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Abstract: The development of cost-effective methods for estimating hydraulic conductivity profiles has been 

an ongoing effort in the field of engineering practice, which can be used to increase availability to clarify the 

hydrogeological complexity of fractured rock aquifers for the aid of solving groundwater-related problems. A 

methodology is presented, which combines electrical well logs, fluid conductivity logs, double packer 

hydraulic tests, Archie’s law, and the Kozeny-Carman-Bear equation to investigate relations between 

formation factor and hydraulic conductivity. This method was applied to develop hydraulic conductivity 

profiles based on the data collected from 88 boreholes in Taiwan's mountainous areas. The investigation results 

include: (1) Well logging signals were suggested to be categorized by rock types to establish effective 

relationships with hydraulic conductivity. (2) Removing the mud-bearing section data with two proposed data 

clustering techniques could effectively enhance the correlation between the formation factor and hydraulic 

conductivity. (3) The predictive models for estimating hydraulic conductivity have been developed for 

sandstone, schist, and slate. (4) The prevalence of clay content in most of Taiwan's mountainous rock 

formations has been found, which implies that careful consideration of clay-related issues in complex geologic 

formations is essential while applying Archie's law theory. 

Keywords: hydraulic conductivity; well logging; formation factor; fluid conductivity; resistivity 

 

1. Introduction 

Hydraulic conductivity plays an essential role in controlling the distribution, flow path, and 

storage of groundwater in the formation, especially in complex geological environments where this 

parameter is highly heterogeneous and, as generally recognized, may vary with spatial locations [1-

4]. Therefore, if detailed and continuous hydraulic conductivity along boreholes can be obtained 

during the site investigation [5], it will be constructive to clarify the hydrogeological complexity of 

rock formations [6]. However, such detailed information is not easily obtained due to the limitations 

of budget, manpower, and exploration methods. Most of the projects only take the representative 

data as the basis to characterize hydrogeological conditions of a site for the assistance of engineering 

planning and design. When the representative data cannot deal with the complexity of an 

engineering system, construction accidents may occur, such as large groundwater inflow accidents 

during tunnel construction [7]. In addition, limited access to detailed data may lead to undiscovered 

scientific problems related to hydrogeology, or the possible cross-disciplinary applications may be 

limited by insufficient observed information. Thus, there is a demand for detailed and continuous 

hydrogeological information for handling vertical heterogeneity in engineering practice and science. 

Traditionally, direct field hydraulic tests with the fixed-interval approach can be adopted to 

determine the hydraulic conductivity profile along a borehole in a geologically complex formation 

[8]. Although this method can provide detailed information concerning hydraulic conductivity with 

accurate results, the method is labor-intensive, time-consuming, and costly, as mentioned above. To 

improve the limitation, down-hole logging tools, such as flowmeter [9-11], electrical well logging 

[5,12,13], the liner profiling method [14], or NMR (nuclear magnetic resonance) logging [15] have 
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been studied to explore profiles of the hydraulic properties of formations surrounding boreholes. 

Although these down-hole logging tools can provide higher resolutions, not all tools have the 

advantage of low cost while estimating hydraulic conductivity. Besides, geophysical data measured 

from these tools still need to combine transform functions to obtain hydraulic conductivity, and these 

studies have not yet been fully developed [5,10,12,14,15]. 

Inexpensive and less time-consuming methods with high resolution for estimating such a profile 

increase their worth in practical applications. Among these logging tools, electrical well logging 

meets the criteria of relatively inexpensive survey costs and high resolution. Although most of the 

downhole electrical logging signals are mainly used to identify the profiles of lithology, porosity, 

hydraulic property, cementation, strength, and water-bearing zones of a formation in a qualitative 

way, a few studies have attempted to utilize such data to estimate hydraulic conductivity. 

Since 1951, studies have focused on exploring electrical-hydraulic relationships for groundwater 

exploration [16]. In the early time, previous studies utilized electrical well logging data to calculate 

values of the formation factor [17], and then establish direct relationships between electrical data and 

hydraulic conductivity [17-20]. The later studies used a two-step approach to construct the electrical-

hydraulic relationship. First, electrical well logging data were utilized to calculate values of the 

formation resistivity factor and then estimate the porosity using Archie's law [17,21]. Second, the 

predicted porosity is typically used in conjunction with the Kozeny-Carman model to estimate 

hydraulic conductivity. The abovementioned methodology has been presented in the literature 

[5,12,13,22,23]. These studies also pointed out that Archie’s law and Kozeny-Carman model are only 

validated in sandy strata. If clayed or shaley formations are present in the analysis, estimation results 

are inferior. To improve electrical-hydraulic relationships in response to the effect of clay mineralogy, 

the modification of Archie’s law was proposed by Waxman and Smits [24]. Few studies have 

considered the new law to improve electrical estimations from hydraulic conductivity [5,12]. In 

addition, electrical-hydraulic relationships developed from most of the previous studies were 

focused on unconsolidated formations. Such relationships are less well developed in fractured rock 

formations. Due to their geologic complexity, obtaining a good result on the electrical-hydraulic 

relationship could become challenging. 

In this study, relations between hydraulic conductivity and electrical data in complex geologic 

environments of Taiwan, where fractured rock aquifers with diverse lithologies are commonly 

present, were investigated. Available geophysical and hydraulic data measured from 88 boreholes 

using the electrical well logging tools and double packer hydraulic test were collected to perform the 

correlation studies. The main tasks include (a) inspection of the quality of the geophysical data by 

comparing the existing drilling core data with the consistency of actual lithology; (b) investigation of 

correlations between hydraulic conductivity and geophysical parameters (spontaneous potential, 

short normal resistivity, long normal resistivity, point resistivity, natural gamma, and fluid 

conductivity); (c) classification of collected data with/without clay contents by using two proposed 

clustering approaches; (d) feasibility studies for establishing the relationship between the formation 

factor and hydraulic conductivity over various lithologies in fractured rock formations. 

2. Study Area and data sources 

A twelve-year program related to groundwater resource explorations in Taiwan's mountainous 

areas was initiated by the Central Geological Survey of Taiwan in 2010 [25]. The main objective of 

this program is to explore the potential of using groundwater extracted from fractured rock 

formations as alternative water resources against drought. To understand the feasibility of this 

concept, hydrogeologic data in regolith-bedrock aquifers over the entire Taiwan mountain areas 

through various hydrogeological investigation tests were collected and analyzed to support the 

purpose of this program. Figure 1 shows the distribution of the investigated borehole locations in the 

mountainous area of Taiwan for the program mentioned above from 2010 to 2021. Each investigated 

borehole conducted seven in-situ hydrogeological tests, including electrical well logging, fluid 

conductivity logging, temperature logging, groundwater velocity logging, borehole imaging, double-
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packer hydraulic test, and pumping test. The total investigated boreholes and the depth of each 

borehole are 88 and 100 meters, respectively. 

To develop a model for determining hydraulic conductivity of mountainous formations along a 

borehole, this study collected samples from a part of the above-mentioned hydrogeological tests. The 

analyzed data mainly aimed at survey data from the electrical well logging (spontaneous potential, 

short normal resistivity, long normal resistivity, point resistivity, and natural gamma), fluid 

conductivity logging, and double-packer hydraulic test. Data samples for each borehole were selected 

from the borehole sections by performing double-packer hydraulic tests (the test interval of 1.5 m). A 

total of 396 double-packer hydraulic test samples were collected. In addition, the electrical well 

logging and fluid conductivity logging have one-centimeter data sampling, which can meet this 

study's research goal of high resolution. Finally, each borehole's drilling core logs and image data 

confirmed whether the geophysical values can reflect the lithology presented. 

The lithological environment covered by the collected data samples includes quartz sandstone, 

sandstone, sandstone interbedded with shale, silty sandstone, sandy shale, shale, alternations of 

sandstone and shale, mudstone, siltstone, argillaceous siltstone, andesite, volcanic agglomerate, 

phyllite, marble, slate, schist, gneiss, argillite, quartzite, metasandstone, and argillite interbedded 

with some sandstone. The number of data samples collected for each sub-lithology is shown in Table 

1. Among the analyzed data, the five most abundant rock types include sandstone, slate, alternations 

of sandstone and shale, schist, and shale. The above data collected can construct electrical parameters 

to hydraulic conductivity, followed by statistical techniques to possibly develop reliable models for 

predicting hydraulic properties of various subsurface formations. Due to the wide range of geological 

environments covered by the data sources collected, the formation factor-hydraulic conductivity 

relation can be investigated more comprehensively. 

Table 1. Statistics of lithology for the data samples collected from the double packer hydraulic test. 

Main lithology Sub-lithology Amount 

Sedimentary rock 

Sandstone 93 

Shale 31 

Sandy Shale 3 

Sandstone interbedded with Argillite 2 

Mudstone 8 

Siltstone 14 

Silty Sandstone 20 

Alternations of Sandstone & Shale 44 

Argillaceous Siltstone 5 

Quartz Sandstone  6 

Igneous rock Andesite 7 

Metamorphic rock 

Volcanic Agglomerate 6 

Phyllite 6 

Slate 61 

Schist 41 

Marble 6 

Gneiss 5 

Argillite 18 

Metasandstone 3 

Argillite interbedded with some sandstone 10 

Quartzite 7 

 Total 396 
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Figure 1. The study area and locations of investigated boreholes. 

3. Methods 

To provide a cost-effective approach for producing hydraulic conductivity profiles along 

boreholes, this study intends to explore relationships between the formation factor and hydraulic 

conductivity using the resistivity data of formation and fluid obtained from the most commonly used 

electrical well logging in drilling construction and the theory of Archie's law. A flowchart 

summarizing the implementation of this study for developing the estimation of hydraulic 

conductivity is shown in Figure 2. Five investigation stages are illustrated, including (1) collecting 
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borehole data, including drilling logs and a variety of well logging data (spontaneous potential, short 

normal resistivity, long normal resistivity, point resistivity, natural gamma, and fluid conductivity), 

(2) classifying the raw data by lithology as well as examining the quality of the collected data 

compared with the existing rock core logs, (3) performing correlation analysis by investigating 

relations between hydraulic conductivity and each geophysical parameter, (4) proposing two data 

clustering methods to eliminate raw data with the effect of clay contents, and (5) establishing the 

relationship between the formation factor and hydraulic conductivity according to the clustered data 

as well as evaluating the feasibility of the developed models. 

 

Figure 2. Flowchart for investigating formation factor-hydraulic conductivity relationships. 

3.1. Data processing and classification 

Generally, the electrical well logging signal data are used to infer the stratum's lithology by using 

geophysics principles on an indirect basis, which is different from geologists' direct visual recording 

of lithology. Both methods have their own advantages and disadvantages. The electrical signal data 

are recorded every centimeter, while the artificial core description is recorded every 20 cm, so the 

resolution of the latter data is much rougher than that of the former. Taking the 1.5 m test section of 

the double-packer hydraulic test as an example, geologists can only describe the main lithological 

features in the test section. Also, due to the visual identification method, it is impossible to describe 

the lithology for the finer parts. However, the electrical measurement data can be used to infer the 

difference in lithology in a test interval through variations of the signal value. 

To confirm whether numerical changes of these signals correctly reflect the actual lithology, this 

study collected five types of signals (including spontaneous potential (SP), long normal (LON), short 

normal (SHN), single-point resistivity (SPR), and natural gamma ray (NGAM)) of double-packer test 

sections in different boreholes with different depths. A total of 150 points were measured for each 

signal in the 1.5 m double-packer test interval. For each test section at a given signal, the average 

value and standard deviation (SD) value of all samples were calculated. For the section with a large 

SD value, the data were compared and verified by core logs and photos to confirm that lithology 

rather than artificial errors caused the greater deviation. Figure 3 shows the short normal resistivity 

profiles at two different double-packer intervals (1.5 m), and the geologists described the cores of 

both intervals as fine-grained sandstone. However, while comparing Figure 3(a) and 3(b), the 

resistivity value of the entire vertical interval in Figure 3(b) has little difference (SD value is about 
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1.66), but the resistivity value of the whole vertical section in Figure 3(a) shows a larger variation (SD 

value is about 53.07). Thus, Figure 3(b) may be more in line with the result of the lithological 

description, so the signal quality of the double-packer interval in Figure 3(a) should be rechecked. In 

particular, the signal results obtained in a relatively complex geological environment need to be 

compared carefully with the existing core data to confirm the correctness of the collected signal data 

so that the signal values used can appropriately reflect the hydraulic conductivity value of the 

formation. After the quality control of the data, the confirmed data can be classified into a different 

group by lithology and used for subsequent statistical analysis. 
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(a) Abnormal resistivity profile (b) Normal resistivity profile 

Figure 3. The short normal resistivity profiles at two different double-packer intervals. 

3.2. Theory of formation factor- hydraulic conductivity relation for clay-free formations 

Formation factor F, or formation resistivity factor, was initially presented by Archie [17] and 

defined as the ratio of the resistivity of a fully water-saturated granular reservoir rock (Ro) to the 

resistivity of the water saturating the pores (Rw). Archie [17] also proposed the relation between F 

and porosity n. Since 1942, the F-n relation has been confirmed empirically in a variety of singular 

formations. The relation is commonly expressed in the following form [21]. F = 𝑅௢𝑅௪ = 𝑎𝑛ି௠ (1)

where a is the tortuosity constant or lithology constant, and m is the cementation factor. The values 

of m and a have been reported for different formations by different investigators [26]. The reported 

ranges for two parameters in a specific lithology are variable. The reason for such variations can be 

attributed to several factors, including size, packing and sorting of grains, degree of cementation, 

porosity, pressure, tortuosity, wettability of rock surface, and clay content. Especially, the last factor 

is significant due to violating Archie’s original experimental conditions. Thus, a meaningful 

evaluation for Equation (1) is based on accounting for the clay content effect. Additionally, if a is 

equal to one, Equation (1) is called Archie’s first law. While applying both equations, discussions on 

the difference between Equation (1) and Archie’s first law can be referred to the study of Glover [27]. 

Based on the above relation of Equation (1), n can be theoretically obtained from F. However, 

valid relations between F and K generally do not exist. However, several studies have developed for 
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the valid relations between K and n, which can be found in a textbook [5,12]. One of the famous 

relations comes from the Kozeny-Carman-Bear equation given by Bear [28] and Domenico and 

Schwartz [29]. K = ൤𝛿௪𝑔𝜇 ൨ ∙ ቈ 𝑑ଶ180቉ ∙ ቈ 𝑛ଷ(1 − 𝑛)ଶ቉ (2)

where δw is the dynamic viscosity; g is the acceleration gravity; µ is the fluid density; d is the mean 

grain size; n is the porosity. Equation (2) is developed by the concept of the capillary tubes and often 

estimates the saturated K for most soils [30]. 

Since formation factor F and hydraulic conductivity K are both functions of porosity n, 

integrating Equations (1) and (2) links the two parameters F and K. The functional relationship 

between K and F can be assumed to be established and given as: K = Fuction(F) (3)

In fact, such a relationship has been used in previous studies to estimate hydraulic conductivity 

[5,12,22,31,32]. However, the relationship was confirmed with a small size of data and a clay-free 

lithology. Thus, this study applied the functional relationship to investigate formation factor—

hydraulic conductivity relations in various complex geologic environments. 

3.3. Data clustering for eliminating data containing clay content 

Since Archie’s law is only applicable to the clay-free formation, the application of Equation (3) 

for establishing the relationship between F and K for the study area in the relatively complex 

geological conditions of the Taiwan mountains requires testing the data first for clustering those that 

are compatible with the original theory. Accordingly, this study proposes two different clustering 

methods to screen the data samples less affected by clay minerals to conform to the theoretical 

formula of Archie’s law. The clustering methods and theories are detailed as follows: 

(a) natural gamma ray threshold  

The natural gamma ray (NGAM) has the characteristic of strongly distinguishing the clay 

mineral in a formation. Therefore, the natural gamma ray may be used to design the threshold value 

for recognizing clay minerals. When the average NGAM value of a formation sample is larger than 

the threshold value, the sample may contain clay minerals. Such a sample should be excluded in the 

subsequent analysis of the correlation with hydraulic conductivity. Using natural gamma ray 

thresholds to confirm whether a formation is affected by clay mineral effects has been investigated 

by Kaleris and Zioga[5] at a site in Greece. His study suggested that strata are less affected by the clay 

mineral effect when the natural gamma ray value in API (American Petroleum Institute) is less than 

35. According to the previous study, the design of the NGAM threshold may be the key to 

determining the presence of clay minerals. 

The NGAM threshold can be obtained by dichotomy to group data samples into two categories, 

which may contain clay or non-clay content, to find a possible NGAM threshold value. Then, the 

correlation of F and K can be performed on the grouped data with the non-clay content. If the 

correlation outcome is good, it implies that Archie’s law can apply to the analyzed data set. The 

NGAM value of splitting into two groups can be the threshold for recognizing clay content. However, 

this splitting method does not consider the nature of the distribution of the data itself. Thus, the 

frequency distribution of NGAM in the collected data set was utilized to summarize the information 

on the number of occurrences of class intervals in a given NGAM range. The number of class intervals 

can be calculated as the following equation. P = 5 × logଵ଴(𝑁) (4)

where N is the total amount of collected samples. P is the number of class intervals. If P is a decimal 

number, rounding this decimal number to the nearest whole number is needed. Based on the rounded 

P number, the frequency of data belonging to each class interval is plotted in a frequency distribution 

figure, which is also called Histogram. Each data set collected in this study was able to use this 
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technique to obtain the frequency pattern of NGAM. The higher class interval has larger NGAM 

values, which may be more likely to contain clay minerals. Subsequently, a stepwise deletion process 

of sample data from the class interval (starting from the highest class interval) was carried out, and 

correlations between F and K were performed for each group of screened samples. The analyzed 

correlation levels were used to determine the natural gamma ray threshold value that could recognize 

the existence of clay minerals in the samples. 

(b) Modified Archie’s law 

Initially, Archie's law does not consider the influence of clay minerals in a formation. For the 

geological environment where clay mineral exists, applying this theory to predict porosity generally 

does not work well [26]. The main reason is that clay mineral has a high degree of ion exchange and 

a high specific surface area [24,33]. Formations with higher clay minerals may reduce the correlation 

between resistivity and hydraulic conductivity. Later, some studies based on Archie's law [24,26] 

proposed a modified Archie's equation incorporating the effect of clay minerals, which is given 

below. F௔ = 𝐹௖ × (1 + 𝐵𝑄௩𝑅௪)ିଵ (5)

Among them, Fa is the apparent formation factor; Fc is the corrected formation factor; Rw is the 

resistivity of the water saturating the pores; Qv is the cation exchange capacity; and B is the equivalent 

conductivity of each cation. After proper rearrangement, Equation (5) can be presented as a linear 

relationship between 1/Fa and Rw. 1F௔ = 1F௖ + ൬𝐵𝑄௩F௖ ൰ 𝑅௪ (6)

BQv/Fc stands for the gradient [26]; the data of Rw (x-axis) and 1/Fa (y-axis) are plotted, and then 

the simple linear regression formula is obtained by using regression analysis. The intercept of the 

regression formula is 1/Fc, and its value is calculated by inversion to obtain Fc. 

Afterward, a dimensionless value (Fa/Fc) is calculated by dividing the uncorrected apparent 

formation factor (Fa) and the corrected formation factor (Fc) calculated by the correction method 

addressed above. A clay-free formation may be expected if Fa/Fc is greater than or equal to 0.9 [26]. 

The criterion indicated by Worthington [26] can be used to separate the collected samples into clay-

bearing and clay-free sample groups for data clustering. The clay-free sample group can meet the 

original Archie`s law theory hypothesis, and the samples can be utilized to establish relations 

between the formation factor and hydraulic conductivity. 

Therefore, data samples in complex geological environments clustered by the above two 

techniques (a) and (b) can be used to recognize the clay-free conditions of the samples. It may assist 

in improving the establishment of estimation models for predicting hydraulic conductivity through 

downhole resistivity data. 

4. Results and discussion 

4.1. Data processing result 

In this study, the data quality control procedures mentioned in section 3.1 were used to eliminate 

the samples whose electrical signal data were inconsistent with the actual lithology, and the 

consistent samples were subjected to basic descriptive statistical analysis. Five data samples out of 

396 were not included in the subsequent analyses. For the remaining 391 data samples, the sample 

data of various electrical signals in the 1.5 m double-packer hydraulic test section with different 

depths in different boreholes were compiled. One hundred fifty measurements in the test section 

were recorded for each signal sample, and each sample's mean and standard deviation were 

calculated. Then, all samples were classified into three group data categories: singular lithology, three 

major rock types, and entire data. The mean and standard deviation for each group type of data were 

calculated as shown in Table 2.  
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Signal Type 
Category 

When comparing the standard deviations of the three categories, most of the singular lithology 

categories have relatively small standard deviations. A greater standard deviation means that the 

dispersion of the data is relatively large. If these data are used to develop a hydraulic conductivity 

predictive model, the prediction model's performance may not be good. Therefore, the statistical 

results of the underlying data imply the importance of data classification or clustering in the 

development of the estimation model. In addition, comparing the differences in the standard 

deviations of various signals, it is found that the standard deviation of the NGAM signal is smaller 

than other signals in each classification group. It is speculated that this signal is less susceptible to 

the external factors of the well (borehole size, the effect of the invasion of the mud filtrate into the 

formation, the heterogeneity of geologic formation, the salinity or conductivity of groundwater), 

while other signals are more affected by these external factors of the well. The standard deviation of 

the COND signal has the largest variation value, indicating that the mud may affect the fluid in the 

borehole. The variation of the SHN signal is larger than that of the LON signal, probably because the 

SHN signal reflects the resistivity value of the mud-infiltrated area and is more significantly affected 

by the mud. However, the LON signal reflects the formation resistivity and is less affected by mud. 

Therefore, the standard deviation variation can be used to understand the geology heterogeneity and 

the signal's degree of influence by external factors in each double-packer test section. 

Furthermore, box plots were used to demonstrate the distributions of numeric signal data values 

and the comparisons between multiple groups. First, the selection of box plot data is based on a single 

lithological group with a sample size of more than 20 and no mud or shale contents. The single 

lithology groups that meet these selection criteria include sandstone, slate, and schist. Then, six 

different signal box plots were drawn for the three single lithological groups, as shown in Figure 4. 

The outlier points shown in Figure 4 lie outside the 10th and 90th percentiles as black circle symbols. 

The number of outliers and the dispersion of the primary data points for the three lithological groups 

were compared from the box plots of the five signals, which were used to determine the lithology of 

the strata. This comparison reveals that the numerical value distribution of sandstone data is more 

dispersive than the other two lithologies. This result is consistent with the results of the standard 

deviation analysis in Table 2. However, the comparison for the signal of determining the formation's 

fluid conductivity reveals that the slate data points are the most scattered, followed by sandstone. 

This result can be used to explain how strongly the formation fluid was affected by the drilling mud 

fluid in the borehole at the time of the test. Therefore, for the samples with the same lithology 

recorded manually, the results of the box plots drawn from the downhole exploration data with 

higher resolution data can be used to identify whether there is geological heterogeneity in the 

samples, which can help the development of estimation models. 

Based on the analysis results of the collected data, it can be concluded that (1) preliminary data 

quality control is of great importance because these signal data are susceptible to external factors; (2) 

these signal data can help further investigate the heterogeneity of the rock formations than the visual 

description data recorded by geologists; (3) the high degree of geological heterogeneity of the study 

site has been found, and this result suggests that it is more appropriate to establish the hydraulic 

conductivity estimation model based on a single lithology type. 

Table 2 Descriptive statistics of six well logging signals for various rock types (1/2) 
 

 SP (V) NGAM (cps) COND (ohm.m) 

N μ S.D. μ S.D. μ S.D. 

All lithologic types 388 141.81 155.80 121.02 38.61 598.91 704.94 

Sedimentary Rock 230 127.49 129.31 114.77 30.93 634.64 608.68 

Sandstone 90 97.59 147.39 105.02 31.42 238.39 479.28 

Shale 30 147.15 97.09 129.37 20.23 810.53 393.21 

Sandy Shale 3 112.41 2.73 135.09 5.46 357.70 10.84 

Sandstone interbedded with Argillite 10 182.97 88.13 150.42 13.17 475.71 433.32 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 September 2023                   doi:10.20944/preprints202309.0568.v1

https://doi.org/10.20944/preprints202309.0568.v1


 10 

 

Category 
Signal 

Mudstone 8 153.16 12.01 75.20 43.42 660.81 177.84 

Siltstone 14 127.85 81.40 125.69 14.60 1430.85 1018.14 

Silty Sandstone 20 179.10 168.03 102.14 22.45 324.68 129.65 

Alternations of Sandstone & Shale 44 135.32 104.48 124.28 27.52 468.51 374.78 

Argillaceous Siltstone 5 61.72 6.04 106.40 7.05 476.60 10.33 

Quartz Sandstone 6 182.97 216.57 123.38 41.24 2100.29 1459.38 

Igneous Rock 13 238.67 168.08 43.35 26.55 359.45 96.49 

Andesite 7 124.80 66.79 59.53 7.32 329.46 63.19 

Vocanic Agglomerate 6 371.52 152.05 24.48 28.88 394.43 121.77 

Metamorphic Rock 145 155.86 186.87 137.85 39.11 563.72 859.02 

Phyllite 6 458.57 17.38 155.20 4.95 861.69 55.67 

Slate 57 133.41 165.13 157.13 26.16 782.87 1213.49 

Schist 41 155.60 202.61 119.14 35.60 375.59 120.84 

Marble 6 130.69 15.25 46.27 15.65 244.82 46.86 

Gneiss 5 -55.84 22.01 143.68 5.69 269.90 142.64 

Argillite 18 203.31 169.42 157.10 23.74 277.10 225.91 

Metasandstone 3 463.68 4.05 136.56 34.48 131.96 12.33 

Argillite interbedded with som sandstone 2 49.03 70.90 153.44 18.23 168.15 2.17 

Quartzite 7 30.03 127.06 96.60 42.01 1186.50 1339.26 

Note: The COND in this table is the reciprocal of the original COND, which was transformed into electrical 

resistivity. 

Table 2. Descriptive statistics of six well logging signals for various rock types (2/2). 
 

 SHN (ohm.m) LON (ohm.m) SPR (ohm.m) 

N μ S.D. μ S.D. Μ S.D. 

All lithologic types 388 288.70 596.58 243.23 446.49 182.30 260.95 

Sedimentary Rock 230 124.45 254.45 123.47 214.02 106.12 140.89 

Sandstone 90 207.92 366.58 176.30 289.81 161.32 193.35 

Shale 30 35.69 33.42 56.02 48.89 40.64 28.14 

Sandy Shale 3 30.40 7.35 38.85 6.28 58.89 7.84 

Sandstone interbedded with Argillite 10 277.11 228.22 330.14 247.94 176.69 100.96 

Mudstone 8 14.27 4.93 17.66 2.94 28.19 11.50 

Siltstone 14 27.87 11.44 47.34 27.40 31.32 13.51 

Silty Sandstone 20 60.82 82.72 104.34 148.53 73.49 58.88 

Alternations of Sandstone & Shale 44 63.51 79.04 87.46 135.64 82.45 69.08 

Argillaceous Siltstone 5 9.54 1.15 12.09 1.21 21.00 1.22 

Quartz Sandstone 6 225.83 222.09 105.54 85.37 148.34 173.97 

Igneous Rock 13 375.77 590.63 254.86 373.40 217.36 209.74 

Andesite 7 618.32 739.84 399.87 474.51 330.52 232.63 

Vocanic Agglomerate 6 92.78 43.96 85.68 25.45 85.35 42.46 

Metamorphic Rock 145 541.43 846.39 433.46 627.32 300.01 352.76 

Phyllite 6 523.33 120.23 513.80 79.44 190.98 42.20 

Slate 57 314.15 250.56 290.28 261.60 188.74 93.86 
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Schist 41 379.55 417.83 289.07 305.18 238.53 139.27 

Marble 6 3973.34 1417.58 2864.96 1171.03 1606.99 850.91 

Gneiss 5 1329.79 327.79 1031.72 195.14 737.45 118.70 

Argillite 18 315.24 316.01 226.36 171.24 291.30 186.95 

Metasandstone 3 373.64 134.02 384.41 125.77 312.53 39.43 

Argillite interbedded with sandstone 2 211.48 141.82 216.72 81.60 205.53 75.00 

Quartzite 7 598.84 467.85 491.71 393.95 270.94 181.78 
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Figure 4. Box plots for demonstrating the distributions of various signals with three major 

lithologies. 
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4.2. Correlation analysis for various well logging signals with hydraulic conductivity 

The correlation analysis for well logging signals was performed for (1) exploring possible 

correlations between singular signal and hydraulic conductivity and (2) examining the resolution 

level of the formation resistivity used in the formation factor. This study correlated each signal with 

hydraulic conductivity. Normality tests for each signal were conducted to determine parametric or 

non-parametric statistical methods utilized to quantify the level of association between the various 

signals and hydraulic conductivity. The bivariate correlation analysis, then, was adopted to examine 

correlations between the various signals and hydraulic conductivity.  

Firstly, the normal testing outcomes pointed out that the null hypothesis for a sample from a 

normally distributed population was rejected for most of the signals. However, most of the signals 

did not pass the normality test. Thus, Spearman’s correlation was used to quantify the association 

between each signal and hydraulic conductivity. In addition, a significance level (p-value) of 0.05 

with the two-tailed test was used for all correlation results in this study. If the results of significance 

testing show that the p-value is greater than 0.05, the correlation value is not meaningful. 

Table 3 lists various signals that were analyzed for the correlation study. The correlation analysis 

items include hydraulic conductivity vs. SP, SHN, LON, SPR, NGAM, and COND. The analyzed data 

herein were selected from Table 1 for different lithological data groups, including all lithological 

rocks, sedimentary rock, igneous rock, metamorphic rock, sandstone, slate, and schist. In addition, 

Table 3 marks the correlation coefficient as a hyphen symbol if the significant testing does not pass. 

Based on meaningful correlation results for the all-lithologic type, the correlation results of SP and 

NGAM signals are insignificant among the six signal types. The possible main reason is that the 

formula for calculating the formation factor needs to come from the formation resistivity. Although 

the correlation between NGAM and K values is not meaningful, the NGAM signal is a crucial 

indicator for determining the presence of mud in the geological strata. Therefore, in the subsequent 

data clustering process, the NGAM values were used as the threshold to categorize the data samples 

into mud-containing and free groups for data clustering purposes. 

In addition, the meaningful correlation coefficients shown in Table 3 exist in SHN, LON, SPR, 

and COND signals. According to Cohen’s guideline [34] for interpreting the level of correlation from 

Spearman’s coefficient, the strength of the relation for SHN, SPR, and COND reaches the medium 

strength (0.3-0.5). The strength of the relation for LON belongs to the low strength (0.3-0.1). While 

looking at other data groups for specific lithology, the strength of the relation for these meaningful 

signals may increase. The increased correlation strength, which is up to the level of the strong 

strength, depends on the lithology. The correlation analysis results regarding the three electrical 

resistivity signals (SPR, SHN, and LON) show that the strength of their associations, from best to 

worst, is in the order of SPR, SHN, and LON. The electrical resistivity value is commonly used as an 

essential parameter for estimating the formation factor (F) of formation. Based on the correlation 

strength of electrical resistivity results, theoretically, F should be calculated using the best-correlated 

signal, SPR. However, the electrical well logging data from SPR is typically used only as a 

supplementary tool to determine the presence of fractures and groundwater flow in rock formations. 

The electrical resistivity values for lithological characterization are usually determined by SHN and 

LON signals. Therefore, the SHN signal was adopted in this study, which showed a stronger 

correlation with K for estimating the F values. The correlation of SHN that is better than that of LON 

was also confirmed by previous studies [5,13]. For estimating the formation factor, SHN is utilized as 

it assures a greater resolution of the formation than LON. 

Finally, the correlation between COND and K revealed a certain degree of negative correlation. 

The connection between these two parameters was not expected, as the COND values were initially 

intended to understand the water quality around a drilling well. However, a plausible explanation 

for this connection is that higher COND values indicate relatively more polluted water quality, 

possibly due to the poor permeability of the strata, resulting in the groundwater flowing poorly in 

the stratum. As a result, the analysis shows a negative correlation where higher COND values 

correspond to smaller K values. Although COND may correlate with K, COND is not directly used 

to estimate K. Instead, The reciprocal of COND was transformed into electrical resistivity, which is 
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used as the resistivity of the water saturating the pores (Rw), as shown in Equation (1). It is then 

combined with SHN to calculate F. 

Table 3. Correlation outcomes between k and various signal types with various lithologic groups. 

Signal 

type 

All 

lithologic 

type 

Sedimentary

rock 
Igneous rock 

Metamorphic 

rock 
Sandstone Slate Schist 

Sample 

quantity 
391 230 13 148 90 60 41 

SP ‐ ‐ -.613 ‐ ‐ ‐ ‐ 

SHN .343 .575 .732 ‐ .442 ‐ ‐ 

LON -.277 .480 ‐ ‐ .397 ‐ ‐ 

SPR -.378 .549 .765 .245 .490 ‐ ‐ 

NGAM ‐ ‐ ‐ ‐ ‐ ‐ ‐ 

COND -.308 -.281 ‐ -.355 -.338 ‐ .345 

Note: “‐” stands for “ the significant testing fails”. 

4.3. Data clustering results 

To address the influence of clay minerals on the correlation between F and K, this study first 

utilized the findings from Section 4.2, which showed a higher correlation between single lithological 

well logging data and hydraulic conductivity as the basis for data samples classification. 

Furthermore, two data clustering methods from Section 3.3 were employed to progressively 

eliminate data samples containing clay minerals from each single lithological group. The remaining 

samples can be the basis for constructing models to estimate K from F. The detailed outcomes of the 

two data clustering methods are summarized below. 

4.3.1. Outcomes from the natural gamma threshold method 

This study classified the data population based on individual lithological data (Table 2). Three 

individual lithological groups were selected among these data groups, namely sandstone, slate, and 

schist. The selected criteria were based on the data group with a sample size of more than 20 and did 

not contain clay minerals in lithological compositions. These filtered groups were subjected to the 

NGAM threshold clustering analysis. Using Equation (4), the frequency distribution figure of NGAM 

for each single lithology type was plotted in Figure 5. Based on each Histogram, the higher class 

interval was supported to have a greater NGAM value that may contain clay minerals. A relatively 

better correlation can gradually be found by deleting clay-contained data samples from the highest-

class interval with performing correlation analysis between F and K for each filtered data group. 

Tables 4, 5, and 6 show the process of correlation variations with different data groups for sandstone, 

slate, and schist, respectively. As seen in Table 4, the correlation coefficient of Spearman between F 

and K gradually increased by deleting samples with higher NGAM values. When the NGAM value 

of the data is between 30 and 90, Spearman's coefficient is greater than 0.5, which reaches the 

minimum lower limit of the strong strength according to Cohen’s guideline [34]. The Spearman’s 

correlation coefficient increased from 0.159 (all data samples) to 0.572 ([30,89] data samples), and the 

maximum correlation coefficient value is statistically significant (The P-value is less than 0.05). 

Therefore, in this case, NGAM equal to 89 is used as the threshold value for sandstone clustering. 

Values above this threshold indicate intervals containing mud, while values below suggest intervals 

with very low mud content or being clean. However, the correlation coefficient between F and K 

shows a positive relationship, meaning that as F increases, K also increases. This contradicts the 

theory of Archie’s law and Kozeny-Carman-Bear equation, implying that the samples selected using 

NGAM equal to 89 as the threshold might still contain some muddy samples or incomplete data of 

clean sand, which may include some quantities of mud. However, such an empirical relationship 

requires more data to be proved. 
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Table 5 shows the correlation variations with various filtered data sets for the slate group. The 

Spearman’s correlation coefficients between F and K gradually increased by deleting samples with 

higher NGAM values. When the NGAM value of the data is between 94 and 127, the spearman's 

coefficient is -0.455, which is the maximum value and belongs to the medium strength according to 

Cohen’s guideline [34]. The Spearman’s correlation coefficient increased from -0.125 (all data 

samples) to -0.455 ([94,127] data samples). However, the maximum correlation coefficient value is not 

statistically significant (The P-value is greater than 0.05). The insignificant result of F vs. K is that the 

sample size may not be sufficient. The applicability of this clustering method to the slate group needs 

further confirmation with more data. Finally, Table 6 shows the correlation variations with various 

filtered data sets for the schist group. The Spearman’s correlation coefficients between F and K 

gradually increased by deleting samples with higher NGAM values. When the NGAM value of the 

data is between 23 and 118, the Spearman's coefficient is -0.643, which is the maximum value and 

belongs to the strong strength according to Cohen’s guideline [34]. The Spearman’s correlation 

coefficient increased from -0.102 (all data samples) to -0.643 ([23,118] data samples), and the 

maximum correlation coefficient value is statistically significant (The P-value is less than 0.05). 

Therefore, in this case, NGAM equal to 118 is used as the threshold value for schist clustering. Values 

above this threshold indicate intervals containing mud, while values below suggest intervals with 

very low mud content or being clean. 
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Figure 5. Histogram of NGAM for three lithologies (sandstone, slate, and schist, respectively). 

Table 4. Correlation variations with various filtered data sets for the lithological group of 

sandstone. 

Table 5. Correlation variations with various filtered data sets for the lithological group of slate. 

Table 6. Correlation variations with various filtered data sets for the lithological group of schist. 

F-Sandstone 

K 

Data 

sets 

All  

Data 
[187-30] [167-30] [148-30] [128-30] [109-30] [89-30] 

r .180 .180 .213 .217 .254 .377 .554 

Sig. .089 .094 .049 .050 .030 .006 .002 

N 90 88 86 82 73 52 28 

F-Slate  

K 

Data 

sets 
All Data [210-94] [193-94] [177-94] [160-94] [144-94] [127-94] 

r -.125 -.089 -.101 -.161 -.283 -.321 -.455 

Sig. .392 .546 .501 .327 .161 .285 .365 

N 49 48 47 39 26 13 6 

F-Schist 

K Data All Data [156-23] [137-23] [118-23] 
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4.3.2. Outcomes from the modified Archie’s law method 

To understand the mud content within the specific interval of a formation, this study establishes 

an alternative clustering approach different from directly using the NGAM signal to classify intervals 

into muddy/clean zones based on a threshold value. Instead, this study first constructed the apparent 

formation factor (Fa) using formation resistivity (Ro) and the inverse of formation fluid conductivity 

(Rw). Then, the modified formation factor (Fc) was computed by means of Equations (5) and (6) in 

Section 3.3. The Fa and Fc values are divided to obtain a dimensionless parameter Fa/Fc, and data 

samples where the Fa/Fc value falls in the [0.9,1.0] interval as the clean segments [26]. Finally, 

conducting a correlation analysis between the corrected formation factor (Fc) and hydraulic 

conductivity (K) within the clean zones allows this study to understand the benefits of the improved 

correlation between Fc and K resulting after being corrected by this clustering approach.  

To obtain Fc values for each sample under a single lithologic classification using the techniques 

described in Section 3.3, a scatter plot with 1/Fa and Rw values was created using 150 downhole signal 

data points for each sample section (1.5 m double-packer test interval). Furthermore, simple linear 

regression analysis was applied to determine the regression equation's intercept (representing Fc) and 

slope. However, if the obtained intercept or slope from the data points is negative, it would contradict 

the theoretical expectations. Such samples from the analysis will be excluded from the subsequent 

correlation analysis between Fc and K. Based on the analysis as mentioned above criteria, each 

sample's (Fa, Fc) data was obtained for each individual lithological type. Simultaneously, the Fa/Fc 

ratio was calculated for each sample. The correlation between Fc and K was then analyzed for 

different ranges of the Fa/Fc ratio. This analysis aimed to investigate the relationship between the ratio 

and the correlation of Fc vs. K. Theoretically, as the Fa/Fc ratio increases, the sample's mud content 

decreases, aligning better with Archie's law's theoretical assumptions.  

Table 7 shows the correlation analysis between modified formation factor (Fc) and hydraulic 

conductivity (K) for different lithological types. According to the study by Worthington [26], the Fa/Fc 

value of the clean and mud-free formation interval should be greater than 0.9. However, the analysis 

results in the table show that very few samples of different lithological types meet the criterion of 

Fa/Fc greater than 0.9. Only a few sandstone samples can exceed this 0.9 threshold. Using this 

approach to separate samples from muddy and clean sections of the formation, it is clear that 

relatively few lithological samples in the Taiwan region meet the requirements of Archie's law well.  

In addition, the smaller the Fa/Fc ratio, the higher the probability of containing mud. Table 7 also 

shows sample groups for different ranges of Fa/Fc ratios along with the correlation analysis results 

between Fc and K. Taking sandstone as an example, the correlation between Fc and K improves as 

the Fa/Fc ratio increases. Similar trends were observed for most other lithological types. However, 

upon comparing these trends with the results of the correlation coefficient trends for each lithological 

type, this clustering approach suggests that sedimentary rock types have a better chance of yielding 

mud-free samples. On the other hand, slates in metamorphic rocks are more challenging to screen for 

mud-free samples. This conclusion aligns with the findings in the analysis of Section 4.3.1. 

Finally, concerning the proposed method for calculating Fc in this study, the estimated quality 

of Fc data deserves discussion, as it determines the reliability of the correlation analysis results 

between Fc and K. Figure 6 displays scatter plots and regression curves for three different sample sets 

of 1/Fa against Rw. The corresponding regression coefficients (R2) for the three sample sets are 0.9969, 

sets 

r -.102 -.102 -.461 -.643 

Sig. .526 .550 .015 .01 

N 41 37 27 15 
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0.8557, and 0.0099, respectively. The first sample set exhibits the highest R2 value and a concentrated 

point distribution, indicating a strong matching degree and concentrated point set. The estimated Fc 

value from this kind of well-matching and concentrated point distribution samples may belong to 

higher-quality data. Conversely, the point distribution in the last sample set is more scattered, 

suggesting lower-quality data for the estimated Fc value. Thus, the quality of Fc estimation has a 

specific impact on the quality of subsequent correlation analysis results between Fc and K. Therefore, 

there is room for improvement in the feasibility of this clustering method for determining mud-

containing intervals. 

Table 7. Correlation analysis of corrected formation factor (Fc) and hydraulic conductivity (K) of 

different lithology under different Fa/Fc ratio ranges. 

Rock 

Types 
Sandstone Slate Schist 

Fa/Fc r No. of samples r No. of samples r No. of samples 

0-1 -0.1 41 0.168 32 -0.085 16 

0.2-1 0.003 21 -0.115 22 -0.297 10 

0.4-1 0.245 12 -0.291 13 0.353 6 

0.6-1 0.406 10 -0.066 8 0.936 3 

0.8-1 -0.800 4  3 N.A. 1 

0.9-1 -1.000 3 N.A. 2 N.A. 1 
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Figure 6. Demonstration on the quality of estimated Fc values for three types of levels. 

4.4. Establishment of hydraulic conductivity estimation models 

Using the two clustering methods outlined in Section 4.3, a preliminary selection of potential 

mud-free samples conforming to Archie's law theory has been conducted based on the collected 

sample data. This serves as a foundation for further establishing estimation formulas for predicting 

hydraulic conductivity based on the formation factor. Regarding the outcomes of the natural gamma-

ray threshold clustering method, the analysis primarily focuses on results from three individual 

lithological types: sandstone, schist, and slate. Initially, an examination was performed to check for 

anomalies in short normal resistivity and fluid conductivity values within each set of individual 

lithological samples. These anomalies were verified against expected short normal resistivity and 

fluid conductivity values based on the hydraulic conductivity value. Theoretically, both short normal 

resistivity and fluid conductivity values should be small for samples with high permeability. 

Conversely, for low permeability samples, both values should be larger. When the raw data signals 

were rechecked for anomalies, these abnormal data samples were considered an outlier within that 

set. Finally, regression analysis between hydraulic conductivity and formation factors and the 

construction of hydraulic conductivity estimation models were performed exclusively for samples 

with signals conforming to the theoretical values. 
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During the process of model establishment, it was observed that each lithological type had 

outliers after data quality checking. Simultaneously, the R2 values of regression analyses between 

original data points and checked data points showed significant differences between the two sets of 

analysis results. The accuracy of hydraulic conductivity estimation models can be greatly enhanced 

by re-evaluating the rationality of data signals. Regression analysis results with the removal of 

outliers revealed R2 values of 0.63, 0.60, and 0.83 for sandstone, schist, and slate regression models, 

respectively. For these three lithological types, the hydraulic conductivity estimation models best 

matched the power law model. Equations (7), (8), and (9) show the estimation equations for 

sandstone, schist, and slate, respectively. Through the established estimation models, the steps for 

estimating hydraulic conductivity are: (1) selecting the appropriate lithological estimation model, (2) 

collecting short normal resistivity and fluid conductivity data from borehole electrical logging, (3) 

obtaining the formation factor (F) using Archie's law theory, and (4) estimating hydraulic 

conductivity using the calculated F value and equations (7), (8), or (9). K = 7 × 10ି଼𝐹ଵ.ଷ଴ଷଷ (7)K = 6 × 10ିସ𝐹ିଶ.ସଶଶ (8)K = 2 × 10ି଺𝐹ିଷ.଴ହହ (9)

Although this study utilized the statistical method in Section 3.3 to rapidly screen for valid data 

samples, there were still some samples for which abnormal signals could not be entirely screened 

out. However, further scrutiny of well-logging signals allowed the selection of ultimately analyzable 

samples. Improvements can be made to the screening method in Section 3.3 in the future. 

Regarding the outcomes of the modified Archie's law screening method, only the single 

lithological type of sandstone can reach the criterion of Fa/Fc ≥ 0.9 after clustering. This clustering 

method is relatively stringent and theoretically grounded for identifying mud-containing formation 

intervals. After undergoing this clustering process, the sample count was reduced from 41 to only 

three that met the clustering criterion. Finally, regression analysis between K and Fc and the 

establishment of hydraulic conductivity estimation models was performed for samples conforming 

to theoretical signal values. The regression analysis results for sandstone indicated that this 

lithological type's hydraulic conductivity estimation model exhibited the best match with the power 

law model, with an R2 value of 0.98. Equation (10) presents the estimation equation for sandstone. K = 4 × 10ି଺𝐹ି଻.ହଽଵ (10)

5. Conclusions 

Given the need for information on the continuous hydraulic conductivity of rock mass vertically 

required for scientific questions or the development planning of rock engineering, this study 

performs a feasibility investigation for estimating hydraulic properties of rock formations in complex 

geologic environments using downhole electrical signals. Summarizing the various research findings 

of this study, the following conclusions can be drawn, along with potential research directions for 

future efforts. 

1. This study collected hydrogeological test data from 88 boreholes of the groundwater resources 

investigation project in Taiwan's mountainous areas. These data included results from double-

packer hydraulic tests, electrical well logging, and fluid conductivity logging. Based on data 

from 396 double-packer hydraulic test sections, methods such as Archie’s law, Kozeny-Carman-

Bear equation, and data clustering techniques (natural gamma ray threshold and modified 

Archie’s law) were employed to develop estimation models of hydraulic conductivity. 

2. Basic descriptive statistics were successfully used in this study to inspect the data quality of well-

logging signals (SP, LON, SHN, SPR, NGAM, and COND). Statistical analysis showed that 

single rock types exhibited better aggregation, aiding anomaly data verification. 
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3. Without rock type classification and data clustering, the correlation analysis between each well 

logging signal and hydraulic conductivity revealed that the three types of resistivity and fluid 

conductivity signals had better correlation performance. This better performance may be due to 

the fact that the resistivity and fluid conductivity parameters are required to be composed of the 

formation factor (F). Among six signals, single-point resistivity and short-normal resistivity 

performed the best, while natural potential and natural gamma ray showed weaker correlations.  

4. To address the impact of clayey formation sections on the correlation between F and K, this 

study proposed the natural gamma ray threshold clustering and modified Archie’s law 

clustering methods to filter clayey data. Results showed that the natural gamma ray threshold 

clustering method achieved better recognition results for clayey sections in sandstone and schist, 

while the modified Archie’s law clustering method exhibited superior recognition only in 

sandstone. Moreover, the modified Archie’s law clustering method filtered out more clayey 

samples for the same rock type than the natural gamma ray threshold clustering method, 

indicating the former's stricter criteria. After aggregating well-logging signal data, formation 

sections with very low clay content or being clean were identified, forming the basis for building 

hydraulic conductivity estimation models. 

5. Through the natural gamma ray threshold clustering and modified Archie’s law clustering 

methods, it was observed that removing clayey sections could effectively enhance the correlation 

between formation factor and hydraulic conductivity. However, to satisfy Archie’s law's 

theoretical requirements, many data entries for various rock types needed to be removed, 

indicating that Taiwan's mountainous rock formations are complex and often contain significant 

clay content. Therefore, careful consideration of clay-related issues in formation layers is 

essential in practical engineering applications in mountainous regions. 

6. Based on the natural gamma ray threshold clustering method results, this study performed 

regression analysis for hydraulic conductivity and formation factor on sandstone, shale, and 

slate and built hydraulic conductivity estimation models. The regression analysis indicated that 

the hydraulic conductivity estimation models for each rock type best matched the power law 

model. The R2 values for regression analysis were 0.63 for sandstone, 0.60 for schist, and 0.83 for 

slate. 

7. According to the modified Archie’s law clustering method results, only the single rock type of 

sandstone met the criteria of Fa/Fc≧0.9. This is primarily because the modified Archie’s law 

clustering method is more rigorous in screening clayey formation sections and is based on sound 

theoretical principles. Finally, regression analysis for hydraulic conductivity and formation 

factor was performed on samples that matched theoretical signal values. The regression analysis 

results for sandstone showed that the hydraulic conductivity estimation model is best 

represented by a power law model with an R2 value of 0.98. However, the high R2 value can be 

attributed to the limited number of analyzed samples, highlighting the need for more data to 

construct the hydraulic conductivity estimation model for sandstone and the prevalence of clay 

content in Taiwan's mountainous sandstone formations. 

8. During the exploration of electrical well logging data, it was found that the clay effect is present 

in most rock formations in Taiwan. To enhance the utilization of a mathematical model for 

estimating hydrogeological parameters of individual rock types using single resistivity signals, 

more data collection is required to ensure the reliability of the model. Furthermore, for 

hydrogeological parameter estimation models applicable to multiple rock types, it is 

recommended to consider recombining the collected signals. This approach could yield novel 

signal indicators, enabling the construction of new relationships between indicators and 

different hydrogeological parameters. 
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