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Abstract: Imaging-based biomarkers have developed as an effective tool in neurology, providing vital
understandings of the structural, functional, and molecular changes associated with neurological disorders.
Imaging techniques such as magnetic resonance imaging (MRI), positron emission tomography (PET), single-
photon emission computed tomography (SPECT), and computed tomography (CT) have been widely
employed to record disease-related alterations in the brain. These techniques provide a wide range of
biomarkers, such as functional connectivity patterns, volumetric measurements, molecular imaging agents,
and perfusion parameters, enabling the correct identification of neurological disorders. These biomarkers have
proven useful in early diagnosis, disease progression tracking, therapy response prediction, and surgical
planning. This review emphasizes the various obstacles and limitations that are associated with imaging-based
biomarkers. Technical constraints, standardization obstacles, ethical concerns, regulatory challenges, and cost-
effectiveness concerns all offer substantial barriers to wider use. It is vital to overcome these challenges if
imaging biomarkers are to be successfully integrated into routine clinical practice. Imaging technology
advancements like high-resolution imaging, multimodal imaging, and artificial intelligence-based analysis
hold immense promise for imaging-based biomarkers in the future. While more study and standardization are
needed, their ongoing development and integration into clinical practice have the potential to revolutionize
the diagnosis, treatment, and management of neurological disorders, resulting in better patient care and

outcomes.
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1. Introduction

Neurological disorders present significant challenges in terms of accurate diagnosis and efficient
treatment due to their complexity and heterogeneity. Traditional diagnostic approaches frequently
rely on subjective assessments and clinical evaluations, which can lead to limitations in accuracy and
reliability. However, the introduction of imaging-based biomarkers has transformed the area of
neurology [1]. MRL, PET, SPECT, and CT are the imaging techniques that have distinct benefits in
visualising and quantifying structural, functional, and molecular changes in the brain [2—4]. These
imaging methods provide useful information regarding tissue integrity, neurochemical changes, and
cerebral blood flow, among other things. Researchers and physicians can develop objective and
quantitative biomarkers that aid in the diagnosis, prognosis, and monitoring of neurological illnesses
by exploiting these imaging properties [5,6].

Imaging-based biomarkers (IBB) are important because they can give a non-invasive and
thorough assessment of neurological disorders. These biomarkers allow for early detection, precise
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diagnosis, and distinction of disease subtypes. They also offer insights into disease progression,
treatment response, and personalized therapeutic interventions [7,8]. Moreover, IBB facilitate the
evaluation of novel therapies in clinical trials and contribute to the development of precision
medicine approaches in neurology. The integration of IBB in clinical practice has the potential to
transform patient care by improving diagnostic accuracy, enabling personalized treatment strategies,
and facilitating disease management [9]. Clinicians can use IBB to make informed judgements about
the best treatment options for specific patients, ultimately optimising results. Furthermore, IBB can
help us better understand the underlying mechanisms and pathophysiology of neurological illnesses.
These biomarkers provide crucial insights into disease processes by visualising and quantifying brain
alterations, assisting in the identification of novel treatment targets and the development of tailored
interventions [10].

2. Biomarkers in Neurological Diseases

2.1. Biomarkers for diagnosis

IBB utilize various imaging techniques to visualize and quantify structural, functional, or
molecular changes in the brain [11,12]. Structural imaging techniques, MRI, provides precise images of
the brain's architecture and can identify anomalies linked with neurological disorders [13,14].
Biomarkers obtained from structural imaging include the measurement of brain volume loss or
atrophy, which is frequently employed as a biomarker for neurodegenerative conditions such as
Alzheimer's disease (AD) or frontotemporal dementia [15]. White matter hyper-intensities seen on
MRI scans are indicative of small vessel disease and can assist in diagnosing conditions like vascular
dementia [16]. Functional imaging techniques capture brain activity and can help to identify patterns
associated with the neurological diseases. Functional MRI (fMRI) measures changes in blood flow
and oxygenation, can identify aberrant activation patterns in regions of interest, aiding in the
diagnosis of conditions such as epilepsy or psychiatric disorders [17,18]. Positron Emission
Tomography (PET) imaging with specific radiotracers can detect abnormal protein accumulation,
such as amyloid plaques in Alzheimer's disease or dopaminergic dysfunction in Parkinson's disease
[19-21]. Molecular Imaging Biomarkers techniques utilize radiotracers that bind to specific molecules
or receptors in the brain. These biomarkers help diagnose neurological diseases by detecting
molecular alterations associated with the condition [22-24]. The use of radiotracers like '8F-florbetapir
or "C-Pittsburgh compound B (PiB) in PET imaging allows for the visualization and quantification
of amyloid plaques in Alzheimer's disease [20,25]. PET or SPECT imaging with radiotracers like 12°I-
FP-CIT or F-FDOPA can evaluate dopamine transporter function, aiding in the diagnosis of
movement disorders like Parkinson's disease [26-29]. These imaging-based biomarkers provide
objective and quantitative measures that assist in the diagnosis of neurological diseases. They
complement clinical evaluations, improve diagnostic accuracy, and aid in early detection, allowing
for timely intervention and appropriate management of these conditions.

2.2. Biomarkers for disease progression

IBB have proven valuable for assessing disease progression in neurological diseases. Structural
imaging biomarkers are frequently employed as a biomarker for neurodegenerative conditions
[30,31]. Longitudinal brain volume evaluation can reveal the rate of atrophy, which is valuable for
tracking disease development such as AD, Multiple sclerosis (MS), or Huntington's disease (HD) [32—
36]. Progressive ventricular enlargement can be seen in neurodegenerative disorders and can be used
as a biomarker for disease progression, such as PD or AD [37-41]. Functional Imaging Biomarkers, such
as fMRI or PET, can offer information regarding changes in brain function that occur as a result of
disease improvement. These biomarkers can assist in determining the dynamic nature of neurological
conditions. Changes in functional connectivity networks, as measured by fMRI, can signal disease
progression in diseases such as AD, PD and MS [42-49]. PET imaging using radiotracers such as
fluorodeoxyglucose (FDG) can assess glucose metabolism in the brain, which can indicate disease
progression in AD [50-52]. PET and SPECT are molecular imaging modalities that can track the
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molecular changes associated with disease progression. These biomarkers enable the detection and
quantification of specific molecular targets [53,54]. Tau protein build up, as measured by tau PET
imaging, is a biomarker for disease progression in AD and other tauopathies [55,56]. Dopamine
transporter availability changes, as measured by PET or SPECT imaging, can indicate disease
progression in PD [57,58]. These imaging-based disease progression biomarkers provide important
insights into the dynamic changes that occur in neurological disorders throughout time.

2.3. Biomarkers for treatment response

IBB provide objective and quantitative measures of changes in brain structure, function, or
molecular profiles following therapeutic interventions. The evaluation of lesion volume on MRI
images in conditions such as MS or stroke can show the efficacy of disease-modifying medicines or
interventions targeted at minimizing the extent of brain damage [59-61]. Monitoring changes in
hippocampus volume during conditions such as AD can act as a biomarker for treatment response
and disease progression [62,63]. fMRI and PET scans provide information about changes in brain
function and connectivity after treatment, indicating treatment response in disorders such as major
depressive disorder (MDD) or schizophrenia [64-66]. Furthermore, these approaches can detect
changes in brain activation patterns during specific tasks or cognitive problems, providing
information regarding treatment response in disorders such as ADHD or traumatic brain injury [67—
71].

These imaging-based biomarkers for treatment response provide valuable insights into the
effects of therapeutic interventions on brain structure, function, or molecular profiles. They aid in
assessing treatment efficacy, guiding treatment decisions, and optimizing patient management.

2.4. Predictive biomarkers

Predictive biomarkers derived from imaging techniques in neurological diseases are valuable
tools for identifying patients who are more likely to respond to specific treatments or have a higher
risk of disease progression. Combining imaging data with genetic information can help identify
predictive biomarkers [72,73]. Certain genetic variants may influence treatment response or disease
progression. For example, in multiple sclerosis, specific genetic markers, when combined with
imaging biomarkers like lesion load or brain volume, can help predict the likelihood of disease
progression or response to disease-modifying therapies [19,74]. Identifying specific imaging
patterns or signatures that are associated with treatment response or disease progression can serve
as predictive biomarkers. By identifying predictive biomarkers, clinicians can better stratify patients,
optimize treatment selection, and personalize therapeutic interventions.

2.5. Prognostic biomarkers

Prognostic biomarkers provide insights into the likely disease course, progression, or outcomes
for individual patients. MRI, provide valuable biomarkers for assessing disease prognosis.
Measurement of brain volume loss or atrophy over time can serve as a prognostic biomarker in AD,
PD or MS [75-79]. Greater rates of brain atrophy often indicate a more severe disease course or worse
outcomes. In conditions like MS, the volume and distribution of brain lesions assessed through MRI
can provide prognostic information. Higher lesion load often correlates with more aggressive disease
progression or disability accumulation. Functional imaging techniques, such as fMRI or PET, offer
insights into brain function and connectivity that can serve as prognostic biomarkers [80-85].
Alterations in functional connectivity networks assessed by fMRI can provide prognostic information
in AD, stroke, or traumatic brain injury [86,87]. PET imaging can assess metabolic activity in the brain,
providing prognostic information in conditions like brain tumors or epilepsy. Higher metabolic
activity in certain regions may indicate more aggressive tumor behavior or seizure recurrence [88-
90]. Molecular imaging techniques, including PET or SPECT, can offer prognostic biomarkers by
assessing molecular targets associated with disease progression or treatment response.

3. Application of Imaging Biomarkers (IB) in Specific Neurological Diseases
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IB play a crucial role in the evaluation and management of various neurological disorders. They
provide valuable insights into the structural, functional, and molecular changes that occur in the
brain, aiding in early diagnosis, differential diagnosis, disease staging, and monitoring of treatment
response (Table 1).

Table 1. Outlining imaging-based biomarkers in specific neurological disorders.

Neurological Disorders Imaging-based Biomarkers

Amyloid PET imaging, Tau PET imaging, Hippocampal volume, Cortical

Alzheimer's di
Zhelmers disease thickness, Functional connectivity disruption, FDG-PET hypometabolism

DaTscan SPECT imaging, Dopamine transporter imaging, Substantia nigra
Parkinson's disease hyperechogenicity, Diffusion tensor imaging (DTI) alterations, Functional
connectivity changes

D . Prefrontal cortex alterations, Hippocampal volume reduction, Amygdala
epression . . . . .
P hyperactivity, Default mode network dysfunction, Serotonin transporter imaging

Hippocampal sclerosis on MRI, Cortical dysplasia on MRI, Epileptic network
Epilepsy characterization using functional connectivity, PET/SPECT imaging for seizure
focus localization

Corticospinal tract degeneration on DTI, Whole-brain atrophy, Motor cortex
Multiple Sclerosis hyperexcitability on fMRI, Hypometabolism on FDG-PET, Functional connectivity
alterations

Infarct volume and location on MRI, Perfusion imaging for assessment of ischemic
Stroke penumbra, Collateral circulation evaluation, Functional connectivity changes,
Vascular imaging (CTA/MRA) for stenosis/occlusion detection

3.1. AD and other dementias

The use of IB into the clinical practise has changed the way AD and other dementias are assessed
and managed. Amyloid PET imaging with radiotracers like ¥F-florbetapir (FTP) or PiB allows for the
visualization and quantification of amyloid plaques in the brain. These biomarkers help in the early
and accurate diagnosis of AD, as the presence of amyloid plaques is a hallmark of the disease [91-
94]. Amyloid PET imaging can differentiate AD from other forms of dementia and aid in patient
stratification for clinical trials [95-97]. Tau PET imaging, using FTP, allows for the detection and
quantification of tau pathology in the brain. Tau pathology, including neurofibrillary tangles, is
closely associated with disease progression in AD and other tauopathies [95,98-100]. Structural MRI
is widely used in AD and other dementias to evaluate brain atrophy which differentiate between
normal aging and pathological changes associated with neurodegenerative diseases [101,102].
Structural MRI biomarkers, such as hippocampal volume or whole-brain volume, can aid in the early
detection and tracking of disease progression [103-105]. In AD and other dementias, fMRI can reveal
alterations in functional connectivity patterns, such as disruptions in the default mode network
[106,107]. These biomarkers aid in the understanding of disease mechanisms, assessing disease
severity, and predicting cognitive decline.

3.2. Parkinson’s disease

Imaging techniques such as PET or SPECT with radiotracers targeting dopamine transporters,
such as '2I-FP-CIT or '8F-FDOPA, can assess the integrity and availability of dopaminergic neurons
in the brain [108]. Dopamine transporter imaging also helps in monitoring disease progression and
evaluating the response to dopaminergic therapies. fMRI or PET, provide insights into changes in
brain function and connectivity in PD include resting-sate functional connectivity, task-based
activation, structural imaging etc [109-113]. Altered functional connectivity patterns, such as
disruptions in the default mode network or corticostriatal networks, have been observed in PD. fMRI
or PET during specific motor tasks can assess changes in brain activation patterns. They provide
information about the effects of PD on motor circuitry and help evaluate the response to therapeutic
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interventions, such as deep brain stimulation [114-116]. High-resolution MRI or specific imaging
sequences, such as susceptibility-weighted imaging (SWI), can visualize and measure the substantia
nigra. These imaging biomarkers aid in the detection of substantia nigra degeneration, a characteristic
feature of PD [117-119]. MRI-based volumetric analysis can evaluate changes in specific brain
regions, such as the basal ganglia or cortical areas. These biomarkers can help in disease staging and
monitoring disease progression [120]. PET or SPECT, can provide insights into molecular changes
associated with PD [121]. Radiotracers targeting alpha-synuclein aggregates, a pathological hallmark
of PD, are under development [122,123]. These biomarkers may help in the early diagnosis and
monitoring of disease progression. An illustartion with respect to immaging biomarkers used in AD
and PD are depcetd in Figure 1.

Alzheimer’s Diseases Parkinson’s Diseases
MRI, PET (FTP or PiB) PET or SPECT (123L.Fp-
Analyse volume reduction, =Y CIT or ISF»FDOPA): SWI
functional connectivity, Dopamine transporter

& Quantification of protein .- imaging, quantification of
accumulation : Tau accumulation

Mild-demented Moderate-demented Non-demented

Figure 1. Images showing changes in brain during AD and PD adopted from [124,125].

3.3. Neuropsychiatric disorders

Imaging biomarkers have important applications in the evaluation and management of
neuropsychiatric disorders. These biomarkers enhance our understanding of the underlying neural
mechanisms and help guide personalized treatment approaches.

3.3.1. Major Depressive Disorder (MDD):

Resting-state functional connectivity assessed by fMRI can reveal alterations in functional
networks, such as the default mode network or the limbic system, in individuals with MDD. These
biomarkers help in understanding the neurobiology of depression and predicting treatment
response. Structural MRI biomarkers, such as hippocampal volume, have been associated with MDD.
Reduced hippocampal volume may indicate increased vulnerability to depression or treatment
resistance [126-129].

3.3.2. Schizophrenia:

Structural imaging techniques can detect alterations in brain structure, such as decreased gray
matter volume in specific regions like the prefrontal cortex or hippocampus. These biomarkers aid in
the diagnosis and staging of schizophrenia [130,131]. Resting-state fMRI can reveal disrupted
functional connectivity networks, such as the default mode network or the salience network, in
individuals with schizophrenia [132,133]. These biomarkers help in understanding the underlying
neural circuitry abnormalities and predicting clinical outcomes.

3.3.3. Bipolar Disorder:

Diffusion Tensor Imaging (DTI) can assess white matter integrity and identify alterations in fiber
tracts in individuals with bipolar disorder. White matter connection disruptions may be used as
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indicators for disease diagnosis and development [134-136]. In patients with bipolar disorder, task-
based fMRI can reveal aberrant activation patterns during cognitive activities, emotional processing,
or reward processing [137-139]. These biomarkers help researchers understand the brain
underpinnings of symptoms and predict treatment response.

3.3.4. Obsessive-Compulsive Disorder (OCD):

Individuals with OCD exhibit altered functional connection patterns, such as enhanced
connectivity between the orbitofrontal cortex and the basal ganglia. These biomarkers aid in the
knowledge of the brain circuits involved in the pathophysiology of OCD [140-142]. MRI-based
measurements of cortical thickness can identify regional abnormalities in individuals with OCD,
particularly in regions associated with cortico-striato-thalamo-cortical circuits [143-145].

3.4. Epilepsy

MR, a structural imaging technique play a crucial role in the evaluation of epilepsy, helps in
identifying the underlying structural abnormalities that can cause seizures. High-resolution
structural MRI allows for the detection of focal cortical dysplasia, hippocampal sclerosis, brain
tumors, vascular malformations, and other structural lesions associated with epilepsy. These
biomarkers aid in the localization and characterization of the epileptogenic zone [146-148].
Quantitative analysis of brain regions, such as the hippocampus or amygdala, can help identify
abnormalities related to mesial temporal lobe epilepsy (MTLE) [149,150]. Functional imaging
techniques provide insights into brain function and connectivity in epilepsy. They help in localizing
the epileptogenic zone and understanding the network abnormalities associated with seizures
[151,152]. Simultaneous electroencephalography (EEG) and fMRI recordings allow for the
identification of blood oxygen level-dependent (BOLD) signal changes associated with epileptic
activity. These biomarkers aid in localizing the epileptogenic zone and mapping the functional
connectivity network associated with seizures [153-155]. Resting-state fMRI can reveal changes in
functional connectivity networks such as the default mode network or the salience network. These
indicators can help with surgical planning by providing insight into the functional abnormalities
associated with epilepsy [156,157]. PET, can provide biomarkers related to specific molecular targets
in epilepsy. PET imaging with FDG can assess regional glucose metabolism in the brain.
Hypometabolism in specific regions, such as the temporal lobe, may indicate the epileptogenic focus
or the extent of the epileptic network [152,158]. PET imaging with radiotracers targeting specific
neurotransmitter receptors, such as the GABA-A receptor or the serotonin transporter, can provide
insights into neurotransmitter abnormalities in epilepsy [159].

3.5. Multiple sclerosis

Structural imaging techniques, such as MRI, play a crucial role in the diagnosis, monitoring, and
prognosis of multiple sclerosis. The quantification of T2 hyperintense lesions on MRI scans provides
a biomarker of disease burden and dissemination in space, aiding in the diagnosis and monitoring of
MS progression. The detection and quantification of contrast-enhancing lesions on post-contrast MRI
scans indicate acute inflammation and blood-brain barrier disruption. These biomarkers help in
identifying disease activity and monitoring treatment response [160-163]. Longitudinal assessment
of brain volume loss or atrophy provides a biomarker of neurodegeneration and disease progression
in MS. It correlates with physical disability and cognitive impairment [164]. Diffusion Tensor Imaging
(DTI) measures the diffusion of water molecules in the brain's white matter, providing insights into
the integrity of fiber tracts [165]. DTI-based biomarkers in multiple sclerosis includes Fractional
Anisotropy (FA) and Mean Diffusivity (MD). Reduced FA values indicate axonal damage and
demyelination in white matter tracts. Decreased FA in specific regions, such as the corpus callosum
or corticospinal tracts, correlates with physical disability and disease progression [166,167]. Increased
MD values reflect tissue damage and inflammation. Elevated MD is associated with active lesions
and predicts disability progression in MS [168]. Functional imaging techniques, such as fMR],
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provide insights into brain activity and functional connectivity in multiple sclerosis, include Resting-
State Functional Connectivity for altered functional connectivity patterns, such as disruptions in the
default mode network or sensorimotor networks have been observed in MS [169].

PET imaging techniques offer molecular imaging biomarkers in multiple sclerosis. PET imaging
with radiotracers targeting microglial activation, such as PK11195 or TSPO, can visualize
neuroinflammation in MS. Increased uptake of these radiotracers is associated with disease activity
and severity. Emerging PET radiotracers targeting myelin, such as 'C-PIB or ®F-GE180, hold promise
for assessing myelin integrity and repair in MS [170,171].

3.6. Stroke

Computed Tomography (CT) Imaging is widely used for the initial assessment of stroke patients
due to its availability and speed. Non-contrast CT scans can rapidly detect acute ischemic changes
and differentiate between ischemic and hemorrhagic strokes. They provide information about the
location and extent of early ischemic changes [172-174]. CT Angiography (CTA) is a technique for
visualising blood arteries in the brain and determining occlusions or stenosis. It aids in the
identification of the underlying aetiology of a stroke, such as atherosclerosis, arterial dissection, or
embolism. MRI imaging techniques provide precise information on the structure of the brain and can
distinguish between different stroke subtypes [175,176]. Diffusion-Weighted Imaging (DWI) can
detect acute ischemic lesions within minutes of stroke onset. It provides valuable information about
the affected brain tissue and helps determine the viability of the tissue at risk (Okorie et al., 2015).
Perfusion-Weighted Imaging (PWI) assesses cerebral blood flow and can help to identify areas of
hypoperfusion or ischemia. It aids in estimating the extent of the penumbra, which is potentially
salvageable tissue, and guides decisions regarding reperfusion therapies [177,178]. Magnetic
Resonance Angiography (MRA) provides detailed images of blood vessels and helps in visualizing
the site and extent of vessel occlusion or stenosis. It aids in determining the appropriate treatment
approach, such as endovascular intervention or anticoagulation [179-181]. Perfusion imaging
techniques, including CT or MRI-based perfusion imaging, provide quantitative measures of cerebral
blood flow and help assess tissue viability. They aid in determining the extent of the ischemic
penumbra, which guides decisions regarding reperfusion therapies [182-185]. These imaging
biomarkers by providing objective measures of brain damage and vascular abnormalities, imaging
biomarkers enhance clinical decision-making, optimize patient care, and improve long-term
outcomes in stroke patients (Table 2).

Table 2. summarizing the imaging techniques commonly used in the assessment of stroke and their
respective roles.

Imaging Technique Role

Rapidly detects acute ischemic changes and differentiates between ischemic and
Non-contrast CT hemorrhagic strokes. Provides information about the location and extent of early
ischemic changes.

Visualizes blood vessels in the brain and identifies occlusions or stenosis. Helps

CT Angiography (CTA) determine the underlying cause of stroke.

Provides detailed information about brain structure and differentiates between stroke

MRI
subtypes

Detects acute ischemic lesions within minutes of stroke onset. Provides information

Diffusion-Weighted Imaging about affected brain tissue and helps determine tissue viability.

Assesses cerebral blood flow and identifies areas of hypoperfusion or ischemia. Aids

Perfusion-Weighted Imagi
errusion-iveighied imaging ) estimating the extent of the penumbra

Magnetic Resonance Provides detailed images of blood vessels. Helps visualize vessel occlusion or stenosis
Angiography (MRA) and determine treatment approach.

Provides quantitative measures of cerebral blood flow. Assists in assessing tissue

Perfusion I ing (CT or MRI
erfusion Imaging (CT or ) viability and determining the extent of the ischemic penumbra.
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4. Challenges and Limitations

4.1. Technical limitations

While IBB have shown great promise in the treatment of neurological disorders, they also face
certain technical limitations and challenges. Spatial resolution affects accurate detection of small-scale
changes or lesions, with fMRI having lower resolution than histopathology. Temporal resolution can
be slow, making it difficult to capture quick changes in brain activity. Signal-to-Noise Ratio (SNR)
impacts data quality and reliability, with low SNR reducing sensitivity. Image artifacts, patient
movement, and limited contrast agents contribute to lower SNR. Expertise is required for interpreting
imaging biomarkers. Developing reliable algorithms for data analysis and extracting meaningful
biomarkers is complex. Validation against gold-standard measures or clinical outcomes is necessary
to establish reliability and clinical utility.

4.2. Standardization and reproducibility

Standardization and reproducibility pose challenges IBB due to protocol variations, acquisition
parameters, data analysis methods, and software tools. Consensus on standardized imaging
protocols is lacking, resulting in variability in image quality and biomarker measurements. Diverse
analysis methods and software tools contribute to inconsistencies in measurements. Multicentre
studies face additional challenges from equipment variations, requiring calibration and
harmonization efforts. Longitudinal studies rely on consistent protocols and reliable follow-up
imaging. Maintaining consistent acquisition parameters and minimizing platform or software
changes are crucial for longitudinal biomarker comparability and reproducibility.

5. Future Directions and Potential Impact

Advancements in imaging technology, including multimodal imaging, molecular imaging, Al
integration, and real-time imaging, will provide comprehensive insights into neurological disorders.
This will enhance diagnosis, treatment decision-making, and targeted therapies. Furthermore,
integrating imaging biomarkers into clinical practice holds promise for neurological disorder
treatment. They enhance diagnostic accuracy, guide personalized treatment, monitor disease
progression, aid surgical planning, and enable prognostic predictions. Integration facilitates early
and accurate diagnosis, tailored interventions, and timely treatment adjustments. Imaging
technology in telemedicine expands access to specialized care.

6. Conclusions

IBB have shown promise in neurological disorder treatment, aiding in diagnosis, treatment
selection, monitoring, and prognostication. Technical limits, standardisation concerns, ethics,
legislation, and cost-effectiveness are among the challenges. Imaging technology advancements such
as high-resolution, multimodal, molecular imaging, Al, and real-time imaging will improve accuracy
and sensitivity. Integration with personalized medicine and precision imaging will enhance
outcomes. Standardizing protocols, analysis, and addressing ethical/regulatory aspects will facilitate
clinical integration. The future of IBB in neurological disorder treatment is promising but requires
concerted efforts for widespread implementation.
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