits [24]. Few studies have
considered the new law to improve electrical estimations from hydraulic conductivity [5,12]. In
addition, electrical-hydraulic relationships developed from most of the previous studies were
focused on unconsolidated formations. Such relationships are less well developed in fractured rock
formations. Due to their geologic complexity, obtaining a good result on the electrical-hydraulic
relationship could become challenging.

In this study, relations between hydraulic conductivity and electrical data in complex geologic
environments of Taiwan, where fractured rock aquifers with diverse lithologies are commonly
present, were investigated. Available geophysical and hydraulic data measured from 88 boreholes
using the electrical well logging tools and double packer hydraulic test were collected to perform the
correlation studies. The main tasks include (a) inspection of the quality of the geophysical data by
comparing the existing drilling core data with the consistency of actual lithology; (b) investigation of
correlations between hydraulic conductivity and geophysical parameters (spontaneous potential,
short normal resistivity, long normal resistivity, point resistivity, natural gamma, and fluid
conductivity); (c) classification of collected data with/without clay contents by using two proposed
clustering approaches; (d) feasibility studies for establishing the relationship between the formation
factor and hydraulic conductivity over various lithologies in fractured rock formations.

2. Study Area and data sources

A twelve-year program related to groundwater resource explorations in Taiwan's mountainous
areas was initiated by the Central Geological Survey of Taiwan in 2010 [25]. The main objective of
this program is to explore the potential of using groundwater extracted from fractured rock
formations as alternative water resources against drought. To understand the feasibility of this
concept, hydrogeologic data in regolith-bedrock aquifers over the entire Taiwan mountain areas
through various hydrogeological investigation tests were collected and analyzed to support the
purpose of this program. Figure 1 shows the distribution of the investigated borehole locations in the
mountainous area of Taiwan for the program mentioned above from 2010 to 2021. Each investigated
borehole conducted seven in-situ hydrogeological tests, including electrical well logging, fluid
conductivity logging, temperature logging, groundwater velocity logging, borehole imaging, double-
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packer hydraulic test, and pumping test. The total investigated boreholes and the depth of each
borehole are 88 and 100 meters, respectively.

To develop a model for determining hydraulic conductivity of mountainous formations along a
borehole, this study collected samples from a part of the above-mentioned hydrogeological tests. The
analyzed data mainly aimed at survey data from the electrical well logging (spontaneous potential,
short normal resistivity, long normal resistivity, point resistivity, and natural gamma), fluid
conductivity logging, and double-packer hydraulic test. Data samples for each borehole were selected
from the borehole sections by performing double-packer hydraulic tests (the test interval of 1.5 m). A
total of 396 double-packer hydraulic test samples were collected. In addition, the electrical well
logging and fluid conductivity logging have one-centimeter data sampling, which can meet this
study's research goal of high resolution. Finally, each borehole's drilling core logs and image data
confirmed whether the geophysical values can reflect the lithology presented.

The lithological environment covered by the collected data samples includes quartz sandstone,
sandstone, sandstone interbedded with shale, silty sandstone, sandy shale, shale, alternations of
sandstone and shale, mudstone, siltstone, argillaceous siltstone, andesite, volcanic agglomerate,
phyllite, marble, slate, schist, gneiss, argillite, quartzite, metasandstone, and argillite interbedded
with some sandstone. The number of data samples collected for each sub-lithology is shown in Table
1. Among the analyzed data, the five most abundant rock types include sandstone, slate, alternations
of sandstone and shale, schist, and shale. The above data collected can construct electrical parameters
to hydraulic conductivity, followed by statistical techniques to possibly develop reliable models for
predicting hydraulic properties of various subsurface formations. Due to the wide range of geological
environments covered by the data sources collected, the formation factor-hydraulic conductivity
relation can be investigated more comprehensively.

Table 1. Statistics of lithology for the data samples collected from the double packer hydraulic test.

Main lithology Sub-lithology Amount
Sandstone 93
Shale 31
Sandy Shale 3
Sandstone interbedded with Argillite 2
. Mudstone 8
Sedimentary rock Siltstone 14
Silty Sandstone 20
Alternations of Sandstone & Shale 44
Argillaceous Siltstone 5
Quartz Sandstone 6
Igneous rock Andesite 7
Volcanic Agglomerate 6
Phyllite 6
Slate 61
Schist 41
. Marble 6
Metamorphic rock Cneiss 5
Argillite 18
Metasandstone 3
Argillite interbedded with some sandstone 10
Quartzite 7

Total 396
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Figure 1. The study area and locations of investigated boreholes.

3. Methods

To provide a cost-effective approach for producing hydraulic conductivity profiles along
boreholes, this study intends to explore relationships between the formation factor and hydraulic
conductivity using the resistivity data of formation and fluid obtained from the most commonly used
electrical well logging in drilling construction and the theory of Archie's law. A flowchart
summarizing the implementation of this study for developing the estimation of hydraulic
conductivity is shown in Figure 2. Five investigation stages are illustrated, including (1) collecting
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borehole data, including drilling logs and a variety of well logging data (spontaneous potential, short
normal resistivity, long normal resistivity, point resistivity, natural gamma, and fluid conductivity),
(2) classifying the raw data by lithology as well as examining the quality of the collected data
compared with the existing rock core logs, (3) performing correlation analysis by investigating
relations between hydraulic conductivity and each geophysical parameter, (4) proposing two data
clustering methods to eliminate raw data with the effect of clay contents, and (5) establishing the
relationship between the formation factor and hydraulic conductivity according to the clustered data
as well as evaluating the feasibility of the developed models.

Figure 2. Flowchart for investigating formation factor-hydraulic conductivity relationships.

3.1. Data processing and classification

Generally, the electrical well logging signal data are used to infer the stratum's lithology by using
geophysics principles on an indirect basis, which is different from geologists' direct visual recording
of lithology. Both methods have their own advantages and disadvantages. The electrical signal data
are recorded every centimeter, while the artificial core description is recorded every 20 cm, so the
resolution of the latter data is much rougher than that of the former. Taking the 1.5 m test section of
the double-packer hydraulic test as an example, geologists can only describe the main lithological
features in the test section. Also, due to the visual identification method, it is impossible to describe
the lithology for the finer parts. However, the electrical measurement data can be used to infer the
difference in lithology in a test interval through variations of the signal value.

To confirm whether numerical changes of these signals correctly reflect the actual lithology, this
study collected five types of signals (including spontaneous potential (SP), long normal (LON), short
normal (SHN), single-point resistivity (SPR), and natural gamma ray (NGAM)) of double-packer test
sections in different boreholes with different depths. A total of 150 points were measured for each
signal in the 1.5 m double-packer test interval. For each test section at a given signal, the average
value and standard deviation (SD) value of all samples were calculated. For the section with a large
SD value, the data were compared and verified by core logs and photos to confirm that lithology
rather than artificial errors caused the greater deviation. Figure 3 shows the short normal resistivity
profiles at two different double-packer intervals (1.5 m), and the geologists described the cores of
both intervals as fine-grained sandstone. However, while comparing Figure 3(a) and 3(b), the
resistivity value of the entire vertical interval in Figure 3(b) has little difference (SD value is about
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1.66), but the resistivity value of the whole vertical section in Figure 3(a) shows a larger variation (SD
value is about 53.07). Thus, Figure 3(b) may be more in line with the result of the lithological
description, so the signal quality of the double-packer interval in Figure 3(a) should be rechecked. In
particular, the signal results obtained in a relatively complex geological environment need to be
compared carefully with the existing core data to confirm the correctness of the collected signal data
so that the signal values used can appropriately reflect the hydraulic conductivity value of the
formation. After the quality control of the data, the confirmed data can be classified into a different
group by lithology and used for subsequent statistical analysis.
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Figure 3. The short normal resistivity profiles at two different double-packer intervals.

3.2. Theory of formation factor- hydraulic conductivity relation for clay-free formations

Formation factor F, or formation resistivity factor, was initially presented by Archie [17] and
defined as the ratio of the resistivity of a fully water-saturated granular reservoir rock (Ro) to the
resistivity of the water saturating the pores (Rw). Archie [17] also proposed the relation between F
and porosity n. Since 1942, the F-n relation has been confirmed empirically in a variety of singular
formations. The relation is commonly expressed in the following form [21].

F=—=an™ 1)

where a is the tortuosity constant or lithology constant, and m is the cementation factor. The values
of m and a have been reported for different formations by different investigators [26]. The reported
ranges for two parameters in a specific lithology are variable. The reason for such variations can be
attributed to several factors, including size, packing and sorting of grains, degree of cementation,
porosity, pressure, tortuosity, wettability of rock surface, and clay content. Especially, the last factor
is significant due to violating Archie’s original experimental conditions. Thus, a meaningful
evaluation for Equation (1) is based on accounting for the clay content effect. Additionally, if a is
equal to one, Equation (1) is called Archie’s first law. While applying both equations, discussions on
the difference between Equation (1) and Archie’s first law can be referred to the study of Glover [27].

Based on the above relation of Equation (1), n can be theoretically obtained from F. However,
valid relations between F and K generally do not exist. However, several studies have developed for
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the valid relations between K and 7, which can be found in a textbook [5,12]. One of the famous
relations comes from the Kozeny-Carman-Bear equation given by Bear [28] and Domenico and

Schwartz [29].
K= Swg) [a*] [ n° 5
= [ﬁ] [(1—n)2] )

where 8w is the dynamic viscosity; g is the acceleration gravity; u is the fluid density; d is the mean
grain size; n is the porosity. Equation (2) is developed by the concept of the capillary tubes and often
estimates the saturated K for most soils [30].

Since formation factor F and hydraulic conductivity K are both functions of porosity n,
integrating Equations (1) and (2) links the two parameters F and K. The functional relationship
between K and F can be assumed to be established and given as:

K = Fuction(F) (3)

In fact, such a relationship has been used in previous studies to estimate hydraulic conductivity
[5,12,22,31,32]. However, the relationship was confirmed with a small size of data and a clay-free
lithology. Thus, this study applied the functional relationship to investigate formation factor—
hydraulic conductivity relations in various complex geologic environments.

3.3. Data clustering for eliminating data containing clay content

Since Archie’s law is only applicable to the clay-free formation, the application of Equation (3)
for establishing the relationship between F and K for the study area in the relatively complex
geological conditions of the Taiwan mountains requires testing the data first for clustering those that
are compatible with the original theory. Accordingly, this study proposes two different clustering
methods to screen the data samples less affected by clay minerals to conform to the theoretical
formula of Archie’s law. The clustering methods and theories are detailed as follows:

(a) natural gamma ray threshold

The natural gamma ray (NGAM) has the characteristic of strongly distinguishing the clay
mineral in a formation. Therefore, the natural gamma ray may be used to design the threshold value
for recognizing clay minerals. When the average NGAM value of a formation sample is larger than
the threshold value, the sample may contain clay minerals. Such a sample should be excluded in the
subsequent analysis of the correlation with hydraulic conductivity. Using natural gamma ray
thresholds to confirm whether a formation is affected by clay mineral effects has been investigated
by Kaleris and Zioga[5] at a site in Greece. His study suggested that strata are less affected by the clay
mineral effect when the natural gamma ray value in API (American Petroleum Institute) is less than
35. According to the previous study, the design of the NGAM threshold may be the key to
determining the presence of clay minerals.

The NGAM threshold can be obtained by dichotomy to group data samples into two categories,
which may contain clay or non-clay content, to find a possible NGAM threshold value. Then, the
correlation of F and K can be performed on the grouped data with the non-clay content. If the
correlation outcome is good, it implies that Archie’s law can apply to the analyzed data set. The
NGAM value of splitting into two groups can be the threshold for recognizing clay content. However,
this splitting method does not consider the nature of the distribution of the data itself. Thus, the
frequency distribution of NGAM in the collected data set was utilized to summarize the information
on the number of occurrences of class intervals in a given NGAM range. The number of class intervals
can be calculated as the following equation.

P =5 Xlog;o(N) “4)

where N is the total amount of collected samples. P is the number of class intervals. If P is a decimal
number, rounding this decimal number to the nearest whole number is needed. Based on the rounded
P number, the frequency of data belonging to each class interval is plotted in a frequency distribution
figure, which is also called Histogram. Each data set collected in this study was able to use this
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technique to obtain the frequency pattern of NGAM. The higher class interval has larger NGAM
values, which may be more likely to contain clay minerals. Subsequently, a stepwise deletion process
of sample data from the class interval (starting from the highest class interval) was carried out, and
correlations between F and K were performed for each group of screened samples. The analyzed
correlation levels were used to determine the natural gamma ray threshold value that could recognize
the existence of clay minerals in the samples.

(b) Modified Archie’s law

Initially, Archie's law does not consider the influence of clay minerals in a formation. For the
geological environment where clay mineral exists, applying this theory to predict porosity generally
does not work well [26]. The main reason is that clay mineral has a high degree of ion exchange and
a high specific surface area [24,33]. Formations with higher clay minerals may reduce the correlation
between resistivity and hydraulic conductivity. Later, some studies based on Archie's law [24,26]
proposed a modified Archie's equation incorporating the effect of clay minerals, which is given
below.

Fo=Fx1+ BQ‘URW)_l ®)

Among them, Fais the apparent formation factor; F. is the corrected formation factor; Rw is the
resistivity of the water saturating the pores; Qv is the cation exchange capacity; and B is the equivalent
conductivity of each cation. After proper rearrangement, Equation (5) can be presented as a linear
relationship between 1/Fa and Rw.

1 1 /BQ,
F.CF + <F—c) Ry, (6)

BQv/F. stands for the gradient [26]; the data of Rw (x-axis) and 1/Fa (y-axis) are plotted, and then
the simple linear regression formula is obtained by using regression analysis. The intercept of the
regression formula is 1/F¢, and its value is calculated by inversion to obtain F..

Afterward, a dimensionless value (Fa/Fc) is calculated by dividing the uncorrected apparent
formation factor (Fa) and the corrected formation factor (Fc) calculated by the correction method
addressed above. A clay-free formation may be expected if Fa/F. is greater than or equal to 0.9 [26].
The criterion indicated by Worthington [26] can be used to separate the collected samples into clay-
bearing and clay-free sample groups for data clustering. The clay-free sample group can meet the
original Archie's law theory hypothesis, and the samples can be utilized to establish relations
between the formation factor and hydraulic conductivity.

Therefore, data samples in complex geological environments clustered by the above two
techniques (a) and (b) can be used to recognize the clay-free conditions of the samples. It may assist
in improving the establishment of estimation models for predicting hydraulic conductivity through
downhole resistivity data.

4. Results and discussion

4.1. Data processing result

In this study, the data quality control procedures mentioned in section 3.1 were used to eliminate
the samples whose electrical signal data were inconsistent with the actual lithology, and the
consistent samples were subjected to basic descriptive statistical analysis. Five data samples out of
396 were not included in the subsequent analyses. For the remaining 391 data samples, the sample
data of various electrical signals in the 1.5 m double-packer hydraulic test section with different
depths in different boreholes were compiled. One hundred fifty measurements in the test section
were recorded for each signal sample, and each sample's mean and standard deviation were
calculated. Then, all samples were classified into three group data categories: singular lithology, three
major rock types, and entire data. The mean and standard deviation for each group type of data were
calculated as shown in Table 2.
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When comparing the standard deviations of the three categories, most of the singular lithology
categories have relatively small standard deviations. A greater standard deviation means that the
dispersion of the data is relatively large. If these data are used to develop a hydraulic conductivity
predictive model, the prediction model's performance may not be good. Therefore, the statistical
results of the underlying data imply the importance of data classification or clustering in the
development of the estimation model. In addition, comparing the differences in the standard
deviations of various signals, it is found that the standard deviation of the NGAM signal is smaller
than other signals in each classification group. It is speculated that this signal is less susceptible to
the external factors of the well (borehole size, the effect of the invasion of the mud filtrate into the
formation, the heterogeneity of geologic formation, the salinity or conductivity of groundwater),
while other signals are more affected by these external factors of the well. The standard deviation of
the COND signal has the largest variation value, indicating that the mud may affect the fluid in the
borehole. The variation of the SHN signal is larger than that of the LON signal, probably because the
SHN signal reflects the resistivity value of the mud-infiltrated area and is more significantly affected
by the mud. However, the LON signal reflects the formation resistivity and is less affected by mud.
Therefore, the standard deviation variation can be used to understand the geology heterogeneity and
the signal's degree of influence by external factors in each double-packer test section.

Furthermore, box plots were used to demonstrate the distributions of numeric signal data values
and the comparisons between multiple groups. First, the selection of box plot data is based on a single
lithological group with a sample size of more than 20 and no mud or shale contents. The single
lithology groups that meet these selection criteria include sandstone, slate, and schist. Then, six
different signal box plots were drawn for the three single lithological groups, as shown in Figure 4.
The outlier points shown in Figure 4 lie outside the 10th and 90th percentiles as black circle symbols.
The number of outliers and the dispersion of the primary data points for the three lithological groups
were compared from the box plots of the five signals, which were used to determine the lithology of
the strata. This comparison reveals that the numerical value distribution of sandstone data is more
dispersive than the other two lithologies. This result is consistent with the results of the standard
deviation analysis in Table 2. However, the comparison for the signal of determining the formation's
fluid conductivity reveals that the slate data points are the most scattered, followed by sandstone.
This result can be used to explain how strongly the formation fluid was affected by the drilling mud
fluid in the borehole at the time of the test. Therefore, for the samples with the same lithology
recorded manually, the results of the box plots drawn from the downhole exploration data with
higher resolution data can be used to identify whether there is geological heterogeneity in the
samples, which can help the development of estimation models.

Based on the analysis results of the collected data, it can be concluded that (1) preliminary data
quality control is of great importance because these signal data are susceptible to external factors; (2)
these signal data can help further investigate the heterogeneity of the rock formations than the visual
description data recorded by geologists; (3) the high degree of geological heterogeneity of the study
site has been found, and this result suggests that it is more appropriate to establish the hydraulic
conductivity estimation model based on a single lithology type.

Table 2 Descriptive statistics of six well logging signals for various rock types (1/2)

Signal Type SP (V) NGAM (cps) COND (ohm.m)

Category N vl S.D. vl S.D. vl S.D.
All lithologic types 388 141.81 155.80 121.02 38.61 59891 704.94
Sedimentary Rock 230 127.49 129.31 114.77 3093 634.64 608.68
Sandstone 90 97.59 147.39 105.02 31.42 238.39 479.28

Shale 30 147.15 97.09 12937 20.23 810.53 393.21

Sandy Shale 3 11241 273 13509 546 35770 10.84

Sandstone interbedded with Argillite 10 182.97 88.13 15042 13.17 47571 433.32
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Mudstone 8 15316 12.01 7520 4342 660.81 177.84
Siltstone 14 127.85 8140 125,69 14.60 1430.85 1018.14
Silty Sandstone 20 179.10 168.03 102.14 2245 324.68 129.65
Alternations of Sandstone & Shale 44 13532 104.48 12428 2752 46851 374.78
Argillaceous Siltstone 5 6172 6.04 10640 7.05 476.60 10.33
Quartz Sandstone 6 18297 21657 123.38 41.24 2100.29 1459.38
Igneous Rock 13 238.67 168.08 4335 2655 35945 96.49
Andesite 7 12480 66.79  59.53 732 32946  63.19
Vocanic Agglomerate 6 37152 152.05 2448 2888 39443 121.77
Metamorphic Rock 145 155.86 186.87 137.85 39.11 563.72 859.02
Phyllite 6 45857 1738 15520 495 861.69 55.67
Slate 57 13341 16513 157.13 26.16 782.87 1213.49
Schist 41 155.60 202.61 119.14 35.60 37559 120.84
Marble 6 13069 1525 4627 1565 244.82 46.86
Gneiss 5 -5584 2201 143.68 569 26990 142.64
Argillite 18 203.31 16942 15710 23.74 27710 22591
Metasandstone 3 463.68 4.05 13656 3448 13196 12.33
Argillite interbedded with som sandstone 2 49.03 7090 15344 1823 168.15 217
Quartzite 7 30.03 127.06 96.60 4201 1186.50 1339.26

Note: The COND in this table is the reciprocal of the original COND, which was transformed into electrical
resistivity.

Table 2. Descriptive statistics of six well logging signals for various rock types (2/2).

Signal SHN (ohm.m) LON (ohm.m) SPR (ohm.m)
Category N vl S.D. u S.D. M S.D.
All lithologic types 388 288.70 596.58 24323 446.49 18230 260.95
Sedimentary Rock 230 124.45 25445 12347 214.02 106.12  140.89
Sandstone 90 207.92 36658 17630 289.81 161.32 193.35
Shale 30 3569  33.42 56.02 48.89 40.64 28.14
Sandy Shale 3 3040 7.35 38.85 6.28 58.89 7.84
Sandstone interbedded with Argillite 10 277.11 22822  330.14 24794 176.69 100.96
Mudstone 8 1427 4.93 17.66 2.94 28.19 11.50
Siltstone 14 2787 1144 47.34 27.40 31.32 13.51
Silty Sandstone 20 60.82 8272 10434 14853  73.49 58.88
Alternations of Sandstone & Shale 44 63.51 79.04 8746  135.64 8245 69.08
Argillaceous Siltstone 5 954 1.15 12.09 1.21 21.00 1.22
Quartz Sandstone 6 22583 222.09 105.54 85.37 148.34  173.97
Igneous Rock 13 37577 590.63 254.86 373.40 217.36 209.74
Andesite 7 61832 739.84 399.87 47451 33052 232.63
Vocanic Agglomerate 6 9278 43.96 85.68 25.45 85.35 42.46
Metamorphic Rock 145 54143 84639 43346 62732 300.01 352.76
Phyllite 6 52333 12023 513.80 7944 19098 4220

Slate 57 31415 25056 290.28 261.60 188.74  93.86
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Schist 41 37955 417.83 289.07 305.18 23853 139.27
Marble 6 3973.34 141758 286496 1171.03 1606.99 850.91
Gneiss 5 1329.79 32779 1031.72 19514 73745 118.70
Argillite 18 31524 316.01 22636 171.24 291.30 186.95
Metasandstone 3 373.64 13402 38441 12577 31253 3943
Argillite interbedded with sandstone 2 211.48 141.82 216.72  81.60 20553  75.00
Quartzite 7 598.84 46785 491.71 39395 27094 181.78
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Figure 4. Box plots for demonstrating the distributions of various signals with three major

lithologies.
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4.2. Correlation analysis for various well logging signals with hydraulic conductivity

The correlation analysis for well logging signals was performed for (1) exploring possible
correlations between singular signal and hydraulic conductivity and (2) examining the resolution
level of the formation resistivity used in the formation factor. This study correlated each signal with
hydraulic conductivity. Normality tests for each signal were conducted to determine parametric or
non-parametric statistical methods utilized to quantify the level of association between the various
signals and hydraulic conductivity. The bivariate correlation analysis, then, was adopted to examine
correlations between the various signals and hydraulic conductivity.

Firstly, the normal testing outcomes pointed out that the null hypothesis for a sample from a
normally distributed population was rejected for most of the signals. However, most of the signals
did not pass the normality test. Thus, Spearman’s correlation was used to quantify the association
between each signal and hydraulic conductivity. In addition, a significance level (p-value) of 0.05
with the two-tailed test was used for all correlation results in this study. If the results of significance
testing show that the p-value is greater than 0.05, the correlation value is not meaningful.

Table 3 lists various signals that were analyzed for the correlation study. The correlation analysis
items include hydraulic conductivity vs. SP, SHN, LON, SPR, NGAM, and COND. The analyzed data
herein were selected from Table 1 for different lithological data groups, including all lithological
rocks, sedimentary rock, igneous rock, metamorphic rock, sandstone, slate, and schist. In addition,
Table 3 marks the correlation coefficient as a hyphen symbol if the significant testing does not pass.
Based on meaningful correlation results for the all-lithologic type, the correlation results of SP and
NGAM signals are insignificant among the six signal types. The possible main reason is that the
formula for calculating the formation factor needs to come from the formation resistivity. Although
the correlation between NGAM and K values is not meaningful, the NGAM signal is a crucial
indicator for determining the presence of mud in the geological strata. Therefore, in the subsequent
data clustering process, the NGAM values were used as the threshold to categorize the data samples
into mud-containing and free groups for data clustering purposes.

In addition, the meaningful correlation coefficients shown in Table 3 exist in SHN, LON, SPR,
and COND signals. According to Cohen’s guideline [34] for interpreting the level of correlation from
Spearman’s coefficient, the strength of the relation for SHN, SPR, and COND reaches the medium
strength (0.3-0.5). The strength of the relation for LON belongs to the low strength (0.3-0.1). While
looking at other data groups for specific lithology, the strength of the relation for these meaningful
signals may increase. The increased correlation strength, which is up to the level of the strong
strength, depends on the lithology. The correlation analysis results regarding the three electrical
resistivity signals (SPR, SHN, and LON) show that the strength of their associations, from best to
worst, is in the order of SPR, SHN, and LON. The electrical resistivity value is commonly used as an
essential parameter for estimating the formation factor (F) of formation. Based on the correlation
strength of electrical resistivity results, theoretically, F should be calculated using the best-correlated
signal, SPR. However, the electrical well logging data from SPR is typically used only as a
supplementary tool to determine the presence of fractures and groundwater flow in rock formations.
The electrical resistivity values for lithological characterization are usually determined by SHN and
LON signals. Therefore, the SHN signal was adopted in this study, which showed a stronger
correlation with K for estimating the F values. The correlation of SHN that is better than that of LON
was also confirmed by previous studies [5,13]. For estimating the formation factor, SHN is utilized as
it assures a greater resolution of the formation than LON.

Finally, the correlation between COND and K revealed a certain degree of negative correlation.
The connection between these two parameters was not expected, as the COND values were initially
intended to understand the water quality around a drilling well. However, a plausible explanation
for this connection is that higher COND values indicate relatively more polluted water quality,
possibly due to the poor permeability of the strata, resulting in the groundwater flowing poorly in
the stratum. As a result, the analysis shows a negative correlation where higher COND values
correspond to smaller K values. Although COND may correlate with K, COND is not directly used
to estimate K. Instead, The reciprocal of COND was transformed into electrical resistivity, which is
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used as the resistivity of the water saturating the pores (Rw), as shown in Equation (1). It is then
combined with SHN to calculate F.

Table 3. Correlation outcomes between k and various signal types with various lithologic groups.

All
ional . hi
Signa lithologic Sedimentary Igneous rock Metamorphic Sandstone Slate Schist
type ock ock
type
sample g 230 13 148 90 60 41
quantity
SP - - -.613 - - - -
SHN .343 575 732 - 442 - -
LON -277 480 - - 397 - -
SPR -378 549 .765 .245 490 - -
NGAM - - - - - - -
COND -.308 -.281 - -.355 -.338 - .345
Note: “ - ” stands for “ the significant testing fails”.

4.3. Data clustering results

To address the influence of clay minerals on the correlation between F and K, this study first
utilized the findings from Section 4.2, which showed a higher correlation between single lithological
well logging data and hydraulic conductivity as the basis for data samples classification.
Furthermore, two data clustering methods from Section 3.3 were employed to progressively
eliminate data samples containing clay minerals from each single lithological group. The remaining
samples can be the basis for constructing models to estimate K from F. The detailed outcomes of the
two data clustering methods are summarized below.

4.3.1. Outcomes from the natural gamma threshold method

This study classified the data population based on individual lithological data (Table 2). Three
individual lithological groups were selected among these data groups, namely sandstone, slate, and
schist. The selected criteria were based on the data group with a sample size of more than 20 and did
not contain clay minerals in lithological compositions. These filtered groups were subjected to the
NGAM threshold clustering analysis. Using Equation (4), the frequency distribution figure of NGAM
for each single lithology type was plotted in Figure 5. Based on each Histogram, the higher class
interval was supported to have a greater NGAM value that may contain clay minerals. A relatively
better correlation can gradually be found by deleting clay-contained data samples from the highest-
class interval with performing correlation analysis between F and K for each filtered data group.
Tables 4, 5, and 6 show the process of correlation variations with different data groups for sandstone,
slate, and schist, respectively. As seen in Table 4, the correlation coefficient of Spearman between F
and K gradually increased by deleting samples with higher NGAM values. When the NGAM value
of the data is between 30 and 90, Spearman's coefficient is greater than 0.5, which reaches the
minimum lower limit of the strong strength according to Cohen’s guideline [34]. The Spearman’s
correlation coefficient increased from 0.159 (all data samples) to 0.572 ([30,89] data samples), and the
maximum correlation coefficient value is statistically significant (The P-value is less than 0.05).
Therefore, in this case, NGAM equal to 89 is used as the threshold value for sandstone clustering.
Values above this threshold indicate intervals containing mud, while values below suggest intervals
with very low mud content or being clean. However, the correlation coefficient between F and K
shows a positive relationship, meaning that as F increases, K also increases. This contradicts the
theory of Archie’s law and Kozeny-Carman-Bear equation, implying that the samples selected using
NGAM equal to 89 as the threshold might still contain some muddy samples or incomplete data of
clean sand, which may include some quantities of mud. However, such an empirical relationship
requires more data to be proved.

do0i:10.20944/preprints202309.0568.v1
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Table 5 shows the correlation variations with various filtered data sets for the slate group. The
Spearman’s correlation coefficients between F and K gradually increased by deleting samples with
higher NGAM values. When the NGAM value of the data is between 94 and 127, the spearman's
coefficient is -0.455, which is the maximum value and belongs to the medium strength according to
Cohen’s guideline [34]. The Spearman’s correlation coefficient increased from -0.125 (all data
samples) to -0.455 ([94,127] data samples). However, the maximum correlation coefficient value is not
statistically significant (The P-value is greater than 0.05). The insignificant result of F vs. K is that the
sample size may not be sufficient. The applicability of this clustering method to the slate group needs
further confirmation with more data. Finally, Table 6 shows the correlation variations with various
filtered data sets for the schist group. The Spearman’s correlation coefficients between F and K
gradually increased by deleting samples with higher NGAM values. When the NGAM value of the
data is between 23 and 118, the Spearman's coefficient is -0.643, which is the maximum value and
belongs to the strong strength according to Cohen’s guideline [34]. The Spearman’s correlation
coefficient increased from -0.102 (all data samples) to -0.643 ([23,118] data samples), and the
maximum correlation coefficient value is statistically significant (The P-value is less than 0.05).
Therefore, in this case, NGAM equal to 118 is used as the threshold value for schist clustering. Values
above this threshold indicate intervals containing mud, while values below suggest intervals with
very low mud content or being clean.
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Figure 5. Histogram of NGAM for three lithologies (sandstone, slate, and schist, respectively).

Table 4. Correlation variations with various filtered data sets for the lithological group of

sandstone.
F-Sandstone
Data All
187- 167- 148- 128- 109- -
sets Data [187-30] [167-30] [148-30] [128-30] [109-30] [89-30]
r 180 .180 213 217 254 377 .554
K
Sig. .089 .094 .049 .050 .030 .006 .002
N 90 88 86 82 73 52 28
Table 5. Correlation variations with various filtered data sets for the lithological group of slate.
E-Slate
Data
sets All Data [210-94] [193-94] [177-94] [160-94] [144-94] [127-94]
r -125 -.089 -.101 -.161 -.283 -.321 -.455
K
Sig. .392 .546 501 327 161 285 .365
N 49 48 47 39 26 13 6

Table 6. Correlation variations with various filtered data sets for the lithological group of schist.

F-Schist

K Data All Data [156-23] [137-23] [118-23]
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sets
T -.102 -.102 -461 -.643
Sig. .526 .550 .015 .01
N 41 37 27 15

4.3.2. Outcomes from the modified Archie’s law method

To understand the mud content within the specific interval of a formation, this study establishes
an alternative clustering approach different from directly using the NGAM signal to classify intervals
into muddy/clean zones based on a threshold value. Instead, this study first constructed the apparent
formation factor (Fa) using formation resistivity (Ro) and the inverse of formation fluid conductivity
(Rw). Then, the modified formation factor (Fc) was computed by means of Equations (5) and (6) in
Section 3.3. The Fa and F. values are divided to obtain a dimensionless parameter F./Fc, and data
samples where the Fa/F. value falls in the [0.9,1.0] interval as the clean segments [26]. Finally,
conducting a correlation analysis between the corrected formation factor (Fc) and hydraulic
conductivity (K) within the clean zones allows this study to understand the benefits of the improved
correlation between F. and K resulting after being corrected by this clustering approach.

To obtain Fc values for each sample under a single lithologic classification using the techniques
described in Section 3.3, a scatter plot with 1/Faand Rw values was created using 150 downhole signal
data points for each sample section (1.5 m double-packer test interval). Furthermore, simple linear
regression analysis was applied to determine the regression equation's intercept (representing Fc) and
slope. However, if the obtained intercept or slope from the data points is negative, it would contradict
the theoretical expectations. Such samples from the analysis will be excluded from the subsequent
correlation analysis between F. and K. Based on the analysis as mentioned above criteria, each
sample's (Fa, Fc) data was obtained for each individual lithological type. Simultaneously, the Fa/Fc
ratio was calculated for each sample. The correlation between Fc and K was then analyzed for
different ranges of the Fa/F. ratio. This analysis aimed to investigate the relationship between the ratio
and the correlation of Fcvs. K. Theoretically, as the Fa/Fcratio increases, the sample's mud content
decreases, aligning better with Archie's law's theoretical assumptions.

Table 7 shows the correlation analysis between modified formation factor (Fc) and hydraulic
conductivity (K) for different lithological types. According to the study by Worthington [26], the Fa/Fc
value of the clean and mud-free formation interval should be greater than 0.9. However, the analysis
results in the table show that very few samples of different lithological types meet the criterion of
Fa/Fc greater than 0.9. Only a few sandstone samples can exceed this 0.9 threshold. Using this
approach to separate samples from muddy and clean sections of the formation, it is clear that
relatively few lithological samples in the Taiwan region meet the requirements of Archie's law well.

In addition, the smaller the Fa/Fcratio, the higher the probability of containing mud. Table 7 also
shows sample groups for different ranges of Fa/Fc ratios along with the correlation analysis results
between Fc and K. Taking sandstone as an example, the correlation between Fc and K improves as
the Fa/Fc ratio increases. Similar trends were observed for most other lithological types. However,
upon comparing these trends with the results of the correlation coefficient trends for each lithological
type, this clustering approach suggests that sedimentary rock types have a better chance of yielding
mud-free samples. On the other hand, slates in metamorphic rocks are more challenging to screen for
mud-free samples. This conclusion aligns with the findings in the analysis of Section 4.3.1.

Finally, concerning the proposed method for calculating Fe in this study, the estimated quality
of F. data deserves discussion, as it determines the reliability of the correlation analysis results
between Fc and K. Figure 6 displays scatter plots and regression curves for three different sample sets
of 1/Fa against Rw. The corresponding regression coefficients (R?) for the three sample sets are 0.9969,
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0.8557, and 0.0099, respectively. The first sample set exhibits the highest R? value and a concentrated
point distribution, indicating a strong matching degree and concentrated point set. The estimated Fc
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value from this kind of well-matching and concentrated point distribution samples may belong to
higher-quality data. Conversely, the point distribution in the last sample set is more scattered,

suggesting lower-quality data for the estimated F. value. Thus, the quality of Fc estimation has a

specific impact on the quality of subsequent correlation analysis results between Fcand K. Therefore,

there is room for improvement in the feasibility of this clustering method for determining mud-
containing intervals.

Table 7. Correlation analysis of corrected formation factor (Fc) and hydraulic conductivity (K) of
different lithology under different Fa/Fc ratio ranges.

Rock Sandstone Slate Schist

Types

Fa/Fc r No. of samples r No. of samples r No. of samples
0-1 -0.1 41 0.168 32 -0.085 16

0.2-1 0.003 21 -0.115 22 -0.297 10

0.4-1 0.245 12 -0.291 13 0.353 6

0.6-1 0.406 10 -0.066 8 0.936 3

0.8-1 -0.800 4 3 N.A. 1

0.9-1 -1.000 3 N.A. 2 N.A. 1

1/Fa
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Figure 6. Demonstration on the quality of estimated Fc values for three types of levels.

4.4. Establishment of hydraulic conductivity estimation models

Using the two clustering methods outlined in Section 4.3, a preliminary selection of potential
mud-free samples conforming to Archie's law theory has been conducted based on the collected
sample data. This serves as a foundation for further establishing estimation formulas for predicting
hydraulic conductivity based on the formation factor. Regarding the outcomes of the natural gamma-
ray threshold clustering method, the analysis primarily focuses on results from three individual
lithological types: sandstone, schist, and slate. Initially, an examination was performed to check for
anomalies in short normal resistivity and fluid conductivity values within each set of individual
lithological samples. These anomalies were verified against expected short normal resistivity and
fluid conductivity values based on the hydraulic conductivity value. Theoretically, both short normal
resistivity and fluid conductivity values should be small for samples with high permeability.
Conversely, for low permeability samples, both values should be larger. When the raw data signals
were rechecked for anomalies, these abnormal data samples were considered an outlier within that
set. Finally, regression analysis between hydraulic conductivity and formation factors and the
construction of hydraulic conductivity estimation models were performed exclusively for samples
with signals conforming to the theoretical values.
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During the process of model establishment, it was observed that each lithological type had
outliers after data quality checking. Simultaneously, the R? values of regression analyses between
original data points and checked data points showed significant differences between the two sets of
analysis results. The accuracy of hydraulic conductivity estimation models can be greatly enhanced
by re-evaluating the rationality of data signals. Regression analysis results with the removal of
outliers revealed R? values of 0.63, 0.60, and 0.83 for sandstone, schist, and slate regression models,
respectively. For these three lithological types, the hydraulic conductivity estimation models best
matched the power law model. Equations (7), (8), and (9) show the estimation equations for
sandstone, schist, and slate, respectively. Through the established estimation models, the steps for
estimating hydraulic conductivity are: (1) selecting the appropriate lithological estimation model, (2)
collecting short normal resistivity and fluid conductivity data from borehole electrical logging, (3)
obtaining the formation factor (F) using Archie's law theory, and (4) estimating hydraulic
conductivity using the calculated F value and equations (7), (8), or (9).

K =7 x 10-8F1:3033 (7)
K =6 x 107*F~2422 (8)
K =2 x 1076 F~3055 )

Although this study utilized the statistical method in Section 3.3 to rapidly screen for valid data
samples, there were still some samples for which abnormal signals could not be entirely screened
out. However, further scrutiny of well-logging signals allowed the selection of ultimately analyzable
samples. Improvements can be made to the screening method in Section 3.3 in the future.

Regarding the outcomes of the modified Archie's law screening method, only the single
lithological type of sandstone can reach the criterion of Fa/Fc = 0.9 after clustering. This clustering
method is relatively stringent and theoretically grounded for identifying mud-containing formation
intervals. After undergoing this clustering process, the sample count was reduced from 41 to only
three that met the clustering criterion. Finally, regression analysis between K and Fc and the
establishment of hydraulic conductivity estimation models was performed for samples conforming
to theoretical signal values. The regression analysis results for sandstone indicated that this
lithological type's hydraulic conductivity estimation model exhibited the best match with the power
law model, with an R? value of 0.98. Equation (10) presents the estimation equation for sandstone.

K=4x10"5F~75% (10)

5. Conclusions

Given the need for information on the continuous hydraulic conductivity of rock mass vertically
required for scientific questions or the development planning of rock engineering, this study
performs a feasibility investigation for estimating hydraulic properties of rock formations in complex
geologic environments using downhole electrical signals. Summarizing the various research findings
of this study, the following conclusions can be drawn, along with potential research directions for
future efforts.

1.  This study collected hydrogeological test data from 88 boreholes of the groundwater resources
investigation project in Taiwan's mountainous areas. These data included results from double-
packer hydraulic tests, electrical well logging, and fluid conductivity logging. Based on data
from 396 double-packer hydraulic test sections, methods such as Archie’s law, Kozeny-Carman-
Bear equation, and data clustering techniques (natural gamma ray threshold and modified
Archie’s law) were employed to develop estimation models of hydraulic conductivity.

2. Basic descriptive statistics were successfully used in this study to inspect the data quality of well-
logging signals (SP, LON, SHN, SPR, NGAM, and COND). Statistical analysis showed that
single rock types exhibited better aggregation, aiding anomaly data verification.
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3. Without rock type classification and data clustering, the correlation analysis between each well
logging signal and hydraulic conductivity revealed that the three types of resistivity and fluid
conductivity signals had better correlation performance. This better performance may be due to
the fact that the resistivity and fluid conductivity parameters are required to be composed of the
formation factor (F). Among six signals, single-point resistivity and short-normal resistivity
performed the best, while natural potential and natural gamma ray showed weaker correlations.

4. To address the impact of clayey formation sections on the correlation between F and K, this
study proposed the natural gamma ray threshold clustering and modified Archie’s law
clustering methods to filter clayey data. Results showed that the natural gamma ray threshold
clustering method achieved better recognition results for clayey sections in sandstone and schist,
while the modified Archie’s law clustering method exhibited superior recognition only in
sandstone. Moreover, the modified Archie’s law clustering method filtered out more clayey
samples for the same rock type than the natural gamma ray threshold clustering method,
indicating the former's stricter criteria. After aggregating well-logging signal data, formation
sections with very low clay content or being clean were identified, forming the basis for building
hydraulic conductivity estimation models.

5. Through the natural gamma ray threshold clustering and modified Archie’s law clustering
methods, it was observed that removing clayey sections could effectively enhance the correlation
between formation factor and hydraulic conductivity. However, to satisfy Archie’s law's
theoretical requirements, many data entries for various rock types needed to be removed,
indicating that Taiwan's mountainous rock formations are complex and often contain significant
clay content. Therefore, careful consideration of clay-related issues in formation layers is
essential in practical engineering applications in mountainous regions.

6. Based on the natural gamma ray threshold clustering method results, this study performed
regression analysis for hydraulic conductivity and formation factor on sandstone, shale, and
slate and built hydraulic conductivity estimation models. The regression analysis indicated that
the hydraulic conductivity estimation models for each rock type best matched the power law
model. The R? values for regression analysis were 0.63 for sandstone, 0.60 for schist, and 0.83 for
slate.

7. According to the modified Archie’s law clustering method results, only the single rock type of
sandstone met the criteria of Fa/Fc=0.9. This is primarily because the modified Archie’s law
clustering method is more rigorous in screening clayey formation sections and is based on sound
theoretical principles. Finally, regression analysis for hydraulic conductivity and formation
factor was performed on samples that matched theoretical signal values. The regression analysis
results for sandstone showed that the hydraulic conductivity estimation model is best
represented by a power law model with an R? value of 0.98. However, the high R? value can be
attributed to the limited number of analyzed samples, highlighting the need for more data to
construct the hydraulic conductivity estimation model for sandstone and the prevalence of clay
content in Taiwan's mountainous sandstone formations.

8. During the exploration of electrical well logging data, it was found that the clay effect is present
in most rock formations in Taiwan. To enhance the utilization of a mathematical model for
estimating hydrogeological parameters of individual rock types using single resistivity signals,
more data collection is required to ensure the reliability of the model. Furthermore, for
hydrogeological parameter estimation models applicable to multiple rock types, it is
recommended to consider recombining the collected signals. This approach could yield novel
signal indicators, enabling the construction of new relationships between indicators and
different hydrogeological parameters.
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